1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains code to lower X86 MachineInstrs to their corresponding
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86InstComments.h"
17 #include "MCTargetDesc/X86ShuffleDecode.h"
18 #include "MCTargetDesc/X86TargetStreamer.h"
19 #include "X86AsmPrinter.h"
20 #include "X86RegisterInfo.h"
21 #include "X86ShuffleDecodeConstantPool.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCCodeEmitter.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCExpr.h"
38 #include "llvm/MC/MCFixup.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCSectionELF.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCSymbolELF.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetMachine.h"
53 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
54 class X86MCInstLower
{
56 const MachineFunction
&MF
;
57 const TargetMachine
&TM
;
59 X86AsmPrinter
&AsmPrinter
;
62 X86MCInstLower(const MachineFunction
&MF
, X86AsmPrinter
&asmprinter
);
64 Optional
<MCOperand
> LowerMachineOperand(const MachineInstr
*MI
,
65 const MachineOperand
&MO
) const;
66 void Lower(const MachineInstr
*MI
, MCInst
&OutMI
) const;
68 MCSymbol
*GetSymbolFromOperand(const MachineOperand
&MO
) const;
69 MCOperand
LowerSymbolOperand(const MachineOperand
&MO
, MCSymbol
*Sym
) const;
72 MachineModuleInfoMachO
&getMachOMMI() const;
75 } // end anonymous namespace
77 /// A RAII helper which defines a region of instructions which can't have
78 /// padding added between them for correctness.
79 struct NoAutoPaddingScope
{
81 const bool OldAllowAutoPadding
;
82 NoAutoPaddingScope(MCStreamer
&OS
)
83 : OS(OS
), OldAllowAutoPadding(OS
.getAllowAutoPadding()) {
84 changeAndComment(false);
86 ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding
); }
87 void changeAndComment(bool b
) {
88 if (b
== OS
.getAllowAutoPadding())
90 OS
.setAllowAutoPadding(b
);
92 OS
.emitRawComment("autopadding");
94 OS
.emitRawComment("noautopadding");
98 // Emit a minimal sequence of nops spanning NumBytes bytes.
99 static void emitX86Nops(MCStreamer
&OS
, unsigned NumBytes
,
100 const X86Subtarget
*Subtarget
);
102 void X86AsmPrinter::StackMapShadowTracker::count(MCInst
&Inst
,
103 const MCSubtargetInfo
&STI
,
104 MCCodeEmitter
*CodeEmitter
) {
106 SmallString
<256> Code
;
107 SmallVector
<MCFixup
, 4> Fixups
;
108 raw_svector_ostream
VecOS(Code
);
109 CodeEmitter
->encodeInstruction(Inst
, VecOS
, Fixups
, STI
);
110 CurrentShadowSize
+= Code
.size();
111 if (CurrentShadowSize
>= RequiredShadowSize
)
112 InShadow
= false; // The shadow is big enough. Stop counting.
116 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
117 MCStreamer
&OutStreamer
, const MCSubtargetInfo
&STI
) {
118 if (InShadow
&& CurrentShadowSize
< RequiredShadowSize
) {
120 emitX86Nops(OutStreamer
, RequiredShadowSize
- CurrentShadowSize
,
121 &MF
->getSubtarget
<X86Subtarget
>());
125 void X86AsmPrinter::EmitAndCountInstruction(MCInst
&Inst
) {
126 OutStreamer
->emitInstruction(Inst
, getSubtargetInfo());
127 SMShadowTracker
.count(Inst
, getSubtargetInfo(), CodeEmitter
.get());
130 X86MCInstLower::X86MCInstLower(const MachineFunction
&mf
,
131 X86AsmPrinter
&asmprinter
)
132 : Ctx(mf
.getContext()), MF(mf
), TM(mf
.getTarget()), MAI(*TM
.getMCAsmInfo()),
133 AsmPrinter(asmprinter
) {}
135 MachineModuleInfoMachO
&X86MCInstLower::getMachOMMI() const {
136 return MF
.getMMI().getObjFileInfo
<MachineModuleInfoMachO
>();
139 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
140 /// operand to an MCSymbol.
141 MCSymbol
*X86MCInstLower::GetSymbolFromOperand(const MachineOperand
&MO
) const {
142 const Triple
&TT
= TM
.getTargetTriple();
143 if (MO
.isGlobal() && TT
.isOSBinFormatELF())
144 return AsmPrinter
.getSymbolPreferLocal(*MO
.getGlobal());
146 const DataLayout
&DL
= MF
.getDataLayout();
147 assert((MO
.isGlobal() || MO
.isSymbol() || MO
.isMBB()) &&
148 "Isn't a symbol reference");
150 MCSymbol
*Sym
= nullptr;
151 SmallString
<128> Name
;
154 switch (MO
.getTargetFlags()) {
155 case X86II::MO_DLLIMPORT
:
156 // Handle dllimport linkage.
159 case X86II::MO_COFFSTUB
:
162 case X86II::MO_DARWIN_NONLAZY
:
163 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
:
164 Suffix
= "$non_lazy_ptr";
169 Name
+= DL
.getPrivateGlobalPrefix();
172 const GlobalValue
*GV
= MO
.getGlobal();
173 AsmPrinter
.getNameWithPrefix(Name
, GV
);
174 } else if (MO
.isSymbol()) {
175 Mangler::getNameWithPrefix(Name
, MO
.getSymbolName(), DL
);
176 } else if (MO
.isMBB()) {
177 assert(Suffix
.empty());
178 Sym
= MO
.getMBB()->getSymbol();
183 Sym
= Ctx
.getOrCreateSymbol(Name
);
185 // If the target flags on the operand changes the name of the symbol, do that
186 // before we return the symbol.
187 switch (MO
.getTargetFlags()) {
190 case X86II::MO_COFFSTUB
: {
191 MachineModuleInfoCOFF
&MMICOFF
=
192 MF
.getMMI().getObjFileInfo
<MachineModuleInfoCOFF
>();
193 MachineModuleInfoImpl::StubValueTy
&StubSym
= MMICOFF
.getGVStubEntry(Sym
);
194 if (!StubSym
.getPointer()) {
195 assert(MO
.isGlobal() && "Extern symbol not handled yet");
196 StubSym
= MachineModuleInfoImpl::StubValueTy(
197 AsmPrinter
.getSymbol(MO
.getGlobal()), true);
201 case X86II::MO_DARWIN_NONLAZY
:
202 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: {
203 MachineModuleInfoImpl::StubValueTy
&StubSym
=
204 getMachOMMI().getGVStubEntry(Sym
);
205 if (!StubSym
.getPointer()) {
206 assert(MO
.isGlobal() && "Extern symbol not handled yet");
207 StubSym
= MachineModuleInfoImpl::StubValueTy(
208 AsmPrinter
.getSymbol(MO
.getGlobal()),
209 !MO
.getGlobal()->hasInternalLinkage());
218 MCOperand
X86MCInstLower::LowerSymbolOperand(const MachineOperand
&MO
,
219 MCSymbol
*Sym
) const {
220 // FIXME: We would like an efficient form for this, so we don't have to do a
221 // lot of extra uniquing.
222 const MCExpr
*Expr
= nullptr;
223 MCSymbolRefExpr::VariantKind RefKind
= MCSymbolRefExpr::VK_None
;
225 switch (MO
.getTargetFlags()) {
227 llvm_unreachable("Unknown target flag on GV operand");
228 case X86II::MO_NO_FLAG
: // No flag.
229 // These affect the name of the symbol, not any suffix.
230 case X86II::MO_DARWIN_NONLAZY
:
231 case X86II::MO_DLLIMPORT
:
232 case X86II::MO_COFFSTUB
:
236 RefKind
= MCSymbolRefExpr::VK_TLVP
;
238 case X86II::MO_TLVP_PIC_BASE
:
239 Expr
= MCSymbolRefExpr::create(Sym
, MCSymbolRefExpr::VK_TLVP
, Ctx
);
240 // Subtract the pic base.
241 Expr
= MCBinaryExpr::createSub(
242 Expr
, MCSymbolRefExpr::create(MF
.getPICBaseSymbol(), Ctx
), Ctx
);
244 case X86II::MO_SECREL
:
245 RefKind
= MCSymbolRefExpr::VK_SECREL
;
247 case X86II::MO_TLSGD
:
248 RefKind
= MCSymbolRefExpr::VK_TLSGD
;
250 case X86II::MO_TLSLD
:
251 RefKind
= MCSymbolRefExpr::VK_TLSLD
;
253 case X86II::MO_TLSLDM
:
254 RefKind
= MCSymbolRefExpr::VK_TLSLDM
;
256 case X86II::MO_GOTTPOFF
:
257 RefKind
= MCSymbolRefExpr::VK_GOTTPOFF
;
259 case X86II::MO_INDNTPOFF
:
260 RefKind
= MCSymbolRefExpr::VK_INDNTPOFF
;
262 case X86II::MO_TPOFF
:
263 RefKind
= MCSymbolRefExpr::VK_TPOFF
;
265 case X86II::MO_DTPOFF
:
266 RefKind
= MCSymbolRefExpr::VK_DTPOFF
;
268 case X86II::MO_NTPOFF
:
269 RefKind
= MCSymbolRefExpr::VK_NTPOFF
;
271 case X86II::MO_GOTNTPOFF
:
272 RefKind
= MCSymbolRefExpr::VK_GOTNTPOFF
;
274 case X86II::MO_GOTPCREL
:
275 RefKind
= MCSymbolRefExpr::VK_GOTPCREL
;
278 RefKind
= MCSymbolRefExpr::VK_GOT
;
280 case X86II::MO_GOTOFF
:
281 RefKind
= MCSymbolRefExpr::VK_GOTOFF
;
284 RefKind
= MCSymbolRefExpr::VK_PLT
;
287 RefKind
= MCSymbolRefExpr::VK_X86_ABS8
;
289 case X86II::MO_PIC_BASE_OFFSET
:
290 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
:
291 Expr
= MCSymbolRefExpr::create(Sym
, Ctx
);
292 // Subtract the pic base.
293 Expr
= MCBinaryExpr::createSub(
294 Expr
, MCSymbolRefExpr::create(MF
.getPICBaseSymbol(), Ctx
), Ctx
);
296 assert(MAI
.doesSetDirectiveSuppressReloc());
297 // If .set directive is supported, use it to reduce the number of
298 // relocations the assembler will generate for differences between
299 // local labels. This is only safe when the symbols are in the same
300 // section so we are restricting it to jumptable references.
301 MCSymbol
*Label
= Ctx
.createTempSymbol();
302 AsmPrinter
.OutStreamer
->emitAssignment(Label
, Expr
);
303 Expr
= MCSymbolRefExpr::create(Label
, Ctx
);
309 Expr
= MCSymbolRefExpr::create(Sym
, RefKind
, Ctx
);
311 if (!MO
.isJTI() && !MO
.isMBB() && MO
.getOffset())
312 Expr
= MCBinaryExpr::createAdd(
313 Expr
, MCConstantExpr::create(MO
.getOffset(), Ctx
), Ctx
);
314 return MCOperand::createExpr(Expr
);
317 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
318 /// a short fixed-register form.
319 static void SimplifyShortImmForm(MCInst
&Inst
, unsigned Opcode
) {
320 unsigned ImmOp
= Inst
.getNumOperands() - 1;
321 assert(Inst
.getOperand(0).isReg() &&
322 (Inst
.getOperand(ImmOp
).isImm() || Inst
.getOperand(ImmOp
).isExpr()) &&
323 ((Inst
.getNumOperands() == 3 && Inst
.getOperand(1).isReg() &&
324 Inst
.getOperand(0).getReg() == Inst
.getOperand(1).getReg()) ||
325 Inst
.getNumOperands() == 2) &&
326 "Unexpected instruction!");
328 // Check whether the destination register can be fixed.
329 unsigned Reg
= Inst
.getOperand(0).getReg();
330 if (Reg
!= X86::AL
&& Reg
!= X86::AX
&& Reg
!= X86::EAX
&& Reg
!= X86::RAX
)
333 // If so, rewrite the instruction.
334 MCOperand Saved
= Inst
.getOperand(ImmOp
);
336 Inst
.setOpcode(Opcode
);
337 Inst
.addOperand(Saved
);
340 /// If a movsx instruction has a shorter encoding for the used register
341 /// simplify the instruction to use it instead.
342 static void SimplifyMOVSX(MCInst
&Inst
) {
343 unsigned NewOpcode
= 0;
344 unsigned Op0
= Inst
.getOperand(0).getReg(), Op1
= Inst
.getOperand(1).getReg();
345 switch (Inst
.getOpcode()) {
347 llvm_unreachable("Unexpected instruction!");
348 case X86::MOVSX16rr8
: // movsbw %al, %ax --> cbtw
349 if (Op0
== X86::AX
&& Op1
== X86::AL
)
350 NewOpcode
= X86::CBW
;
352 case X86::MOVSX32rr16
: // movswl %ax, %eax --> cwtl
353 if (Op0
== X86::EAX
&& Op1
== X86::AX
)
354 NewOpcode
= X86::CWDE
;
356 case X86::MOVSX64rr32
: // movslq %eax, %rax --> cltq
357 if (Op0
== X86::RAX
&& Op1
== X86::EAX
)
358 NewOpcode
= X86::CDQE
;
362 if (NewOpcode
!= 0) {
364 Inst
.setOpcode(NewOpcode
);
368 /// Simplify things like MOV32rm to MOV32o32a.
369 static void SimplifyShortMoveForm(X86AsmPrinter
&Printer
, MCInst
&Inst
,
371 // Don't make these simplifications in 64-bit mode; other assemblers don't
372 // perform them because they make the code larger.
373 if (Printer
.getSubtarget().is64Bit())
376 bool IsStore
= Inst
.getOperand(0).isReg() && Inst
.getOperand(1).isReg();
377 unsigned AddrBase
= IsStore
;
378 unsigned RegOp
= IsStore
? 0 : 5;
379 unsigned AddrOp
= AddrBase
+ 3;
381 Inst
.getNumOperands() == 6 && Inst
.getOperand(RegOp
).isReg() &&
382 Inst
.getOperand(AddrBase
+ X86::AddrBaseReg
).isReg() &&
383 Inst
.getOperand(AddrBase
+ X86::AddrScaleAmt
).isImm() &&
384 Inst
.getOperand(AddrBase
+ X86::AddrIndexReg
).isReg() &&
385 Inst
.getOperand(AddrBase
+ X86::AddrSegmentReg
).isReg() &&
386 (Inst
.getOperand(AddrOp
).isExpr() || Inst
.getOperand(AddrOp
).isImm()) &&
387 "Unexpected instruction!");
389 // Check whether the destination register can be fixed.
390 unsigned Reg
= Inst
.getOperand(RegOp
).getReg();
391 if (Reg
!= X86::AL
&& Reg
!= X86::AX
&& Reg
!= X86::EAX
&& Reg
!= X86::RAX
)
394 // Check whether this is an absolute address.
395 // FIXME: We know TLVP symbol refs aren't, but there should be a better way
397 bool Absolute
= true;
398 if (Inst
.getOperand(AddrOp
).isExpr()) {
399 const MCExpr
*MCE
= Inst
.getOperand(AddrOp
).getExpr();
400 if (const MCSymbolRefExpr
*SRE
= dyn_cast
<MCSymbolRefExpr
>(MCE
))
401 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLVP
)
406 (Inst
.getOperand(AddrBase
+ X86::AddrBaseReg
).getReg() != 0 ||
407 Inst
.getOperand(AddrBase
+ X86::AddrScaleAmt
).getImm() != 1 ||
408 Inst
.getOperand(AddrBase
+ X86::AddrIndexReg
).getReg() != 0))
411 // If so, rewrite the instruction.
412 MCOperand Saved
= Inst
.getOperand(AddrOp
);
413 MCOperand Seg
= Inst
.getOperand(AddrBase
+ X86::AddrSegmentReg
);
415 Inst
.setOpcode(Opcode
);
416 Inst
.addOperand(Saved
);
417 Inst
.addOperand(Seg
);
420 static unsigned getRetOpcode(const X86Subtarget
&Subtarget
) {
421 return Subtarget
.is64Bit() ? X86::RETQ
: X86::RETL
;
425 X86MCInstLower::LowerMachineOperand(const MachineInstr
*MI
,
426 const MachineOperand
&MO
) const {
427 switch (MO
.getType()) {
430 llvm_unreachable("unknown operand type");
431 case MachineOperand::MO_Register
:
432 // Ignore all implicit register operands.
435 return MCOperand::createReg(MO
.getReg());
436 case MachineOperand::MO_Immediate
:
437 return MCOperand::createImm(MO
.getImm());
438 case MachineOperand::MO_MachineBasicBlock
:
439 case MachineOperand::MO_GlobalAddress
:
440 case MachineOperand::MO_ExternalSymbol
:
441 return LowerSymbolOperand(MO
, GetSymbolFromOperand(MO
));
442 case MachineOperand::MO_MCSymbol
:
443 return LowerSymbolOperand(MO
, MO
.getMCSymbol());
444 case MachineOperand::MO_JumpTableIndex
:
445 return LowerSymbolOperand(MO
, AsmPrinter
.GetJTISymbol(MO
.getIndex()));
446 case MachineOperand::MO_ConstantPoolIndex
:
447 return LowerSymbolOperand(MO
, AsmPrinter
.GetCPISymbol(MO
.getIndex()));
448 case MachineOperand::MO_BlockAddress
:
449 return LowerSymbolOperand(
450 MO
, AsmPrinter
.GetBlockAddressSymbol(MO
.getBlockAddress()));
451 case MachineOperand::MO_RegisterMask
:
452 // Ignore call clobbers.
457 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
459 static unsigned convertTailJumpOpcode(unsigned Opcode
) {
462 Opcode
= X86::JMP32r
;
465 Opcode
= X86::JMP32m
;
467 case X86::TAILJMPr64
:
468 Opcode
= X86::JMP64r
;
470 case X86::TAILJMPm64
:
471 Opcode
= X86::JMP64m
;
473 case X86::TAILJMPr64_REX
:
474 Opcode
= X86::JMP64r_REX
;
476 case X86::TAILJMPm64_REX
:
477 Opcode
= X86::JMP64m_REX
;
480 case X86::TAILJMPd64
:
483 case X86::TAILJMPd_CC
:
484 case X86::TAILJMPd64_CC
:
492 void X86MCInstLower::Lower(const MachineInstr
*MI
, MCInst
&OutMI
) const {
493 OutMI
.setOpcode(MI
->getOpcode());
495 for (const MachineOperand
&MO
: MI
->operands())
496 if (auto MaybeMCOp
= LowerMachineOperand(MI
, MO
))
497 OutMI
.addOperand(MaybeMCOp
.getValue());
499 // Handle a few special cases to eliminate operand modifiers.
500 switch (OutMI
.getOpcode()) {
505 // LEA should have a segment register, but it must be empty.
506 assert(OutMI
.getNumOperands() == 1 + X86::AddrNumOperands
&&
507 "Unexpected # of LEA operands");
508 assert(OutMI
.getOperand(1 + X86::AddrSegmentReg
).getReg() == 0 &&
509 "LEA has segment specified!");
515 case X86::MULX64Hrm
: {
516 // Turn into regular MULX by duplicating the destination.
518 switch (OutMI
.getOpcode()) {
519 default: llvm_unreachable("Invalid opcode");
520 case X86::MULX32Hrr
: NewOpc
= X86::MULX32rr
; break;
521 case X86::MULX32Hrm
: NewOpc
= X86::MULX32rm
; break;
522 case X86::MULX64Hrr
: NewOpc
= X86::MULX64rr
; break;
523 case X86::MULX64Hrm
: NewOpc
= X86::MULX64rm
; break;
525 OutMI
.setOpcode(NewOpc
);
526 // Duplicate the destination.
527 unsigned DestReg
= OutMI
.getOperand(0).getReg();
528 OutMI
.insert(OutMI
.begin(), MCOperand::createReg(DestReg
));
532 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
533 // if one of the registers is extended, but other isn't.
534 case X86::VMOVZPQILo2PQIrr
:
536 case X86::VMOVAPDYrr
:
538 case X86::VMOVAPSYrr
:
540 case X86::VMOVDQAYrr
:
542 case X86::VMOVDQUYrr
:
544 case X86::VMOVUPDYrr
:
546 case X86::VMOVUPSYrr
: {
547 if (!X86II::isX86_64ExtendedReg(OutMI
.getOperand(0).getReg()) &&
548 X86II::isX86_64ExtendedReg(OutMI
.getOperand(1).getReg())) {
550 switch (OutMI
.getOpcode()) {
551 default: llvm_unreachable("Invalid opcode");
552 case X86::VMOVZPQILo2PQIrr
: NewOpc
= X86::VMOVPQI2QIrr
; break;
553 case X86::VMOVAPDrr
: NewOpc
= X86::VMOVAPDrr_REV
; break;
554 case X86::VMOVAPDYrr
: NewOpc
= X86::VMOVAPDYrr_REV
; break;
555 case X86::VMOVAPSrr
: NewOpc
= X86::VMOVAPSrr_REV
; break;
556 case X86::VMOVAPSYrr
: NewOpc
= X86::VMOVAPSYrr_REV
; break;
557 case X86::VMOVDQArr
: NewOpc
= X86::VMOVDQArr_REV
; break;
558 case X86::VMOVDQAYrr
: NewOpc
= X86::VMOVDQAYrr_REV
; break;
559 case X86::VMOVDQUrr
: NewOpc
= X86::VMOVDQUrr_REV
; break;
560 case X86::VMOVDQUYrr
: NewOpc
= X86::VMOVDQUYrr_REV
; break;
561 case X86::VMOVUPDrr
: NewOpc
= X86::VMOVUPDrr_REV
; break;
562 case X86::VMOVUPDYrr
: NewOpc
= X86::VMOVUPDYrr_REV
; break;
563 case X86::VMOVUPSrr
: NewOpc
= X86::VMOVUPSrr_REV
; break;
564 case X86::VMOVUPSYrr
: NewOpc
= X86::VMOVUPSYrr_REV
; break;
566 OutMI
.setOpcode(NewOpc
);
571 case X86::VMOVSSrr
: {
572 if (!X86II::isX86_64ExtendedReg(OutMI
.getOperand(0).getReg()) &&
573 X86II::isX86_64ExtendedReg(OutMI
.getOperand(2).getReg())) {
575 switch (OutMI
.getOpcode()) {
576 default: llvm_unreachable("Invalid opcode");
577 case X86::VMOVSDrr
: NewOpc
= X86::VMOVSDrr_REV
; break;
578 case X86::VMOVSSrr
: NewOpc
= X86::VMOVSSrr_REV
; break;
580 OutMI
.setOpcode(NewOpc
);
585 case X86::VPCMPBZ128rmi
: case X86::VPCMPBZ128rmik
:
586 case X86::VPCMPBZ128rri
: case X86::VPCMPBZ128rrik
:
587 case X86::VPCMPBZ256rmi
: case X86::VPCMPBZ256rmik
:
588 case X86::VPCMPBZ256rri
: case X86::VPCMPBZ256rrik
:
589 case X86::VPCMPBZrmi
: case X86::VPCMPBZrmik
:
590 case X86::VPCMPBZrri
: case X86::VPCMPBZrrik
:
591 case X86::VPCMPDZ128rmi
: case X86::VPCMPDZ128rmik
:
592 case X86::VPCMPDZ128rmib
: case X86::VPCMPDZ128rmibk
:
593 case X86::VPCMPDZ128rri
: case X86::VPCMPDZ128rrik
:
594 case X86::VPCMPDZ256rmi
: case X86::VPCMPDZ256rmik
:
595 case X86::VPCMPDZ256rmib
: case X86::VPCMPDZ256rmibk
:
596 case X86::VPCMPDZ256rri
: case X86::VPCMPDZ256rrik
:
597 case X86::VPCMPDZrmi
: case X86::VPCMPDZrmik
:
598 case X86::VPCMPDZrmib
: case X86::VPCMPDZrmibk
:
599 case X86::VPCMPDZrri
: case X86::VPCMPDZrrik
:
600 case X86::VPCMPQZ128rmi
: case X86::VPCMPQZ128rmik
:
601 case X86::VPCMPQZ128rmib
: case X86::VPCMPQZ128rmibk
:
602 case X86::VPCMPQZ128rri
: case X86::VPCMPQZ128rrik
:
603 case X86::VPCMPQZ256rmi
: case X86::VPCMPQZ256rmik
:
604 case X86::VPCMPQZ256rmib
: case X86::VPCMPQZ256rmibk
:
605 case X86::VPCMPQZ256rri
: case X86::VPCMPQZ256rrik
:
606 case X86::VPCMPQZrmi
: case X86::VPCMPQZrmik
:
607 case X86::VPCMPQZrmib
: case X86::VPCMPQZrmibk
:
608 case X86::VPCMPQZrri
: case X86::VPCMPQZrrik
:
609 case X86::VPCMPWZ128rmi
: case X86::VPCMPWZ128rmik
:
610 case X86::VPCMPWZ128rri
: case X86::VPCMPWZ128rrik
:
611 case X86::VPCMPWZ256rmi
: case X86::VPCMPWZ256rmik
:
612 case X86::VPCMPWZ256rri
: case X86::VPCMPWZ256rrik
:
613 case X86::VPCMPWZrmi
: case X86::VPCMPWZrmik
:
614 case X86::VPCMPWZrri
: case X86::VPCMPWZrrik
: {
615 // Turn immediate 0 into the VPCMPEQ instruction.
616 if (OutMI
.getOperand(OutMI
.getNumOperands() - 1).getImm() == 0) {
618 switch (OutMI
.getOpcode()) {
619 default: llvm_unreachable("Invalid opcode");
620 case X86::VPCMPBZ128rmi
: NewOpc
= X86::VPCMPEQBZ128rm
; break;
621 case X86::VPCMPBZ128rmik
: NewOpc
= X86::VPCMPEQBZ128rmk
; break;
622 case X86::VPCMPBZ128rri
: NewOpc
= X86::VPCMPEQBZ128rr
; break;
623 case X86::VPCMPBZ128rrik
: NewOpc
= X86::VPCMPEQBZ128rrk
; break;
624 case X86::VPCMPBZ256rmi
: NewOpc
= X86::VPCMPEQBZ256rm
; break;
625 case X86::VPCMPBZ256rmik
: NewOpc
= X86::VPCMPEQBZ256rmk
; break;
626 case X86::VPCMPBZ256rri
: NewOpc
= X86::VPCMPEQBZ256rr
; break;
627 case X86::VPCMPBZ256rrik
: NewOpc
= X86::VPCMPEQBZ256rrk
; break;
628 case X86::VPCMPBZrmi
: NewOpc
= X86::VPCMPEQBZrm
; break;
629 case X86::VPCMPBZrmik
: NewOpc
= X86::VPCMPEQBZrmk
; break;
630 case X86::VPCMPBZrri
: NewOpc
= X86::VPCMPEQBZrr
; break;
631 case X86::VPCMPBZrrik
: NewOpc
= X86::VPCMPEQBZrrk
; break;
632 case X86::VPCMPDZ128rmi
: NewOpc
= X86::VPCMPEQDZ128rm
; break;
633 case X86::VPCMPDZ128rmib
: NewOpc
= X86::VPCMPEQDZ128rmb
; break;
634 case X86::VPCMPDZ128rmibk
: NewOpc
= X86::VPCMPEQDZ128rmbk
; break;
635 case X86::VPCMPDZ128rmik
: NewOpc
= X86::VPCMPEQDZ128rmk
; break;
636 case X86::VPCMPDZ128rri
: NewOpc
= X86::VPCMPEQDZ128rr
; break;
637 case X86::VPCMPDZ128rrik
: NewOpc
= X86::VPCMPEQDZ128rrk
; break;
638 case X86::VPCMPDZ256rmi
: NewOpc
= X86::VPCMPEQDZ256rm
; break;
639 case X86::VPCMPDZ256rmib
: NewOpc
= X86::VPCMPEQDZ256rmb
; break;
640 case X86::VPCMPDZ256rmibk
: NewOpc
= X86::VPCMPEQDZ256rmbk
; break;
641 case X86::VPCMPDZ256rmik
: NewOpc
= X86::VPCMPEQDZ256rmk
; break;
642 case X86::VPCMPDZ256rri
: NewOpc
= X86::VPCMPEQDZ256rr
; break;
643 case X86::VPCMPDZ256rrik
: NewOpc
= X86::VPCMPEQDZ256rrk
; break;
644 case X86::VPCMPDZrmi
: NewOpc
= X86::VPCMPEQDZrm
; break;
645 case X86::VPCMPDZrmib
: NewOpc
= X86::VPCMPEQDZrmb
; break;
646 case X86::VPCMPDZrmibk
: NewOpc
= X86::VPCMPEQDZrmbk
; break;
647 case X86::VPCMPDZrmik
: NewOpc
= X86::VPCMPEQDZrmk
; break;
648 case X86::VPCMPDZrri
: NewOpc
= X86::VPCMPEQDZrr
; break;
649 case X86::VPCMPDZrrik
: NewOpc
= X86::VPCMPEQDZrrk
; break;
650 case X86::VPCMPQZ128rmi
: NewOpc
= X86::VPCMPEQQZ128rm
; break;
651 case X86::VPCMPQZ128rmib
: NewOpc
= X86::VPCMPEQQZ128rmb
; break;
652 case X86::VPCMPQZ128rmibk
: NewOpc
= X86::VPCMPEQQZ128rmbk
; break;
653 case X86::VPCMPQZ128rmik
: NewOpc
= X86::VPCMPEQQZ128rmk
; break;
654 case X86::VPCMPQZ128rri
: NewOpc
= X86::VPCMPEQQZ128rr
; break;
655 case X86::VPCMPQZ128rrik
: NewOpc
= X86::VPCMPEQQZ128rrk
; break;
656 case X86::VPCMPQZ256rmi
: NewOpc
= X86::VPCMPEQQZ256rm
; break;
657 case X86::VPCMPQZ256rmib
: NewOpc
= X86::VPCMPEQQZ256rmb
; break;
658 case X86::VPCMPQZ256rmibk
: NewOpc
= X86::VPCMPEQQZ256rmbk
; break;
659 case X86::VPCMPQZ256rmik
: NewOpc
= X86::VPCMPEQQZ256rmk
; break;
660 case X86::VPCMPQZ256rri
: NewOpc
= X86::VPCMPEQQZ256rr
; break;
661 case X86::VPCMPQZ256rrik
: NewOpc
= X86::VPCMPEQQZ256rrk
; break;
662 case X86::VPCMPQZrmi
: NewOpc
= X86::VPCMPEQQZrm
; break;
663 case X86::VPCMPQZrmib
: NewOpc
= X86::VPCMPEQQZrmb
; break;
664 case X86::VPCMPQZrmibk
: NewOpc
= X86::VPCMPEQQZrmbk
; break;
665 case X86::VPCMPQZrmik
: NewOpc
= X86::VPCMPEQQZrmk
; break;
666 case X86::VPCMPQZrri
: NewOpc
= X86::VPCMPEQQZrr
; break;
667 case X86::VPCMPQZrrik
: NewOpc
= X86::VPCMPEQQZrrk
; break;
668 case X86::VPCMPWZ128rmi
: NewOpc
= X86::VPCMPEQWZ128rm
; break;
669 case X86::VPCMPWZ128rmik
: NewOpc
= X86::VPCMPEQWZ128rmk
; break;
670 case X86::VPCMPWZ128rri
: NewOpc
= X86::VPCMPEQWZ128rr
; break;
671 case X86::VPCMPWZ128rrik
: NewOpc
= X86::VPCMPEQWZ128rrk
; break;
672 case X86::VPCMPWZ256rmi
: NewOpc
= X86::VPCMPEQWZ256rm
; break;
673 case X86::VPCMPWZ256rmik
: NewOpc
= X86::VPCMPEQWZ256rmk
; break;
674 case X86::VPCMPWZ256rri
: NewOpc
= X86::VPCMPEQWZ256rr
; break;
675 case X86::VPCMPWZ256rrik
: NewOpc
= X86::VPCMPEQWZ256rrk
; break;
676 case X86::VPCMPWZrmi
: NewOpc
= X86::VPCMPEQWZrm
; break;
677 case X86::VPCMPWZrmik
: NewOpc
= X86::VPCMPEQWZrmk
; break;
678 case X86::VPCMPWZrri
: NewOpc
= X86::VPCMPEQWZrr
; break;
679 case X86::VPCMPWZrrik
: NewOpc
= X86::VPCMPEQWZrrk
; break;
682 OutMI
.setOpcode(NewOpc
);
683 OutMI
.erase(&OutMI
.getOperand(OutMI
.getNumOperands() - 1));
687 // Turn immediate 6 into the VPCMPGT instruction.
688 if (OutMI
.getOperand(OutMI
.getNumOperands() - 1).getImm() == 6) {
690 switch (OutMI
.getOpcode()) {
691 default: llvm_unreachable("Invalid opcode");
692 case X86::VPCMPBZ128rmi
: NewOpc
= X86::VPCMPGTBZ128rm
; break;
693 case X86::VPCMPBZ128rmik
: NewOpc
= X86::VPCMPGTBZ128rmk
; break;
694 case X86::VPCMPBZ128rri
: NewOpc
= X86::VPCMPGTBZ128rr
; break;
695 case X86::VPCMPBZ128rrik
: NewOpc
= X86::VPCMPGTBZ128rrk
; break;
696 case X86::VPCMPBZ256rmi
: NewOpc
= X86::VPCMPGTBZ256rm
; break;
697 case X86::VPCMPBZ256rmik
: NewOpc
= X86::VPCMPGTBZ256rmk
; break;
698 case X86::VPCMPBZ256rri
: NewOpc
= X86::VPCMPGTBZ256rr
; break;
699 case X86::VPCMPBZ256rrik
: NewOpc
= X86::VPCMPGTBZ256rrk
; break;
700 case X86::VPCMPBZrmi
: NewOpc
= X86::VPCMPGTBZrm
; break;
701 case X86::VPCMPBZrmik
: NewOpc
= X86::VPCMPGTBZrmk
; break;
702 case X86::VPCMPBZrri
: NewOpc
= X86::VPCMPGTBZrr
; break;
703 case X86::VPCMPBZrrik
: NewOpc
= X86::VPCMPGTBZrrk
; break;
704 case X86::VPCMPDZ128rmi
: NewOpc
= X86::VPCMPGTDZ128rm
; break;
705 case X86::VPCMPDZ128rmib
: NewOpc
= X86::VPCMPGTDZ128rmb
; break;
706 case X86::VPCMPDZ128rmibk
: NewOpc
= X86::VPCMPGTDZ128rmbk
; break;
707 case X86::VPCMPDZ128rmik
: NewOpc
= X86::VPCMPGTDZ128rmk
; break;
708 case X86::VPCMPDZ128rri
: NewOpc
= X86::VPCMPGTDZ128rr
; break;
709 case X86::VPCMPDZ128rrik
: NewOpc
= X86::VPCMPGTDZ128rrk
; break;
710 case X86::VPCMPDZ256rmi
: NewOpc
= X86::VPCMPGTDZ256rm
; break;
711 case X86::VPCMPDZ256rmib
: NewOpc
= X86::VPCMPGTDZ256rmb
; break;
712 case X86::VPCMPDZ256rmibk
: NewOpc
= X86::VPCMPGTDZ256rmbk
; break;
713 case X86::VPCMPDZ256rmik
: NewOpc
= X86::VPCMPGTDZ256rmk
; break;
714 case X86::VPCMPDZ256rri
: NewOpc
= X86::VPCMPGTDZ256rr
; break;
715 case X86::VPCMPDZ256rrik
: NewOpc
= X86::VPCMPGTDZ256rrk
; break;
716 case X86::VPCMPDZrmi
: NewOpc
= X86::VPCMPGTDZrm
; break;
717 case X86::VPCMPDZrmib
: NewOpc
= X86::VPCMPGTDZrmb
; break;
718 case X86::VPCMPDZrmibk
: NewOpc
= X86::VPCMPGTDZrmbk
; break;
719 case X86::VPCMPDZrmik
: NewOpc
= X86::VPCMPGTDZrmk
; break;
720 case X86::VPCMPDZrri
: NewOpc
= X86::VPCMPGTDZrr
; break;
721 case X86::VPCMPDZrrik
: NewOpc
= X86::VPCMPGTDZrrk
; break;
722 case X86::VPCMPQZ128rmi
: NewOpc
= X86::VPCMPGTQZ128rm
; break;
723 case X86::VPCMPQZ128rmib
: NewOpc
= X86::VPCMPGTQZ128rmb
; break;
724 case X86::VPCMPQZ128rmibk
: NewOpc
= X86::VPCMPGTQZ128rmbk
; break;
725 case X86::VPCMPQZ128rmik
: NewOpc
= X86::VPCMPGTQZ128rmk
; break;
726 case X86::VPCMPQZ128rri
: NewOpc
= X86::VPCMPGTQZ128rr
; break;
727 case X86::VPCMPQZ128rrik
: NewOpc
= X86::VPCMPGTQZ128rrk
; break;
728 case X86::VPCMPQZ256rmi
: NewOpc
= X86::VPCMPGTQZ256rm
; break;
729 case X86::VPCMPQZ256rmib
: NewOpc
= X86::VPCMPGTQZ256rmb
; break;
730 case X86::VPCMPQZ256rmibk
: NewOpc
= X86::VPCMPGTQZ256rmbk
; break;
731 case X86::VPCMPQZ256rmik
: NewOpc
= X86::VPCMPGTQZ256rmk
; break;
732 case X86::VPCMPQZ256rri
: NewOpc
= X86::VPCMPGTQZ256rr
; break;
733 case X86::VPCMPQZ256rrik
: NewOpc
= X86::VPCMPGTQZ256rrk
; break;
734 case X86::VPCMPQZrmi
: NewOpc
= X86::VPCMPGTQZrm
; break;
735 case X86::VPCMPQZrmib
: NewOpc
= X86::VPCMPGTQZrmb
; break;
736 case X86::VPCMPQZrmibk
: NewOpc
= X86::VPCMPGTQZrmbk
; break;
737 case X86::VPCMPQZrmik
: NewOpc
= X86::VPCMPGTQZrmk
; break;
738 case X86::VPCMPQZrri
: NewOpc
= X86::VPCMPGTQZrr
; break;
739 case X86::VPCMPQZrrik
: NewOpc
= X86::VPCMPGTQZrrk
; break;
740 case X86::VPCMPWZ128rmi
: NewOpc
= X86::VPCMPGTWZ128rm
; break;
741 case X86::VPCMPWZ128rmik
: NewOpc
= X86::VPCMPGTWZ128rmk
; break;
742 case X86::VPCMPWZ128rri
: NewOpc
= X86::VPCMPGTWZ128rr
; break;
743 case X86::VPCMPWZ128rrik
: NewOpc
= X86::VPCMPGTWZ128rrk
; break;
744 case X86::VPCMPWZ256rmi
: NewOpc
= X86::VPCMPGTWZ256rm
; break;
745 case X86::VPCMPWZ256rmik
: NewOpc
= X86::VPCMPGTWZ256rmk
; break;
746 case X86::VPCMPWZ256rri
: NewOpc
= X86::VPCMPGTWZ256rr
; break;
747 case X86::VPCMPWZ256rrik
: NewOpc
= X86::VPCMPGTWZ256rrk
; break;
748 case X86::VPCMPWZrmi
: NewOpc
= X86::VPCMPGTWZrm
; break;
749 case X86::VPCMPWZrmik
: NewOpc
= X86::VPCMPGTWZrmk
; break;
750 case X86::VPCMPWZrri
: NewOpc
= X86::VPCMPGTWZrr
; break;
751 case X86::VPCMPWZrrik
: NewOpc
= X86::VPCMPGTWZrrk
; break;
754 OutMI
.setOpcode(NewOpc
);
755 OutMI
.erase(&OutMI
.getOperand(OutMI
.getNumOperands() - 1));
762 // CALL64r, CALL64pcrel32 - These instructions used to have
763 // register inputs modeled as normal uses instead of implicit uses. As such,
764 // they we used to truncate off all but the first operand (the callee). This
765 // issue seems to have been fixed at some point. This assert verifies that.
767 case X86::CALL64pcrel32
:
768 assert(OutMI
.getNumOperands() == 1 && "Unexpected number of operands!");
772 case X86::EH_RETURN64
: {
774 OutMI
.setOpcode(getRetOpcode(AsmPrinter
.getSubtarget()));
778 case X86::CLEANUPRET
: {
779 // Replace CLEANUPRET with the appropriate RET.
781 OutMI
.setOpcode(getRetOpcode(AsmPrinter
.getSubtarget()));
785 case X86::CATCHRET
: {
786 // Replace CATCHRET with the appropriate RET.
787 const X86Subtarget
&Subtarget
= AsmPrinter
.getSubtarget();
788 unsigned ReturnReg
= Subtarget
.is64Bit() ? X86::RAX
: X86::EAX
;
790 OutMI
.setOpcode(getRetOpcode(Subtarget
));
791 OutMI
.addOperand(MCOperand::createReg(ReturnReg
));
795 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
798 case X86::TAILJMPr64
:
799 case X86::TAILJMPr64_REX
:
801 case X86::TAILJMPd64
:
802 assert(OutMI
.getNumOperands() == 1 && "Unexpected number of operands!");
803 OutMI
.setOpcode(convertTailJumpOpcode(OutMI
.getOpcode()));
806 case X86::TAILJMPd_CC
:
807 case X86::TAILJMPd64_CC
:
808 assert(OutMI
.getNumOperands() == 2 && "Unexpected number of operands!");
809 OutMI
.setOpcode(convertTailJumpOpcode(OutMI
.getOpcode()));
813 case X86::TAILJMPm64
:
814 case X86::TAILJMPm64_REX
:
815 assert(OutMI
.getNumOperands() == X86::AddrNumOperands
&&
816 "Unexpected number of operands!");
817 OutMI
.setOpcode(convertTailJumpOpcode(OutMI
.getOpcode()));
824 // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
825 if (!AsmPrinter
.getSubtarget().is64Bit()) {
827 switch (OutMI
.getOpcode()) {
828 default: llvm_unreachable("Invalid opcode");
829 case X86::DEC16r
: Opcode
= X86::DEC16r_alt
; break;
830 case X86::DEC32r
: Opcode
= X86::DEC32r_alt
; break;
831 case X86::INC16r
: Opcode
= X86::INC16r_alt
; break;
832 case X86::INC32r
: Opcode
= X86::INC32r_alt
; break;
834 OutMI
.setOpcode(Opcode
);
838 // We don't currently select the correct instruction form for instructions
839 // which have a short %eax, etc. form. Handle this by custom lowering, for
842 // Note, we are currently not handling the following instructions:
843 // MOV64ao8, MOV64o8a
844 // XCHG16ar, XCHG32ar, XCHG64ar
845 case X86::MOV8mr_NOREX
:
847 case X86::MOV8rm_NOREX
:
854 switch (OutMI
.getOpcode()) {
855 default: llvm_unreachable("Invalid opcode");
856 case X86::MOV8mr_NOREX
:
857 case X86::MOV8mr
: NewOpc
= X86::MOV8o32a
; break;
858 case X86::MOV8rm_NOREX
:
859 case X86::MOV8rm
: NewOpc
= X86::MOV8ao32
; break;
860 case X86::MOV16mr
: NewOpc
= X86::MOV16o32a
; break;
861 case X86::MOV16rm
: NewOpc
= X86::MOV16ao32
; break;
862 case X86::MOV32mr
: NewOpc
= X86::MOV32o32a
; break;
863 case X86::MOV32rm
: NewOpc
= X86::MOV32ao32
; break;
865 SimplifyShortMoveForm(AsmPrinter
, OutMI
, NewOpc
);
869 case X86::ADC8ri
: case X86::ADC16ri
: case X86::ADC32ri
: case X86::ADC64ri32
:
870 case X86::ADD8ri
: case X86::ADD16ri
: case X86::ADD32ri
: case X86::ADD64ri32
:
871 case X86::AND8ri
: case X86::AND16ri
: case X86::AND32ri
: case X86::AND64ri32
:
872 case X86::CMP8ri
: case X86::CMP16ri
: case X86::CMP32ri
: case X86::CMP64ri32
:
873 case X86::OR8ri
: case X86::OR16ri
: case X86::OR32ri
: case X86::OR64ri32
:
874 case X86::SBB8ri
: case X86::SBB16ri
: case X86::SBB32ri
: case X86::SBB64ri32
:
875 case X86::SUB8ri
: case X86::SUB16ri
: case X86::SUB32ri
: case X86::SUB64ri32
:
876 case X86::TEST8ri
:case X86::TEST16ri
:case X86::TEST32ri
:case X86::TEST64ri32
:
877 case X86::XOR8ri
: case X86::XOR16ri
: case X86::XOR32ri
: case X86::XOR64ri32
: {
879 switch (OutMI
.getOpcode()) {
880 default: llvm_unreachable("Invalid opcode");
881 case X86::ADC8ri
: NewOpc
= X86::ADC8i8
; break;
882 case X86::ADC16ri
: NewOpc
= X86::ADC16i16
; break;
883 case X86::ADC32ri
: NewOpc
= X86::ADC32i32
; break;
884 case X86::ADC64ri32
: NewOpc
= X86::ADC64i32
; break;
885 case X86::ADD8ri
: NewOpc
= X86::ADD8i8
; break;
886 case X86::ADD16ri
: NewOpc
= X86::ADD16i16
; break;
887 case X86::ADD32ri
: NewOpc
= X86::ADD32i32
; break;
888 case X86::ADD64ri32
: NewOpc
= X86::ADD64i32
; break;
889 case X86::AND8ri
: NewOpc
= X86::AND8i8
; break;
890 case X86::AND16ri
: NewOpc
= X86::AND16i16
; break;
891 case X86::AND32ri
: NewOpc
= X86::AND32i32
; break;
892 case X86::AND64ri32
: NewOpc
= X86::AND64i32
; break;
893 case X86::CMP8ri
: NewOpc
= X86::CMP8i8
; break;
894 case X86::CMP16ri
: NewOpc
= X86::CMP16i16
; break;
895 case X86::CMP32ri
: NewOpc
= X86::CMP32i32
; break;
896 case X86::CMP64ri32
: NewOpc
= X86::CMP64i32
; break;
897 case X86::OR8ri
: NewOpc
= X86::OR8i8
; break;
898 case X86::OR16ri
: NewOpc
= X86::OR16i16
; break;
899 case X86::OR32ri
: NewOpc
= X86::OR32i32
; break;
900 case X86::OR64ri32
: NewOpc
= X86::OR64i32
; break;
901 case X86::SBB8ri
: NewOpc
= X86::SBB8i8
; break;
902 case X86::SBB16ri
: NewOpc
= X86::SBB16i16
; break;
903 case X86::SBB32ri
: NewOpc
= X86::SBB32i32
; break;
904 case X86::SBB64ri32
: NewOpc
= X86::SBB64i32
; break;
905 case X86::SUB8ri
: NewOpc
= X86::SUB8i8
; break;
906 case X86::SUB16ri
: NewOpc
= X86::SUB16i16
; break;
907 case X86::SUB32ri
: NewOpc
= X86::SUB32i32
; break;
908 case X86::SUB64ri32
: NewOpc
= X86::SUB64i32
; break;
909 case X86::TEST8ri
: NewOpc
= X86::TEST8i8
; break;
910 case X86::TEST16ri
: NewOpc
= X86::TEST16i16
; break;
911 case X86::TEST32ri
: NewOpc
= X86::TEST32i32
; break;
912 case X86::TEST64ri32
: NewOpc
= X86::TEST64i32
; break;
913 case X86::XOR8ri
: NewOpc
= X86::XOR8i8
; break;
914 case X86::XOR16ri
: NewOpc
= X86::XOR16i16
; break;
915 case X86::XOR32ri
: NewOpc
= X86::XOR32i32
; break;
916 case X86::XOR64ri32
: NewOpc
= X86::XOR64i32
; break;
918 SimplifyShortImmForm(OutMI
, NewOpc
);
922 // Try to shrink some forms of movsx.
923 case X86::MOVSX16rr8
:
924 case X86::MOVSX32rr16
:
925 case X86::MOVSX64rr32
:
926 SimplifyMOVSX(OutMI
);
930 case X86::VCMPPDYrri
:
932 case X86::VCMPPSYrri
:
934 case X86::VCMPSSrr
: {
935 // Swap the operands if it will enable a 2 byte VEX encoding.
936 // FIXME: Change the immediate to improve opportunities?
937 if (!X86II::isX86_64ExtendedReg(OutMI
.getOperand(1).getReg()) &&
938 X86II::isX86_64ExtendedReg(OutMI
.getOperand(2).getReg())) {
939 unsigned Imm
= MI
->getOperand(3).getImm() & 0x7;
943 case 0x03: // UNORDERED
944 case 0x04: // NOT EQUAL
945 case 0x07: // ORDERED
946 std::swap(OutMI
.getOperand(1), OutMI
.getOperand(2));
953 case X86::VMOVHLPSrr
:
954 case X86::VUNPCKHPDrr
:
955 // These are not truly commutable so hide them from the default case.
959 // If the instruction is a commutable arithmetic instruction we might be
960 // able to commute the operands to get a 2 byte VEX prefix.
961 uint64_t TSFlags
= MI
->getDesc().TSFlags
;
962 if (MI
->getDesc().isCommutable() &&
963 (TSFlags
& X86II::EncodingMask
) == X86II::VEX
&&
964 (TSFlags
& X86II::OpMapMask
) == X86II::TB
&&
965 (TSFlags
& X86II::FormMask
) == X86II::MRMSrcReg
&&
966 !(TSFlags
& X86II::VEX_W
) && (TSFlags
& X86II::VEX_4V
) &&
967 OutMI
.getNumOperands() == 3) {
968 if (!X86II::isX86_64ExtendedReg(OutMI
.getOperand(1).getReg()) &&
969 X86II::isX86_64ExtendedReg(OutMI
.getOperand(2).getReg()))
970 std::swap(OutMI
.getOperand(1), OutMI
.getOperand(2));
977 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower
&MCInstLowering
,
978 const MachineInstr
&MI
) {
979 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
980 bool Is64Bits
= MI
.getOpcode() != X86::TLS_addr32
&&
981 MI
.getOpcode() != X86::TLS_base_addr32
;
982 bool Is64BitsLP64
= MI
.getOpcode() == X86::TLS_addr64
||
983 MI
.getOpcode() == X86::TLS_base_addr64
;
984 MCContext
&Ctx
= OutStreamer
->getContext();
986 MCSymbolRefExpr::VariantKind SRVK
;
987 switch (MI
.getOpcode()) {
988 case X86::TLS_addr32
:
989 case X86::TLS_addr64
:
990 case X86::TLS_addrX32
:
991 SRVK
= MCSymbolRefExpr::VK_TLSGD
;
993 case X86::TLS_base_addr32
:
994 SRVK
= MCSymbolRefExpr::VK_TLSLDM
;
996 case X86::TLS_base_addr64
:
997 case X86::TLS_base_addrX32
:
998 SRVK
= MCSymbolRefExpr::VK_TLSLD
;
1001 llvm_unreachable("unexpected opcode");
1004 const MCSymbolRefExpr
*Sym
= MCSymbolRefExpr::create(
1005 MCInstLowering
.GetSymbolFromOperand(MI
.getOperand(3)), SRVK
, Ctx
);
1007 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
1008 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
1009 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
1010 // only using GOT when GOTPCRELX is enabled.
1011 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
1012 bool UseGot
= MMI
->getModule()->getRtLibUseGOT() &&
1013 Ctx
.getAsmInfo()->canRelaxRelocations();
1016 bool NeedsPadding
= SRVK
== MCSymbolRefExpr::VK_TLSGD
;
1017 if (NeedsPadding
&& Is64BitsLP64
)
1018 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX
));
1019 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r
)
1026 const MCSymbol
*TlsGetAddr
= Ctx
.getOrCreateSymbol("__tls_get_addr");
1029 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX
));
1030 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX
));
1031 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX
));
1034 const MCExpr
*Expr
= MCSymbolRefExpr::create(
1035 TlsGetAddr
, MCSymbolRefExpr::VK_GOTPCREL
, Ctx
);
1036 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m
)
1043 EmitAndCountInstruction(
1044 MCInstBuilder(X86::CALL64pcrel32
)
1045 .addExpr(MCSymbolRefExpr::create(TlsGetAddr
,
1046 MCSymbolRefExpr::VK_PLT
, Ctx
)));
1049 if (SRVK
== MCSymbolRefExpr::VK_TLSGD
&& !UseGot
) {
1050 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r
)
1058 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r
)
1067 const MCSymbol
*TlsGetAddr
= Ctx
.getOrCreateSymbol("___tls_get_addr");
1069 const MCExpr
*Expr
=
1070 MCSymbolRefExpr::create(TlsGetAddr
, MCSymbolRefExpr::VK_GOT
, Ctx
);
1071 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m
)
1078 EmitAndCountInstruction(
1079 MCInstBuilder(X86::CALLpcrel32
)
1080 .addExpr(MCSymbolRefExpr::create(TlsGetAddr
,
1081 MCSymbolRefExpr::VK_PLT
, Ctx
)));
1086 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
1087 /// bytes. Return the size of nop emitted.
1088 static unsigned emitNop(MCStreamer
&OS
, unsigned NumBytes
,
1089 const X86Subtarget
*Subtarget
) {
1090 // Determine the longest nop which can be efficiently decoded for the given
1091 // target cpu. 15-bytes is the longest single NOP instruction, but some
1092 // platforms can't decode the longest forms efficiently.
1093 unsigned MaxNopLength
= 1;
1094 if (Subtarget
->is64Bit()) {
1095 // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
1096 // IndexReg/BaseReg below need to be updated.
1097 if (Subtarget
->hasFeature(X86::TuningFast7ByteNOP
))
1099 else if (Subtarget
->hasFeature(X86::TuningFast15ByteNOP
))
1101 else if (Subtarget
->hasFeature(X86::TuningFast11ByteNOP
))
1105 } if (Subtarget
->is32Bit())
1108 // Cap a single nop emission at the profitable value for the target
1109 NumBytes
= std::min(NumBytes
, MaxNopLength
);
1112 unsigned Opc
, BaseReg
, ScaleVal
, IndexReg
, Displacement
, SegmentReg
;
1113 IndexReg
= Displacement
= SegmentReg
= 0;
1118 llvm_unreachable("Zero nops?");
1126 Opc
= X86::XCHG16ar
;
1141 IndexReg
= X86::RAX
;
1147 IndexReg
= X86::RAX
;
1158 IndexReg
= X86::RAX
;
1164 IndexReg
= X86::RAX
;
1170 IndexReg
= X86::RAX
;
1171 SegmentReg
= X86::CS
;
1175 unsigned NumPrefixes
= std::min(NumBytes
- NopSize
, 5U);
1176 NopSize
+= NumPrefixes
;
1177 for (unsigned i
= 0; i
!= NumPrefixes
; ++i
)
1178 OS
.emitBytes("\x66");
1181 default: llvm_unreachable("Unexpected opcode");
1183 OS
.emitInstruction(MCInstBuilder(Opc
), *Subtarget
);
1186 OS
.emitInstruction(MCInstBuilder(Opc
).addReg(X86::AX
).addReg(X86::AX
),
1191 OS
.emitInstruction(MCInstBuilder(Opc
)
1195 .addImm(Displacement
)
1196 .addReg(SegmentReg
),
1200 assert(NopSize
<= NumBytes
&& "We overemitted?");
1204 /// Emit the optimal amount of multi-byte nops on X86.
1205 static void emitX86Nops(MCStreamer
&OS
, unsigned NumBytes
,
1206 const X86Subtarget
*Subtarget
) {
1207 unsigned NopsToEmit
= NumBytes
;
1210 NumBytes
-= emitNop(OS
, NumBytes
, Subtarget
);
1211 assert(NopsToEmit
>= NumBytes
&& "Emitted more than I asked for!");
1215 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr
&MI
,
1216 X86MCInstLower
&MCIL
) {
1217 assert(Subtarget
->is64Bit() && "Statepoint currently only supports X86-64");
1219 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1221 StatepointOpers
SOpers(&MI
);
1222 if (unsigned PatchBytes
= SOpers
.getNumPatchBytes()) {
1223 emitX86Nops(*OutStreamer
, PatchBytes
, Subtarget
);
1225 // Lower call target and choose correct opcode
1226 const MachineOperand
&CallTarget
= SOpers
.getCallTarget();
1227 MCOperand CallTargetMCOp
;
1228 unsigned CallOpcode
;
1229 switch (CallTarget
.getType()) {
1230 case MachineOperand::MO_GlobalAddress
:
1231 case MachineOperand::MO_ExternalSymbol
:
1232 CallTargetMCOp
= MCIL
.LowerSymbolOperand(
1233 CallTarget
, MCIL
.GetSymbolFromOperand(CallTarget
));
1234 CallOpcode
= X86::CALL64pcrel32
;
1235 // Currently, we only support relative addressing with statepoints.
1236 // Otherwise, we'll need a scratch register to hold the target
1237 // address. You'll fail asserts during load & relocation if this
1238 // symbol is to far away. (TODO: support non-relative addressing)
1240 case MachineOperand::MO_Immediate
:
1241 CallTargetMCOp
= MCOperand::createImm(CallTarget
.getImm());
1242 CallOpcode
= X86::CALL64pcrel32
;
1243 // Currently, we only support relative addressing with statepoints.
1244 // Otherwise, we'll need a scratch register to hold the target
1245 // immediate. You'll fail asserts during load & relocation if this
1246 // address is to far away. (TODO: support non-relative addressing)
1248 case MachineOperand::MO_Register
:
1249 // FIXME: Add retpoline support and remove this.
1250 if (Subtarget
->useIndirectThunkCalls())
1251 report_fatal_error("Lowering register statepoints with thunks not "
1252 "yet implemented.");
1253 CallTargetMCOp
= MCOperand::createReg(CallTarget
.getReg());
1254 CallOpcode
= X86::CALL64r
;
1257 llvm_unreachable("Unsupported operand type in statepoint call target");
1263 CallInst
.setOpcode(CallOpcode
);
1264 CallInst
.addOperand(CallTargetMCOp
);
1265 OutStreamer
->emitInstruction(CallInst
, getSubtargetInfo());
1268 // Record our statepoint node in the same section used by STACKMAP
1270 auto &Ctx
= OutStreamer
->getContext();
1271 MCSymbol
*MILabel
= Ctx
.createTempSymbol();
1272 OutStreamer
->emitLabel(MILabel
);
1273 SM
.recordStatepoint(*MILabel
, MI
);
1276 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr
&FaultingMI
,
1277 X86MCInstLower
&MCIL
) {
1278 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
1279 // <opcode>, <operands>
1281 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1283 Register DefRegister
= FaultingMI
.getOperand(0).getReg();
1284 FaultMaps::FaultKind FK
=
1285 static_cast<FaultMaps::FaultKind
>(FaultingMI
.getOperand(1).getImm());
1286 MCSymbol
*HandlerLabel
= FaultingMI
.getOperand(2).getMBB()->getSymbol();
1287 unsigned Opcode
= FaultingMI
.getOperand(3).getImm();
1288 unsigned OperandsBeginIdx
= 4;
1290 auto &Ctx
= OutStreamer
->getContext();
1291 MCSymbol
*FaultingLabel
= Ctx
.createTempSymbol();
1292 OutStreamer
->emitLabel(FaultingLabel
);
1294 assert(FK
< FaultMaps::FaultKindMax
&& "Invalid Faulting Kind!");
1295 FM
.recordFaultingOp(FK
, FaultingLabel
, HandlerLabel
);
1298 MI
.setOpcode(Opcode
);
1300 if (DefRegister
!= X86::NoRegister
)
1301 MI
.addOperand(MCOperand::createReg(DefRegister
));
1303 for (auto I
= FaultingMI
.operands_begin() + OperandsBeginIdx
,
1304 E
= FaultingMI
.operands_end();
1306 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&FaultingMI
, *I
))
1307 MI
.addOperand(MaybeOperand
.getValue());
1309 OutStreamer
->AddComment("on-fault: " + HandlerLabel
->getName());
1310 OutStreamer
->emitInstruction(MI
, getSubtargetInfo());
1313 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr
&MI
,
1314 X86MCInstLower
&MCIL
) {
1315 bool Is64Bits
= Subtarget
->is64Bit();
1316 MCContext
&Ctx
= OutStreamer
->getContext();
1317 MCSymbol
*fentry
= Ctx
.getOrCreateSymbol("__fentry__");
1318 const MCSymbolRefExpr
*Op
=
1319 MCSymbolRefExpr::create(fentry
, MCSymbolRefExpr::VK_None
, Ctx
);
1321 EmitAndCountInstruction(
1322 MCInstBuilder(Is64Bits
? X86::CALL64pcrel32
: X86::CALLpcrel32
)
1326 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr
&MI
,
1327 X86MCInstLower
&MCIL
) {
1328 // PATCHABLE_OP minsize, opcode, operands
1330 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1332 unsigned MinSize
= MI
.getOperand(0).getImm();
1333 unsigned Opcode
= MI
.getOperand(1).getImm();
1336 MCI
.setOpcode(Opcode
);
1337 for (auto &MO
: drop_begin(MI
.operands(), 2))
1338 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&MI
, MO
))
1339 MCI
.addOperand(MaybeOperand
.getValue());
1341 SmallString
<256> Code
;
1342 SmallVector
<MCFixup
, 4> Fixups
;
1343 raw_svector_ostream
VecOS(Code
);
1344 CodeEmitter
->encodeInstruction(MCI
, VecOS
, Fixups
, getSubtargetInfo());
1346 if (Code
.size() < MinSize
) {
1347 if (MinSize
== 2 && Subtarget
->is32Bit() &&
1348 Subtarget
->isTargetWindowsMSVC() &&
1349 (Subtarget
->getCPU().empty() || Subtarget
->getCPU() == "pentium3")) {
1350 // For compatibilty reasons, when targetting MSVC, is is important to
1351 // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
1352 // rely specifically on this pattern to be able to patch a function.
1353 // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
1354 OutStreamer
->emitInstruction(
1355 MCInstBuilder(X86::MOV32rr_REV
).addReg(X86::EDI
).addReg(X86::EDI
),
1357 } else if (MinSize
== 2 && Opcode
== X86::PUSH64r
) {
1358 // This is an optimization that lets us get away without emitting a nop in
1361 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1362 // bytes too, so the check on MinSize is important.
1363 MCI
.setOpcode(X86::PUSH64rmr
);
1365 unsigned NopSize
= emitNop(*OutStreamer
, MinSize
, Subtarget
);
1366 assert(NopSize
== MinSize
&& "Could not implement MinSize!");
1371 OutStreamer
->emitInstruction(MCI
, getSubtargetInfo());
1374 // Lower a stackmap of the form:
1375 // <id>, <shadowBytes>, ...
1376 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr
&MI
) {
1377 SMShadowTracker
.emitShadowPadding(*OutStreamer
, getSubtargetInfo());
1379 auto &Ctx
= OutStreamer
->getContext();
1380 MCSymbol
*MILabel
= Ctx
.createTempSymbol();
1381 OutStreamer
->emitLabel(MILabel
);
1383 SM
.recordStackMap(*MILabel
, MI
);
1384 unsigned NumShadowBytes
= MI
.getOperand(1).getImm();
1385 SMShadowTracker
.reset(NumShadowBytes
);
1388 // Lower a patchpoint of the form:
1389 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1390 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr
&MI
,
1391 X86MCInstLower
&MCIL
) {
1392 assert(Subtarget
->is64Bit() && "Patchpoint currently only supports X86-64");
1394 SMShadowTracker
.emitShadowPadding(*OutStreamer
, getSubtargetInfo());
1396 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1398 auto &Ctx
= OutStreamer
->getContext();
1399 MCSymbol
*MILabel
= Ctx
.createTempSymbol();
1400 OutStreamer
->emitLabel(MILabel
);
1401 SM
.recordPatchPoint(*MILabel
, MI
);
1403 PatchPointOpers
opers(&MI
);
1404 unsigned ScratchIdx
= opers
.getNextScratchIdx();
1405 unsigned EncodedBytes
= 0;
1406 const MachineOperand
&CalleeMO
= opers
.getCallTarget();
1408 // Check for null target. If target is non-null (i.e. is non-zero or is
1409 // symbolic) then emit a call.
1410 if (!(CalleeMO
.isImm() && !CalleeMO
.getImm())) {
1411 MCOperand CalleeMCOp
;
1412 switch (CalleeMO
.getType()) {
1414 /// FIXME: Add a verifier check for bad callee types.
1415 llvm_unreachable("Unrecognized callee operand type.");
1416 case MachineOperand::MO_Immediate
:
1417 if (CalleeMO
.getImm())
1418 CalleeMCOp
= MCOperand::createImm(CalleeMO
.getImm());
1420 case MachineOperand::MO_ExternalSymbol
:
1421 case MachineOperand::MO_GlobalAddress
:
1422 CalleeMCOp
= MCIL
.LowerSymbolOperand(CalleeMO
,
1423 MCIL
.GetSymbolFromOperand(CalleeMO
));
1427 // Emit MOV to materialize the target address and the CALL to target.
1428 // This is encoded with 12-13 bytes, depending on which register is used.
1429 Register ScratchReg
= MI
.getOperand(ScratchIdx
).getReg();
1430 if (X86II::isX86_64ExtendedReg(ScratchReg
))
1435 EmitAndCountInstruction(
1436 MCInstBuilder(X86::MOV64ri
).addReg(ScratchReg
).addOperand(CalleeMCOp
));
1437 // FIXME: Add retpoline support and remove this.
1438 if (Subtarget
->useIndirectThunkCalls())
1440 "Lowering patchpoint with thunks not yet implemented.");
1441 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r
).addReg(ScratchReg
));
1445 unsigned NumBytes
= opers
.getNumPatchBytes();
1446 assert(NumBytes
>= EncodedBytes
&&
1447 "Patchpoint can't request size less than the length of a call.");
1449 emitX86Nops(*OutStreamer
, NumBytes
- EncodedBytes
, Subtarget
);
1452 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr
&MI
,
1453 X86MCInstLower
&MCIL
) {
1454 assert(Subtarget
->is64Bit() && "XRay custom events only supports X86-64");
1456 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1458 // We want to emit the following pattern, which follows the x86 calling
1459 // convention to prepare for the trampoline call to be patched in.
1462 // .Lxray_event_sled_N:
1463 // jmp +N // jump across the instrumentation sled
1464 // ... // set up arguments in register
1465 // callq __xray_CustomEvent@plt // force dependency to symbol
1469 // After patching, it would look something like:
1471 // nopw (2-byte nop)
1473 // callq __xrayCustomEvent // already lowered
1477 // First we emit the label and the jump.
1478 auto CurSled
= OutContext
.createTempSymbol("xray_event_sled_", true);
1479 OutStreamer
->AddComment("# XRay Custom Event Log");
1480 OutStreamer
->emitCodeAlignment(2);
1481 OutStreamer
->emitLabel(CurSled
);
1483 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1484 // an operand (computed as an offset from the jmp instruction).
1485 // FIXME: Find another less hacky way do force the relative jump.
1486 OutStreamer
->emitBinaryData("\xeb\x0f");
1488 // The default C calling convention will place two arguments into %rcx and
1489 // %rdx -- so we only work with those.
1490 const Register DestRegs
[] = {X86::RDI
, X86::RSI
};
1491 bool UsedMask
[] = {false, false};
1492 // Filled out in loop.
1493 Register SrcRegs
[] = {0, 0};
1495 // Then we put the operands in the %rdi and %rsi registers. We spill the
1496 // values in the register before we clobber them, and mark them as used in
1497 // UsedMask. In case the arguments are already in the correct register, we use
1498 // emit nops appropriately sized to keep the sled the same size in every
1500 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1501 if (auto Op
= MCIL
.LowerMachineOperand(&MI
, MI
.getOperand(I
))) {
1502 assert(Op
->isReg() && "Only support arguments in registers");
1503 SrcRegs
[I
] = getX86SubSuperRegister(Op
->getReg(), 64);
1504 if (SrcRegs
[I
] != DestRegs
[I
]) {
1506 EmitAndCountInstruction(
1507 MCInstBuilder(X86::PUSH64r
).addReg(DestRegs
[I
]));
1509 emitX86Nops(*OutStreamer
, 4, Subtarget
);
1513 // Now that the register values are stashed, mov arguments into place.
1514 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1515 // earlier DestReg. We will have already overwritten over the register before
1516 // we can copy from it.
1517 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1518 if (SrcRegs
[I
] != DestRegs
[I
])
1519 EmitAndCountInstruction(
1520 MCInstBuilder(X86::MOV64rr
).addReg(DestRegs
[I
]).addReg(SrcRegs
[I
]));
1522 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1523 // name of the trampoline to be implemented by the XRay runtime.
1524 auto TSym
= OutContext
.getOrCreateSymbol("__xray_CustomEvent");
1525 MachineOperand TOp
= MachineOperand::CreateMCSymbol(TSym
);
1526 if (isPositionIndependent())
1527 TOp
.setTargetFlags(X86II::MO_PLT
);
1529 // Emit the call instruction.
1530 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32
)
1531 .addOperand(MCIL
.LowerSymbolOperand(TOp
, TSym
)));
1533 // Restore caller-saved and used registers.
1534 for (unsigned I
= sizeof UsedMask
; I
-- > 0;)
1536 EmitAndCountInstruction(MCInstBuilder(X86::POP64r
).addReg(DestRegs
[I
]));
1538 emitX86Nops(*OutStreamer
, 1, Subtarget
);
1540 OutStreamer
->AddComment("xray custom event end.");
1542 // Record the sled version. Version 0 of this sled was spelled differently, so
1543 // we let the runtime handle the different offsets we're using. Version 2
1544 // changed the absolute address to a PC-relative address.
1545 recordSled(CurSled
, MI
, SledKind::CUSTOM_EVENT
, 2);
1548 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr
&MI
,
1549 X86MCInstLower
&MCIL
) {
1550 assert(Subtarget
->is64Bit() && "XRay typed events only supports X86-64");
1552 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1554 // We want to emit the following pattern, which follows the x86 calling
1555 // convention to prepare for the trampoline call to be patched in.
1558 // .Lxray_event_sled_N:
1559 // jmp +N // jump across the instrumentation sled
1560 // ... // set up arguments in register
1561 // callq __xray_TypedEvent@plt // force dependency to symbol
1565 // After patching, it would look something like:
1567 // nopw (2-byte nop)
1569 // callq __xrayTypedEvent // already lowered
1573 // First we emit the label and the jump.
1574 auto CurSled
= OutContext
.createTempSymbol("xray_typed_event_sled_", true);
1575 OutStreamer
->AddComment("# XRay Typed Event Log");
1576 OutStreamer
->emitCodeAlignment(2);
1577 OutStreamer
->emitLabel(CurSled
);
1579 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1580 // an operand (computed as an offset from the jmp instruction).
1581 // FIXME: Find another less hacky way do force the relative jump.
1582 OutStreamer
->emitBinaryData("\xeb\x14");
1584 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1585 // so we'll work with those. Or we may be called via SystemV, in which case
1586 // we don't have to do any translation.
1587 const Register DestRegs
[] = {X86::RDI
, X86::RSI
, X86::RDX
};
1588 bool UsedMask
[] = {false, false, false};
1590 // Will fill out src regs in the loop.
1591 Register SrcRegs
[] = {0, 0, 0};
1593 // Then we put the operands in the SystemV registers. We spill the values in
1594 // the registers before we clobber them, and mark them as used in UsedMask.
1595 // In case the arguments are already in the correct register, we emit nops
1596 // appropriately sized to keep the sled the same size in every situation.
1597 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1598 if (auto Op
= MCIL
.LowerMachineOperand(&MI
, MI
.getOperand(I
))) {
1599 // TODO: Is register only support adequate?
1600 assert(Op
->isReg() && "Only supports arguments in registers");
1601 SrcRegs
[I
] = getX86SubSuperRegister(Op
->getReg(), 64);
1602 if (SrcRegs
[I
] != DestRegs
[I
]) {
1604 EmitAndCountInstruction(
1605 MCInstBuilder(X86::PUSH64r
).addReg(DestRegs
[I
]));
1607 emitX86Nops(*OutStreamer
, 4, Subtarget
);
1611 // In the above loop we only stash all of the destination registers or emit
1612 // nops if the arguments are already in the right place. Doing the actually
1613 // moving is postponed until after all the registers are stashed so nothing
1614 // is clobbers. We've already added nops to account for the size of mov and
1615 // push if the register is in the right place, so we only have to worry about
1617 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1618 // earlier DestReg. We will have already overwritten over the register before
1619 // we can copy from it.
1620 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
)
1622 EmitAndCountInstruction(
1623 MCInstBuilder(X86::MOV64rr
).addReg(DestRegs
[I
]).addReg(SrcRegs
[I
]));
1625 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1626 // name of the trampoline to be implemented by the XRay runtime.
1627 auto TSym
= OutContext
.getOrCreateSymbol("__xray_TypedEvent");
1628 MachineOperand TOp
= MachineOperand::CreateMCSymbol(TSym
);
1629 if (isPositionIndependent())
1630 TOp
.setTargetFlags(X86II::MO_PLT
);
1632 // Emit the call instruction.
1633 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32
)
1634 .addOperand(MCIL
.LowerSymbolOperand(TOp
, TSym
)));
1636 // Restore caller-saved and used registers.
1637 for (unsigned I
= sizeof UsedMask
; I
-- > 0;)
1639 EmitAndCountInstruction(MCInstBuilder(X86::POP64r
).addReg(DestRegs
[I
]));
1641 emitX86Nops(*OutStreamer
, 1, Subtarget
);
1643 OutStreamer
->AddComment("xray typed event end.");
1645 // Record the sled version.
1646 recordSled(CurSled
, MI
, SledKind::TYPED_EVENT
, 2);
1649 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr
&MI
,
1650 X86MCInstLower
&MCIL
) {
1652 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1654 const Function
&F
= MF
->getFunction();
1655 if (F
.hasFnAttribute("patchable-function-entry")) {
1657 if (F
.getFnAttribute("patchable-function-entry")
1659 .getAsInteger(10, Num
))
1661 emitX86Nops(*OutStreamer
, Num
, Subtarget
);
1664 // We want to emit the following pattern:
1669 // # 9 bytes worth of noops
1671 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1672 // bytes with the following pattern:
1674 // mov %r10, <function id, 32-bit> // 6 bytes
1675 // call <relative offset, 32-bits> // 5 bytes
1677 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1678 OutStreamer
->emitCodeAlignment(2);
1679 OutStreamer
->emitLabel(CurSled
);
1681 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1682 // an operand (computed as an offset from the jmp instruction).
1683 // FIXME: Find another less hacky way do force the relative jump.
1684 OutStreamer
->emitBytes("\xeb\x09");
1685 emitX86Nops(*OutStreamer
, 9, Subtarget
);
1686 recordSled(CurSled
, MI
, SledKind::FUNCTION_ENTER
, 2);
1689 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr
&MI
,
1690 X86MCInstLower
&MCIL
) {
1691 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1693 // Since PATCHABLE_RET takes the opcode of the return statement as an
1694 // argument, we use that to emit the correct form of the RET that we want.
1695 // i.e. when we see this:
1697 // PATCHABLE_RET X86::RET ...
1699 // We should emit the RET followed by sleds.
1703 // ret # or equivalent instruction
1704 // # 10 bytes worth of noops
1706 // This just makes sure that the alignment for the next instruction is 2.
1707 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1708 OutStreamer
->emitCodeAlignment(2);
1709 OutStreamer
->emitLabel(CurSled
);
1710 unsigned OpCode
= MI
.getOperand(0).getImm();
1712 Ret
.setOpcode(OpCode
);
1713 for (auto &MO
: drop_begin(MI
.operands()))
1714 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&MI
, MO
))
1715 Ret
.addOperand(MaybeOperand
.getValue());
1716 OutStreamer
->emitInstruction(Ret
, getSubtargetInfo());
1717 emitX86Nops(*OutStreamer
, 10, Subtarget
);
1718 recordSled(CurSled
, MI
, SledKind::FUNCTION_EXIT
, 2);
1721 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr
&MI
,
1722 X86MCInstLower
&MCIL
) {
1723 NoAutoPaddingScope
NoPadScope(*OutStreamer
);
1725 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1726 // instruction so we lower that particular instruction and its operands.
1727 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1728 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1729 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1730 // tail call much like how we have it in PATCHABLE_RET.
1731 auto CurSled
= OutContext
.createTempSymbol("xray_sled_", true);
1732 OutStreamer
->emitCodeAlignment(2);
1733 OutStreamer
->emitLabel(CurSled
);
1734 auto Target
= OutContext
.createTempSymbol();
1736 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1737 // an operand (computed as an offset from the jmp instruction).
1738 // FIXME: Find another less hacky way do force the relative jump.
1739 OutStreamer
->emitBytes("\xeb\x09");
1740 emitX86Nops(*OutStreamer
, 9, Subtarget
);
1741 OutStreamer
->emitLabel(Target
);
1742 recordSled(CurSled
, MI
, SledKind::TAIL_CALL
, 2);
1744 unsigned OpCode
= MI
.getOperand(0).getImm();
1745 OpCode
= convertTailJumpOpcode(OpCode
);
1747 TC
.setOpcode(OpCode
);
1749 // Before emitting the instruction, add a comment to indicate that this is
1750 // indeed a tail call.
1751 OutStreamer
->AddComment("TAILCALL");
1752 for (auto &MO
: drop_begin(MI
.operands()))
1753 if (auto MaybeOperand
= MCIL
.LowerMachineOperand(&MI
, MO
))
1754 TC
.addOperand(MaybeOperand
.getValue());
1755 OutStreamer
->emitInstruction(TC
, getSubtargetInfo());
1758 // Returns instruction preceding MBBI in MachineFunction.
1759 // If MBBI is the first instruction of the first basic block, returns null.
1760 static MachineBasicBlock::const_iterator
1761 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI
) {
1762 const MachineBasicBlock
*MBB
= MBBI
->getParent();
1763 while (MBBI
== MBB
->begin()) {
1764 if (MBB
== &MBB
->getParent()->front())
1765 return MachineBasicBlock::const_iterator();
1766 MBB
= MBB
->getPrevNode();
1773 static const Constant
*getConstantFromPool(const MachineInstr
&MI
,
1774 const MachineOperand
&Op
) {
1775 if (!Op
.isCPI() || Op
.getOffset() != 0)
1778 ArrayRef
<MachineConstantPoolEntry
> Constants
=
1779 MI
.getParent()->getParent()->getConstantPool()->getConstants();
1780 const MachineConstantPoolEntry
&ConstantEntry
= Constants
[Op
.getIndex()];
1782 // Bail if this is a machine constant pool entry, we won't be able to dig out
1784 if (ConstantEntry
.isMachineConstantPoolEntry())
1787 return ConstantEntry
.Val
.ConstVal
;
1790 static std::string
getShuffleComment(const MachineInstr
*MI
, unsigned SrcOp1Idx
,
1791 unsigned SrcOp2Idx
, ArrayRef
<int> Mask
) {
1792 std::string Comment
;
1794 // Compute the name for a register. This is really goofy because we have
1795 // multiple instruction printers that could (in theory) use different
1796 // names. Fortunately most people use the ATT style (outside of Windows)
1797 // and they actually agree on register naming here. Ultimately, this is
1798 // a comment, and so its OK if it isn't perfect.
1799 auto GetRegisterName
= [](unsigned RegNum
) -> StringRef
{
1800 return X86ATTInstPrinter::getRegisterName(RegNum
);
1803 const MachineOperand
&DstOp
= MI
->getOperand(0);
1804 const MachineOperand
&SrcOp1
= MI
->getOperand(SrcOp1Idx
);
1805 const MachineOperand
&SrcOp2
= MI
->getOperand(SrcOp2Idx
);
1807 StringRef DstName
= DstOp
.isReg() ? GetRegisterName(DstOp
.getReg()) : "mem";
1808 StringRef Src1Name
=
1809 SrcOp1
.isReg() ? GetRegisterName(SrcOp1
.getReg()) : "mem";
1810 StringRef Src2Name
=
1811 SrcOp2
.isReg() ? GetRegisterName(SrcOp2
.getReg()) : "mem";
1813 // One source operand, fix the mask to print all elements in one span.
1814 SmallVector
<int, 8> ShuffleMask(Mask
.begin(), Mask
.end());
1815 if (Src1Name
== Src2Name
)
1816 for (int i
= 0, e
= ShuffleMask
.size(); i
!= e
; ++i
)
1817 if (ShuffleMask
[i
] >= e
)
1818 ShuffleMask
[i
] -= e
;
1820 raw_string_ostream
CS(Comment
);
1823 // Handle AVX512 MASK/MASXZ write mask comments.
1825 // MASKZ: zmmX {%kY} {z}
1826 if (SrcOp1Idx
> 1) {
1827 assert((SrcOp1Idx
== 2 || SrcOp1Idx
== 3) && "Unexpected writemask");
1829 const MachineOperand
&WriteMaskOp
= MI
->getOperand(SrcOp1Idx
- 1);
1830 if (WriteMaskOp
.isReg()) {
1831 CS
<< " {%" << GetRegisterName(WriteMaskOp
.getReg()) << "}";
1833 if (SrcOp1Idx
== 2) {
1841 for (int i
= 0, e
= ShuffleMask
.size(); i
!= e
; ++i
) {
1844 if (ShuffleMask
[i
] == SM_SentinelZero
) {
1849 // Otherwise, it must come from src1 or src2. Print the span of elements
1850 // that comes from this src.
1851 bool isSrc1
= ShuffleMask
[i
] < (int)e
;
1852 CS
<< (isSrc1
? Src1Name
: Src2Name
) << '[';
1854 bool IsFirst
= true;
1855 while (i
!= e
&& ShuffleMask
[i
] != SM_SentinelZero
&&
1856 (ShuffleMask
[i
] < (int)e
) == isSrc1
) {
1861 if (ShuffleMask
[i
] == SM_SentinelUndef
)
1864 CS
<< ShuffleMask
[i
] % (int)e
;
1868 --i
; // For loop increments element #.
1875 static void printConstant(const APInt
&Val
, raw_ostream
&CS
) {
1876 if (Val
.getBitWidth() <= 64) {
1877 CS
<< Val
.getZExtValue();
1879 // print multi-word constant as (w0,w1)
1881 for (int i
= 0, N
= Val
.getNumWords(); i
< N
; ++i
) {
1884 CS
<< Val
.getRawData()[i
];
1890 static void printConstant(const APFloat
&Flt
, raw_ostream
&CS
) {
1891 SmallString
<32> Str
;
1892 // Force scientific notation to distinquish from integers.
1893 Flt
.toString(Str
, 0, 0);
1897 static void printConstant(const Constant
*COp
, raw_ostream
&CS
) {
1898 if (isa
<UndefValue
>(COp
)) {
1900 } else if (auto *CI
= dyn_cast
<ConstantInt
>(COp
)) {
1901 printConstant(CI
->getValue(), CS
);
1902 } else if (auto *CF
= dyn_cast
<ConstantFP
>(COp
)) {
1903 printConstant(CF
->getValueAPF(), CS
);
1909 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr
*MI
) {
1910 assert(MF
->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1911 assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1913 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1915 X86TargetStreamer
*XTS
=
1916 static_cast<X86TargetStreamer
*>(OutStreamer
->getTargetStreamer());
1917 switch (MI
->getOpcode()) {
1918 case X86::SEH_PushReg
:
1919 XTS
->emitFPOPushReg(MI
->getOperand(0).getImm());
1921 case X86::SEH_StackAlloc
:
1922 XTS
->emitFPOStackAlloc(MI
->getOperand(0).getImm());
1924 case X86::SEH_StackAlign
:
1925 XTS
->emitFPOStackAlign(MI
->getOperand(0).getImm());
1927 case X86::SEH_SetFrame
:
1928 assert(MI
->getOperand(1).getImm() == 0 &&
1929 ".cv_fpo_setframe takes no offset");
1930 XTS
->emitFPOSetFrame(MI
->getOperand(0).getImm());
1932 case X86::SEH_EndPrologue
:
1933 XTS
->emitFPOEndPrologue();
1935 case X86::SEH_SaveReg
:
1936 case X86::SEH_SaveXMM
:
1937 case X86::SEH_PushFrame
:
1938 llvm_unreachable("SEH_ directive incompatible with FPO");
1941 llvm_unreachable("expected SEH_ instruction");
1946 // Otherwise, use the .seh_ directives for all other Windows platforms.
1947 switch (MI
->getOpcode()) {
1948 case X86::SEH_PushReg
:
1949 OutStreamer
->EmitWinCFIPushReg(MI
->getOperand(0).getImm());
1952 case X86::SEH_SaveReg
:
1953 OutStreamer
->EmitWinCFISaveReg(MI
->getOperand(0).getImm(),
1954 MI
->getOperand(1).getImm());
1957 case X86::SEH_SaveXMM
:
1958 OutStreamer
->EmitWinCFISaveXMM(MI
->getOperand(0).getImm(),
1959 MI
->getOperand(1).getImm());
1962 case X86::SEH_StackAlloc
:
1963 OutStreamer
->EmitWinCFIAllocStack(MI
->getOperand(0).getImm());
1966 case X86::SEH_SetFrame
:
1967 OutStreamer
->EmitWinCFISetFrame(MI
->getOperand(0).getImm(),
1968 MI
->getOperand(1).getImm());
1971 case X86::SEH_PushFrame
:
1972 OutStreamer
->EmitWinCFIPushFrame(MI
->getOperand(0).getImm());
1975 case X86::SEH_EndPrologue
:
1976 OutStreamer
->EmitWinCFIEndProlog();
1980 llvm_unreachable("expected SEH_ instruction");
1984 static unsigned getRegisterWidth(const MCOperandInfo
&Info
) {
1985 if (Info
.RegClass
== X86::VR128RegClassID
||
1986 Info
.RegClass
== X86::VR128XRegClassID
)
1988 if (Info
.RegClass
== X86::VR256RegClassID
||
1989 Info
.RegClass
== X86::VR256XRegClassID
)
1991 if (Info
.RegClass
== X86::VR512RegClassID
)
1993 llvm_unreachable("Unknown register class!");
1996 static void addConstantComments(const MachineInstr
*MI
,
1997 MCStreamer
&OutStreamer
) {
1998 switch (MI
->getOpcode()) {
1999 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
2000 // a constant shuffle mask. We won't be able to do this at the MC layer
2001 // because the mask isn't an immediate.
2003 case X86::VPSHUFBrm
:
2004 case X86::VPSHUFBYrm
:
2005 case X86::VPSHUFBZ128rm
:
2006 case X86::VPSHUFBZ128rmk
:
2007 case X86::VPSHUFBZ128rmkz
:
2008 case X86::VPSHUFBZ256rm
:
2009 case X86::VPSHUFBZ256rmk
:
2010 case X86::VPSHUFBZ256rmkz
:
2011 case X86::VPSHUFBZrm
:
2012 case X86::VPSHUFBZrmk
:
2013 case X86::VPSHUFBZrmkz
: {
2014 unsigned SrcIdx
= 1;
2015 if (X86II::isKMasked(MI
->getDesc().TSFlags
)) {
2016 // Skip mask operand.
2018 if (X86II::isKMergeMasked(MI
->getDesc().TSFlags
)) {
2019 // Skip passthru operand.
2023 unsigned MaskIdx
= SrcIdx
+ 1 + X86::AddrDisp
;
2025 assert(MI
->getNumOperands() >= (SrcIdx
+ 1 + X86::AddrNumOperands
) &&
2026 "Unexpected number of operands!");
2028 const MachineOperand
&MaskOp
= MI
->getOperand(MaskIdx
);
2029 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2030 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2031 SmallVector
<int, 64> Mask
;
2032 DecodePSHUFBMask(C
, Width
, Mask
);
2034 OutStreamer
.AddComment(getShuffleComment(MI
, SrcIdx
, SrcIdx
, Mask
));
2039 case X86::VPERMILPSrm
:
2040 case X86::VPERMILPSYrm
:
2041 case X86::VPERMILPSZ128rm
:
2042 case X86::VPERMILPSZ128rmk
:
2043 case X86::VPERMILPSZ128rmkz
:
2044 case X86::VPERMILPSZ256rm
:
2045 case X86::VPERMILPSZ256rmk
:
2046 case X86::VPERMILPSZ256rmkz
:
2047 case X86::VPERMILPSZrm
:
2048 case X86::VPERMILPSZrmk
:
2049 case X86::VPERMILPSZrmkz
:
2050 case X86::VPERMILPDrm
:
2051 case X86::VPERMILPDYrm
:
2052 case X86::VPERMILPDZ128rm
:
2053 case X86::VPERMILPDZ128rmk
:
2054 case X86::VPERMILPDZ128rmkz
:
2055 case X86::VPERMILPDZ256rm
:
2056 case X86::VPERMILPDZ256rmk
:
2057 case X86::VPERMILPDZ256rmkz
:
2058 case X86::VPERMILPDZrm
:
2059 case X86::VPERMILPDZrmk
:
2060 case X86::VPERMILPDZrmkz
: {
2062 switch (MI
->getOpcode()) {
2063 default: llvm_unreachable("Invalid opcode");
2064 case X86::VPERMILPSrm
:
2065 case X86::VPERMILPSYrm
:
2066 case X86::VPERMILPSZ128rm
:
2067 case X86::VPERMILPSZ256rm
:
2068 case X86::VPERMILPSZrm
:
2069 case X86::VPERMILPSZ128rmkz
:
2070 case X86::VPERMILPSZ256rmkz
:
2071 case X86::VPERMILPSZrmkz
:
2072 case X86::VPERMILPSZ128rmk
:
2073 case X86::VPERMILPSZ256rmk
:
2074 case X86::VPERMILPSZrmk
:
2077 case X86::VPERMILPDrm
:
2078 case X86::VPERMILPDYrm
:
2079 case X86::VPERMILPDZ128rm
:
2080 case X86::VPERMILPDZ256rm
:
2081 case X86::VPERMILPDZrm
:
2082 case X86::VPERMILPDZ128rmkz
:
2083 case X86::VPERMILPDZ256rmkz
:
2084 case X86::VPERMILPDZrmkz
:
2085 case X86::VPERMILPDZ128rmk
:
2086 case X86::VPERMILPDZ256rmk
:
2087 case X86::VPERMILPDZrmk
:
2092 unsigned SrcIdx
= 1;
2093 if (X86II::isKMasked(MI
->getDesc().TSFlags
)) {
2094 // Skip mask operand.
2096 if (X86II::isKMergeMasked(MI
->getDesc().TSFlags
)) {
2097 // Skip passthru operand.
2101 unsigned MaskIdx
= SrcIdx
+ 1 + X86::AddrDisp
;
2103 assert(MI
->getNumOperands() >= (SrcIdx
+ 1 + X86::AddrNumOperands
) &&
2104 "Unexpected number of operands!");
2106 const MachineOperand
&MaskOp
= MI
->getOperand(MaskIdx
);
2107 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2108 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2109 SmallVector
<int, 16> Mask
;
2110 DecodeVPERMILPMask(C
, ElSize
, Width
, Mask
);
2112 OutStreamer
.AddComment(getShuffleComment(MI
, SrcIdx
, SrcIdx
, Mask
));
2117 case X86::VPERMIL2PDrm
:
2118 case X86::VPERMIL2PSrm
:
2119 case X86::VPERMIL2PDYrm
:
2120 case X86::VPERMIL2PSYrm
: {
2121 assert(MI
->getNumOperands() >= (3 + X86::AddrNumOperands
+ 1) &&
2122 "Unexpected number of operands!");
2124 const MachineOperand
&CtrlOp
= MI
->getOperand(MI
->getNumOperands() - 1);
2125 if (!CtrlOp
.isImm())
2129 switch (MI
->getOpcode()) {
2130 default: llvm_unreachable("Invalid opcode");
2131 case X86::VPERMIL2PSrm
: case X86::VPERMIL2PSYrm
: ElSize
= 32; break;
2132 case X86::VPERMIL2PDrm
: case X86::VPERMIL2PDYrm
: ElSize
= 64; break;
2135 const MachineOperand
&MaskOp
= MI
->getOperand(3 + X86::AddrDisp
);
2136 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2137 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2138 SmallVector
<int, 16> Mask
;
2139 DecodeVPERMIL2PMask(C
, (unsigned)CtrlOp
.getImm(), ElSize
, Width
, Mask
);
2141 OutStreamer
.AddComment(getShuffleComment(MI
, 1, 2, Mask
));
2146 case X86::VPPERMrrm
: {
2147 assert(MI
->getNumOperands() >= (3 + X86::AddrNumOperands
) &&
2148 "Unexpected number of operands!");
2150 const MachineOperand
&MaskOp
= MI
->getOperand(3 + X86::AddrDisp
);
2151 if (auto *C
= getConstantFromPool(*MI
, MaskOp
)) {
2152 unsigned Width
= getRegisterWidth(MI
->getDesc().OpInfo
[0]);
2153 SmallVector
<int, 16> Mask
;
2154 DecodeVPPERMMask(C
, Width
, Mask
);
2156 OutStreamer
.AddComment(getShuffleComment(MI
, 1, 2, Mask
));
2161 case X86::MMX_MOVQ64rm
: {
2162 assert(MI
->getNumOperands() == (1 + X86::AddrNumOperands
) &&
2163 "Unexpected number of operands!");
2164 if (auto *C
= getConstantFromPool(*MI
, MI
->getOperand(1 + X86::AddrDisp
))) {
2165 std::string Comment
;
2166 raw_string_ostream
CS(Comment
);
2167 const MachineOperand
&DstOp
= MI
->getOperand(0);
2168 CS
<< X86ATTInstPrinter::getRegisterName(DstOp
.getReg()) << " = ";
2169 if (auto *CF
= dyn_cast
<ConstantFP
>(C
)) {
2170 CS
<< "0x" << toString(CF
->getValueAPF().bitcastToAPInt(), 16, false);
2171 OutStreamer
.AddComment(CS
.str());
2177 #define MOV_CASE(Prefix, Suffix) \
2178 case X86::Prefix##MOVAPD##Suffix##rm: \
2179 case X86::Prefix##MOVAPS##Suffix##rm: \
2180 case X86::Prefix##MOVUPD##Suffix##rm: \
2181 case X86::Prefix##MOVUPS##Suffix##rm: \
2182 case X86::Prefix##MOVDQA##Suffix##rm: \
2183 case X86::Prefix##MOVDQU##Suffix##rm:
2185 #define MOV_AVX512_CASE(Suffix) \
2186 case X86::VMOVDQA64##Suffix##rm: \
2187 case X86::VMOVDQA32##Suffix##rm: \
2188 case X86::VMOVDQU64##Suffix##rm: \
2189 case X86::VMOVDQU32##Suffix##rm: \
2190 case X86::VMOVDQU16##Suffix##rm: \
2191 case X86::VMOVDQU8##Suffix##rm: \
2192 case X86::VMOVAPS##Suffix##rm: \
2193 case X86::VMOVAPD##Suffix##rm: \
2194 case X86::VMOVUPS##Suffix##rm: \
2195 case X86::VMOVUPD##Suffix##rm:
2197 #define CASE_ALL_MOV_RM() \
2198 MOV_CASE(, ) /* SSE */ \
2199 MOV_CASE(V, ) /* AVX-128 */ \
2200 MOV_CASE(V, Y) /* AVX-256 */ \
2201 MOV_AVX512_CASE(Z) \
2202 MOV_AVX512_CASE(Z256) \
2203 MOV_AVX512_CASE(Z128)
2205 // For loads from a constant pool to a vector register, print the constant
2208 case X86::VBROADCASTF128
:
2209 case X86::VBROADCASTI128
:
2210 case X86::VBROADCASTF32X4Z256rm
:
2211 case X86::VBROADCASTF32X4rm
:
2212 case X86::VBROADCASTF32X8rm
:
2213 case X86::VBROADCASTF64X2Z128rm
:
2214 case X86::VBROADCASTF64X2rm
:
2215 case X86::VBROADCASTF64X4rm
:
2216 case X86::VBROADCASTI32X4Z256rm
:
2217 case X86::VBROADCASTI32X4rm
:
2218 case X86::VBROADCASTI32X8rm
:
2219 case X86::VBROADCASTI64X2Z128rm
:
2220 case X86::VBROADCASTI64X2rm
:
2221 case X86::VBROADCASTI64X4rm
:
2222 assert(MI
->getNumOperands() >= (1 + X86::AddrNumOperands
) &&
2223 "Unexpected number of operands!");
2224 if (auto *C
= getConstantFromPool(*MI
, MI
->getOperand(1 + X86::AddrDisp
))) {
2226 // Override NumLanes for the broadcast instructions.
2227 switch (MI
->getOpcode()) {
2228 case X86::VBROADCASTF128
: NumLanes
= 2; break;
2229 case X86::VBROADCASTI128
: NumLanes
= 2; break;
2230 case X86::VBROADCASTF32X4Z256rm
: NumLanes
= 2; break;
2231 case X86::VBROADCASTF32X4rm
: NumLanes
= 4; break;
2232 case X86::VBROADCASTF32X8rm
: NumLanes
= 2; break;
2233 case X86::VBROADCASTF64X2Z128rm
: NumLanes
= 2; break;
2234 case X86::VBROADCASTF64X2rm
: NumLanes
= 4; break;
2235 case X86::VBROADCASTF64X4rm
: NumLanes
= 2; break;
2236 case X86::VBROADCASTI32X4Z256rm
: NumLanes
= 2; break;
2237 case X86::VBROADCASTI32X4rm
: NumLanes
= 4; break;
2238 case X86::VBROADCASTI32X8rm
: NumLanes
= 2; break;
2239 case X86::VBROADCASTI64X2Z128rm
: NumLanes
= 2; break;
2240 case X86::VBROADCASTI64X2rm
: NumLanes
= 4; break;
2241 case X86::VBROADCASTI64X4rm
: NumLanes
= 2; break;
2244 std::string Comment
;
2245 raw_string_ostream
CS(Comment
);
2246 const MachineOperand
&DstOp
= MI
->getOperand(0);
2247 CS
<< X86ATTInstPrinter::getRegisterName(DstOp
.getReg()) << " = ";
2248 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(C
)) {
2250 for (int l
= 0; l
!= NumLanes
; ++l
) {
2251 for (int i
= 0, NumElements
= CDS
->getNumElements(); i
< NumElements
;
2253 if (i
!= 0 || l
!= 0)
2255 if (CDS
->getElementType()->isIntegerTy())
2256 printConstant(CDS
->getElementAsAPInt(i
), CS
);
2257 else if (CDS
->getElementType()->isHalfTy() ||
2258 CDS
->getElementType()->isFloatTy() ||
2259 CDS
->getElementType()->isDoubleTy())
2260 printConstant(CDS
->getElementAsAPFloat(i
), CS
);
2266 OutStreamer
.AddComment(CS
.str());
2267 } else if (auto *CV
= dyn_cast
<ConstantVector
>(C
)) {
2269 for (int l
= 0; l
!= NumLanes
; ++l
) {
2270 for (int i
= 0, NumOperands
= CV
->getNumOperands(); i
< NumOperands
;
2272 if (i
!= 0 || l
!= 0)
2274 printConstant(CV
->getOperand(i
), CS
);
2278 OutStreamer
.AddComment(CS
.str());
2283 case X86::MOVDDUPrm
:
2284 case X86::VMOVDDUPrm
:
2285 case X86::VMOVDDUPZ128rm
:
2286 case X86::VBROADCASTSSrm
:
2287 case X86::VBROADCASTSSYrm
:
2288 case X86::VBROADCASTSSZ128rm
:
2289 case X86::VBROADCASTSSZ256rm
:
2290 case X86::VBROADCASTSSZrm
:
2291 case X86::VBROADCASTSDYrm
:
2292 case X86::VBROADCASTSDZ256rm
:
2293 case X86::VBROADCASTSDZrm
:
2294 case X86::VPBROADCASTBrm
:
2295 case X86::VPBROADCASTBYrm
:
2296 case X86::VPBROADCASTBZ128rm
:
2297 case X86::VPBROADCASTBZ256rm
:
2298 case X86::VPBROADCASTBZrm
:
2299 case X86::VPBROADCASTDrm
:
2300 case X86::VPBROADCASTDYrm
:
2301 case X86::VPBROADCASTDZ128rm
:
2302 case X86::VPBROADCASTDZ256rm
:
2303 case X86::VPBROADCASTDZrm
:
2304 case X86::VPBROADCASTQrm
:
2305 case X86::VPBROADCASTQYrm
:
2306 case X86::VPBROADCASTQZ128rm
:
2307 case X86::VPBROADCASTQZ256rm
:
2308 case X86::VPBROADCASTQZrm
:
2309 case X86::VPBROADCASTWrm
:
2310 case X86::VPBROADCASTWYrm
:
2311 case X86::VPBROADCASTWZ128rm
:
2312 case X86::VPBROADCASTWZ256rm
:
2313 case X86::VPBROADCASTWZrm
:
2314 assert(MI
->getNumOperands() >= (1 + X86::AddrNumOperands
) &&
2315 "Unexpected number of operands!");
2316 if (auto *C
= getConstantFromPool(*MI
, MI
->getOperand(1 + X86::AddrDisp
))) {
2318 switch (MI
->getOpcode()) {
2319 default: llvm_unreachable("Invalid opcode");
2320 case X86::MOVDDUPrm
: NumElts
= 2; break;
2321 case X86::VMOVDDUPrm
: NumElts
= 2; break;
2322 case X86::VMOVDDUPZ128rm
: NumElts
= 2; break;
2323 case X86::VBROADCASTSSrm
: NumElts
= 4; break;
2324 case X86::VBROADCASTSSYrm
: NumElts
= 8; break;
2325 case X86::VBROADCASTSSZ128rm
: NumElts
= 4; break;
2326 case X86::VBROADCASTSSZ256rm
: NumElts
= 8; break;
2327 case X86::VBROADCASTSSZrm
: NumElts
= 16; break;
2328 case X86::VBROADCASTSDYrm
: NumElts
= 4; break;
2329 case X86::VBROADCASTSDZ256rm
: NumElts
= 4; break;
2330 case X86::VBROADCASTSDZrm
: NumElts
= 8; break;
2331 case X86::VPBROADCASTBrm
: NumElts
= 16; break;
2332 case X86::VPBROADCASTBYrm
: NumElts
= 32; break;
2333 case X86::VPBROADCASTBZ128rm
: NumElts
= 16; break;
2334 case X86::VPBROADCASTBZ256rm
: NumElts
= 32; break;
2335 case X86::VPBROADCASTBZrm
: NumElts
= 64; break;
2336 case X86::VPBROADCASTDrm
: NumElts
= 4; break;
2337 case X86::VPBROADCASTDYrm
: NumElts
= 8; break;
2338 case X86::VPBROADCASTDZ128rm
: NumElts
= 4; break;
2339 case X86::VPBROADCASTDZ256rm
: NumElts
= 8; break;
2340 case X86::VPBROADCASTDZrm
: NumElts
= 16; break;
2341 case X86::VPBROADCASTQrm
: NumElts
= 2; break;
2342 case X86::VPBROADCASTQYrm
: NumElts
= 4; break;
2343 case X86::VPBROADCASTQZ128rm
: NumElts
= 2; break;
2344 case X86::VPBROADCASTQZ256rm
: NumElts
= 4; break;
2345 case X86::VPBROADCASTQZrm
: NumElts
= 8; break;
2346 case X86::VPBROADCASTWrm
: NumElts
= 8; break;
2347 case X86::VPBROADCASTWYrm
: NumElts
= 16; break;
2348 case X86::VPBROADCASTWZ128rm
: NumElts
= 8; break;
2349 case X86::VPBROADCASTWZ256rm
: NumElts
= 16; break;
2350 case X86::VPBROADCASTWZrm
: NumElts
= 32; break;
2353 std::string Comment
;
2354 raw_string_ostream
CS(Comment
);
2355 const MachineOperand
&DstOp
= MI
->getOperand(0);
2356 CS
<< X86ATTInstPrinter::getRegisterName(DstOp
.getReg()) << " = ";
2358 for (int i
= 0; i
!= NumElts
; ++i
) {
2361 printConstant(C
, CS
);
2364 OutStreamer
.AddComment(CS
.str());
2369 void X86AsmPrinter::emitInstruction(const MachineInstr
*MI
) {
2370 X86MCInstLower
MCInstLowering(*MF
, *this);
2371 const X86RegisterInfo
*RI
=
2372 MF
->getSubtarget
<X86Subtarget
>().getRegisterInfo();
2374 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
2375 // are compressed from EVEX encoding to VEX encoding.
2376 if (TM
.Options
.MCOptions
.ShowMCEncoding
) {
2377 if (MI
->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX
)
2378 OutStreamer
->AddComment("EVEX TO VEX Compression ", false);
2381 // Add comments for values loaded from constant pool.
2382 if (OutStreamer
->isVerboseAsm())
2383 addConstantComments(MI
, *OutStreamer
);
2385 switch (MI
->getOpcode()) {
2386 case TargetOpcode::DBG_VALUE
:
2387 llvm_unreachable("Should be handled target independently");
2389 // Emit nothing here but a comment if we can.
2390 case X86::Int_MemBarrier
:
2391 OutStreamer
->emitRawComment("MEMBARRIER");
2394 case X86::EH_RETURN
:
2395 case X86::EH_RETURN64
: {
2396 // Lower these as normal, but add some comments.
2397 Register Reg
= MI
->getOperand(0).getReg();
2398 OutStreamer
->AddComment(StringRef("eh_return, addr: %") +
2399 X86ATTInstPrinter::getRegisterName(Reg
));
2402 case X86::CLEANUPRET
: {
2403 // Lower these as normal, but add some comments.
2404 OutStreamer
->AddComment("CLEANUPRET");
2408 case X86::CATCHRET
: {
2409 // Lower these as normal, but add some comments.
2410 OutStreamer
->AddComment("CATCHRET");
2415 case X86::ENDBR64
: {
2416 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2417 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2418 // non-empty. If MI is the initial ENDBR, place the
2419 // __patchable_function_entries label after ENDBR.
2420 if (CurrentPatchableFunctionEntrySym
&&
2421 CurrentPatchableFunctionEntrySym
== CurrentFnBegin
&&
2422 MI
== &MF
->front().front()) {
2424 MCInstLowering
.Lower(MI
, Inst
);
2425 EmitAndCountInstruction(Inst
);
2426 CurrentPatchableFunctionEntrySym
= createTempSymbol("patch");
2427 OutStreamer
->emitLabel(CurrentPatchableFunctionEntrySym
);
2436 case X86::TAILJMPd_CC
:
2437 case X86::TAILJMPr64
:
2438 case X86::TAILJMPm64
:
2439 case X86::TAILJMPd64
:
2440 case X86::TAILJMPd64_CC
:
2441 case X86::TAILJMPr64_REX
:
2442 case X86::TAILJMPm64_REX
:
2443 // Lower these as normal, but add some comments.
2444 OutStreamer
->AddComment("TAILCALL");
2447 case X86::TLS_addr32
:
2448 case X86::TLS_addr64
:
2449 case X86::TLS_addrX32
:
2450 case X86::TLS_base_addr32
:
2451 case X86::TLS_base_addr64
:
2452 case X86::TLS_base_addrX32
:
2453 return LowerTlsAddr(MCInstLowering
, *MI
);
2455 case X86::MOVPC32r
: {
2456 // This is a pseudo op for a two instruction sequence with a label, which
2463 MCSymbol
*PICBase
= MF
->getPICBaseSymbol();
2464 // FIXME: We would like an efficient form for this, so we don't have to do a
2465 // lot of extra uniquing.
2466 EmitAndCountInstruction(
2467 MCInstBuilder(X86::CALLpcrel32
)
2468 .addExpr(MCSymbolRefExpr::create(PICBase
, OutContext
)));
2470 const X86FrameLowering
*FrameLowering
=
2471 MF
->getSubtarget
<X86Subtarget
>().getFrameLowering();
2472 bool hasFP
= FrameLowering
->hasFP(*MF
);
2474 // TODO: This is needed only if we require precise CFA.
2475 bool HasActiveDwarfFrame
= OutStreamer
->getNumFrameInfos() &&
2476 !OutStreamer
->getDwarfFrameInfos().back().End
;
2478 int stackGrowth
= -RI
->getSlotSize();
2480 if (HasActiveDwarfFrame
&& !hasFP
) {
2481 OutStreamer
->emitCFIAdjustCfaOffset(-stackGrowth
);
2485 OutStreamer
->emitLabel(PICBase
);
2488 EmitAndCountInstruction(
2489 MCInstBuilder(X86::POP32r
).addReg(MI
->getOperand(0).getReg()));
2491 if (HasActiveDwarfFrame
&& !hasFP
) {
2492 OutStreamer
->emitCFIAdjustCfaOffset(stackGrowth
);
2497 case X86::ADD32ri
: {
2498 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2499 if (MI
->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS
)
2502 // Okay, we have something like:
2503 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2505 // For this, we want to print something like:
2506 // MYGLOBAL + (. - PICBASE)
2507 // However, we can't generate a ".", so just emit a new label here and refer
2509 MCSymbol
*DotSym
= OutContext
.createTempSymbol();
2510 OutStreamer
->emitLabel(DotSym
);
2512 // Now that we have emitted the label, lower the complex operand expression.
2513 MCSymbol
*OpSym
= MCInstLowering
.GetSymbolFromOperand(MI
->getOperand(2));
2515 const MCExpr
*DotExpr
= MCSymbolRefExpr::create(DotSym
, OutContext
);
2516 const MCExpr
*PICBase
=
2517 MCSymbolRefExpr::create(MF
->getPICBaseSymbol(), OutContext
);
2518 DotExpr
= MCBinaryExpr::createSub(DotExpr
, PICBase
, OutContext
);
2520 DotExpr
= MCBinaryExpr::createAdd(
2521 MCSymbolRefExpr::create(OpSym
, OutContext
), DotExpr
, OutContext
);
2523 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri
)
2524 .addReg(MI
->getOperand(0).getReg())
2525 .addReg(MI
->getOperand(1).getReg())
2529 case TargetOpcode::STATEPOINT
:
2530 return LowerSTATEPOINT(*MI
, MCInstLowering
);
2532 case TargetOpcode::FAULTING_OP
:
2533 return LowerFAULTING_OP(*MI
, MCInstLowering
);
2535 case TargetOpcode::FENTRY_CALL
:
2536 return LowerFENTRY_CALL(*MI
, MCInstLowering
);
2538 case TargetOpcode::PATCHABLE_OP
:
2539 return LowerPATCHABLE_OP(*MI
, MCInstLowering
);
2541 case TargetOpcode::STACKMAP
:
2542 return LowerSTACKMAP(*MI
);
2544 case TargetOpcode::PATCHPOINT
:
2545 return LowerPATCHPOINT(*MI
, MCInstLowering
);
2547 case TargetOpcode::PATCHABLE_FUNCTION_ENTER
:
2548 return LowerPATCHABLE_FUNCTION_ENTER(*MI
, MCInstLowering
);
2550 case TargetOpcode::PATCHABLE_RET
:
2551 return LowerPATCHABLE_RET(*MI
, MCInstLowering
);
2553 case TargetOpcode::PATCHABLE_TAIL_CALL
:
2554 return LowerPATCHABLE_TAIL_CALL(*MI
, MCInstLowering
);
2556 case TargetOpcode::PATCHABLE_EVENT_CALL
:
2557 return LowerPATCHABLE_EVENT_CALL(*MI
, MCInstLowering
);
2559 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
:
2560 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI
, MCInstLowering
);
2562 case X86::MORESTACK_RET
:
2563 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget
)));
2566 case X86::MORESTACK_RET_RESTORE_R10
:
2567 // Return, then restore R10.
2568 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget
)));
2569 EmitAndCountInstruction(
2570 MCInstBuilder(X86::MOV64rr
).addReg(X86::R10
).addReg(X86::RAX
));
2573 case X86::SEH_PushReg
:
2574 case X86::SEH_SaveReg
:
2575 case X86::SEH_SaveXMM
:
2576 case X86::SEH_StackAlloc
:
2577 case X86::SEH_StackAlign
:
2578 case X86::SEH_SetFrame
:
2579 case X86::SEH_PushFrame
:
2580 case X86::SEH_EndPrologue
:
2581 EmitSEHInstruction(MI
);
2584 case X86::SEH_Epilogue
: {
2585 assert(MF
->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2586 MachineBasicBlock::const_iterator
MBBI(MI
);
2587 // Check if preceded by a call and emit nop if so.
2588 for (MBBI
= PrevCrossBBInst(MBBI
);
2589 MBBI
!= MachineBasicBlock::const_iterator();
2590 MBBI
= PrevCrossBBInst(MBBI
)) {
2591 // Conservatively assume that pseudo instructions don't emit code and keep
2592 // looking for a call. We may emit an unnecessary nop in some cases.
2593 if (!MBBI
->isPseudo()) {
2595 EmitAndCountInstruction(MCInstBuilder(X86::NOOP
));
2601 case X86::UBSAN_UD1
:
2602 EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm
)
2606 .addReg(X86::NoRegister
)
2607 .addImm(MI
->getOperand(0).getImm())
2608 .addReg(X86::NoRegister
));
2613 MCInstLowering
.Lower(MI
, TmpInst
);
2615 // Stackmap shadows cannot include branch targets, so we can count the bytes
2616 // in a call towards the shadow, but must ensure that the no thread returns
2617 // in to the stackmap shadow. The only way to achieve this is if the call
2618 // is at the end of the shadow.
2620 // Count then size of the call towards the shadow
2621 SMShadowTracker
.count(TmpInst
, getSubtargetInfo(), CodeEmitter
.get());
2622 // Then flush the shadow so that we fill with nops before the call, not
2624 SMShadowTracker
.emitShadowPadding(*OutStreamer
, getSubtargetInfo());
2625 // Then emit the call
2626 OutStreamer
->emitInstruction(TmpInst
, getSubtargetInfo());
2630 EmitAndCountInstruction(TmpInst
);