1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
32 // For instr that was compressed from EVEX to VEX.
33 AC_EVEX_2_VEX
= MachineInstr::TAsmComments
36 /// Return a pair of condition code for the given predicate and whether
37 /// the instruction operands should be swaped to match the condition code.
38 std::pair
<CondCode
, bool> getX86ConditionCode(CmpInst::Predicate Predicate
);
40 /// Return a setcc opcode based on whether it has a memory operand.
41 unsigned getSETOpc(bool HasMemoryOperand
= false);
43 /// Return a cmov opcode for the given register size in bytes, and operand type.
44 unsigned getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
= false);
46 // Turn jCC instruction into condition code.
47 CondCode
getCondFromBranch(const MachineInstr
&MI
);
49 // Turn setCC instruction into condition code.
50 CondCode
getCondFromSETCC(const MachineInstr
&MI
);
52 // Turn CMov instruction into condition code.
53 CondCode
getCondFromCMov(const MachineInstr
&MI
);
55 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
56 /// e.g. turning COND_E to COND_NE.
57 CondCode
GetOppositeBranchCondition(CondCode CC
);
59 /// Get the VPCMP immediate for the given condition.
60 unsigned getVPCMPImmForCond(ISD::CondCode CC
);
62 /// Get the VPCMP immediate if the opcodes are swapped.
63 unsigned getSwappedVPCMPImm(unsigned Imm
);
65 /// Get the VPCOM immediate if the opcodes are swapped.
66 unsigned getSwappedVPCOMImm(unsigned Imm
);
68 /// Get the VCMP immediate if the opcodes are swapped.
69 unsigned getSwappedVCMPImm(unsigned Imm
);
73 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
74 /// a reference to a stub for a global, not the global itself.
75 inline static bool isGlobalStubReference(unsigned char TargetFlag
) {
77 case X86II::MO_DLLIMPORT
: // dllimport stub.
78 case X86II::MO_GOTPCREL
: // rip-relative GOT reference.
79 case X86II::MO_GOT
: // normal GOT reference.
80 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: // Normal $non_lazy_ptr ref.
81 case X86II::MO_DARWIN_NONLAZY
: // Normal $non_lazy_ptr ref.
82 case X86II::MO_COFFSTUB
: // COFF .refptr stub.
89 /// isGlobalRelativeToPICBase - Return true if the specified global value
90 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
91 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
92 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag
) {
94 case X86II::MO_GOTOFF
: // isPICStyleGOT: local global.
95 case X86II::MO_GOT
: // isPICStyleGOT: other global.
96 case X86II::MO_PIC_BASE_OFFSET
: // Darwin local global.
97 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: // Darwin/32 external global.
98 case X86II::MO_TLVP
: // ??? Pretty sure..
105 inline static bool isScale(const MachineOperand
&MO
) {
106 return MO
.isImm() && (MO
.getImm() == 1 || MO
.getImm() == 2 ||
107 MO
.getImm() == 4 || MO
.getImm() == 8);
110 inline static bool isLeaMem(const MachineInstr
&MI
, unsigned Op
) {
111 if (MI
.getOperand(Op
).isFI())
113 return Op
+ X86::AddrSegmentReg
<= MI
.getNumOperands() &&
114 MI
.getOperand(Op
+ X86::AddrBaseReg
).isReg() &&
115 isScale(MI
.getOperand(Op
+ X86::AddrScaleAmt
)) &&
116 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
117 (MI
.getOperand(Op
+ X86::AddrDisp
).isImm() ||
118 MI
.getOperand(Op
+ X86::AddrDisp
).isGlobal() ||
119 MI
.getOperand(Op
+ X86::AddrDisp
).isCPI() ||
120 MI
.getOperand(Op
+ X86::AddrDisp
).isJTI());
123 inline static bool isMem(const MachineInstr
&MI
, unsigned Op
) {
124 if (MI
.getOperand(Op
).isFI())
126 return Op
+ X86::AddrNumOperands
<= MI
.getNumOperands() &&
127 MI
.getOperand(Op
+ X86::AddrSegmentReg
).isReg() && isLeaMem(MI
, Op
);
130 class X86InstrInfo final
: public X86GenInstrInfo
{
131 X86Subtarget
&Subtarget
;
132 const X86RegisterInfo RI
;
134 virtual void anchor();
136 bool AnalyzeBranchImpl(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
137 MachineBasicBlock
*&FBB
,
138 SmallVectorImpl
<MachineOperand
> &Cond
,
139 SmallVectorImpl
<MachineInstr
*> &CondBranches
,
140 bool AllowModify
) const;
143 explicit X86InstrInfo(X86Subtarget
&STI
);
145 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
146 /// such, whenever a client has an instance of instruction info, it should
147 /// always be able to get register info as well (through this method).
149 const X86RegisterInfo
&getRegisterInfo() const { return RI
; }
151 /// Returns the stack pointer adjustment that happens inside the frame
152 /// setup..destroy sequence (e.g. by pushes, or inside the callee).
153 int64_t getFrameAdjustment(const MachineInstr
&I
) const {
154 assert(isFrameInstr(I
));
156 return I
.getOperand(2).getImm();
157 return I
.getOperand(1).getImm();
160 /// Sets the stack pointer adjustment made inside the frame made up by this
162 void setFrameAdjustment(MachineInstr
&I
, int64_t V
) const {
163 assert(isFrameInstr(I
));
165 I
.getOperand(2).setImm(V
);
167 I
.getOperand(1).setImm(V
);
170 /// getSPAdjust - This returns the stack pointer adjustment made by
171 /// this instruction. For x86, we need to handle more complex call
172 /// sequences involving PUSHes.
173 int getSPAdjust(const MachineInstr
&MI
) const override
;
175 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
176 /// extension instruction. That is, it's like a copy where it's legal for the
177 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
178 /// true, then it's expected the pre-extension value is available as a subreg
179 /// of the result register. This also returns the sub-register index in
181 bool isCoalescableExtInstr(const MachineInstr
&MI
, Register
&SrcReg
,
182 Register
&DstReg
, unsigned &SubIdx
) const override
;
184 /// Returns true if the instruction has no behavior (specified or otherwise)
185 /// that is based on the value of any of its register operands
187 /// Instructions are considered data invariant even if they set EFLAGS.
189 /// A classical example of something that is inherently not data invariant is
190 /// an indirect jump -- the destination is loaded into icache based on the
191 /// bits set in the jump destination register.
193 /// FIXME: This should become part of our instruction tables.
194 static bool isDataInvariant(MachineInstr
&MI
);
196 /// Returns true if the instruction has no behavior (specified or otherwise)
197 /// that is based on the value loaded from memory or the value of any
198 /// non-address register operands.
200 /// For example, if the latency of the instruction is dependent on the
201 /// particular bits set in any of the registers *or* any of the bits loaded
204 /// Instructions are considered data invariant even if they set EFLAGS.
206 /// A classical example of something that is inherently not data invariant is
207 /// an indirect jump -- the destination is loaded into icache based on the
208 /// bits set in the jump destination register.
210 /// FIXME: This should become part of our instruction tables.
211 static bool isDataInvariantLoad(MachineInstr
&MI
);
213 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
214 int &FrameIndex
) const override
;
215 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
217 unsigned &MemBytes
) const override
;
218 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
219 /// stack locations as well. This uses a heuristic so it isn't
220 /// reliable for correctness.
221 unsigned isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
222 int &FrameIndex
) const override
;
224 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
225 int &FrameIndex
) const override
;
226 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
228 unsigned &MemBytes
) const override
;
229 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
230 /// stack locations as well. This uses a heuristic so it isn't
231 /// reliable for correctness.
232 unsigned isStoreToStackSlotPostFE(const MachineInstr
&MI
,
233 int &FrameIndex
) const override
;
235 bool isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
236 AAResults
*AA
) const override
;
237 void reMaterialize(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
238 Register DestReg
, unsigned SubIdx
,
239 const MachineInstr
&Orig
,
240 const TargetRegisterInfo
&TRI
) const override
;
242 /// Given an operand within a MachineInstr, insert preceding code to put it
243 /// into the right format for a particular kind of LEA instruction. This may
244 /// involve using an appropriate super-register instead (with an implicit use
245 /// of the original) or creating a new virtual register and inserting COPY
246 /// instructions to get the data into the right class.
248 /// Reference parameters are set to indicate how caller should add this
249 /// operand to the LEA instruction.
250 bool classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
251 unsigned LEAOpcode
, bool AllowSP
, Register
&NewSrc
,
252 bool &isKill
, MachineOperand
&ImplicitOp
,
253 LiveVariables
*LV
) const;
255 /// convertToThreeAddress - This method must be implemented by targets that
256 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
257 /// may be able to convert a two-address instruction into a true
258 /// three-address instruction on demand. This allows the X86 target (for
259 /// example) to convert ADD and SHL instructions into LEA instructions if they
260 /// would require register copies due to two-addressness.
262 /// This method returns a null pointer if the transformation cannot be
263 /// performed, otherwise it returns the new instruction.
265 MachineInstr
*convertToThreeAddress(MachineFunction::iterator
&MFI
,
267 LiveVariables
*LV
) const override
;
269 /// Returns true iff the routine could find two commutable operands in the
270 /// given machine instruction.
271 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
272 /// input values can be re-defined in this method only if the input values
273 /// are not pre-defined, which is designated by the special value
274 /// 'CommuteAnyOperandIndex' assigned to it.
275 /// If both of indices are pre-defined and refer to some operands, then the
276 /// method simply returns true if the corresponding operands are commutable
277 /// and returns false otherwise.
279 /// For example, calling this method this way:
280 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
281 /// findCommutedOpIndices(MI, Op1, Op2);
282 /// can be interpreted as a query asking to find an operand that would be
283 /// commutable with the operand#1.
284 bool findCommutedOpIndices(const MachineInstr
&MI
, unsigned &SrcOpIdx1
,
285 unsigned &SrcOpIdx2
) const override
;
287 /// Returns true if we have preference on the operands order in MI, the
288 /// commute decision is returned in Commute.
289 bool hasCommutePreference(MachineInstr
&MI
, bool &Commute
) const override
;
291 /// Returns an adjusted FMA opcode that must be used in FMA instruction that
292 /// performs the same computations as the given \p MI but which has the
293 /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
294 /// It may return 0 if it is unsafe to commute the operands.
295 /// Note that a machine instruction (instead of its opcode) is passed as the
296 /// first parameter to make it possible to analyze the instruction's uses and
297 /// commute the first operand of FMA even when it seems unsafe when you look
298 /// at the opcode. For example, it is Ok to commute the first operand of
299 /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
301 /// The returned FMA opcode may differ from the opcode in the given \p MI.
302 /// For example, commuting the operands #1 and #3 in the following FMA
303 /// FMA213 #1, #2, #3
304 /// results into instruction with adjusted opcode:
305 /// FMA231 #3, #2, #1
307 getFMA3OpcodeToCommuteOperands(const MachineInstr
&MI
, unsigned SrcOpIdx1
,
309 const X86InstrFMA3Group
&FMA3Group
) const;
312 bool isUnconditionalTailCall(const MachineInstr
&MI
) const override
;
313 bool canMakeTailCallConditional(SmallVectorImpl
<MachineOperand
> &Cond
,
314 const MachineInstr
&TailCall
) const override
;
315 void replaceBranchWithTailCall(MachineBasicBlock
&MBB
,
316 SmallVectorImpl
<MachineOperand
> &Cond
,
317 const MachineInstr
&TailCall
) const override
;
319 bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
320 MachineBasicBlock
*&FBB
,
321 SmallVectorImpl
<MachineOperand
> &Cond
,
322 bool AllowModify
) const override
;
324 Optional
<ExtAddrMode
>
325 getAddrModeFromMemoryOp(const MachineInstr
&MemI
,
326 const TargetRegisterInfo
*TRI
) const override
;
328 bool getConstValDefinedInReg(const MachineInstr
&MI
, const Register Reg
,
329 int64_t &ImmVal
) const override
;
331 bool preservesZeroValueInReg(const MachineInstr
*MI
,
332 const Register NullValueReg
,
333 const TargetRegisterInfo
*TRI
) const override
;
335 bool getMemOperandsWithOffsetWidth(
336 const MachineInstr
&LdSt
,
337 SmallVectorImpl
<const MachineOperand
*> &BaseOps
, int64_t &Offset
,
338 bool &OffsetIsScalable
, unsigned &Width
,
339 const TargetRegisterInfo
*TRI
) const override
;
340 bool analyzeBranchPredicate(MachineBasicBlock
&MBB
,
341 TargetInstrInfo::MachineBranchPredicate
&MBP
,
342 bool AllowModify
= false) const override
;
344 unsigned removeBranch(MachineBasicBlock
&MBB
,
345 int *BytesRemoved
= nullptr) const override
;
346 unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
347 MachineBasicBlock
*FBB
, ArrayRef
<MachineOperand
> Cond
,
349 int *BytesAdded
= nullptr) const override
;
350 bool canInsertSelect(const MachineBasicBlock
&, ArrayRef
<MachineOperand
> Cond
,
351 Register
, Register
, Register
, int &, int &,
352 int &) const override
;
353 void insertSelect(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
354 const DebugLoc
&DL
, Register DstReg
,
355 ArrayRef
<MachineOperand
> Cond
, Register TrueReg
,
356 Register FalseReg
) const override
;
357 void copyPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
358 const DebugLoc
&DL
, MCRegister DestReg
, MCRegister SrcReg
,
359 bool KillSrc
) const override
;
360 void storeRegToStackSlot(MachineBasicBlock
&MBB
,
361 MachineBasicBlock::iterator MI
, Register SrcReg
,
362 bool isKill
, int FrameIndex
,
363 const TargetRegisterClass
*RC
,
364 const TargetRegisterInfo
*TRI
) const override
;
366 void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
367 MachineBasicBlock::iterator MI
, Register DestReg
,
368 int FrameIndex
, const TargetRegisterClass
*RC
,
369 const TargetRegisterInfo
*TRI
) const override
;
371 bool expandPostRAPseudo(MachineInstr
&MI
) const override
;
373 /// Check whether the target can fold a load that feeds a subreg operand
374 /// (or a subreg operand that feeds a store).
375 bool isSubregFoldable() const override
{ return true; }
377 /// foldMemoryOperand - If this target supports it, fold a load or store of
378 /// the specified stack slot into the specified machine instruction for the
379 /// specified operand(s). If this is possible, the target should perform the
380 /// folding and return true, otherwise it should return false. If it folds
381 /// the instruction, it is likely that the MachineInstruction the iterator
382 /// references has been changed.
384 foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
385 ArrayRef
<unsigned> Ops
,
386 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
387 LiveIntervals
*LIS
= nullptr,
388 VirtRegMap
*VRM
= nullptr) const override
;
390 /// foldMemoryOperand - Same as the previous version except it allows folding
391 /// of any load and store from / to any address, not just from a specific
393 MachineInstr
*foldMemoryOperandImpl(
394 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
395 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
396 LiveIntervals
*LIS
= nullptr) const override
;
398 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
399 /// a store or a load and a store into two or more instruction. If this is
400 /// possible, returns true as well as the new instructions by reference.
402 unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
,
403 bool UnfoldLoad
, bool UnfoldStore
,
404 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const override
;
406 bool unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
407 SmallVectorImpl
<SDNode
*> &NewNodes
) const override
;
409 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
410 /// instruction after load / store are unfolded from an instruction of the
411 /// specified opcode. It returns zero if the specified unfolding is not
412 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
413 /// index of the operand which will hold the register holding the loaded
416 getOpcodeAfterMemoryUnfold(unsigned Opc
, bool UnfoldLoad
, bool UnfoldStore
,
417 unsigned *LoadRegIndex
= nullptr) const override
;
419 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
420 /// to determine if two loads are loading from the same base address. It
421 /// should only return true if the base pointers are the same and the
422 /// only differences between the two addresses are the offset. It also returns
423 /// the offsets by reference.
424 bool areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
, int64_t &Offset1
,
425 int64_t &Offset2
) const override
;
427 /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
428 /// Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
429 /// intructions and prevent it from being re-scheduled.
430 bool isSchedulingBoundary(const MachineInstr
&MI
,
431 const MachineBasicBlock
*MBB
,
432 const MachineFunction
&MF
) const override
;
434 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
435 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
436 /// should be scheduled togther. On some targets if two loads are loading from
437 /// addresses in the same cache line, it's better if they are scheduled
438 /// together. This function takes two integers that represent the load offsets
439 /// from the common base address. It returns true if it decides it's desirable
440 /// to schedule the two loads together. "NumLoads" is the number of loads that
441 /// have already been scheduled after Load1.
442 bool shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
, int64_t Offset1
,
444 unsigned NumLoads
) const override
;
446 MCInst
getNop() const override
;
449 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const override
;
451 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
452 /// instruction that defines the specified register class.
453 bool isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const override
;
455 /// True if MI has a condition code def, e.g. EFLAGS, that is
457 bool hasLiveCondCodeDef(MachineInstr
&MI
) const;
459 /// getGlobalBaseReg - Return a virtual register initialized with the
460 /// the global base register value. Output instructions required to
461 /// initialize the register in the function entry block, if necessary.
463 unsigned getGlobalBaseReg(MachineFunction
*MF
) const;
465 std::pair
<uint16_t, uint16_t>
466 getExecutionDomain(const MachineInstr
&MI
) const override
;
468 uint16_t getExecutionDomainCustom(const MachineInstr
&MI
) const;
470 void setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const override
;
472 bool setExecutionDomainCustom(MachineInstr
&MI
, unsigned Domain
) const;
475 getPartialRegUpdateClearance(const MachineInstr
&MI
, unsigned OpNum
,
476 const TargetRegisterInfo
*TRI
) const override
;
477 unsigned getUndefRegClearance(const MachineInstr
&MI
, unsigned OpNum
,
478 const TargetRegisterInfo
*TRI
) const override
;
479 void breakPartialRegDependency(MachineInstr
&MI
, unsigned OpNum
,
480 const TargetRegisterInfo
*TRI
) const override
;
482 MachineInstr
*foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
484 ArrayRef
<MachineOperand
> MOs
,
485 MachineBasicBlock::iterator InsertPt
,
486 unsigned Size
, Align Alignment
,
487 bool AllowCommute
) const;
489 bool isHighLatencyDef(int opc
) const override
;
491 bool hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
492 const MachineRegisterInfo
*MRI
,
493 const MachineInstr
&DefMI
, unsigned DefIdx
,
494 const MachineInstr
&UseMI
,
495 unsigned UseIdx
) const override
;
497 bool useMachineCombiner() const override
{ return true; }
499 bool isAssociativeAndCommutative(const MachineInstr
&Inst
) const override
;
501 bool hasReassociableOperands(const MachineInstr
&Inst
,
502 const MachineBasicBlock
*MBB
) const override
;
504 void setSpecialOperandAttr(MachineInstr
&OldMI1
, MachineInstr
&OldMI2
,
505 MachineInstr
&NewMI1
,
506 MachineInstr
&NewMI2
) const override
;
508 /// analyzeCompare - For a comparison instruction, return the source registers
509 /// in SrcReg and SrcReg2 if having two register operands, and the value it
510 /// compares against in CmpValue. Return true if the comparison instruction
512 bool analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
513 Register
&SrcReg2
, int &CmpMask
,
514 int &CmpValue
) const override
;
516 /// optimizeCompareInstr - Check if there exists an earlier instruction that
517 /// operates on the same source operands and sets flags in the same way as
518 /// Compare; remove Compare if possible.
519 bool optimizeCompareInstr(MachineInstr
&CmpInstr
, Register SrcReg
,
520 Register SrcReg2
, int CmpMask
, int CmpValue
,
521 const MachineRegisterInfo
*MRI
) const override
;
523 /// optimizeLoadInstr - Try to remove the load by folding it to a register
524 /// operand at the use. We fold the load instructions if and only if the
525 /// def and use are in the same BB. We only look at one load and see
526 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
527 /// defined by the load we are trying to fold. DefMI returns the machine
528 /// instruction that defines FoldAsLoadDefReg, and the function returns
529 /// the machine instruction generated due to folding.
530 MachineInstr
*optimizeLoadInstr(MachineInstr
&MI
,
531 const MachineRegisterInfo
*MRI
,
532 Register
&FoldAsLoadDefReg
,
533 MachineInstr
*&DefMI
) const override
;
535 std::pair
<unsigned, unsigned>
536 decomposeMachineOperandsTargetFlags(unsigned TF
) const override
;
538 ArrayRef
<std::pair
<unsigned, const char *>>
539 getSerializableDirectMachineOperandTargetFlags() const override
;
541 virtual outliner::OutlinedFunction
getOutliningCandidateInfo(
542 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const override
;
544 bool isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
545 bool OutlineFromLinkOnceODRs
) const override
;
548 getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const override
;
550 void buildOutlinedFrame(MachineBasicBlock
&MBB
, MachineFunction
&MF
,
551 const outliner::OutlinedFunction
&OF
) const override
;
553 MachineBasicBlock::iterator
554 insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
555 MachineBasicBlock::iterator
&It
, MachineFunction
&MF
,
556 const outliner::Candidate
&C
) const override
;
558 #define GET_INSTRINFO_HELPER_DECLS
559 #include "X86GenInstrInfo.inc"
561 static bool hasLockPrefix(const MachineInstr
&MI
) {
562 return MI
.getDesc().TSFlags
& X86II::LOCK
;
565 Optional
<ParamLoadedValue
> describeLoadedValue(const MachineInstr
&MI
,
566 Register Reg
) const override
;
569 /// Commutes the operands in the given instruction by changing the operands
570 /// order and/or changing the instruction's opcode and/or the immediate value
573 /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
576 /// Do not call this method for a non-commutable instruction or
577 /// non-commutable operands.
578 /// Even though the instruction is commutable, the method may still
579 /// fail to commute the operands, null pointer is returned in such cases.
580 MachineInstr
*commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
581 unsigned CommuteOpIdx1
,
582 unsigned CommuteOpIdx2
) const override
;
584 /// If the specific machine instruction is a instruction that moves/copies
585 /// value from one register to another register return destination and source
586 /// registers as machine operands.
587 Optional
<DestSourcePair
>
588 isCopyInstrImpl(const MachineInstr
&MI
) const override
;
591 /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
592 /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
593 /// super-register and then truncating back down to a 8/16-bit sub-register.
594 MachineInstr
*convertToThreeAddressWithLEA(unsigned MIOpc
,
595 MachineFunction::iterator
&MFI
,
598 bool Is8BitOp
) const;
600 /// Handles memory folding for special case instructions, for instance those
601 /// requiring custom manipulation of the address.
602 MachineInstr
*foldMemoryOperandCustom(MachineFunction
&MF
, MachineInstr
&MI
,
604 ArrayRef
<MachineOperand
> MOs
,
605 MachineBasicBlock::iterator InsertPt
,
606 unsigned Size
, Align Alignment
) const;
608 /// isFrameOperand - Return true and the FrameIndex if the specified
609 /// operand and follow operands form a reference to the stack frame.
610 bool isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
611 int &FrameIndex
) const;
613 /// Returns true iff the routine could find two commutable operands in the
614 /// given machine instruction with 3 vector inputs.
615 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
616 /// input values can be re-defined in this method only if the input values
617 /// are not pre-defined, which is designated by the special value
618 /// 'CommuteAnyOperandIndex' assigned to it.
619 /// If both of indices are pre-defined and refer to some operands, then the
620 /// method simply returns true if the corresponding operands are commutable
621 /// and returns false otherwise.
623 /// For example, calling this method this way:
624 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
625 /// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
626 /// can be interpreted as a query asking to find an operand that would be
627 /// commutable with the operand#1.
629 /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
630 bool findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
633 bool IsIntrinsic
= false) const;