[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / X86 / X86MCInstLower.cpp
blob384c54aa4eb622a6e1e636674b9652de730ab728
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86InstComments.h"
17 #include "MCTargetDesc/X86ShuffleDecode.h"
18 #include "MCTargetDesc/X86TargetStreamer.h"
19 #include "X86AsmPrinter.h"
20 #include "X86RegisterInfo.h"
21 #include "X86ShuffleDecodeConstantPool.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/Mangler.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCCodeEmitter.h"
36 #include "llvm/MC/MCContext.h"
37 #include "llvm/MC/MCExpr.h"
38 #include "llvm/MC/MCFixup.h"
39 #include "llvm/MC/MCInst.h"
40 #include "llvm/MC/MCInstBuilder.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCSectionELF.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCSymbolELF.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetMachine.h"
49 using namespace llvm;
51 namespace {
53 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
54 class X86MCInstLower {
55 MCContext &Ctx;
56 const MachineFunction &MF;
57 const TargetMachine &TM;
58 const MCAsmInfo &MAI;
59 X86AsmPrinter &AsmPrinter;
61 public:
62 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
64 Optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
65 const MachineOperand &MO) const;
66 void Lower(const MachineInstr *MI, MCInst &OutMI) const;
68 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
69 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
71 private:
72 MachineModuleInfoMachO &getMachOMMI() const;
75 } // end anonymous namespace
77 /// A RAII helper which defines a region of instructions which can't have
78 /// padding added between them for correctness.
79 struct NoAutoPaddingScope {
80 MCStreamer &OS;
81 const bool OldAllowAutoPadding;
82 NoAutoPaddingScope(MCStreamer &OS)
83 : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
84 changeAndComment(false);
86 ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); }
87 void changeAndComment(bool b) {
88 if (b == OS.getAllowAutoPadding())
89 return;
90 OS.setAllowAutoPadding(b);
91 if (b)
92 OS.emitRawComment("autopadding");
93 else
94 OS.emitRawComment("noautopadding");
98 // Emit a minimal sequence of nops spanning NumBytes bytes.
99 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
100 const X86Subtarget *Subtarget);
102 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
103 const MCSubtargetInfo &STI,
104 MCCodeEmitter *CodeEmitter) {
105 if (InShadow) {
106 SmallString<256> Code;
107 SmallVector<MCFixup, 4> Fixups;
108 raw_svector_ostream VecOS(Code);
109 CodeEmitter->encodeInstruction(Inst, VecOS, Fixups, STI);
110 CurrentShadowSize += Code.size();
111 if (CurrentShadowSize >= RequiredShadowSize)
112 InShadow = false; // The shadow is big enough. Stop counting.
116 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
117 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
118 if (InShadow && CurrentShadowSize < RequiredShadowSize) {
119 InShadow = false;
120 emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
121 &MF->getSubtarget<X86Subtarget>());
125 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
126 OutStreamer->emitInstruction(Inst, getSubtargetInfo());
127 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
130 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
131 X86AsmPrinter &asmprinter)
132 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
133 AsmPrinter(asmprinter) {}
135 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
136 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
139 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
140 /// operand to an MCSymbol.
141 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
142 const Triple &TT = TM.getTargetTriple();
143 if (MO.isGlobal() && TT.isOSBinFormatELF())
144 return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal());
146 const DataLayout &DL = MF.getDataLayout();
147 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
148 "Isn't a symbol reference");
150 MCSymbol *Sym = nullptr;
151 SmallString<128> Name;
152 StringRef Suffix;
154 switch (MO.getTargetFlags()) {
155 case X86II::MO_DLLIMPORT:
156 // Handle dllimport linkage.
157 Name += "__imp_";
158 break;
159 case X86II::MO_COFFSTUB:
160 Name += ".refptr.";
161 break;
162 case X86II::MO_DARWIN_NONLAZY:
163 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
164 Suffix = "$non_lazy_ptr";
165 break;
168 if (!Suffix.empty())
169 Name += DL.getPrivateGlobalPrefix();
171 if (MO.isGlobal()) {
172 const GlobalValue *GV = MO.getGlobal();
173 AsmPrinter.getNameWithPrefix(Name, GV);
174 } else if (MO.isSymbol()) {
175 Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
176 } else if (MO.isMBB()) {
177 assert(Suffix.empty());
178 Sym = MO.getMBB()->getSymbol();
181 Name += Suffix;
182 if (!Sym)
183 Sym = Ctx.getOrCreateSymbol(Name);
185 // If the target flags on the operand changes the name of the symbol, do that
186 // before we return the symbol.
187 switch (MO.getTargetFlags()) {
188 default:
189 break;
190 case X86II::MO_COFFSTUB: {
191 MachineModuleInfoCOFF &MMICOFF =
192 MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
193 MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
194 if (!StubSym.getPointer()) {
195 assert(MO.isGlobal() && "Extern symbol not handled yet");
196 StubSym = MachineModuleInfoImpl::StubValueTy(
197 AsmPrinter.getSymbol(MO.getGlobal()), true);
199 break;
201 case X86II::MO_DARWIN_NONLAZY:
202 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
203 MachineModuleInfoImpl::StubValueTy &StubSym =
204 getMachOMMI().getGVStubEntry(Sym);
205 if (!StubSym.getPointer()) {
206 assert(MO.isGlobal() && "Extern symbol not handled yet");
207 StubSym = MachineModuleInfoImpl::StubValueTy(
208 AsmPrinter.getSymbol(MO.getGlobal()),
209 !MO.getGlobal()->hasInternalLinkage());
211 break;
215 return Sym;
218 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
219 MCSymbol *Sym) const {
220 // FIXME: We would like an efficient form for this, so we don't have to do a
221 // lot of extra uniquing.
222 const MCExpr *Expr = nullptr;
223 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
225 switch (MO.getTargetFlags()) {
226 default:
227 llvm_unreachable("Unknown target flag on GV operand");
228 case X86II::MO_NO_FLAG: // No flag.
229 // These affect the name of the symbol, not any suffix.
230 case X86II::MO_DARWIN_NONLAZY:
231 case X86II::MO_DLLIMPORT:
232 case X86II::MO_COFFSTUB:
233 break;
235 case X86II::MO_TLVP:
236 RefKind = MCSymbolRefExpr::VK_TLVP;
237 break;
238 case X86II::MO_TLVP_PIC_BASE:
239 Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
240 // Subtract the pic base.
241 Expr = MCBinaryExpr::createSub(
242 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
243 break;
244 case X86II::MO_SECREL:
245 RefKind = MCSymbolRefExpr::VK_SECREL;
246 break;
247 case X86II::MO_TLSGD:
248 RefKind = MCSymbolRefExpr::VK_TLSGD;
249 break;
250 case X86II::MO_TLSLD:
251 RefKind = MCSymbolRefExpr::VK_TLSLD;
252 break;
253 case X86II::MO_TLSLDM:
254 RefKind = MCSymbolRefExpr::VK_TLSLDM;
255 break;
256 case X86II::MO_GOTTPOFF:
257 RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
258 break;
259 case X86II::MO_INDNTPOFF:
260 RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
261 break;
262 case X86II::MO_TPOFF:
263 RefKind = MCSymbolRefExpr::VK_TPOFF;
264 break;
265 case X86II::MO_DTPOFF:
266 RefKind = MCSymbolRefExpr::VK_DTPOFF;
267 break;
268 case X86II::MO_NTPOFF:
269 RefKind = MCSymbolRefExpr::VK_NTPOFF;
270 break;
271 case X86II::MO_GOTNTPOFF:
272 RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
273 break;
274 case X86II::MO_GOTPCREL:
275 RefKind = MCSymbolRefExpr::VK_GOTPCREL;
276 break;
277 case X86II::MO_GOT:
278 RefKind = MCSymbolRefExpr::VK_GOT;
279 break;
280 case X86II::MO_GOTOFF:
281 RefKind = MCSymbolRefExpr::VK_GOTOFF;
282 break;
283 case X86II::MO_PLT:
284 RefKind = MCSymbolRefExpr::VK_PLT;
285 break;
286 case X86II::MO_ABS8:
287 RefKind = MCSymbolRefExpr::VK_X86_ABS8;
288 break;
289 case X86II::MO_PIC_BASE_OFFSET:
290 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
291 Expr = MCSymbolRefExpr::create(Sym, Ctx);
292 // Subtract the pic base.
293 Expr = MCBinaryExpr::createSub(
294 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
295 if (MO.isJTI()) {
296 assert(MAI.doesSetDirectiveSuppressReloc());
297 // If .set directive is supported, use it to reduce the number of
298 // relocations the assembler will generate for differences between
299 // local labels. This is only safe when the symbols are in the same
300 // section so we are restricting it to jumptable references.
301 MCSymbol *Label = Ctx.createTempSymbol();
302 AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
303 Expr = MCSymbolRefExpr::create(Label, Ctx);
305 break;
308 if (!Expr)
309 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
311 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
312 Expr = MCBinaryExpr::createAdd(
313 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
314 return MCOperand::createExpr(Expr);
317 /// Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
318 /// a short fixed-register form.
319 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
320 unsigned ImmOp = Inst.getNumOperands() - 1;
321 assert(Inst.getOperand(0).isReg() &&
322 (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
323 ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
324 Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
325 Inst.getNumOperands() == 2) &&
326 "Unexpected instruction!");
328 // Check whether the destination register can be fixed.
329 unsigned Reg = Inst.getOperand(0).getReg();
330 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
331 return;
333 // If so, rewrite the instruction.
334 MCOperand Saved = Inst.getOperand(ImmOp);
335 Inst = MCInst();
336 Inst.setOpcode(Opcode);
337 Inst.addOperand(Saved);
340 /// If a movsx instruction has a shorter encoding for the used register
341 /// simplify the instruction to use it instead.
342 static void SimplifyMOVSX(MCInst &Inst) {
343 unsigned NewOpcode = 0;
344 unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
345 switch (Inst.getOpcode()) {
346 default:
347 llvm_unreachable("Unexpected instruction!");
348 case X86::MOVSX16rr8: // movsbw %al, %ax --> cbtw
349 if (Op0 == X86::AX && Op1 == X86::AL)
350 NewOpcode = X86::CBW;
351 break;
352 case X86::MOVSX32rr16: // movswl %ax, %eax --> cwtl
353 if (Op0 == X86::EAX && Op1 == X86::AX)
354 NewOpcode = X86::CWDE;
355 break;
356 case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
357 if (Op0 == X86::RAX && Op1 == X86::EAX)
358 NewOpcode = X86::CDQE;
359 break;
362 if (NewOpcode != 0) {
363 Inst = MCInst();
364 Inst.setOpcode(NewOpcode);
368 /// Simplify things like MOV32rm to MOV32o32a.
369 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
370 unsigned Opcode) {
371 // Don't make these simplifications in 64-bit mode; other assemblers don't
372 // perform them because they make the code larger.
373 if (Printer.getSubtarget().is64Bit())
374 return;
376 bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
377 unsigned AddrBase = IsStore;
378 unsigned RegOp = IsStore ? 0 : 5;
379 unsigned AddrOp = AddrBase + 3;
380 assert(
381 Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
382 Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
383 Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
384 Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
385 Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
386 (Inst.getOperand(AddrOp).isExpr() || Inst.getOperand(AddrOp).isImm()) &&
387 "Unexpected instruction!");
389 // Check whether the destination register can be fixed.
390 unsigned Reg = Inst.getOperand(RegOp).getReg();
391 if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
392 return;
394 // Check whether this is an absolute address.
395 // FIXME: We know TLVP symbol refs aren't, but there should be a better way
396 // to do this here.
397 bool Absolute = true;
398 if (Inst.getOperand(AddrOp).isExpr()) {
399 const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
400 if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
401 if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
402 Absolute = false;
405 if (Absolute &&
406 (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
407 Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
408 Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
409 return;
411 // If so, rewrite the instruction.
412 MCOperand Saved = Inst.getOperand(AddrOp);
413 MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
414 Inst = MCInst();
415 Inst.setOpcode(Opcode);
416 Inst.addOperand(Saved);
417 Inst.addOperand(Seg);
420 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
421 return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
424 Optional<MCOperand>
425 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
426 const MachineOperand &MO) const {
427 switch (MO.getType()) {
428 default:
429 MI->print(errs());
430 llvm_unreachable("unknown operand type");
431 case MachineOperand::MO_Register:
432 // Ignore all implicit register operands.
433 if (MO.isImplicit())
434 return None;
435 return MCOperand::createReg(MO.getReg());
436 case MachineOperand::MO_Immediate:
437 return MCOperand::createImm(MO.getImm());
438 case MachineOperand::MO_MachineBasicBlock:
439 case MachineOperand::MO_GlobalAddress:
440 case MachineOperand::MO_ExternalSymbol:
441 return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
442 case MachineOperand::MO_MCSymbol:
443 return LowerSymbolOperand(MO, MO.getMCSymbol());
444 case MachineOperand::MO_JumpTableIndex:
445 return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
446 case MachineOperand::MO_ConstantPoolIndex:
447 return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
448 case MachineOperand::MO_BlockAddress:
449 return LowerSymbolOperand(
450 MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
451 case MachineOperand::MO_RegisterMask:
452 // Ignore call clobbers.
453 return None;
457 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
458 // information.
459 static unsigned convertTailJumpOpcode(unsigned Opcode) {
460 switch (Opcode) {
461 case X86::TAILJMPr:
462 Opcode = X86::JMP32r;
463 break;
464 case X86::TAILJMPm:
465 Opcode = X86::JMP32m;
466 break;
467 case X86::TAILJMPr64:
468 Opcode = X86::JMP64r;
469 break;
470 case X86::TAILJMPm64:
471 Opcode = X86::JMP64m;
472 break;
473 case X86::TAILJMPr64_REX:
474 Opcode = X86::JMP64r_REX;
475 break;
476 case X86::TAILJMPm64_REX:
477 Opcode = X86::JMP64m_REX;
478 break;
479 case X86::TAILJMPd:
480 case X86::TAILJMPd64:
481 Opcode = X86::JMP_1;
482 break;
483 case X86::TAILJMPd_CC:
484 case X86::TAILJMPd64_CC:
485 Opcode = X86::JCC_1;
486 break;
489 return Opcode;
492 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
493 OutMI.setOpcode(MI->getOpcode());
495 for (const MachineOperand &MO : MI->operands())
496 if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
497 OutMI.addOperand(MaybeMCOp.getValue());
499 // Handle a few special cases to eliminate operand modifiers.
500 switch (OutMI.getOpcode()) {
501 case X86::LEA64_32r:
502 case X86::LEA64r:
503 case X86::LEA16r:
504 case X86::LEA32r:
505 // LEA should have a segment register, but it must be empty.
506 assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
507 "Unexpected # of LEA operands");
508 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
509 "LEA has segment specified!");
510 break;
512 case X86::MULX32Hrr:
513 case X86::MULX32Hrm:
514 case X86::MULX64Hrr:
515 case X86::MULX64Hrm: {
516 // Turn into regular MULX by duplicating the destination.
517 unsigned NewOpc;
518 switch (OutMI.getOpcode()) {
519 default: llvm_unreachable("Invalid opcode");
520 case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break;
521 case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break;
522 case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break;
523 case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break;
525 OutMI.setOpcode(NewOpc);
526 // Duplicate the destination.
527 unsigned DestReg = OutMI.getOperand(0).getReg();
528 OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg));
529 break;
532 // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
533 // if one of the registers is extended, but other isn't.
534 case X86::VMOVZPQILo2PQIrr:
535 case X86::VMOVAPDrr:
536 case X86::VMOVAPDYrr:
537 case X86::VMOVAPSrr:
538 case X86::VMOVAPSYrr:
539 case X86::VMOVDQArr:
540 case X86::VMOVDQAYrr:
541 case X86::VMOVDQUrr:
542 case X86::VMOVDQUYrr:
543 case X86::VMOVUPDrr:
544 case X86::VMOVUPDYrr:
545 case X86::VMOVUPSrr:
546 case X86::VMOVUPSYrr: {
547 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
548 X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
549 unsigned NewOpc;
550 switch (OutMI.getOpcode()) {
551 default: llvm_unreachable("Invalid opcode");
552 case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
553 case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
554 case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
555 case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
556 case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
557 case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
558 case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
559 case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
560 case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
561 case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
562 case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
563 case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
564 case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
566 OutMI.setOpcode(NewOpc);
568 break;
570 case X86::VMOVSDrr:
571 case X86::VMOVSSrr: {
572 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
573 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
574 unsigned NewOpc;
575 switch (OutMI.getOpcode()) {
576 default: llvm_unreachable("Invalid opcode");
577 case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
578 case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
580 OutMI.setOpcode(NewOpc);
582 break;
585 case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rmik:
586 case X86::VPCMPBZ128rri: case X86::VPCMPBZ128rrik:
587 case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rmik:
588 case X86::VPCMPBZ256rri: case X86::VPCMPBZ256rrik:
589 case X86::VPCMPBZrmi: case X86::VPCMPBZrmik:
590 case X86::VPCMPBZrri: case X86::VPCMPBZrrik:
591 case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rmik:
592 case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
593 case X86::VPCMPDZ128rri: case X86::VPCMPDZ128rrik:
594 case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rmik:
595 case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
596 case X86::VPCMPDZ256rri: case X86::VPCMPDZ256rrik:
597 case X86::VPCMPDZrmi: case X86::VPCMPDZrmik:
598 case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
599 case X86::VPCMPDZrri: case X86::VPCMPDZrrik:
600 case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rmik:
601 case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
602 case X86::VPCMPQZ128rri: case X86::VPCMPQZ128rrik:
603 case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rmik:
604 case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
605 case X86::VPCMPQZ256rri: case X86::VPCMPQZ256rrik:
606 case X86::VPCMPQZrmi: case X86::VPCMPQZrmik:
607 case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
608 case X86::VPCMPQZrri: case X86::VPCMPQZrrik:
609 case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rmik:
610 case X86::VPCMPWZ128rri: case X86::VPCMPWZ128rrik:
611 case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rmik:
612 case X86::VPCMPWZ256rri: case X86::VPCMPWZ256rrik:
613 case X86::VPCMPWZrmi: case X86::VPCMPWZrmik:
614 case X86::VPCMPWZrri: case X86::VPCMPWZrrik: {
615 // Turn immediate 0 into the VPCMPEQ instruction.
616 if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 0) {
617 unsigned NewOpc;
618 switch (OutMI.getOpcode()) {
619 default: llvm_unreachable("Invalid opcode");
620 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPEQBZ128rm; break;
621 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPEQBZ128rmk; break;
622 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPEQBZ128rr; break;
623 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPEQBZ128rrk; break;
624 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPEQBZ256rm; break;
625 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPEQBZ256rmk; break;
626 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPEQBZ256rr; break;
627 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPEQBZ256rrk; break;
628 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPEQBZrm; break;
629 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPEQBZrmk; break;
630 case X86::VPCMPBZrri: NewOpc = X86::VPCMPEQBZrr; break;
631 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPEQBZrrk; break;
632 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPEQDZ128rm; break;
633 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPEQDZ128rmb; break;
634 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPEQDZ128rmbk; break;
635 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPEQDZ128rmk; break;
636 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPEQDZ128rr; break;
637 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPEQDZ128rrk; break;
638 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPEQDZ256rm; break;
639 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPEQDZ256rmb; break;
640 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPEQDZ256rmbk; break;
641 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPEQDZ256rmk; break;
642 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPEQDZ256rr; break;
643 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPEQDZ256rrk; break;
644 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPEQDZrm; break;
645 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPEQDZrmb; break;
646 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPEQDZrmbk; break;
647 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPEQDZrmk; break;
648 case X86::VPCMPDZrri: NewOpc = X86::VPCMPEQDZrr; break;
649 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPEQDZrrk; break;
650 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPEQQZ128rm; break;
651 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPEQQZ128rmb; break;
652 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPEQQZ128rmbk; break;
653 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPEQQZ128rmk; break;
654 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPEQQZ128rr; break;
655 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPEQQZ128rrk; break;
656 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPEQQZ256rm; break;
657 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPEQQZ256rmb; break;
658 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPEQQZ256rmbk; break;
659 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPEQQZ256rmk; break;
660 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPEQQZ256rr; break;
661 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPEQQZ256rrk; break;
662 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPEQQZrm; break;
663 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPEQQZrmb; break;
664 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPEQQZrmbk; break;
665 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPEQQZrmk; break;
666 case X86::VPCMPQZrri: NewOpc = X86::VPCMPEQQZrr; break;
667 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPEQQZrrk; break;
668 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPEQWZ128rm; break;
669 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPEQWZ128rmk; break;
670 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPEQWZ128rr; break;
671 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPEQWZ128rrk; break;
672 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPEQWZ256rm; break;
673 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPEQWZ256rmk; break;
674 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPEQWZ256rr; break;
675 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPEQWZ256rrk; break;
676 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPEQWZrm; break;
677 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPEQWZrmk; break;
678 case X86::VPCMPWZrri: NewOpc = X86::VPCMPEQWZrr; break;
679 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPEQWZrrk; break;
682 OutMI.setOpcode(NewOpc);
683 OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
684 break;
687 // Turn immediate 6 into the VPCMPGT instruction.
688 if (OutMI.getOperand(OutMI.getNumOperands() - 1).getImm() == 6) {
689 unsigned NewOpc;
690 switch (OutMI.getOpcode()) {
691 default: llvm_unreachable("Invalid opcode");
692 case X86::VPCMPBZ128rmi: NewOpc = X86::VPCMPGTBZ128rm; break;
693 case X86::VPCMPBZ128rmik: NewOpc = X86::VPCMPGTBZ128rmk; break;
694 case X86::VPCMPBZ128rri: NewOpc = X86::VPCMPGTBZ128rr; break;
695 case X86::VPCMPBZ128rrik: NewOpc = X86::VPCMPGTBZ128rrk; break;
696 case X86::VPCMPBZ256rmi: NewOpc = X86::VPCMPGTBZ256rm; break;
697 case X86::VPCMPBZ256rmik: NewOpc = X86::VPCMPGTBZ256rmk; break;
698 case X86::VPCMPBZ256rri: NewOpc = X86::VPCMPGTBZ256rr; break;
699 case X86::VPCMPBZ256rrik: NewOpc = X86::VPCMPGTBZ256rrk; break;
700 case X86::VPCMPBZrmi: NewOpc = X86::VPCMPGTBZrm; break;
701 case X86::VPCMPBZrmik: NewOpc = X86::VPCMPGTBZrmk; break;
702 case X86::VPCMPBZrri: NewOpc = X86::VPCMPGTBZrr; break;
703 case X86::VPCMPBZrrik: NewOpc = X86::VPCMPGTBZrrk; break;
704 case X86::VPCMPDZ128rmi: NewOpc = X86::VPCMPGTDZ128rm; break;
705 case X86::VPCMPDZ128rmib: NewOpc = X86::VPCMPGTDZ128rmb; break;
706 case X86::VPCMPDZ128rmibk: NewOpc = X86::VPCMPGTDZ128rmbk; break;
707 case X86::VPCMPDZ128rmik: NewOpc = X86::VPCMPGTDZ128rmk; break;
708 case X86::VPCMPDZ128rri: NewOpc = X86::VPCMPGTDZ128rr; break;
709 case X86::VPCMPDZ128rrik: NewOpc = X86::VPCMPGTDZ128rrk; break;
710 case X86::VPCMPDZ256rmi: NewOpc = X86::VPCMPGTDZ256rm; break;
711 case X86::VPCMPDZ256rmib: NewOpc = X86::VPCMPGTDZ256rmb; break;
712 case X86::VPCMPDZ256rmibk: NewOpc = X86::VPCMPGTDZ256rmbk; break;
713 case X86::VPCMPDZ256rmik: NewOpc = X86::VPCMPGTDZ256rmk; break;
714 case X86::VPCMPDZ256rri: NewOpc = X86::VPCMPGTDZ256rr; break;
715 case X86::VPCMPDZ256rrik: NewOpc = X86::VPCMPGTDZ256rrk; break;
716 case X86::VPCMPDZrmi: NewOpc = X86::VPCMPGTDZrm; break;
717 case X86::VPCMPDZrmib: NewOpc = X86::VPCMPGTDZrmb; break;
718 case X86::VPCMPDZrmibk: NewOpc = X86::VPCMPGTDZrmbk; break;
719 case X86::VPCMPDZrmik: NewOpc = X86::VPCMPGTDZrmk; break;
720 case X86::VPCMPDZrri: NewOpc = X86::VPCMPGTDZrr; break;
721 case X86::VPCMPDZrrik: NewOpc = X86::VPCMPGTDZrrk; break;
722 case X86::VPCMPQZ128rmi: NewOpc = X86::VPCMPGTQZ128rm; break;
723 case X86::VPCMPQZ128rmib: NewOpc = X86::VPCMPGTQZ128rmb; break;
724 case X86::VPCMPQZ128rmibk: NewOpc = X86::VPCMPGTQZ128rmbk; break;
725 case X86::VPCMPQZ128rmik: NewOpc = X86::VPCMPGTQZ128rmk; break;
726 case X86::VPCMPQZ128rri: NewOpc = X86::VPCMPGTQZ128rr; break;
727 case X86::VPCMPQZ128rrik: NewOpc = X86::VPCMPGTQZ128rrk; break;
728 case X86::VPCMPQZ256rmi: NewOpc = X86::VPCMPGTQZ256rm; break;
729 case X86::VPCMPQZ256rmib: NewOpc = X86::VPCMPGTQZ256rmb; break;
730 case X86::VPCMPQZ256rmibk: NewOpc = X86::VPCMPGTQZ256rmbk; break;
731 case X86::VPCMPQZ256rmik: NewOpc = X86::VPCMPGTQZ256rmk; break;
732 case X86::VPCMPQZ256rri: NewOpc = X86::VPCMPGTQZ256rr; break;
733 case X86::VPCMPQZ256rrik: NewOpc = X86::VPCMPGTQZ256rrk; break;
734 case X86::VPCMPQZrmi: NewOpc = X86::VPCMPGTQZrm; break;
735 case X86::VPCMPQZrmib: NewOpc = X86::VPCMPGTQZrmb; break;
736 case X86::VPCMPQZrmibk: NewOpc = X86::VPCMPGTQZrmbk; break;
737 case X86::VPCMPQZrmik: NewOpc = X86::VPCMPGTQZrmk; break;
738 case X86::VPCMPQZrri: NewOpc = X86::VPCMPGTQZrr; break;
739 case X86::VPCMPQZrrik: NewOpc = X86::VPCMPGTQZrrk; break;
740 case X86::VPCMPWZ128rmi: NewOpc = X86::VPCMPGTWZ128rm; break;
741 case X86::VPCMPWZ128rmik: NewOpc = X86::VPCMPGTWZ128rmk; break;
742 case X86::VPCMPWZ128rri: NewOpc = X86::VPCMPGTWZ128rr; break;
743 case X86::VPCMPWZ128rrik: NewOpc = X86::VPCMPGTWZ128rrk; break;
744 case X86::VPCMPWZ256rmi: NewOpc = X86::VPCMPGTWZ256rm; break;
745 case X86::VPCMPWZ256rmik: NewOpc = X86::VPCMPGTWZ256rmk; break;
746 case X86::VPCMPWZ256rri: NewOpc = X86::VPCMPGTWZ256rr; break;
747 case X86::VPCMPWZ256rrik: NewOpc = X86::VPCMPGTWZ256rrk; break;
748 case X86::VPCMPWZrmi: NewOpc = X86::VPCMPGTWZrm; break;
749 case X86::VPCMPWZrmik: NewOpc = X86::VPCMPGTWZrmk; break;
750 case X86::VPCMPWZrri: NewOpc = X86::VPCMPGTWZrr; break;
751 case X86::VPCMPWZrrik: NewOpc = X86::VPCMPGTWZrrk; break;
754 OutMI.setOpcode(NewOpc);
755 OutMI.erase(&OutMI.getOperand(OutMI.getNumOperands() - 1));
756 break;
759 break;
762 // CALL64r, CALL64pcrel32 - These instructions used to have
763 // register inputs modeled as normal uses instead of implicit uses. As such,
764 // they we used to truncate off all but the first operand (the callee). This
765 // issue seems to have been fixed at some point. This assert verifies that.
766 case X86::CALL64r:
767 case X86::CALL64pcrel32:
768 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
769 break;
771 case X86::EH_RETURN:
772 case X86::EH_RETURN64: {
773 OutMI = MCInst();
774 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
775 break;
778 case X86::CLEANUPRET: {
779 // Replace CLEANUPRET with the appropriate RET.
780 OutMI = MCInst();
781 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
782 break;
785 case X86::CATCHRET: {
786 // Replace CATCHRET with the appropriate RET.
787 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
788 unsigned ReturnReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
789 OutMI = MCInst();
790 OutMI.setOpcode(getRetOpcode(Subtarget));
791 OutMI.addOperand(MCOperand::createReg(ReturnReg));
792 break;
795 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
796 // instruction.
797 case X86::TAILJMPr:
798 case X86::TAILJMPr64:
799 case X86::TAILJMPr64_REX:
800 case X86::TAILJMPd:
801 case X86::TAILJMPd64:
802 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
803 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
804 break;
806 case X86::TAILJMPd_CC:
807 case X86::TAILJMPd64_CC:
808 assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
809 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
810 break;
812 case X86::TAILJMPm:
813 case X86::TAILJMPm64:
814 case X86::TAILJMPm64_REX:
815 assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
816 "Unexpected number of operands!");
817 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
818 break;
820 case X86::DEC16r:
821 case X86::DEC32r:
822 case X86::INC16r:
823 case X86::INC32r:
824 // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
825 if (!AsmPrinter.getSubtarget().is64Bit()) {
826 unsigned Opcode;
827 switch (OutMI.getOpcode()) {
828 default: llvm_unreachable("Invalid opcode");
829 case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
830 case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
831 case X86::INC16r: Opcode = X86::INC16r_alt; break;
832 case X86::INC32r: Opcode = X86::INC32r_alt; break;
834 OutMI.setOpcode(Opcode);
836 break;
838 // We don't currently select the correct instruction form for instructions
839 // which have a short %eax, etc. form. Handle this by custom lowering, for
840 // now.
842 // Note, we are currently not handling the following instructions:
843 // MOV64ao8, MOV64o8a
844 // XCHG16ar, XCHG32ar, XCHG64ar
845 case X86::MOV8mr_NOREX:
846 case X86::MOV8mr:
847 case X86::MOV8rm_NOREX:
848 case X86::MOV8rm:
849 case X86::MOV16mr:
850 case X86::MOV16rm:
851 case X86::MOV32mr:
852 case X86::MOV32rm: {
853 unsigned NewOpc;
854 switch (OutMI.getOpcode()) {
855 default: llvm_unreachable("Invalid opcode");
856 case X86::MOV8mr_NOREX:
857 case X86::MOV8mr: NewOpc = X86::MOV8o32a; break;
858 case X86::MOV8rm_NOREX:
859 case X86::MOV8rm: NewOpc = X86::MOV8ao32; break;
860 case X86::MOV16mr: NewOpc = X86::MOV16o32a; break;
861 case X86::MOV16rm: NewOpc = X86::MOV16ao32; break;
862 case X86::MOV32mr: NewOpc = X86::MOV32o32a; break;
863 case X86::MOV32rm: NewOpc = X86::MOV32ao32; break;
865 SimplifyShortMoveForm(AsmPrinter, OutMI, NewOpc);
866 break;
869 case X86::ADC8ri: case X86::ADC16ri: case X86::ADC32ri: case X86::ADC64ri32:
870 case X86::ADD8ri: case X86::ADD16ri: case X86::ADD32ri: case X86::ADD64ri32:
871 case X86::AND8ri: case X86::AND16ri: case X86::AND32ri: case X86::AND64ri32:
872 case X86::CMP8ri: case X86::CMP16ri: case X86::CMP32ri: case X86::CMP64ri32:
873 case X86::OR8ri: case X86::OR16ri: case X86::OR32ri: case X86::OR64ri32:
874 case X86::SBB8ri: case X86::SBB16ri: case X86::SBB32ri: case X86::SBB64ri32:
875 case X86::SUB8ri: case X86::SUB16ri: case X86::SUB32ri: case X86::SUB64ri32:
876 case X86::TEST8ri:case X86::TEST16ri:case X86::TEST32ri:case X86::TEST64ri32:
877 case X86::XOR8ri: case X86::XOR16ri: case X86::XOR32ri: case X86::XOR64ri32: {
878 unsigned NewOpc;
879 switch (OutMI.getOpcode()) {
880 default: llvm_unreachable("Invalid opcode");
881 case X86::ADC8ri: NewOpc = X86::ADC8i8; break;
882 case X86::ADC16ri: NewOpc = X86::ADC16i16; break;
883 case X86::ADC32ri: NewOpc = X86::ADC32i32; break;
884 case X86::ADC64ri32: NewOpc = X86::ADC64i32; break;
885 case X86::ADD8ri: NewOpc = X86::ADD8i8; break;
886 case X86::ADD16ri: NewOpc = X86::ADD16i16; break;
887 case X86::ADD32ri: NewOpc = X86::ADD32i32; break;
888 case X86::ADD64ri32: NewOpc = X86::ADD64i32; break;
889 case X86::AND8ri: NewOpc = X86::AND8i8; break;
890 case X86::AND16ri: NewOpc = X86::AND16i16; break;
891 case X86::AND32ri: NewOpc = X86::AND32i32; break;
892 case X86::AND64ri32: NewOpc = X86::AND64i32; break;
893 case X86::CMP8ri: NewOpc = X86::CMP8i8; break;
894 case X86::CMP16ri: NewOpc = X86::CMP16i16; break;
895 case X86::CMP32ri: NewOpc = X86::CMP32i32; break;
896 case X86::CMP64ri32: NewOpc = X86::CMP64i32; break;
897 case X86::OR8ri: NewOpc = X86::OR8i8; break;
898 case X86::OR16ri: NewOpc = X86::OR16i16; break;
899 case X86::OR32ri: NewOpc = X86::OR32i32; break;
900 case X86::OR64ri32: NewOpc = X86::OR64i32; break;
901 case X86::SBB8ri: NewOpc = X86::SBB8i8; break;
902 case X86::SBB16ri: NewOpc = X86::SBB16i16; break;
903 case X86::SBB32ri: NewOpc = X86::SBB32i32; break;
904 case X86::SBB64ri32: NewOpc = X86::SBB64i32; break;
905 case X86::SUB8ri: NewOpc = X86::SUB8i8; break;
906 case X86::SUB16ri: NewOpc = X86::SUB16i16; break;
907 case X86::SUB32ri: NewOpc = X86::SUB32i32; break;
908 case X86::SUB64ri32: NewOpc = X86::SUB64i32; break;
909 case X86::TEST8ri: NewOpc = X86::TEST8i8; break;
910 case X86::TEST16ri: NewOpc = X86::TEST16i16; break;
911 case X86::TEST32ri: NewOpc = X86::TEST32i32; break;
912 case X86::TEST64ri32: NewOpc = X86::TEST64i32; break;
913 case X86::XOR8ri: NewOpc = X86::XOR8i8; break;
914 case X86::XOR16ri: NewOpc = X86::XOR16i16; break;
915 case X86::XOR32ri: NewOpc = X86::XOR32i32; break;
916 case X86::XOR64ri32: NewOpc = X86::XOR64i32; break;
918 SimplifyShortImmForm(OutMI, NewOpc);
919 break;
922 // Try to shrink some forms of movsx.
923 case X86::MOVSX16rr8:
924 case X86::MOVSX32rr16:
925 case X86::MOVSX64rr32:
926 SimplifyMOVSX(OutMI);
927 break;
929 case X86::VCMPPDrri:
930 case X86::VCMPPDYrri:
931 case X86::VCMPPSrri:
932 case X86::VCMPPSYrri:
933 case X86::VCMPSDrr:
934 case X86::VCMPSSrr: {
935 // Swap the operands if it will enable a 2 byte VEX encoding.
936 // FIXME: Change the immediate to improve opportunities?
937 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
938 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
939 unsigned Imm = MI->getOperand(3).getImm() & 0x7;
940 switch (Imm) {
941 default: break;
942 case 0x00: // EQUAL
943 case 0x03: // UNORDERED
944 case 0x04: // NOT EQUAL
945 case 0x07: // ORDERED
946 std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
947 break;
950 break;
953 case X86::VMOVHLPSrr:
954 case X86::VUNPCKHPDrr:
955 // These are not truly commutable so hide them from the default case.
956 break;
958 default: {
959 // If the instruction is a commutable arithmetic instruction we might be
960 // able to commute the operands to get a 2 byte VEX prefix.
961 uint64_t TSFlags = MI->getDesc().TSFlags;
962 if (MI->getDesc().isCommutable() &&
963 (TSFlags & X86II::EncodingMask) == X86II::VEX &&
964 (TSFlags & X86II::OpMapMask) == X86II::TB &&
965 (TSFlags & X86II::FormMask) == X86II::MRMSrcReg &&
966 !(TSFlags & X86II::VEX_W) && (TSFlags & X86II::VEX_4V) &&
967 OutMI.getNumOperands() == 3) {
968 if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg()) &&
969 X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg()))
970 std::swap(OutMI.getOperand(1), OutMI.getOperand(2));
972 break;
977 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
978 const MachineInstr &MI) {
979 NoAutoPaddingScope NoPadScope(*OutStreamer);
980 bool Is64Bits = MI.getOpcode() != X86::TLS_addr32 &&
981 MI.getOpcode() != X86::TLS_base_addr32;
982 bool Is64BitsLP64 = MI.getOpcode() == X86::TLS_addr64 ||
983 MI.getOpcode() == X86::TLS_base_addr64;
984 MCContext &Ctx = OutStreamer->getContext();
986 MCSymbolRefExpr::VariantKind SRVK;
987 switch (MI.getOpcode()) {
988 case X86::TLS_addr32:
989 case X86::TLS_addr64:
990 case X86::TLS_addrX32:
991 SRVK = MCSymbolRefExpr::VK_TLSGD;
992 break;
993 case X86::TLS_base_addr32:
994 SRVK = MCSymbolRefExpr::VK_TLSLDM;
995 break;
996 case X86::TLS_base_addr64:
997 case X86::TLS_base_addrX32:
998 SRVK = MCSymbolRefExpr::VK_TLSLD;
999 break;
1000 default:
1001 llvm_unreachable("unexpected opcode");
1004 const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
1005 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
1007 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
1008 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
1009 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
1010 // only using GOT when GOTPCRELX is enabled.
1011 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
1012 bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
1013 Ctx.getAsmInfo()->canRelaxRelocations();
1015 if (Is64Bits) {
1016 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
1017 if (NeedsPadding && Is64BitsLP64)
1018 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
1019 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
1020 .addReg(X86::RDI)
1021 .addReg(X86::RIP)
1022 .addImm(1)
1023 .addReg(0)
1024 .addExpr(Sym)
1025 .addReg(0));
1026 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
1027 if (NeedsPadding) {
1028 if (!UseGot)
1029 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
1030 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
1031 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
1033 if (UseGot) {
1034 const MCExpr *Expr = MCSymbolRefExpr::create(
1035 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
1036 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
1037 .addReg(X86::RIP)
1038 .addImm(1)
1039 .addReg(0)
1040 .addExpr(Expr)
1041 .addReg(0));
1042 } else {
1043 EmitAndCountInstruction(
1044 MCInstBuilder(X86::CALL64pcrel32)
1045 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
1046 MCSymbolRefExpr::VK_PLT, Ctx)));
1048 } else {
1049 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
1050 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
1051 .addReg(X86::EAX)
1052 .addReg(0)
1053 .addImm(1)
1054 .addReg(X86::EBX)
1055 .addExpr(Sym)
1056 .addReg(0));
1057 } else {
1058 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
1059 .addReg(X86::EAX)
1060 .addReg(X86::EBX)
1061 .addImm(1)
1062 .addReg(0)
1063 .addExpr(Sym)
1064 .addReg(0));
1067 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
1068 if (UseGot) {
1069 const MCExpr *Expr =
1070 MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
1071 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
1072 .addReg(X86::EBX)
1073 .addImm(1)
1074 .addReg(0)
1075 .addExpr(Expr)
1076 .addReg(0));
1077 } else {
1078 EmitAndCountInstruction(
1079 MCInstBuilder(X86::CALLpcrel32)
1080 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
1081 MCSymbolRefExpr::VK_PLT, Ctx)));
1086 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
1087 /// bytes. Return the size of nop emitted.
1088 static unsigned emitNop(MCStreamer &OS, unsigned NumBytes,
1089 const X86Subtarget *Subtarget) {
1090 // Determine the longest nop which can be efficiently decoded for the given
1091 // target cpu. 15-bytes is the longest single NOP instruction, but some
1092 // platforms can't decode the longest forms efficiently.
1093 unsigned MaxNopLength = 1;
1094 if (Subtarget->is64Bit()) {
1095 // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
1096 // IndexReg/BaseReg below need to be updated.
1097 if (Subtarget->hasFeature(X86::TuningFast7ByteNOP))
1098 MaxNopLength = 7;
1099 else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP))
1100 MaxNopLength = 15;
1101 else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP))
1102 MaxNopLength = 11;
1103 else
1104 MaxNopLength = 10;
1105 } if (Subtarget->is32Bit())
1106 MaxNopLength = 2;
1108 // Cap a single nop emission at the profitable value for the target
1109 NumBytes = std::min(NumBytes, MaxNopLength);
1111 unsigned NopSize;
1112 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
1113 IndexReg = Displacement = SegmentReg = 0;
1114 BaseReg = X86::RAX;
1115 ScaleVal = 1;
1116 switch (NumBytes) {
1117 case 0:
1118 llvm_unreachable("Zero nops?");
1119 break;
1120 case 1:
1121 NopSize = 1;
1122 Opc = X86::NOOP;
1123 break;
1124 case 2:
1125 NopSize = 2;
1126 Opc = X86::XCHG16ar;
1127 break;
1128 case 3:
1129 NopSize = 3;
1130 Opc = X86::NOOPL;
1131 break;
1132 case 4:
1133 NopSize = 4;
1134 Opc = X86::NOOPL;
1135 Displacement = 8;
1136 break;
1137 case 5:
1138 NopSize = 5;
1139 Opc = X86::NOOPL;
1140 Displacement = 8;
1141 IndexReg = X86::RAX;
1142 break;
1143 case 6:
1144 NopSize = 6;
1145 Opc = X86::NOOPW;
1146 Displacement = 8;
1147 IndexReg = X86::RAX;
1148 break;
1149 case 7:
1150 NopSize = 7;
1151 Opc = X86::NOOPL;
1152 Displacement = 512;
1153 break;
1154 case 8:
1155 NopSize = 8;
1156 Opc = X86::NOOPL;
1157 Displacement = 512;
1158 IndexReg = X86::RAX;
1159 break;
1160 case 9:
1161 NopSize = 9;
1162 Opc = X86::NOOPW;
1163 Displacement = 512;
1164 IndexReg = X86::RAX;
1165 break;
1166 default:
1167 NopSize = 10;
1168 Opc = X86::NOOPW;
1169 Displacement = 512;
1170 IndexReg = X86::RAX;
1171 SegmentReg = X86::CS;
1172 break;
1175 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
1176 NopSize += NumPrefixes;
1177 for (unsigned i = 0; i != NumPrefixes; ++i)
1178 OS.emitBytes("\x66");
1180 switch (Opc) {
1181 default: llvm_unreachable("Unexpected opcode");
1182 case X86::NOOP:
1183 OS.emitInstruction(MCInstBuilder(Opc), *Subtarget);
1184 break;
1185 case X86::XCHG16ar:
1186 OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX),
1187 *Subtarget);
1188 break;
1189 case X86::NOOPL:
1190 case X86::NOOPW:
1191 OS.emitInstruction(MCInstBuilder(Opc)
1192 .addReg(BaseReg)
1193 .addImm(ScaleVal)
1194 .addReg(IndexReg)
1195 .addImm(Displacement)
1196 .addReg(SegmentReg),
1197 *Subtarget);
1198 break;
1200 assert(NopSize <= NumBytes && "We overemitted?");
1201 return NopSize;
1204 /// Emit the optimal amount of multi-byte nops on X86.
1205 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
1206 const X86Subtarget *Subtarget) {
1207 unsigned NopsToEmit = NumBytes;
1208 (void)NopsToEmit;
1209 while (NumBytes) {
1210 NumBytes -= emitNop(OS, NumBytes, Subtarget);
1211 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
1215 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
1216 X86MCInstLower &MCIL) {
1217 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
1219 NoAutoPaddingScope NoPadScope(*OutStreamer);
1221 StatepointOpers SOpers(&MI);
1222 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
1223 emitX86Nops(*OutStreamer, PatchBytes, Subtarget);
1224 } else {
1225 // Lower call target and choose correct opcode
1226 const MachineOperand &CallTarget = SOpers.getCallTarget();
1227 MCOperand CallTargetMCOp;
1228 unsigned CallOpcode;
1229 switch (CallTarget.getType()) {
1230 case MachineOperand::MO_GlobalAddress:
1231 case MachineOperand::MO_ExternalSymbol:
1232 CallTargetMCOp = MCIL.LowerSymbolOperand(
1233 CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
1234 CallOpcode = X86::CALL64pcrel32;
1235 // Currently, we only support relative addressing with statepoints.
1236 // Otherwise, we'll need a scratch register to hold the target
1237 // address. You'll fail asserts during load & relocation if this
1238 // symbol is to far away. (TODO: support non-relative addressing)
1239 break;
1240 case MachineOperand::MO_Immediate:
1241 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
1242 CallOpcode = X86::CALL64pcrel32;
1243 // Currently, we only support relative addressing with statepoints.
1244 // Otherwise, we'll need a scratch register to hold the target
1245 // immediate. You'll fail asserts during load & relocation if this
1246 // address is to far away. (TODO: support non-relative addressing)
1247 break;
1248 case MachineOperand::MO_Register:
1249 // FIXME: Add retpoline support and remove this.
1250 if (Subtarget->useIndirectThunkCalls())
1251 report_fatal_error("Lowering register statepoints with thunks not "
1252 "yet implemented.");
1253 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
1254 CallOpcode = X86::CALL64r;
1255 break;
1256 default:
1257 llvm_unreachable("Unsupported operand type in statepoint call target");
1258 break;
1261 // Emit call
1262 MCInst CallInst;
1263 CallInst.setOpcode(CallOpcode);
1264 CallInst.addOperand(CallTargetMCOp);
1265 OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
1268 // Record our statepoint node in the same section used by STACKMAP
1269 // and PATCHPOINT
1270 auto &Ctx = OutStreamer->getContext();
1271 MCSymbol *MILabel = Ctx.createTempSymbol();
1272 OutStreamer->emitLabel(MILabel);
1273 SM.recordStatepoint(*MILabel, MI);
1276 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
1277 X86MCInstLower &MCIL) {
1278 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
1279 // <opcode>, <operands>
1281 NoAutoPaddingScope NoPadScope(*OutStreamer);
1283 Register DefRegister = FaultingMI.getOperand(0).getReg();
1284 FaultMaps::FaultKind FK =
1285 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
1286 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
1287 unsigned Opcode = FaultingMI.getOperand(3).getImm();
1288 unsigned OperandsBeginIdx = 4;
1290 auto &Ctx = OutStreamer->getContext();
1291 MCSymbol *FaultingLabel = Ctx.createTempSymbol();
1292 OutStreamer->emitLabel(FaultingLabel);
1294 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
1295 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
1297 MCInst MI;
1298 MI.setOpcode(Opcode);
1300 if (DefRegister != X86::NoRegister)
1301 MI.addOperand(MCOperand::createReg(DefRegister));
1303 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
1304 E = FaultingMI.operands_end();
1305 I != E; ++I)
1306 if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, *I))
1307 MI.addOperand(MaybeOperand.getValue());
1309 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
1310 OutStreamer->emitInstruction(MI, getSubtargetInfo());
1313 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
1314 X86MCInstLower &MCIL) {
1315 bool Is64Bits = Subtarget->is64Bit();
1316 MCContext &Ctx = OutStreamer->getContext();
1317 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
1318 const MCSymbolRefExpr *Op =
1319 MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
1321 EmitAndCountInstruction(
1322 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
1323 .addExpr(Op));
1326 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
1327 X86MCInstLower &MCIL) {
1328 // PATCHABLE_OP minsize, opcode, operands
1330 NoAutoPaddingScope NoPadScope(*OutStreamer);
1332 unsigned MinSize = MI.getOperand(0).getImm();
1333 unsigned Opcode = MI.getOperand(1).getImm();
1335 MCInst MCI;
1336 MCI.setOpcode(Opcode);
1337 for (auto &MO : drop_begin(MI.operands(), 2))
1338 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1339 MCI.addOperand(MaybeOperand.getValue());
1341 SmallString<256> Code;
1342 SmallVector<MCFixup, 4> Fixups;
1343 raw_svector_ostream VecOS(Code);
1344 CodeEmitter->encodeInstruction(MCI, VecOS, Fixups, getSubtargetInfo());
1346 if (Code.size() < MinSize) {
1347 if (MinSize == 2 && Subtarget->is32Bit() &&
1348 Subtarget->isTargetWindowsMSVC() &&
1349 (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) {
1350 // For compatibilty reasons, when targetting MSVC, is is important to
1351 // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
1352 // rely specifically on this pattern to be able to patch a function.
1353 // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
1354 OutStreamer->emitInstruction(
1355 MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI),
1356 *Subtarget);
1357 } else if (MinSize == 2 && Opcode == X86::PUSH64r) {
1358 // This is an optimization that lets us get away without emitting a nop in
1359 // many cases.
1361 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
1362 // bytes too, so the check on MinSize is important.
1363 MCI.setOpcode(X86::PUSH64rmr);
1364 } else {
1365 unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget);
1366 assert(NopSize == MinSize && "Could not implement MinSize!");
1367 (void)NopSize;
1371 OutStreamer->emitInstruction(MCI, getSubtargetInfo());
1374 // Lower a stackmap of the form:
1375 // <id>, <shadowBytes>, ...
1376 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1377 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1379 auto &Ctx = OutStreamer->getContext();
1380 MCSymbol *MILabel = Ctx.createTempSymbol();
1381 OutStreamer->emitLabel(MILabel);
1383 SM.recordStackMap(*MILabel, MI);
1384 unsigned NumShadowBytes = MI.getOperand(1).getImm();
1385 SMShadowTracker.reset(NumShadowBytes);
1388 // Lower a patchpoint of the form:
1389 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1390 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1391 X86MCInstLower &MCIL) {
1392 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1394 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1396 NoAutoPaddingScope NoPadScope(*OutStreamer);
1398 auto &Ctx = OutStreamer->getContext();
1399 MCSymbol *MILabel = Ctx.createTempSymbol();
1400 OutStreamer->emitLabel(MILabel);
1401 SM.recordPatchPoint(*MILabel, MI);
1403 PatchPointOpers opers(&MI);
1404 unsigned ScratchIdx = opers.getNextScratchIdx();
1405 unsigned EncodedBytes = 0;
1406 const MachineOperand &CalleeMO = opers.getCallTarget();
1408 // Check for null target. If target is non-null (i.e. is non-zero or is
1409 // symbolic) then emit a call.
1410 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1411 MCOperand CalleeMCOp;
1412 switch (CalleeMO.getType()) {
1413 default:
1414 /// FIXME: Add a verifier check for bad callee types.
1415 llvm_unreachable("Unrecognized callee operand type.");
1416 case MachineOperand::MO_Immediate:
1417 if (CalleeMO.getImm())
1418 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1419 break;
1420 case MachineOperand::MO_ExternalSymbol:
1421 case MachineOperand::MO_GlobalAddress:
1422 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1423 MCIL.GetSymbolFromOperand(CalleeMO));
1424 break;
1427 // Emit MOV to materialize the target address and the CALL to target.
1428 // This is encoded with 12-13 bytes, depending on which register is used.
1429 Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1430 if (X86II::isX86_64ExtendedReg(ScratchReg))
1431 EncodedBytes = 13;
1432 else
1433 EncodedBytes = 12;
1435 EmitAndCountInstruction(
1436 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1437 // FIXME: Add retpoline support and remove this.
1438 if (Subtarget->useIndirectThunkCalls())
1439 report_fatal_error(
1440 "Lowering patchpoint with thunks not yet implemented.");
1441 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1444 // Emit padding.
1445 unsigned NumBytes = opers.getNumPatchBytes();
1446 assert(NumBytes >= EncodedBytes &&
1447 "Patchpoint can't request size less than the length of a call.");
1449 emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget);
1452 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1453 X86MCInstLower &MCIL) {
1454 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1456 NoAutoPaddingScope NoPadScope(*OutStreamer);
1458 // We want to emit the following pattern, which follows the x86 calling
1459 // convention to prepare for the trampoline call to be patched in.
1461 // .p2align 1, ...
1462 // .Lxray_event_sled_N:
1463 // jmp +N // jump across the instrumentation sled
1464 // ... // set up arguments in register
1465 // callq __xray_CustomEvent@plt // force dependency to symbol
1466 // ...
1467 // <jump here>
1469 // After patching, it would look something like:
1471 // nopw (2-byte nop)
1472 // ...
1473 // callq __xrayCustomEvent // already lowered
1474 // ...
1476 // ---
1477 // First we emit the label and the jump.
1478 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1479 OutStreamer->AddComment("# XRay Custom Event Log");
1480 OutStreamer->emitCodeAlignment(2);
1481 OutStreamer->emitLabel(CurSled);
1483 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1484 // an operand (computed as an offset from the jmp instruction).
1485 // FIXME: Find another less hacky way do force the relative jump.
1486 OutStreamer->emitBinaryData("\xeb\x0f");
1488 // The default C calling convention will place two arguments into %rcx and
1489 // %rdx -- so we only work with those.
1490 const Register DestRegs[] = {X86::RDI, X86::RSI};
1491 bool UsedMask[] = {false, false};
1492 // Filled out in loop.
1493 Register SrcRegs[] = {0, 0};
1495 // Then we put the operands in the %rdi and %rsi registers. We spill the
1496 // values in the register before we clobber them, and mark them as used in
1497 // UsedMask. In case the arguments are already in the correct register, we use
1498 // emit nops appropriately sized to keep the sled the same size in every
1499 // situation.
1500 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1501 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1502 assert(Op->isReg() && "Only support arguments in registers");
1503 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1504 if (SrcRegs[I] != DestRegs[I]) {
1505 UsedMask[I] = true;
1506 EmitAndCountInstruction(
1507 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1508 } else {
1509 emitX86Nops(*OutStreamer, 4, Subtarget);
1513 // Now that the register values are stashed, mov arguments into place.
1514 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1515 // earlier DestReg. We will have already overwritten over the register before
1516 // we can copy from it.
1517 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1518 if (SrcRegs[I] != DestRegs[I])
1519 EmitAndCountInstruction(
1520 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1522 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1523 // name of the trampoline to be implemented by the XRay runtime.
1524 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1525 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1526 if (isPositionIndependent())
1527 TOp.setTargetFlags(X86II::MO_PLT);
1529 // Emit the call instruction.
1530 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1531 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1533 // Restore caller-saved and used registers.
1534 for (unsigned I = sizeof UsedMask; I-- > 0;)
1535 if (UsedMask[I])
1536 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1537 else
1538 emitX86Nops(*OutStreamer, 1, Subtarget);
1540 OutStreamer->AddComment("xray custom event end.");
1542 // Record the sled version. Version 0 of this sled was spelled differently, so
1543 // we let the runtime handle the different offsets we're using. Version 2
1544 // changed the absolute address to a PC-relative address.
1545 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2);
1548 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1549 X86MCInstLower &MCIL) {
1550 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1552 NoAutoPaddingScope NoPadScope(*OutStreamer);
1554 // We want to emit the following pattern, which follows the x86 calling
1555 // convention to prepare for the trampoline call to be patched in.
1557 // .p2align 1, ...
1558 // .Lxray_event_sled_N:
1559 // jmp +N // jump across the instrumentation sled
1560 // ... // set up arguments in register
1561 // callq __xray_TypedEvent@plt // force dependency to symbol
1562 // ...
1563 // <jump here>
1565 // After patching, it would look something like:
1567 // nopw (2-byte nop)
1568 // ...
1569 // callq __xrayTypedEvent // already lowered
1570 // ...
1572 // ---
1573 // First we emit the label and the jump.
1574 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1575 OutStreamer->AddComment("# XRay Typed Event Log");
1576 OutStreamer->emitCodeAlignment(2);
1577 OutStreamer->emitLabel(CurSled);
1579 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1580 // an operand (computed as an offset from the jmp instruction).
1581 // FIXME: Find another less hacky way do force the relative jump.
1582 OutStreamer->emitBinaryData("\xeb\x14");
1584 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1585 // so we'll work with those. Or we may be called via SystemV, in which case
1586 // we don't have to do any translation.
1587 const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1588 bool UsedMask[] = {false, false, false};
1590 // Will fill out src regs in the loop.
1591 Register SrcRegs[] = {0, 0, 0};
1593 // Then we put the operands in the SystemV registers. We spill the values in
1594 // the registers before we clobber them, and mark them as used in UsedMask.
1595 // In case the arguments are already in the correct register, we emit nops
1596 // appropriately sized to keep the sled the same size in every situation.
1597 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1598 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1599 // TODO: Is register only support adequate?
1600 assert(Op->isReg() && "Only supports arguments in registers");
1601 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1602 if (SrcRegs[I] != DestRegs[I]) {
1603 UsedMask[I] = true;
1604 EmitAndCountInstruction(
1605 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1606 } else {
1607 emitX86Nops(*OutStreamer, 4, Subtarget);
1611 // In the above loop we only stash all of the destination registers or emit
1612 // nops if the arguments are already in the right place. Doing the actually
1613 // moving is postponed until after all the registers are stashed so nothing
1614 // is clobbers. We've already added nops to account for the size of mov and
1615 // push if the register is in the right place, so we only have to worry about
1616 // emitting movs.
1617 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1618 // earlier DestReg. We will have already overwritten over the register before
1619 // we can copy from it.
1620 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1621 if (UsedMask[I])
1622 EmitAndCountInstruction(
1623 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1625 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1626 // name of the trampoline to be implemented by the XRay runtime.
1627 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1628 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1629 if (isPositionIndependent())
1630 TOp.setTargetFlags(X86II::MO_PLT);
1632 // Emit the call instruction.
1633 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1634 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1636 // Restore caller-saved and used registers.
1637 for (unsigned I = sizeof UsedMask; I-- > 0;)
1638 if (UsedMask[I])
1639 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1640 else
1641 emitX86Nops(*OutStreamer, 1, Subtarget);
1643 OutStreamer->AddComment("xray typed event end.");
1645 // Record the sled version.
1646 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2);
1649 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1650 X86MCInstLower &MCIL) {
1652 NoAutoPaddingScope NoPadScope(*OutStreamer);
1654 const Function &F = MF->getFunction();
1655 if (F.hasFnAttribute("patchable-function-entry")) {
1656 unsigned Num;
1657 if (F.getFnAttribute("patchable-function-entry")
1658 .getValueAsString()
1659 .getAsInteger(10, Num))
1660 return;
1661 emitX86Nops(*OutStreamer, Num, Subtarget);
1662 return;
1664 // We want to emit the following pattern:
1666 // .p2align 1, ...
1667 // .Lxray_sled_N:
1668 // jmp .tmpN
1669 // # 9 bytes worth of noops
1671 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1672 // bytes with the following pattern:
1674 // mov %r10, <function id, 32-bit> // 6 bytes
1675 // call <relative offset, 32-bits> // 5 bytes
1677 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1678 OutStreamer->emitCodeAlignment(2);
1679 OutStreamer->emitLabel(CurSled);
1681 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1682 // an operand (computed as an offset from the jmp instruction).
1683 // FIXME: Find another less hacky way do force the relative jump.
1684 OutStreamer->emitBytes("\xeb\x09");
1685 emitX86Nops(*OutStreamer, 9, Subtarget);
1686 recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2);
1689 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1690 X86MCInstLower &MCIL) {
1691 NoAutoPaddingScope NoPadScope(*OutStreamer);
1693 // Since PATCHABLE_RET takes the opcode of the return statement as an
1694 // argument, we use that to emit the correct form of the RET that we want.
1695 // i.e. when we see this:
1697 // PATCHABLE_RET X86::RET ...
1699 // We should emit the RET followed by sleds.
1701 // .p2align 1, ...
1702 // .Lxray_sled_N:
1703 // ret # or equivalent instruction
1704 // # 10 bytes worth of noops
1706 // This just makes sure that the alignment for the next instruction is 2.
1707 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1708 OutStreamer->emitCodeAlignment(2);
1709 OutStreamer->emitLabel(CurSled);
1710 unsigned OpCode = MI.getOperand(0).getImm();
1711 MCInst Ret;
1712 Ret.setOpcode(OpCode);
1713 for (auto &MO : drop_begin(MI.operands()))
1714 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1715 Ret.addOperand(MaybeOperand.getValue());
1716 OutStreamer->emitInstruction(Ret, getSubtargetInfo());
1717 emitX86Nops(*OutStreamer, 10, Subtarget);
1718 recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2);
1721 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1722 X86MCInstLower &MCIL) {
1723 NoAutoPaddingScope NoPadScope(*OutStreamer);
1725 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1726 // instruction so we lower that particular instruction and its operands.
1727 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1728 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1729 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1730 // tail call much like how we have it in PATCHABLE_RET.
1731 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1732 OutStreamer->emitCodeAlignment(2);
1733 OutStreamer->emitLabel(CurSled);
1734 auto Target = OutContext.createTempSymbol();
1736 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1737 // an operand (computed as an offset from the jmp instruction).
1738 // FIXME: Find another less hacky way do force the relative jump.
1739 OutStreamer->emitBytes("\xeb\x09");
1740 emitX86Nops(*OutStreamer, 9, Subtarget);
1741 OutStreamer->emitLabel(Target);
1742 recordSled(CurSled, MI, SledKind::TAIL_CALL, 2);
1744 unsigned OpCode = MI.getOperand(0).getImm();
1745 OpCode = convertTailJumpOpcode(OpCode);
1746 MCInst TC;
1747 TC.setOpcode(OpCode);
1749 // Before emitting the instruction, add a comment to indicate that this is
1750 // indeed a tail call.
1751 OutStreamer->AddComment("TAILCALL");
1752 for (auto &MO : drop_begin(MI.operands()))
1753 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1754 TC.addOperand(MaybeOperand.getValue());
1755 OutStreamer->emitInstruction(TC, getSubtargetInfo());
1758 // Returns instruction preceding MBBI in MachineFunction.
1759 // If MBBI is the first instruction of the first basic block, returns null.
1760 static MachineBasicBlock::const_iterator
1761 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1762 const MachineBasicBlock *MBB = MBBI->getParent();
1763 while (MBBI == MBB->begin()) {
1764 if (MBB == &MBB->getParent()->front())
1765 return MachineBasicBlock::const_iterator();
1766 MBB = MBB->getPrevNode();
1767 MBBI = MBB->end();
1769 --MBBI;
1770 return MBBI;
1773 static const Constant *getConstantFromPool(const MachineInstr &MI,
1774 const MachineOperand &Op) {
1775 if (!Op.isCPI() || Op.getOffset() != 0)
1776 return nullptr;
1778 ArrayRef<MachineConstantPoolEntry> Constants =
1779 MI.getParent()->getParent()->getConstantPool()->getConstants();
1780 const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
1782 // Bail if this is a machine constant pool entry, we won't be able to dig out
1783 // anything useful.
1784 if (ConstantEntry.isMachineConstantPoolEntry())
1785 return nullptr;
1787 return ConstantEntry.Val.ConstVal;
1790 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1791 unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1792 std::string Comment;
1794 // Compute the name for a register. This is really goofy because we have
1795 // multiple instruction printers that could (in theory) use different
1796 // names. Fortunately most people use the ATT style (outside of Windows)
1797 // and they actually agree on register naming here. Ultimately, this is
1798 // a comment, and so its OK if it isn't perfect.
1799 auto GetRegisterName = [](unsigned RegNum) -> StringRef {
1800 return X86ATTInstPrinter::getRegisterName(RegNum);
1803 const MachineOperand &DstOp = MI->getOperand(0);
1804 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1805 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1807 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1808 StringRef Src1Name =
1809 SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1810 StringRef Src2Name =
1811 SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1813 // One source operand, fix the mask to print all elements in one span.
1814 SmallVector<int, 8> ShuffleMask(Mask.begin(), Mask.end());
1815 if (Src1Name == Src2Name)
1816 for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1817 if (ShuffleMask[i] >= e)
1818 ShuffleMask[i] -= e;
1820 raw_string_ostream CS(Comment);
1821 CS << DstName;
1823 // Handle AVX512 MASK/MASXZ write mask comments.
1824 // MASK: zmmX {%kY}
1825 // MASKZ: zmmX {%kY} {z}
1826 if (SrcOp1Idx > 1) {
1827 assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1829 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1830 if (WriteMaskOp.isReg()) {
1831 CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1833 if (SrcOp1Idx == 2) {
1834 CS << " {z}";
1839 CS << " = ";
1841 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1842 if (i != 0)
1843 CS << ",";
1844 if (ShuffleMask[i] == SM_SentinelZero) {
1845 CS << "zero";
1846 continue;
1849 // Otherwise, it must come from src1 or src2. Print the span of elements
1850 // that comes from this src.
1851 bool isSrc1 = ShuffleMask[i] < (int)e;
1852 CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1854 bool IsFirst = true;
1855 while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1856 (ShuffleMask[i] < (int)e) == isSrc1) {
1857 if (!IsFirst)
1858 CS << ',';
1859 else
1860 IsFirst = false;
1861 if (ShuffleMask[i] == SM_SentinelUndef)
1862 CS << "u";
1863 else
1864 CS << ShuffleMask[i] % (int)e;
1865 ++i;
1867 CS << ']';
1868 --i; // For loop increments element #.
1870 CS.flush();
1872 return Comment;
1875 static void printConstant(const APInt &Val, raw_ostream &CS) {
1876 if (Val.getBitWidth() <= 64) {
1877 CS << Val.getZExtValue();
1878 } else {
1879 // print multi-word constant as (w0,w1)
1880 CS << "(";
1881 for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1882 if (i > 0)
1883 CS << ",";
1884 CS << Val.getRawData()[i];
1886 CS << ")";
1890 static void printConstant(const APFloat &Flt, raw_ostream &CS) {
1891 SmallString<32> Str;
1892 // Force scientific notation to distinquish from integers.
1893 Flt.toString(Str, 0, 0);
1894 CS << Str;
1897 static void printConstant(const Constant *COp, raw_ostream &CS) {
1898 if (isa<UndefValue>(COp)) {
1899 CS << "u";
1900 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1901 printConstant(CI->getValue(), CS);
1902 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1903 printConstant(CF->getValueAPF(), CS);
1904 } else {
1905 CS << "?";
1909 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1910 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1911 assert(getSubtarget().isOSWindows() && "SEH_ instruction Windows only");
1913 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1914 if (EmitFPOData) {
1915 X86TargetStreamer *XTS =
1916 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1917 switch (MI->getOpcode()) {
1918 case X86::SEH_PushReg:
1919 XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1920 break;
1921 case X86::SEH_StackAlloc:
1922 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1923 break;
1924 case X86::SEH_StackAlign:
1925 XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1926 break;
1927 case X86::SEH_SetFrame:
1928 assert(MI->getOperand(1).getImm() == 0 &&
1929 ".cv_fpo_setframe takes no offset");
1930 XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1931 break;
1932 case X86::SEH_EndPrologue:
1933 XTS->emitFPOEndPrologue();
1934 break;
1935 case X86::SEH_SaveReg:
1936 case X86::SEH_SaveXMM:
1937 case X86::SEH_PushFrame:
1938 llvm_unreachable("SEH_ directive incompatible with FPO");
1939 break;
1940 default:
1941 llvm_unreachable("expected SEH_ instruction");
1943 return;
1946 // Otherwise, use the .seh_ directives for all other Windows platforms.
1947 switch (MI->getOpcode()) {
1948 case X86::SEH_PushReg:
1949 OutStreamer->EmitWinCFIPushReg(MI->getOperand(0).getImm());
1950 break;
1952 case X86::SEH_SaveReg:
1953 OutStreamer->EmitWinCFISaveReg(MI->getOperand(0).getImm(),
1954 MI->getOperand(1).getImm());
1955 break;
1957 case X86::SEH_SaveXMM:
1958 OutStreamer->EmitWinCFISaveXMM(MI->getOperand(0).getImm(),
1959 MI->getOperand(1).getImm());
1960 break;
1962 case X86::SEH_StackAlloc:
1963 OutStreamer->EmitWinCFIAllocStack(MI->getOperand(0).getImm());
1964 break;
1966 case X86::SEH_SetFrame:
1967 OutStreamer->EmitWinCFISetFrame(MI->getOperand(0).getImm(),
1968 MI->getOperand(1).getImm());
1969 break;
1971 case X86::SEH_PushFrame:
1972 OutStreamer->EmitWinCFIPushFrame(MI->getOperand(0).getImm());
1973 break;
1975 case X86::SEH_EndPrologue:
1976 OutStreamer->EmitWinCFIEndProlog();
1977 break;
1979 default:
1980 llvm_unreachable("expected SEH_ instruction");
1984 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1985 if (Info.RegClass == X86::VR128RegClassID ||
1986 Info.RegClass == X86::VR128XRegClassID)
1987 return 128;
1988 if (Info.RegClass == X86::VR256RegClassID ||
1989 Info.RegClass == X86::VR256XRegClassID)
1990 return 256;
1991 if (Info.RegClass == X86::VR512RegClassID)
1992 return 512;
1993 llvm_unreachable("Unknown register class!");
1996 static void addConstantComments(const MachineInstr *MI,
1997 MCStreamer &OutStreamer) {
1998 switch (MI->getOpcode()) {
1999 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
2000 // a constant shuffle mask. We won't be able to do this at the MC layer
2001 // because the mask isn't an immediate.
2002 case X86::PSHUFBrm:
2003 case X86::VPSHUFBrm:
2004 case X86::VPSHUFBYrm:
2005 case X86::VPSHUFBZ128rm:
2006 case X86::VPSHUFBZ128rmk:
2007 case X86::VPSHUFBZ128rmkz:
2008 case X86::VPSHUFBZ256rm:
2009 case X86::VPSHUFBZ256rmk:
2010 case X86::VPSHUFBZ256rmkz:
2011 case X86::VPSHUFBZrm:
2012 case X86::VPSHUFBZrmk:
2013 case X86::VPSHUFBZrmkz: {
2014 unsigned SrcIdx = 1;
2015 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
2016 // Skip mask operand.
2017 ++SrcIdx;
2018 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
2019 // Skip passthru operand.
2020 ++SrcIdx;
2023 unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp;
2025 assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) &&
2026 "Unexpected number of operands!");
2028 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2029 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2030 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2031 SmallVector<int, 64> Mask;
2032 DecodePSHUFBMask(C, Width, Mask);
2033 if (!Mask.empty())
2034 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2036 break;
2039 case X86::VPERMILPSrm:
2040 case X86::VPERMILPSYrm:
2041 case X86::VPERMILPSZ128rm:
2042 case X86::VPERMILPSZ128rmk:
2043 case X86::VPERMILPSZ128rmkz:
2044 case X86::VPERMILPSZ256rm:
2045 case X86::VPERMILPSZ256rmk:
2046 case X86::VPERMILPSZ256rmkz:
2047 case X86::VPERMILPSZrm:
2048 case X86::VPERMILPSZrmk:
2049 case X86::VPERMILPSZrmkz:
2050 case X86::VPERMILPDrm:
2051 case X86::VPERMILPDYrm:
2052 case X86::VPERMILPDZ128rm:
2053 case X86::VPERMILPDZ128rmk:
2054 case X86::VPERMILPDZ128rmkz:
2055 case X86::VPERMILPDZ256rm:
2056 case X86::VPERMILPDZ256rmk:
2057 case X86::VPERMILPDZ256rmkz:
2058 case X86::VPERMILPDZrm:
2059 case X86::VPERMILPDZrmk:
2060 case X86::VPERMILPDZrmkz: {
2061 unsigned ElSize;
2062 switch (MI->getOpcode()) {
2063 default: llvm_unreachable("Invalid opcode");
2064 case X86::VPERMILPSrm:
2065 case X86::VPERMILPSYrm:
2066 case X86::VPERMILPSZ128rm:
2067 case X86::VPERMILPSZ256rm:
2068 case X86::VPERMILPSZrm:
2069 case X86::VPERMILPSZ128rmkz:
2070 case X86::VPERMILPSZ256rmkz:
2071 case X86::VPERMILPSZrmkz:
2072 case X86::VPERMILPSZ128rmk:
2073 case X86::VPERMILPSZ256rmk:
2074 case X86::VPERMILPSZrmk:
2075 ElSize = 32;
2076 break;
2077 case X86::VPERMILPDrm:
2078 case X86::VPERMILPDYrm:
2079 case X86::VPERMILPDZ128rm:
2080 case X86::VPERMILPDZ256rm:
2081 case X86::VPERMILPDZrm:
2082 case X86::VPERMILPDZ128rmkz:
2083 case X86::VPERMILPDZ256rmkz:
2084 case X86::VPERMILPDZrmkz:
2085 case X86::VPERMILPDZ128rmk:
2086 case X86::VPERMILPDZ256rmk:
2087 case X86::VPERMILPDZrmk:
2088 ElSize = 64;
2089 break;
2092 unsigned SrcIdx = 1;
2093 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
2094 // Skip mask operand.
2095 ++SrcIdx;
2096 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
2097 // Skip passthru operand.
2098 ++SrcIdx;
2101 unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp;
2103 assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) &&
2104 "Unexpected number of operands!");
2106 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
2107 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2108 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2109 SmallVector<int, 16> Mask;
2110 DecodeVPERMILPMask(C, ElSize, Width, Mask);
2111 if (!Mask.empty())
2112 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
2114 break;
2117 case X86::VPERMIL2PDrm:
2118 case X86::VPERMIL2PSrm:
2119 case X86::VPERMIL2PDYrm:
2120 case X86::VPERMIL2PSYrm: {
2121 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) &&
2122 "Unexpected number of operands!");
2124 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
2125 if (!CtrlOp.isImm())
2126 break;
2128 unsigned ElSize;
2129 switch (MI->getOpcode()) {
2130 default: llvm_unreachable("Invalid opcode");
2131 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
2132 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
2135 const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp);
2136 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2137 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2138 SmallVector<int, 16> Mask;
2139 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
2140 if (!Mask.empty())
2141 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
2143 break;
2146 case X86::VPPERMrrm: {
2147 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands) &&
2148 "Unexpected number of operands!");
2150 const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp);
2151 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
2152 unsigned Width = getRegisterWidth(MI->getDesc().OpInfo[0]);
2153 SmallVector<int, 16> Mask;
2154 DecodeVPPERMMask(C, Width, Mask);
2155 if (!Mask.empty())
2156 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
2158 break;
2161 case X86::MMX_MOVQ64rm: {
2162 assert(MI->getNumOperands() == (1 + X86::AddrNumOperands) &&
2163 "Unexpected number of operands!");
2164 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
2165 std::string Comment;
2166 raw_string_ostream CS(Comment);
2167 const MachineOperand &DstOp = MI->getOperand(0);
2168 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2169 if (auto *CF = dyn_cast<ConstantFP>(C)) {
2170 CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false);
2171 OutStreamer.AddComment(CS.str());
2174 break;
2177 #define MOV_CASE(Prefix, Suffix) \
2178 case X86::Prefix##MOVAPD##Suffix##rm: \
2179 case X86::Prefix##MOVAPS##Suffix##rm: \
2180 case X86::Prefix##MOVUPD##Suffix##rm: \
2181 case X86::Prefix##MOVUPS##Suffix##rm: \
2182 case X86::Prefix##MOVDQA##Suffix##rm: \
2183 case X86::Prefix##MOVDQU##Suffix##rm:
2185 #define MOV_AVX512_CASE(Suffix) \
2186 case X86::VMOVDQA64##Suffix##rm: \
2187 case X86::VMOVDQA32##Suffix##rm: \
2188 case X86::VMOVDQU64##Suffix##rm: \
2189 case X86::VMOVDQU32##Suffix##rm: \
2190 case X86::VMOVDQU16##Suffix##rm: \
2191 case X86::VMOVDQU8##Suffix##rm: \
2192 case X86::VMOVAPS##Suffix##rm: \
2193 case X86::VMOVAPD##Suffix##rm: \
2194 case X86::VMOVUPS##Suffix##rm: \
2195 case X86::VMOVUPD##Suffix##rm:
2197 #define CASE_ALL_MOV_RM() \
2198 MOV_CASE(, ) /* SSE */ \
2199 MOV_CASE(V, ) /* AVX-128 */ \
2200 MOV_CASE(V, Y) /* AVX-256 */ \
2201 MOV_AVX512_CASE(Z) \
2202 MOV_AVX512_CASE(Z256) \
2203 MOV_AVX512_CASE(Z128)
2205 // For loads from a constant pool to a vector register, print the constant
2206 // loaded.
2207 CASE_ALL_MOV_RM()
2208 case X86::VBROADCASTF128:
2209 case X86::VBROADCASTI128:
2210 case X86::VBROADCASTF32X4Z256rm:
2211 case X86::VBROADCASTF32X4rm:
2212 case X86::VBROADCASTF32X8rm:
2213 case X86::VBROADCASTF64X2Z128rm:
2214 case X86::VBROADCASTF64X2rm:
2215 case X86::VBROADCASTF64X4rm:
2216 case X86::VBROADCASTI32X4Z256rm:
2217 case X86::VBROADCASTI32X4rm:
2218 case X86::VBROADCASTI32X8rm:
2219 case X86::VBROADCASTI64X2Z128rm:
2220 case X86::VBROADCASTI64X2rm:
2221 case X86::VBROADCASTI64X4rm:
2222 assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) &&
2223 "Unexpected number of operands!");
2224 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
2225 int NumLanes = 1;
2226 // Override NumLanes for the broadcast instructions.
2227 switch (MI->getOpcode()) {
2228 case X86::VBROADCASTF128: NumLanes = 2; break;
2229 case X86::VBROADCASTI128: NumLanes = 2; break;
2230 case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
2231 case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
2232 case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
2233 case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
2234 case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
2235 case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
2236 case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
2237 case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
2238 case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
2239 case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
2240 case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
2241 case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
2244 std::string Comment;
2245 raw_string_ostream CS(Comment);
2246 const MachineOperand &DstOp = MI->getOperand(0);
2247 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2248 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
2249 CS << "[";
2250 for (int l = 0; l != NumLanes; ++l) {
2251 for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
2252 ++i) {
2253 if (i != 0 || l != 0)
2254 CS << ",";
2255 if (CDS->getElementType()->isIntegerTy())
2256 printConstant(CDS->getElementAsAPInt(i), CS);
2257 else if (CDS->getElementType()->isHalfTy() ||
2258 CDS->getElementType()->isFloatTy() ||
2259 CDS->getElementType()->isDoubleTy())
2260 printConstant(CDS->getElementAsAPFloat(i), CS);
2261 else
2262 CS << "?";
2265 CS << "]";
2266 OutStreamer.AddComment(CS.str());
2267 } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
2268 CS << "<";
2269 for (int l = 0; l != NumLanes; ++l) {
2270 for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
2271 ++i) {
2272 if (i != 0 || l != 0)
2273 CS << ",";
2274 printConstant(CV->getOperand(i), CS);
2277 CS << ">";
2278 OutStreamer.AddComment(CS.str());
2281 break;
2283 case X86::MOVDDUPrm:
2284 case X86::VMOVDDUPrm:
2285 case X86::VMOVDDUPZ128rm:
2286 case X86::VBROADCASTSSrm:
2287 case X86::VBROADCASTSSYrm:
2288 case X86::VBROADCASTSSZ128rm:
2289 case X86::VBROADCASTSSZ256rm:
2290 case X86::VBROADCASTSSZrm:
2291 case X86::VBROADCASTSDYrm:
2292 case X86::VBROADCASTSDZ256rm:
2293 case X86::VBROADCASTSDZrm:
2294 case X86::VPBROADCASTBrm:
2295 case X86::VPBROADCASTBYrm:
2296 case X86::VPBROADCASTBZ128rm:
2297 case X86::VPBROADCASTBZ256rm:
2298 case X86::VPBROADCASTBZrm:
2299 case X86::VPBROADCASTDrm:
2300 case X86::VPBROADCASTDYrm:
2301 case X86::VPBROADCASTDZ128rm:
2302 case X86::VPBROADCASTDZ256rm:
2303 case X86::VPBROADCASTDZrm:
2304 case X86::VPBROADCASTQrm:
2305 case X86::VPBROADCASTQYrm:
2306 case X86::VPBROADCASTQZ128rm:
2307 case X86::VPBROADCASTQZ256rm:
2308 case X86::VPBROADCASTQZrm:
2309 case X86::VPBROADCASTWrm:
2310 case X86::VPBROADCASTWYrm:
2311 case X86::VPBROADCASTWZ128rm:
2312 case X86::VPBROADCASTWZ256rm:
2313 case X86::VPBROADCASTWZrm:
2314 assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) &&
2315 "Unexpected number of operands!");
2316 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
2317 int NumElts;
2318 switch (MI->getOpcode()) {
2319 default: llvm_unreachable("Invalid opcode");
2320 case X86::MOVDDUPrm: NumElts = 2; break;
2321 case X86::VMOVDDUPrm: NumElts = 2; break;
2322 case X86::VMOVDDUPZ128rm: NumElts = 2; break;
2323 case X86::VBROADCASTSSrm: NumElts = 4; break;
2324 case X86::VBROADCASTSSYrm: NumElts = 8; break;
2325 case X86::VBROADCASTSSZ128rm: NumElts = 4; break;
2326 case X86::VBROADCASTSSZ256rm: NumElts = 8; break;
2327 case X86::VBROADCASTSSZrm: NumElts = 16; break;
2328 case X86::VBROADCASTSDYrm: NumElts = 4; break;
2329 case X86::VBROADCASTSDZ256rm: NumElts = 4; break;
2330 case X86::VBROADCASTSDZrm: NumElts = 8; break;
2331 case X86::VPBROADCASTBrm: NumElts = 16; break;
2332 case X86::VPBROADCASTBYrm: NumElts = 32; break;
2333 case X86::VPBROADCASTBZ128rm: NumElts = 16; break;
2334 case X86::VPBROADCASTBZ256rm: NumElts = 32; break;
2335 case X86::VPBROADCASTBZrm: NumElts = 64; break;
2336 case X86::VPBROADCASTDrm: NumElts = 4; break;
2337 case X86::VPBROADCASTDYrm: NumElts = 8; break;
2338 case X86::VPBROADCASTDZ128rm: NumElts = 4; break;
2339 case X86::VPBROADCASTDZ256rm: NumElts = 8; break;
2340 case X86::VPBROADCASTDZrm: NumElts = 16; break;
2341 case X86::VPBROADCASTQrm: NumElts = 2; break;
2342 case X86::VPBROADCASTQYrm: NumElts = 4; break;
2343 case X86::VPBROADCASTQZ128rm: NumElts = 2; break;
2344 case X86::VPBROADCASTQZ256rm: NumElts = 4; break;
2345 case X86::VPBROADCASTQZrm: NumElts = 8; break;
2346 case X86::VPBROADCASTWrm: NumElts = 8; break;
2347 case X86::VPBROADCASTWYrm: NumElts = 16; break;
2348 case X86::VPBROADCASTWZ128rm: NumElts = 8; break;
2349 case X86::VPBROADCASTWZ256rm: NumElts = 16; break;
2350 case X86::VPBROADCASTWZrm: NumElts = 32; break;
2353 std::string Comment;
2354 raw_string_ostream CS(Comment);
2355 const MachineOperand &DstOp = MI->getOperand(0);
2356 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2357 CS << "[";
2358 for (int i = 0; i != NumElts; ++i) {
2359 if (i != 0)
2360 CS << ",";
2361 printConstant(C, CS);
2363 CS << "]";
2364 OutStreamer.AddComment(CS.str());
2369 void X86AsmPrinter::emitInstruction(const MachineInstr *MI) {
2370 X86MCInstLower MCInstLowering(*MF, *this);
2371 const X86RegisterInfo *RI =
2372 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
2374 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
2375 // are compressed from EVEX encoding to VEX encoding.
2376 if (TM.Options.MCOptions.ShowMCEncoding) {
2377 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
2378 OutStreamer->AddComment("EVEX TO VEX Compression ", false);
2381 // Add comments for values loaded from constant pool.
2382 if (OutStreamer->isVerboseAsm())
2383 addConstantComments(MI, *OutStreamer);
2385 switch (MI->getOpcode()) {
2386 case TargetOpcode::DBG_VALUE:
2387 llvm_unreachable("Should be handled target independently");
2389 // Emit nothing here but a comment if we can.
2390 case X86::Int_MemBarrier:
2391 OutStreamer->emitRawComment("MEMBARRIER");
2392 return;
2394 case X86::EH_RETURN:
2395 case X86::EH_RETURN64: {
2396 // Lower these as normal, but add some comments.
2397 Register Reg = MI->getOperand(0).getReg();
2398 OutStreamer->AddComment(StringRef("eh_return, addr: %") +
2399 X86ATTInstPrinter::getRegisterName(Reg));
2400 break;
2402 case X86::CLEANUPRET: {
2403 // Lower these as normal, but add some comments.
2404 OutStreamer->AddComment("CLEANUPRET");
2405 break;
2408 case X86::CATCHRET: {
2409 // Lower these as normal, but add some comments.
2410 OutStreamer->AddComment("CATCHRET");
2411 break;
2414 case X86::ENDBR32:
2415 case X86::ENDBR64: {
2416 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2417 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2418 // non-empty. If MI is the initial ENDBR, place the
2419 // __patchable_function_entries label after ENDBR.
2420 if (CurrentPatchableFunctionEntrySym &&
2421 CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
2422 MI == &MF->front().front()) {
2423 MCInst Inst;
2424 MCInstLowering.Lower(MI, Inst);
2425 EmitAndCountInstruction(Inst);
2426 CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
2427 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
2428 return;
2430 break;
2433 case X86::TAILJMPr:
2434 case X86::TAILJMPm:
2435 case X86::TAILJMPd:
2436 case X86::TAILJMPd_CC:
2437 case X86::TAILJMPr64:
2438 case X86::TAILJMPm64:
2439 case X86::TAILJMPd64:
2440 case X86::TAILJMPd64_CC:
2441 case X86::TAILJMPr64_REX:
2442 case X86::TAILJMPm64_REX:
2443 // Lower these as normal, but add some comments.
2444 OutStreamer->AddComment("TAILCALL");
2445 break;
2447 case X86::TLS_addr32:
2448 case X86::TLS_addr64:
2449 case X86::TLS_addrX32:
2450 case X86::TLS_base_addr32:
2451 case X86::TLS_base_addr64:
2452 case X86::TLS_base_addrX32:
2453 return LowerTlsAddr(MCInstLowering, *MI);
2455 case X86::MOVPC32r: {
2456 // This is a pseudo op for a two instruction sequence with a label, which
2457 // looks like:
2458 // call "L1$pb"
2459 // "L1$pb":
2460 // popl %esi
2462 // Emit the call.
2463 MCSymbol *PICBase = MF->getPICBaseSymbol();
2464 // FIXME: We would like an efficient form for this, so we don't have to do a
2465 // lot of extra uniquing.
2466 EmitAndCountInstruction(
2467 MCInstBuilder(X86::CALLpcrel32)
2468 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
2470 const X86FrameLowering *FrameLowering =
2471 MF->getSubtarget<X86Subtarget>().getFrameLowering();
2472 bool hasFP = FrameLowering->hasFP(*MF);
2474 // TODO: This is needed only if we require precise CFA.
2475 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
2476 !OutStreamer->getDwarfFrameInfos().back().End;
2478 int stackGrowth = -RI->getSlotSize();
2480 if (HasActiveDwarfFrame && !hasFP) {
2481 OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
2484 // Emit the label.
2485 OutStreamer->emitLabel(PICBase);
2487 // popl $reg
2488 EmitAndCountInstruction(
2489 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
2491 if (HasActiveDwarfFrame && !hasFP) {
2492 OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
2494 return;
2497 case X86::ADD32ri: {
2498 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2499 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
2500 break;
2502 // Okay, we have something like:
2503 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2505 // For this, we want to print something like:
2506 // MYGLOBAL + (. - PICBASE)
2507 // However, we can't generate a ".", so just emit a new label here and refer
2508 // to it.
2509 MCSymbol *DotSym = OutContext.createTempSymbol();
2510 OutStreamer->emitLabel(DotSym);
2512 // Now that we have emitted the label, lower the complex operand expression.
2513 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2515 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2516 const MCExpr *PICBase =
2517 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
2518 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2520 DotExpr = MCBinaryExpr::createAdd(
2521 MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
2523 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2524 .addReg(MI->getOperand(0).getReg())
2525 .addReg(MI->getOperand(1).getReg())
2526 .addExpr(DotExpr));
2527 return;
2529 case TargetOpcode::STATEPOINT:
2530 return LowerSTATEPOINT(*MI, MCInstLowering);
2532 case TargetOpcode::FAULTING_OP:
2533 return LowerFAULTING_OP(*MI, MCInstLowering);
2535 case TargetOpcode::FENTRY_CALL:
2536 return LowerFENTRY_CALL(*MI, MCInstLowering);
2538 case TargetOpcode::PATCHABLE_OP:
2539 return LowerPATCHABLE_OP(*MI, MCInstLowering);
2541 case TargetOpcode::STACKMAP:
2542 return LowerSTACKMAP(*MI);
2544 case TargetOpcode::PATCHPOINT:
2545 return LowerPATCHPOINT(*MI, MCInstLowering);
2547 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2548 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2550 case TargetOpcode::PATCHABLE_RET:
2551 return LowerPATCHABLE_RET(*MI, MCInstLowering);
2553 case TargetOpcode::PATCHABLE_TAIL_CALL:
2554 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2556 case TargetOpcode::PATCHABLE_EVENT_CALL:
2557 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2559 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2560 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2562 case X86::MORESTACK_RET:
2563 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2564 return;
2566 case X86::MORESTACK_RET_RESTORE_R10:
2567 // Return, then restore R10.
2568 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2569 EmitAndCountInstruction(
2570 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2571 return;
2573 case X86::SEH_PushReg:
2574 case X86::SEH_SaveReg:
2575 case X86::SEH_SaveXMM:
2576 case X86::SEH_StackAlloc:
2577 case X86::SEH_StackAlign:
2578 case X86::SEH_SetFrame:
2579 case X86::SEH_PushFrame:
2580 case X86::SEH_EndPrologue:
2581 EmitSEHInstruction(MI);
2582 return;
2584 case X86::SEH_Epilogue: {
2585 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2586 MachineBasicBlock::const_iterator MBBI(MI);
2587 // Check if preceded by a call and emit nop if so.
2588 for (MBBI = PrevCrossBBInst(MBBI);
2589 MBBI != MachineBasicBlock::const_iterator();
2590 MBBI = PrevCrossBBInst(MBBI)) {
2591 // Conservatively assume that pseudo instructions don't emit code and keep
2592 // looking for a call. We may emit an unnecessary nop in some cases.
2593 if (!MBBI->isPseudo()) {
2594 if (MBBI->isCall())
2595 EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2596 break;
2599 return;
2601 case X86::UBSAN_UD1:
2602 EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm)
2603 .addReg(X86::EAX)
2604 .addReg(X86::EAX)
2605 .addImm(1)
2606 .addReg(X86::NoRegister)
2607 .addImm(MI->getOperand(0).getImm())
2608 .addReg(X86::NoRegister));
2609 return;
2612 MCInst TmpInst;
2613 MCInstLowering.Lower(MI, TmpInst);
2615 // Stackmap shadows cannot include branch targets, so we can count the bytes
2616 // in a call towards the shadow, but must ensure that the no thread returns
2617 // in to the stackmap shadow. The only way to achieve this is if the call
2618 // is at the end of the shadow.
2619 if (MI->isCall()) {
2620 // Count then size of the call towards the shadow
2621 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2622 // Then flush the shadow so that we fill with nops before the call, not
2623 // after it.
2624 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2625 // Then emit the call
2626 OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
2627 return;
2630 EmitAndCountInstruction(TmpInst);