1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the XCoreTargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "XCoreISelLowering.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsXCore.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
42 #define DEBUG_TYPE "xcore-lower"
44 const char *XCoreTargetLowering::
45 getTargetNodeName(unsigned Opcode
) const
47 switch ((XCoreISD::NodeType
)Opcode
)
49 case XCoreISD::FIRST_NUMBER
: break;
50 case XCoreISD::BL
: return "XCoreISD::BL";
51 case XCoreISD::PCRelativeWrapper
: return "XCoreISD::PCRelativeWrapper";
52 case XCoreISD::DPRelativeWrapper
: return "XCoreISD::DPRelativeWrapper";
53 case XCoreISD::CPRelativeWrapper
: return "XCoreISD::CPRelativeWrapper";
54 case XCoreISD::LDWSP
: return "XCoreISD::LDWSP";
55 case XCoreISD::STWSP
: return "XCoreISD::STWSP";
56 case XCoreISD::RETSP
: return "XCoreISD::RETSP";
57 case XCoreISD::LADD
: return "XCoreISD::LADD";
58 case XCoreISD::LSUB
: return "XCoreISD::LSUB";
59 case XCoreISD::LMUL
: return "XCoreISD::LMUL";
60 case XCoreISD::MACCU
: return "XCoreISD::MACCU";
61 case XCoreISD::MACCS
: return "XCoreISD::MACCS";
62 case XCoreISD::CRC8
: return "XCoreISD::CRC8";
63 case XCoreISD::BR_JT
: return "XCoreISD::BR_JT";
64 case XCoreISD::BR_JT32
: return "XCoreISD::BR_JT32";
65 case XCoreISD::FRAME_TO_ARGS_OFFSET
: return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66 case XCoreISD::EH_RETURN
: return "XCoreISD::EH_RETURN";
67 case XCoreISD::MEMBARRIER
: return "XCoreISD::MEMBARRIER";
72 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine
&TM
,
73 const XCoreSubtarget
&Subtarget
)
74 : TargetLowering(TM
), TM(TM
), Subtarget(Subtarget
) {
76 // Set up the register classes.
77 addRegisterClass(MVT::i32
, &XCore::GRRegsRegClass
);
79 // Compute derived properties from the register classes
80 computeRegisterProperties(Subtarget
.getRegisterInfo());
82 setStackPointerRegisterToSaveRestore(XCore::SP
);
84 setSchedulingPreference(Sched::Source
);
86 // Use i32 for setcc operations results (slt, sgt, ...).
87 setBooleanContents(ZeroOrOneBooleanContent
);
88 setBooleanVectorContents(ZeroOrOneBooleanContent
); // FIXME: Is this correct?
90 // XCore does not have the NodeTypes below.
91 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
92 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
95 setOperationAction(ISD::ADD
, MVT::i64
, Custom
);
96 setOperationAction(ISD::SUB
, MVT::i64
, Custom
);
97 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Custom
);
98 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Custom
);
99 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
100 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
101 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
102 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
103 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
106 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
107 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
108 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
109 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
111 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
114 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
116 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
117 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
119 // Conversion of i64 -> double produces constantpool nodes
120 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
123 for (MVT VT
: MVT::integer_valuetypes()) {
124 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
125 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
126 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
128 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Expand
);
129 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Expand
);
132 // Custom expand misaligned loads / stores.
133 setOperationAction(ISD::LOAD
, MVT::i32
, Custom
);
134 setOperationAction(ISD::STORE
, MVT::i32
, Custom
);
137 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
138 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
139 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
140 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
143 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
144 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
145 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
147 // Exception handling
148 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
149 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET
, MVT::i32
, Custom
);
152 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
153 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
154 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
155 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
156 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
158 // TRAMPOLINE is custom lowered.
159 setOperationAction(ISD::INIT_TRAMPOLINE
, MVT::Other
, Custom
);
160 setOperationAction(ISD::ADJUST_TRAMPOLINE
, MVT::Other
, Custom
);
162 // We want to custom lower some of our intrinsics.
163 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
165 MaxStoresPerMemset
= MaxStoresPerMemsetOptSize
= 4;
166 MaxStoresPerMemmove
= MaxStoresPerMemmoveOptSize
167 = MaxStoresPerMemcpy
= MaxStoresPerMemcpyOptSize
= 2;
169 // We have target-specific dag combine patterns for the following nodes:
170 setTargetDAGCombine(ISD::STORE
);
171 setTargetDAGCombine(ISD::ADD
);
172 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
173 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
175 setMinFunctionAlignment(Align(2));
176 setPrefFunctionAlignment(Align(4));
179 bool XCoreTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
180 if (Val
.getOpcode() != ISD::LOAD
)
183 EVT VT1
= Val
.getValueType();
184 if (!VT1
.isSimple() || !VT1
.isInteger() ||
185 !VT2
.isSimple() || !VT2
.isInteger())
188 switch (VT1
.getSimpleVT().SimpleTy
) {
197 SDValue
XCoreTargetLowering::
198 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
199 switch (Op
.getOpcode())
201 case ISD::EH_RETURN
: return LowerEH_RETURN(Op
, DAG
);
202 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
203 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
204 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
205 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
206 case ISD::LOAD
: return LowerLOAD(Op
, DAG
);
207 case ISD::STORE
: return LowerSTORE(Op
, DAG
);
208 case ISD::VAARG
: return LowerVAARG(Op
, DAG
);
209 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
210 case ISD::SMUL_LOHI
: return LowerSMUL_LOHI(Op
, DAG
);
211 case ISD::UMUL_LOHI
: return LowerUMUL_LOHI(Op
, DAG
);
212 // FIXME: Remove these when LegalizeDAGTypes lands.
214 case ISD::SUB
: return ExpandADDSUB(Op
.getNode(), DAG
);
215 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
216 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
217 case ISD::FRAME_TO_ARGS_OFFSET
: return LowerFRAME_TO_ARGS_OFFSET(Op
, DAG
);
218 case ISD::INIT_TRAMPOLINE
: return LowerINIT_TRAMPOLINE(Op
, DAG
);
219 case ISD::ADJUST_TRAMPOLINE
: return LowerADJUST_TRAMPOLINE(Op
, DAG
);
220 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
221 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
);
222 case ISD::ATOMIC_LOAD
: return LowerATOMIC_LOAD(Op
, DAG
);
223 case ISD::ATOMIC_STORE
: return LowerATOMIC_STORE(Op
, DAG
);
225 llvm_unreachable("unimplemented operand");
229 /// ReplaceNodeResults - Replace the results of node with an illegal result
230 /// type with new values built out of custom code.
231 void XCoreTargetLowering::ReplaceNodeResults(SDNode
*N
,
232 SmallVectorImpl
<SDValue
>&Results
,
233 SelectionDAG
&DAG
) const {
234 switch (N
->getOpcode()) {
236 llvm_unreachable("Don't know how to custom expand this!");
239 Results
.push_back(ExpandADDSUB(N
, DAG
));
244 //===----------------------------------------------------------------------===//
245 // Misc Lower Operation implementation
246 //===----------------------------------------------------------------------===//
248 SDValue
XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA
,
249 const GlobalValue
*GV
,
250 SelectionDAG
&DAG
) const {
251 // FIXME there is no actual debug info here
254 if (GV
->getValueType()->isFunctionTy())
255 return DAG
.getNode(XCoreISD::PCRelativeWrapper
, dl
, MVT::i32
, GA
);
257 const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
258 if ((GV
->hasSection() && GV
->getSection().startswith(".cp.")) ||
259 (GVar
&& GVar
->isConstant() && GV
->hasLocalLinkage()))
260 return DAG
.getNode(XCoreISD::CPRelativeWrapper
, dl
, MVT::i32
, GA
);
262 return DAG
.getNode(XCoreISD::DPRelativeWrapper
, dl
, MVT::i32
, GA
);
265 static bool IsSmallObject(const GlobalValue
*GV
, const XCoreTargetLowering
&XTL
) {
266 if (XTL
.getTargetMachine().getCodeModel() == CodeModel::Small
)
269 Type
*ObjType
= GV
->getValueType();
270 if (!ObjType
->isSized())
273 auto &DL
= GV
->getParent()->getDataLayout();
274 unsigned ObjSize
= DL
.getTypeAllocSize(ObjType
);
275 return ObjSize
< CodeModelLargeSize
&& ObjSize
!= 0;
278 SDValue
XCoreTargetLowering::
279 LowerGlobalAddress(SDValue Op
, SelectionDAG
&DAG
) const
281 const GlobalAddressSDNode
*GN
= cast
<GlobalAddressSDNode
>(Op
);
282 const GlobalValue
*GV
= GN
->getGlobal();
284 int64_t Offset
= GN
->getOffset();
285 if (IsSmallObject(GV
, *this)) {
286 // We can only fold positive offsets that are a multiple of the word size.
287 int64_t FoldedOffset
= std::max(Offset
& ~3, (int64_t)0);
288 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, DL
, MVT::i32
, FoldedOffset
);
289 GA
= getGlobalAddressWrapper(GA
, GV
, DAG
);
290 // Handle the rest of the offset.
291 if (Offset
!= FoldedOffset
) {
292 SDValue Remaining
= DAG
.getConstant(Offset
- FoldedOffset
, DL
, MVT::i32
);
293 GA
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, GA
, Remaining
);
297 // Ideally we would not fold in offset with an index <= 11.
298 Type
*Ty
= Type::getInt8PtrTy(*DAG
.getContext());
299 Constant
*GA
= ConstantExpr::getBitCast(const_cast<GlobalValue
*>(GV
), Ty
);
300 Ty
= Type::getInt32Ty(*DAG
.getContext());
301 Constant
*Idx
= ConstantInt::get(Ty
, Offset
);
302 Constant
*GAI
= ConstantExpr::getGetElementPtr(
303 Type::getInt8Ty(*DAG
.getContext()), GA
, Idx
);
304 SDValue CP
= DAG
.getConstantPool(GAI
, MVT::i32
);
305 return DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
,
306 DAG
.getEntryNode(), CP
, MachinePointerInfo());
310 SDValue
XCoreTargetLowering::
311 LowerBlockAddress(SDValue Op
, SelectionDAG
&DAG
) const
314 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
315 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
316 SDValue Result
= DAG
.getTargetBlockAddress(BA
, PtrVT
);
318 return DAG
.getNode(XCoreISD::PCRelativeWrapper
, DL
, PtrVT
, Result
);
321 SDValue
XCoreTargetLowering::
322 LowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
324 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
325 // FIXME there isn't really debug info here
327 EVT PtrVT
= Op
.getValueType();
329 if (CP
->isMachineConstantPoolEntry()) {
330 Res
= DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
,
331 CP
->getAlign(), CP
->getOffset());
333 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
, CP
->getAlign(),
336 return DAG
.getNode(XCoreISD::CPRelativeWrapper
, dl
, MVT::i32
, Res
);
339 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
340 return MachineJumpTableInfo::EK_Inline
;
343 SDValue
XCoreTargetLowering::
344 LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const
346 SDValue Chain
= Op
.getOperand(0);
347 SDValue Table
= Op
.getOperand(1);
348 SDValue Index
= Op
.getOperand(2);
350 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
351 unsigned JTI
= JT
->getIndex();
352 MachineFunction
&MF
= DAG
.getMachineFunction();
353 const MachineJumpTableInfo
*MJTI
= MF
.getJumpTableInfo();
354 SDValue TargetJT
= DAG
.getTargetJumpTable(JT
->getIndex(), MVT::i32
);
356 unsigned NumEntries
= MJTI
->getJumpTables()[JTI
].MBBs
.size();
357 if (NumEntries
<= 32) {
358 return DAG
.getNode(XCoreISD::BR_JT
, dl
, MVT::Other
, Chain
, TargetJT
, Index
);
360 assert((NumEntries
>> 31) == 0);
361 SDValue ScaledIndex
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, Index
,
362 DAG
.getConstant(1, dl
, MVT::i32
));
363 return DAG
.getNode(XCoreISD::BR_JT32
, dl
, MVT::Other
, Chain
, TargetJT
,
367 SDValue
XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
368 const SDLoc
&DL
, SDValue Chain
, SDValue Base
, int64_t Offset
,
369 SelectionDAG
&DAG
) const {
370 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
371 if ((Offset
& 0x3) == 0) {
372 return DAG
.getLoad(PtrVT
, DL
, Chain
, Base
, MachinePointerInfo());
374 // Lower to pair of consecutive word aligned loads plus some bit shifting.
375 int32_t HighOffset
= alignTo(Offset
, 4);
376 int32_t LowOffset
= HighOffset
- 4;
377 SDValue LowAddr
, HighAddr
;
378 if (GlobalAddressSDNode
*GASD
=
379 dyn_cast
<GlobalAddressSDNode
>(Base
.getNode())) {
380 LowAddr
= DAG
.getGlobalAddress(GASD
->getGlobal(), DL
, Base
.getValueType(),
382 HighAddr
= DAG
.getGlobalAddress(GASD
->getGlobal(), DL
, Base
.getValueType(),
385 LowAddr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, Base
,
386 DAG
.getConstant(LowOffset
, DL
, MVT::i32
));
387 HighAddr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, Base
,
388 DAG
.getConstant(HighOffset
, DL
, MVT::i32
));
390 SDValue LowShift
= DAG
.getConstant((Offset
- LowOffset
) * 8, DL
, MVT::i32
);
391 SDValue HighShift
= DAG
.getConstant((HighOffset
- Offset
) * 8, DL
, MVT::i32
);
393 SDValue Low
= DAG
.getLoad(PtrVT
, DL
, Chain
, LowAddr
, MachinePointerInfo());
394 SDValue High
= DAG
.getLoad(PtrVT
, DL
, Chain
, HighAddr
, MachinePointerInfo());
395 SDValue LowShifted
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Low
, LowShift
);
396 SDValue HighShifted
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, High
, HighShift
);
397 SDValue Result
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, LowShifted
, HighShifted
);
398 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Low
.getValue(1),
400 SDValue Ops
[] = { Result
, Chain
};
401 return DAG
.getMergeValues(Ops
, DL
);
404 static bool isWordAligned(SDValue Value
, SelectionDAG
&DAG
)
406 KnownBits Known
= DAG
.computeKnownBits(Value
);
407 return Known
.countMinTrailingZeros() >= 2;
410 SDValue
XCoreTargetLowering::LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
411 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
412 LLVMContext
&Context
= *DAG
.getContext();
413 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
414 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
415 "Unexpected extension type");
416 assert(LD
->getMemoryVT() == MVT::i32
&& "Unexpected load EVT");
418 if (allowsMemoryAccessForAlignment(Context
, DAG
.getDataLayout(),
419 LD
->getMemoryVT(), *LD
->getMemOperand()))
422 SDValue Chain
= LD
->getChain();
423 SDValue BasePtr
= LD
->getBasePtr();
426 if (!LD
->isVolatile()) {
427 const GlobalValue
*GV
;
429 if (DAG
.isBaseWithConstantOffset(BasePtr
) &&
430 isWordAligned(BasePtr
->getOperand(0), DAG
)) {
431 SDValue NewBasePtr
= BasePtr
->getOperand(0);
432 Offset
= cast
<ConstantSDNode
>(BasePtr
->getOperand(1))->getSExtValue();
433 return lowerLoadWordFromAlignedBasePlusOffset(DL
, Chain
, NewBasePtr
,
436 if (TLI
.isGAPlusOffset(BasePtr
.getNode(), GV
, Offset
) &&
437 GV
->getPointerAlignment(DAG
.getDataLayout()) >= 4) {
438 SDValue NewBasePtr
= DAG
.getGlobalAddress(GV
, DL
,
439 BasePtr
->getValueType(0));
440 return lowerLoadWordFromAlignedBasePlusOffset(DL
, Chain
, NewBasePtr
,
445 if (LD
->getAlignment() == 2) {
446 SDValue Low
= DAG
.getExtLoad(ISD::ZEXTLOAD
, DL
, MVT::i32
, Chain
, BasePtr
,
447 LD
->getPointerInfo(), MVT::i16
, Align(2),
448 LD
->getMemOperand()->getFlags());
449 SDValue HighAddr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
450 DAG
.getConstant(2, DL
, MVT::i32
));
452 DAG
.getExtLoad(ISD::EXTLOAD
, DL
, MVT::i32
, Chain
, HighAddr
,
453 LD
->getPointerInfo().getWithOffset(2), MVT::i16
,
454 Align(2), LD
->getMemOperand()->getFlags());
455 SDValue HighShifted
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, High
,
456 DAG
.getConstant(16, DL
, MVT::i32
));
457 SDValue Result
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Low
, HighShifted
);
458 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Low
.getValue(1),
460 SDValue Ops
[] = { Result
, Chain
};
461 return DAG
.getMergeValues(Ops
, DL
);
464 // Lower to a call to __misaligned_load(BasePtr).
465 Type
*IntPtrTy
= DAG
.getDataLayout().getIntPtrType(Context
);
466 TargetLowering::ArgListTy Args
;
467 TargetLowering::ArgListEntry Entry
;
470 Entry
.Node
= BasePtr
;
471 Args
.push_back(Entry
);
473 TargetLowering::CallLoweringInfo
CLI(DAG
);
474 CLI
.setDebugLoc(DL
).setChain(Chain
).setLibCallee(
475 CallingConv::C
, IntPtrTy
,
476 DAG
.getExternalSymbol("__misaligned_load",
477 getPointerTy(DAG
.getDataLayout())),
480 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
481 SDValue Ops
[] = { CallResult
.first
, CallResult
.second
};
482 return DAG
.getMergeValues(Ops
, DL
);
485 SDValue
XCoreTargetLowering::LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
486 LLVMContext
&Context
= *DAG
.getContext();
487 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
);
488 assert(!ST
->isTruncatingStore() && "Unexpected store type");
489 assert(ST
->getMemoryVT() == MVT::i32
&& "Unexpected store EVT");
491 if (allowsMemoryAccessForAlignment(Context
, DAG
.getDataLayout(),
492 ST
->getMemoryVT(), *ST
->getMemOperand()))
495 SDValue Chain
= ST
->getChain();
496 SDValue BasePtr
= ST
->getBasePtr();
497 SDValue Value
= ST
->getValue();
500 if (ST
->getAlignment() == 2) {
502 SDValue High
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Value
,
503 DAG
.getConstant(16, dl
, MVT::i32
));
505 DAG
.getTruncStore(Chain
, dl
, Low
, BasePtr
, ST
->getPointerInfo(),
506 MVT::i16
, Align(2), ST
->getMemOperand()->getFlags());
507 SDValue HighAddr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, BasePtr
,
508 DAG
.getConstant(2, dl
, MVT::i32
));
509 SDValue StoreHigh
= DAG
.getTruncStore(
510 Chain
, dl
, High
, HighAddr
, ST
->getPointerInfo().getWithOffset(2),
511 MVT::i16
, Align(2), ST
->getMemOperand()->getFlags());
512 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, StoreLow
, StoreHigh
);
515 // Lower to a call to __misaligned_store(BasePtr, Value).
516 Type
*IntPtrTy
= DAG
.getDataLayout().getIntPtrType(Context
);
517 TargetLowering::ArgListTy Args
;
518 TargetLowering::ArgListEntry Entry
;
521 Entry
.Node
= BasePtr
;
522 Args
.push_back(Entry
);
525 Args
.push_back(Entry
);
527 TargetLowering::CallLoweringInfo
CLI(DAG
);
528 CLI
.setDebugLoc(dl
).setChain(Chain
).setCallee(
529 CallingConv::C
, Type::getVoidTy(Context
),
530 DAG
.getExternalSymbol("__misaligned_store",
531 getPointerTy(DAG
.getDataLayout())),
534 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
535 return CallResult
.second
;
538 SDValue
XCoreTargetLowering::
539 LowerSMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const
541 assert(Op
.getValueType() == MVT::i32
&& Op
.getOpcode() == ISD::SMUL_LOHI
&&
542 "Unexpected operand to lower!");
544 SDValue LHS
= Op
.getOperand(0);
545 SDValue RHS
= Op
.getOperand(1);
546 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i32
);
547 SDValue Hi
= DAG
.getNode(XCoreISD::MACCS
, dl
,
548 DAG
.getVTList(MVT::i32
, MVT::i32
), Zero
, Zero
,
550 SDValue
Lo(Hi
.getNode(), 1);
551 SDValue Ops
[] = { Lo
, Hi
};
552 return DAG
.getMergeValues(Ops
, dl
);
555 SDValue
XCoreTargetLowering::
556 LowerUMUL_LOHI(SDValue Op
, SelectionDAG
&DAG
) const
558 assert(Op
.getValueType() == MVT::i32
&& Op
.getOpcode() == ISD::UMUL_LOHI
&&
559 "Unexpected operand to lower!");
561 SDValue LHS
= Op
.getOperand(0);
562 SDValue RHS
= Op
.getOperand(1);
563 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i32
);
564 SDValue Hi
= DAG
.getNode(XCoreISD::LMUL
, dl
,
565 DAG
.getVTList(MVT::i32
, MVT::i32
), LHS
, RHS
,
567 SDValue
Lo(Hi
.getNode(), 1);
568 SDValue Ops
[] = { Lo
, Hi
};
569 return DAG
.getMergeValues(Ops
, dl
);
572 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
573 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
574 /// each intermediate result in the calculation must also have a single use.
575 /// If the Op is in the correct form the constituent parts are written to Mul0,
576 /// Mul1, Addend0 and Addend1.
578 isADDADDMUL(SDValue Op
, SDValue
&Mul0
, SDValue
&Mul1
, SDValue
&Addend0
,
579 SDValue
&Addend1
, bool requireIntermediatesHaveOneUse
)
581 if (Op
.getOpcode() != ISD::ADD
)
583 SDValue N0
= Op
.getOperand(0);
584 SDValue N1
= Op
.getOperand(1);
587 if (N0
.getOpcode() == ISD::ADD
) {
590 } else if (N1
.getOpcode() == ISD::ADD
) {
596 if (requireIntermediatesHaveOneUse
&& !AddOp
.hasOneUse())
598 if (OtherOp
.getOpcode() == ISD::MUL
) {
599 // add(add(a,b),mul(x,y))
600 if (requireIntermediatesHaveOneUse
&& !OtherOp
.hasOneUse())
602 Mul0
= OtherOp
.getOperand(0);
603 Mul1
= OtherOp
.getOperand(1);
604 Addend0
= AddOp
.getOperand(0);
605 Addend1
= AddOp
.getOperand(1);
608 if (AddOp
.getOperand(0).getOpcode() == ISD::MUL
) {
609 // add(add(mul(x,y),a),b)
610 if (requireIntermediatesHaveOneUse
&& !AddOp
.getOperand(0).hasOneUse())
612 Mul0
= AddOp
.getOperand(0).getOperand(0);
613 Mul1
= AddOp
.getOperand(0).getOperand(1);
614 Addend0
= AddOp
.getOperand(1);
618 if (AddOp
.getOperand(1).getOpcode() == ISD::MUL
) {
619 // add(add(a,mul(x,y)),b)
620 if (requireIntermediatesHaveOneUse
&& !AddOp
.getOperand(1).hasOneUse())
622 Mul0
= AddOp
.getOperand(1).getOperand(0);
623 Mul1
= AddOp
.getOperand(1).getOperand(1);
624 Addend0
= AddOp
.getOperand(0);
631 SDValue
XCoreTargetLowering::
632 TryExpandADDWithMul(SDNode
*N
, SelectionDAG
&DAG
) const
636 if (N
->getOperand(0).getOpcode() == ISD::MUL
) {
637 Mul
= N
->getOperand(0);
638 Other
= N
->getOperand(1);
639 } else if (N
->getOperand(1).getOpcode() == ISD::MUL
) {
640 Mul
= N
->getOperand(1);
641 Other
= N
->getOperand(0);
646 SDValue LL
, RL
, AddendL
, AddendH
;
647 LL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
648 Mul
.getOperand(0), DAG
.getConstant(0, dl
, MVT::i32
));
649 RL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
650 Mul
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
651 AddendL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
652 Other
, DAG
.getConstant(0, dl
, MVT::i32
));
653 AddendH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
654 Other
, DAG
.getConstant(1, dl
, MVT::i32
));
655 APInt HighMask
= APInt::getHighBitsSet(64, 32);
656 unsigned LHSSB
= DAG
.ComputeNumSignBits(Mul
.getOperand(0));
657 unsigned RHSSB
= DAG
.ComputeNumSignBits(Mul
.getOperand(1));
658 if (DAG
.MaskedValueIsZero(Mul
.getOperand(0), HighMask
) &&
659 DAG
.MaskedValueIsZero(Mul
.getOperand(1), HighMask
)) {
660 // The inputs are both zero-extended.
661 SDValue Hi
= DAG
.getNode(XCoreISD::MACCU
, dl
,
662 DAG
.getVTList(MVT::i32
, MVT::i32
), AddendH
,
664 SDValue
Lo(Hi
.getNode(), 1);
665 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
667 if (LHSSB
> 32 && RHSSB
> 32) {
668 // The inputs are both sign-extended.
669 SDValue Hi
= DAG
.getNode(XCoreISD::MACCS
, dl
,
670 DAG
.getVTList(MVT::i32
, MVT::i32
), AddendH
,
672 SDValue
Lo(Hi
.getNode(), 1);
673 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
676 LH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
677 Mul
.getOperand(0), DAG
.getConstant(1, dl
, MVT::i32
));
678 RH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
679 Mul
.getOperand(1), DAG
.getConstant(1, dl
, MVT::i32
));
680 SDValue Hi
= DAG
.getNode(XCoreISD::MACCU
, dl
,
681 DAG
.getVTList(MVT::i32
, MVT::i32
), AddendH
,
683 SDValue
Lo(Hi
.getNode(), 1);
684 RH
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
, LL
, RH
);
685 LH
= DAG
.getNode(ISD::MUL
, dl
, MVT::i32
, LH
, RL
);
686 Hi
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Hi
, RH
);
687 Hi
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Hi
, LH
);
688 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
691 SDValue
XCoreTargetLowering::
692 ExpandADDSUB(SDNode
*N
, SelectionDAG
&DAG
) const
694 assert(N
->getValueType(0) == MVT::i64
&&
695 (N
->getOpcode() == ISD::ADD
|| N
->getOpcode() == ISD::SUB
) &&
696 "Unknown operand to lower!");
698 if (N
->getOpcode() == ISD::ADD
)
699 if (SDValue Result
= TryExpandADDWithMul(N
, DAG
))
704 // Extract components
705 SDValue LHSL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
707 DAG
.getConstant(0, dl
, MVT::i32
));
708 SDValue LHSH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
710 DAG
.getConstant(1, dl
, MVT::i32
));
711 SDValue RHSL
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
713 DAG
.getConstant(0, dl
, MVT::i32
));
714 SDValue RHSH
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
716 DAG
.getConstant(1, dl
, MVT::i32
));
719 unsigned Opcode
= (N
->getOpcode() == ISD::ADD
) ? XCoreISD::LADD
:
721 SDValue Zero
= DAG
.getConstant(0, dl
, MVT::i32
);
722 SDValue Lo
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
724 SDValue
Carry(Lo
.getNode(), 1);
726 SDValue Hi
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
728 SDValue
Ignored(Hi
.getNode(), 1);
730 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
733 SDValue
XCoreTargetLowering::
734 LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const
736 // Whist llvm does not support aggregate varargs we can ignore
737 // the possibility of the ValueType being an implicit byVal vararg.
738 SDNode
*Node
= Op
.getNode();
739 EVT VT
= Node
->getValueType(0); // not an aggregate
740 SDValue InChain
= Node
->getOperand(0);
741 SDValue VAListPtr
= Node
->getOperand(1);
742 EVT PtrVT
= VAListPtr
.getValueType();
743 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
746 DAG
.getLoad(PtrVT
, dl
, InChain
, VAListPtr
, MachinePointerInfo(SV
));
747 // Increment the pointer, VAList, to the next vararg
748 SDValue nextPtr
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, VAList
,
749 DAG
.getIntPtrConstant(VT
.getSizeInBits() / 8,
751 // Store the incremented VAList to the legalized pointer
752 InChain
= DAG
.getStore(VAList
.getValue(1), dl
, nextPtr
, VAListPtr
,
753 MachinePointerInfo(SV
));
754 // Load the actual argument out of the pointer VAList
755 return DAG
.getLoad(VT
, dl
, InChain
, VAList
, MachinePointerInfo());
758 SDValue
XCoreTargetLowering::
759 LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const
762 // vastart stores the address of the VarArgsFrameIndex slot into the
763 // memory location argument
764 MachineFunction
&MF
= DAG
.getMachineFunction();
765 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
766 SDValue Addr
= DAG
.getFrameIndex(XFI
->getVarArgsFrameIndex(), MVT::i32
);
767 return DAG
.getStore(Op
.getOperand(0), dl
, Addr
, Op
.getOperand(1),
768 MachinePointerInfo());
771 SDValue
XCoreTargetLowering::LowerFRAMEADDR(SDValue Op
,
772 SelectionDAG
&DAG
) const {
773 // This nodes represent llvm.frameaddress on the DAG.
774 // It takes one operand, the index of the frame address to return.
775 // An index of zero corresponds to the current function's frame address.
776 // An index of one to the parent's frame address, and so on.
777 // Depths > 0 not supported yet!
778 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() > 0)
781 MachineFunction
&MF
= DAG
.getMachineFunction();
782 const TargetRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
783 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
),
784 RegInfo
->getFrameRegister(MF
), MVT::i32
);
787 SDValue
XCoreTargetLowering::
788 LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const {
789 // This nodes represent llvm.returnaddress on the DAG.
790 // It takes one operand, the index of the return address to return.
791 // An index of zero corresponds to the current function's return address.
792 // An index of one to the parent's return address, and so on.
793 // Depths > 0 not supported yet!
794 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() > 0)
797 MachineFunction
&MF
= DAG
.getMachineFunction();
798 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
799 int FI
= XFI
->createLRSpillSlot(MF
);
800 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
801 return DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), SDLoc(Op
),
802 DAG
.getEntryNode(), FIN
,
803 MachinePointerInfo::getFixedStack(MF
, FI
));
806 SDValue
XCoreTargetLowering::
807 LowerFRAME_TO_ARGS_OFFSET(SDValue Op
, SelectionDAG
&DAG
) const {
808 // This node represents offset from frame pointer to first on-stack argument.
809 // This is needed for correct stack adjustment during unwind.
810 // However, we don't know the offset until after the frame has be finalised.
811 // This is done during the XCoreFTAOElim pass.
812 return DAG
.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET
, SDLoc(Op
), MVT::i32
);
815 SDValue
XCoreTargetLowering::
816 LowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
) const {
817 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
818 // This node represents 'eh_return' gcc dwarf builtin, which is used to
819 // return from exception. The general meaning is: adjust stack by OFFSET and
820 // pass execution to HANDLER.
821 MachineFunction
&MF
= DAG
.getMachineFunction();
822 SDValue Chain
= Op
.getOperand(0);
823 SDValue Offset
= Op
.getOperand(1);
824 SDValue Handler
= Op
.getOperand(2);
827 // Absolute SP = (FP + FrameToArgs) + Offset
828 const TargetRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
829 SDValue Stack
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
830 RegInfo
->getFrameRegister(MF
), MVT::i32
);
831 SDValue FrameToArgs
= DAG
.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET
, dl
,
833 Stack
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Stack
, FrameToArgs
);
834 Stack
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Stack
, Offset
);
836 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
837 // which leaves 2 caller saved registers, R2 & R3 for us to use.
838 unsigned StackReg
= XCore::R2
;
839 unsigned HandlerReg
= XCore::R3
;
841 SDValue OutChains
[] = {
842 DAG
.getCopyToReg(Chain
, dl
, StackReg
, Stack
),
843 DAG
.getCopyToReg(Chain
, dl
, HandlerReg
, Handler
)
846 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
848 return DAG
.getNode(XCoreISD::EH_RETURN
, dl
, MVT::Other
, Chain
,
849 DAG
.getRegister(StackReg
, MVT::i32
),
850 DAG
.getRegister(HandlerReg
, MVT::i32
));
854 SDValue
XCoreTargetLowering::
855 LowerADJUST_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const {
856 return Op
.getOperand(0);
859 SDValue
XCoreTargetLowering::
860 LowerINIT_TRAMPOLINE(SDValue Op
, SelectionDAG
&DAG
) const {
861 SDValue Chain
= Op
.getOperand(0);
862 SDValue Trmp
= Op
.getOperand(1); // trampoline
863 SDValue FPtr
= Op
.getOperand(2); // nested function
864 SDValue Nest
= Op
.getOperand(3); // 'nest' parameter value
866 const Value
*TrmpAddr
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
869 // LDAPF_u10 r11, nest
870 // LDW_2rus r11, r11[0]
871 // STWSP_ru6 r11, sp[0]
872 // LDAPF_u10 r11, fptr
873 // LDW_2rus r11, r11[0]
879 SDValue OutChains
[5];
885 DAG
.getStore(Chain
, dl
, DAG
.getConstant(0x0a3cd805, dl
, MVT::i32
), Addr
,
886 MachinePointerInfo(TrmpAddr
));
888 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
889 DAG
.getConstant(4, dl
, MVT::i32
));
891 DAG
.getStore(Chain
, dl
, DAG
.getConstant(0xd80456c0, dl
, MVT::i32
), Addr
,
892 MachinePointerInfo(TrmpAddr
, 4));
894 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
895 DAG
.getConstant(8, dl
, MVT::i32
));
897 DAG
.getStore(Chain
, dl
, DAG
.getConstant(0x27fb0a3c, dl
, MVT::i32
), Addr
,
898 MachinePointerInfo(TrmpAddr
, 8));
900 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
901 DAG
.getConstant(12, dl
, MVT::i32
));
903 DAG
.getStore(Chain
, dl
, Nest
, Addr
, MachinePointerInfo(TrmpAddr
, 12));
905 Addr
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, Trmp
,
906 DAG
.getConstant(16, dl
, MVT::i32
));
908 DAG
.getStore(Chain
, dl
, FPtr
, Addr
, MachinePointerInfo(TrmpAddr
, 16));
910 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
913 SDValue
XCoreTargetLowering::
914 LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
) const {
916 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
918 case Intrinsic::xcore_crc8
:
919 EVT VT
= Op
.getValueType();
921 DAG
.getNode(XCoreISD::CRC8
, DL
, DAG
.getVTList(VT
, VT
),
922 Op
.getOperand(1), Op
.getOperand(2) , Op
.getOperand(3));
923 SDValue
Crc(Data
.getNode(), 1);
924 SDValue Results
[] = { Crc
, Data
};
925 return DAG
.getMergeValues(Results
, DL
);
930 SDValue
XCoreTargetLowering::
931 LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
) const {
933 return DAG
.getNode(XCoreISD::MEMBARRIER
, DL
, MVT::Other
, Op
.getOperand(0));
936 SDValue
XCoreTargetLowering::
937 LowerATOMIC_LOAD(SDValue Op
, SelectionDAG
&DAG
) const {
938 AtomicSDNode
*N
= cast
<AtomicSDNode
>(Op
);
939 assert(N
->getOpcode() == ISD::ATOMIC_LOAD
&& "Bad Atomic OP");
940 assert((N
->getSuccessOrdering() == AtomicOrdering::Unordered
||
941 N
->getSuccessOrdering() == AtomicOrdering::Monotonic
) &&
942 "setInsertFencesForAtomic(true) expects unordered / monotonic");
943 if (N
->getMemoryVT() == MVT::i32
) {
944 if (N
->getAlignment() < 4)
945 report_fatal_error("atomic load must be aligned");
946 return DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), SDLoc(Op
),
947 N
->getChain(), N
->getBasePtr(), N
->getPointerInfo(),
948 N
->getAlignment(), N
->getMemOperand()->getFlags(),
949 N
->getAAInfo(), N
->getRanges());
951 if (N
->getMemoryVT() == MVT::i16
) {
952 if (N
->getAlignment() < 2)
953 report_fatal_error("atomic load must be aligned");
954 return DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(Op
), MVT::i32
, N
->getChain(),
955 N
->getBasePtr(), N
->getPointerInfo(), MVT::i16
,
956 N
->getAlignment(), N
->getMemOperand()->getFlags(),
959 if (N
->getMemoryVT() == MVT::i8
)
960 return DAG
.getExtLoad(ISD::EXTLOAD
, SDLoc(Op
), MVT::i32
, N
->getChain(),
961 N
->getBasePtr(), N
->getPointerInfo(), MVT::i8
,
962 N
->getAlignment(), N
->getMemOperand()->getFlags(),
967 SDValue
XCoreTargetLowering::
968 LowerATOMIC_STORE(SDValue Op
, SelectionDAG
&DAG
) const {
969 AtomicSDNode
*N
= cast
<AtomicSDNode
>(Op
);
970 assert(N
->getOpcode() == ISD::ATOMIC_STORE
&& "Bad Atomic OP");
971 assert((N
->getSuccessOrdering() == AtomicOrdering::Unordered
||
972 N
->getSuccessOrdering() == AtomicOrdering::Monotonic
) &&
973 "setInsertFencesForAtomic(true) expects unordered / monotonic");
974 if (N
->getMemoryVT() == MVT::i32
) {
975 if (N
->getAlignment() < 4)
976 report_fatal_error("atomic store must be aligned");
977 return DAG
.getStore(N
->getChain(), SDLoc(Op
), N
->getVal(), N
->getBasePtr(),
978 N
->getPointerInfo(), N
->getAlignment(),
979 N
->getMemOperand()->getFlags(), N
->getAAInfo());
981 if (N
->getMemoryVT() == MVT::i16
) {
982 if (N
->getAlignment() < 2)
983 report_fatal_error("atomic store must be aligned");
984 return DAG
.getTruncStore(N
->getChain(), SDLoc(Op
), N
->getVal(),
985 N
->getBasePtr(), N
->getPointerInfo(), MVT::i16
,
986 N
->getAlignment(), N
->getMemOperand()->getFlags(),
989 if (N
->getMemoryVT() == MVT::i8
)
990 return DAG
.getTruncStore(N
->getChain(), SDLoc(Op
), N
->getVal(),
991 N
->getBasePtr(), N
->getPointerInfo(), MVT::i8
,
992 N
->getAlignment(), N
->getMemOperand()->getFlags(),
997 MachineMemOperand::Flags
998 XCoreTargetLowering::getTargetMMOFlags(const Instruction
&I
) const {
999 // Because of how we convert atomic_load and atomic_store to normal loads and
1000 // stores in the DAG, we need to ensure that the MMOs are marked volatile
1001 // since DAGCombine hasn't been updated to account for atomic, but non
1002 // volatile loads. (See D57601)
1003 if (auto *SI
= dyn_cast
<StoreInst
>(&I
))
1005 return MachineMemOperand::MOVolatile
;
1006 if (auto *LI
= dyn_cast
<LoadInst
>(&I
))
1008 return MachineMemOperand::MOVolatile
;
1009 if (auto *AI
= dyn_cast
<AtomicRMWInst
>(&I
))
1011 return MachineMemOperand::MOVolatile
;
1012 if (auto *AI
= dyn_cast
<AtomicCmpXchgInst
>(&I
))
1014 return MachineMemOperand::MOVolatile
;
1015 return MachineMemOperand::MONone
;
1018 //===----------------------------------------------------------------------===//
1019 // Calling Convention Implementation
1020 //===----------------------------------------------------------------------===//
1022 #include "XCoreGenCallingConv.inc"
1024 //===----------------------------------------------------------------------===//
1025 // Call Calling Convention Implementation
1026 //===----------------------------------------------------------------------===//
1028 /// XCore call implementation
1030 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
1031 SmallVectorImpl
<SDValue
> &InVals
) const {
1032 SelectionDAG
&DAG
= CLI
.DAG
;
1034 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
1035 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
1036 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
1037 SDValue Chain
= CLI
.Chain
;
1038 SDValue Callee
= CLI
.Callee
;
1039 bool &isTailCall
= CLI
.IsTailCall
;
1040 CallingConv::ID CallConv
= CLI
.CallConv
;
1041 bool isVarArg
= CLI
.IsVarArg
;
1043 // XCore target does not yet support tail call optimization.
1046 // For now, only CallingConv::C implemented
1050 report_fatal_error("Unsupported calling convention");
1051 case CallingConv::Fast
:
1052 case CallingConv::C
:
1053 return LowerCCCCallTo(Chain
, Callee
, CallConv
, isVarArg
, isTailCall
,
1054 Outs
, OutVals
, Ins
, dl
, DAG
, InVals
);
1058 /// LowerCallResult - Lower the result values of a call into the
1059 /// appropriate copies out of appropriate physical registers / memory locations.
1060 static SDValue
LowerCallResult(SDValue Chain
, SDValue InFlag
,
1061 const SmallVectorImpl
<CCValAssign
> &RVLocs
,
1062 const SDLoc
&dl
, SelectionDAG
&DAG
,
1063 SmallVectorImpl
<SDValue
> &InVals
) {
1064 SmallVector
<std::pair
<int, unsigned>, 4> ResultMemLocs
;
1065 // Copy results out of physical registers.
1066 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1067 const CCValAssign
&VA
= RVLocs
[i
];
1068 if (VA
.isRegLoc()) {
1069 Chain
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getValVT(),
1070 InFlag
).getValue(1);
1071 InFlag
= Chain
.getValue(2);
1072 InVals
.push_back(Chain
.getValue(0));
1074 assert(VA
.isMemLoc());
1075 ResultMemLocs
.push_back(std::make_pair(VA
.getLocMemOffset(),
1077 // Reserve space for this result.
1078 InVals
.push_back(SDValue());
1082 // Copy results out of memory.
1083 SmallVector
<SDValue
, 4> MemOpChains
;
1084 for (unsigned i
= 0, e
= ResultMemLocs
.size(); i
!= e
; ++i
) {
1085 int offset
= ResultMemLocs
[i
].first
;
1086 unsigned index
= ResultMemLocs
[i
].second
;
1087 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::Other
);
1088 SDValue Ops
[] = { Chain
, DAG
.getConstant(offset
/ 4, dl
, MVT::i32
) };
1089 SDValue load
= DAG
.getNode(XCoreISD::LDWSP
, dl
, VTs
, Ops
);
1090 InVals
[index
] = load
;
1091 MemOpChains
.push_back(load
.getValue(1));
1094 // Transform all loads nodes into one single node because
1095 // all load nodes are independent of each other.
1096 if (!MemOpChains
.empty())
1097 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
1102 /// LowerCCCCallTo - functions arguments are copied from virtual
1103 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1104 /// CALLSEQ_END are emitted.
1105 /// TODO: isTailCall, sret.
1106 SDValue
XCoreTargetLowering::LowerCCCCallTo(
1107 SDValue Chain
, SDValue Callee
, CallingConv::ID CallConv
, bool isVarArg
,
1108 bool isTailCall
, const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1109 const SmallVectorImpl
<SDValue
> &OutVals
,
1110 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1111 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1113 // Analyze operands of the call, assigning locations to each operand.
1114 SmallVector
<CCValAssign
, 16> ArgLocs
;
1115 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
1118 // The ABI dictates there should be one stack slot available to the callee
1119 // on function entry (for saving lr).
1120 CCInfo
.AllocateStack(4, Align(4));
1122 CCInfo
.AnalyzeCallOperands(Outs
, CC_XCore
);
1124 SmallVector
<CCValAssign
, 16> RVLocs
;
1125 // Analyze return values to determine the number of bytes of stack required.
1126 CCState
RetCCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1128 RetCCInfo
.AllocateStack(CCInfo
.getNextStackOffset(), Align(4));
1129 RetCCInfo
.AnalyzeCallResult(Ins
, RetCC_XCore
);
1131 // Get a count of how many bytes are to be pushed on the stack.
1132 unsigned NumBytes
= RetCCInfo
.getNextStackOffset();
1133 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
1135 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, dl
);
1137 SmallVector
<std::pair
<unsigned, SDValue
>, 4> RegsToPass
;
1138 SmallVector
<SDValue
, 12> MemOpChains
;
1140 // Walk the register/memloc assignments, inserting copies/loads.
1141 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1142 CCValAssign
&VA
= ArgLocs
[i
];
1143 SDValue Arg
= OutVals
[i
];
1145 // Promote the value if needed.
1146 switch (VA
.getLocInfo()) {
1147 default: llvm_unreachable("Unknown loc info!");
1148 case CCValAssign::Full
: break;
1149 case CCValAssign::SExt
:
1150 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1152 case CCValAssign::ZExt
:
1153 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1155 case CCValAssign::AExt
:
1156 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
1160 // Arguments that can be passed on register must be kept at
1161 // RegsToPass vector
1162 if (VA
.isRegLoc()) {
1163 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
1165 assert(VA
.isMemLoc());
1167 int Offset
= VA
.getLocMemOffset();
1169 MemOpChains
.push_back(DAG
.getNode(XCoreISD::STWSP
, dl
, MVT::Other
,
1171 DAG
.getConstant(Offset
/4, dl
,
1176 // Transform all store nodes into one single node because
1177 // all store nodes are independent of each other.
1178 if (!MemOpChains
.empty())
1179 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
1181 // Build a sequence of copy-to-reg nodes chained together with token
1182 // chain and flag operands which copy the outgoing args into registers.
1183 // The InFlag in necessary since all emitted instructions must be
1186 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1187 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
1188 RegsToPass
[i
].second
, InFlag
);
1189 InFlag
= Chain
.getValue(1);
1192 // If the callee is a GlobalAddress node (quite common, every direct call is)
1193 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1194 // Likewise ExternalSymbol -> TargetExternalSymbol.
1195 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1196 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), dl
, MVT::i32
);
1197 else if (ExternalSymbolSDNode
*E
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1198 Callee
= DAG
.getTargetExternalSymbol(E
->getSymbol(), MVT::i32
);
1200 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1201 // = Chain, Callee, Reg#1, Reg#2, ...
1203 // Returns a chain & a flag for retval copy to use.
1204 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
1205 SmallVector
<SDValue
, 8> Ops
;
1206 Ops
.push_back(Chain
);
1207 Ops
.push_back(Callee
);
1209 // Add argument registers to the end of the list so that they are
1210 // known live into the call.
1211 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1212 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1213 RegsToPass
[i
].second
.getValueType()));
1215 if (InFlag
.getNode())
1216 Ops
.push_back(InFlag
);
1218 Chain
= DAG
.getNode(XCoreISD::BL
, dl
, NodeTys
, Ops
);
1219 InFlag
= Chain
.getValue(1);
1221 // Create the CALLSEQ_END node.
1222 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getConstant(NumBytes
, dl
, PtrVT
, true),
1223 DAG
.getConstant(0, dl
, PtrVT
, true), InFlag
, dl
);
1224 InFlag
= Chain
.getValue(1);
1226 // Handle result values, copying them out of physregs into vregs that we
1228 return LowerCallResult(Chain
, InFlag
, RVLocs
, dl
, DAG
, InVals
);
1231 //===----------------------------------------------------------------------===//
1232 // Formal Arguments Calling Convention Implementation
1233 //===----------------------------------------------------------------------===//
1236 struct ArgDataPair
{ SDValue SDV
; ISD::ArgFlagsTy Flags
; };
1239 /// XCore formal arguments implementation
1240 SDValue
XCoreTargetLowering::LowerFormalArguments(
1241 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1242 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1243 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1247 report_fatal_error("Unsupported calling convention");
1248 case CallingConv::C
:
1249 case CallingConv::Fast
:
1250 return LowerCCCArguments(Chain
, CallConv
, isVarArg
,
1251 Ins
, dl
, DAG
, InVals
);
1255 /// LowerCCCArguments - transform physical registers into
1256 /// virtual registers and generate load operations for
1257 /// arguments places on the stack.
1259 SDValue
XCoreTargetLowering::LowerCCCArguments(
1260 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1261 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
1262 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1263 MachineFunction
&MF
= DAG
.getMachineFunction();
1264 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1265 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
1266 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
1268 // Assign locations to all of the incoming arguments.
1269 SmallVector
<CCValAssign
, 16> ArgLocs
;
1270 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
1273 CCInfo
.AnalyzeFormalArguments(Ins
, CC_XCore
);
1275 unsigned StackSlotSize
= XCoreFrameLowering::stackSlotSize();
1277 unsigned LRSaveSize
= StackSlotSize
;
1280 XFI
->setReturnStackOffset(CCInfo
.getNextStackOffset() + LRSaveSize
);
1282 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1283 // scheduler clobbering a register before it has been copied.
1285 // 1. CopyFromReg (and load) arg & vararg registers.
1286 // 2. Chain CopyFromReg nodes into a TokenFactor.
1287 // 3. Memcpy 'byVal' args & push final InVals.
1288 // 4. Chain mem ops nodes into a TokenFactor.
1289 SmallVector
<SDValue
, 4> CFRegNode
;
1290 SmallVector
<ArgDataPair
, 4> ArgData
;
1291 SmallVector
<SDValue
, 4> MemOps
;
1293 // 1a. CopyFromReg (and load) arg registers.
1294 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
1296 CCValAssign
&VA
= ArgLocs
[i
];
1299 if (VA
.isRegLoc()) {
1300 // Arguments passed in registers
1301 EVT RegVT
= VA
.getLocVT();
1302 switch (RegVT
.getSimpleVT().SimpleTy
) {
1306 errs() << "LowerFormalArguments Unhandled argument type: "
1307 << RegVT
.getEVTString() << "\n";
1309 llvm_unreachable(nullptr);
1312 Register VReg
= RegInfo
.createVirtualRegister(&XCore::GRRegsRegClass
);
1313 RegInfo
.addLiveIn(VA
.getLocReg(), VReg
);
1314 ArgIn
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, RegVT
);
1315 CFRegNode
.push_back(ArgIn
.getValue(ArgIn
->getNumValues() - 1));
1319 assert(VA
.isMemLoc());
1320 // Load the argument to a virtual register
1321 unsigned ObjSize
= VA
.getLocVT().getSizeInBits()/8;
1322 if (ObjSize
> StackSlotSize
) {
1323 errs() << "LowerFormalArguments Unhandled argument type: "
1324 << EVT(VA
.getLocVT()).getEVTString()
1327 // Create the frame index object for this incoming parameter...
1328 int FI
= MFI
.CreateFixedObject(ObjSize
,
1329 LRSaveSize
+ VA
.getLocMemOffset(),
1332 // Create the SelectionDAG nodes corresponding to a load
1333 //from this parameter
1334 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1335 ArgIn
= DAG
.getLoad(VA
.getLocVT(), dl
, Chain
, FIN
,
1336 MachinePointerInfo::getFixedStack(MF
, FI
));
1338 const ArgDataPair ADP
= { ArgIn
, Ins
[i
].Flags
};
1339 ArgData
.push_back(ADP
);
1342 // 1b. CopyFromReg vararg registers.
1344 // Argument registers
1345 static const MCPhysReg ArgRegs
[] = {
1346 XCore::R0
, XCore::R1
, XCore::R2
, XCore::R3
1348 XCoreFunctionInfo
*XFI
= MF
.getInfo
<XCoreFunctionInfo
>();
1349 unsigned FirstVAReg
= CCInfo
.getFirstUnallocated(ArgRegs
);
1350 if (FirstVAReg
< array_lengthof(ArgRegs
)) {
1352 // Save remaining registers, storing higher register numbers at a higher
1354 for (int i
= array_lengthof(ArgRegs
) - 1; i
>= (int)FirstVAReg
; --i
) {
1355 // Create a stack slot
1356 int FI
= MFI
.CreateFixedObject(4, offset
, true);
1357 if (i
== (int)FirstVAReg
) {
1358 XFI
->setVarArgsFrameIndex(FI
);
1360 offset
-= StackSlotSize
;
1361 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1362 // Move argument from phys reg -> virt reg
1363 Register VReg
= RegInfo
.createVirtualRegister(&XCore::GRRegsRegClass
);
1364 RegInfo
.addLiveIn(ArgRegs
[i
], VReg
);
1365 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
1366 CFRegNode
.push_back(Val
.getValue(Val
->getNumValues() - 1));
1367 // Move argument from virt reg -> stack
1369 DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
, MachinePointerInfo());
1370 MemOps
.push_back(Store
);
1373 // This will point to the next argument passed via stack.
1374 XFI
->setVarArgsFrameIndex(
1375 MFI
.CreateFixedObject(4, LRSaveSize
+ CCInfo
.getNextStackOffset(),
1380 // 2. chain CopyFromReg nodes into a TokenFactor.
1381 if (!CFRegNode
.empty())
1382 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, CFRegNode
);
1384 // 3. Memcpy 'byVal' args & push final InVals.
1385 // Aggregates passed "byVal" need to be copied by the callee.
1386 // The callee will use a pointer to this copy, rather than the original
1388 for (SmallVectorImpl
<ArgDataPair
>::const_iterator ArgDI
= ArgData
.begin(),
1389 ArgDE
= ArgData
.end();
1390 ArgDI
!= ArgDE
; ++ArgDI
) {
1391 if (ArgDI
->Flags
.isByVal() && ArgDI
->Flags
.getByValSize()) {
1392 unsigned Size
= ArgDI
->Flags
.getByValSize();
1394 std::max(Align(StackSlotSize
), ArgDI
->Flags
.getNonZeroByValAlign());
1395 // Create a new object on the stack and copy the pointee into it.
1396 int FI
= MFI
.CreateStackObject(Size
, Alignment
, false);
1397 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1398 InVals
.push_back(FIN
);
1399 MemOps
.push_back(DAG
.getMemcpy(
1400 Chain
, dl
, FIN
, ArgDI
->SDV
, DAG
.getConstant(Size
, dl
, MVT::i32
),
1401 Alignment
, false, false, false, MachinePointerInfo(),
1402 MachinePointerInfo()));
1404 InVals
.push_back(ArgDI
->SDV
);
1408 // 4, chain mem ops nodes into a TokenFactor.
1409 if (!MemOps
.empty()) {
1410 MemOps
.push_back(Chain
);
1411 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
1417 //===----------------------------------------------------------------------===//
1418 // Return Value Calling Convention Implementation
1419 //===----------------------------------------------------------------------===//
1421 bool XCoreTargetLowering::
1422 CanLowerReturn(CallingConv::ID CallConv
, MachineFunction
&MF
,
1424 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1425 LLVMContext
&Context
) const {
1426 SmallVector
<CCValAssign
, 16> RVLocs
;
1427 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
1428 if (!CCInfo
.CheckReturn(Outs
, RetCC_XCore
))
1430 if (CCInfo
.getNextStackOffset() != 0 && isVarArg
)
1436 XCoreTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
1438 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
1439 const SmallVectorImpl
<SDValue
> &OutVals
,
1440 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
1442 XCoreFunctionInfo
*XFI
=
1443 DAG
.getMachineFunction().getInfo
<XCoreFunctionInfo
>();
1444 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
1446 // CCValAssign - represent the assignment of
1447 // the return value to a location
1448 SmallVector
<CCValAssign
, 16> RVLocs
;
1450 // CCState - Info about the registers and stack slot.
1451 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
1454 // Analyze return values.
1456 CCInfo
.AllocateStack(XFI
->getReturnStackOffset(), Align(4));
1458 CCInfo
.AnalyzeReturn(Outs
, RetCC_XCore
);
1461 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
1463 // Return on XCore is always a "retsp 0"
1464 RetOps
.push_back(DAG
.getConstant(0, dl
, MVT::i32
));
1466 SmallVector
<SDValue
, 4> MemOpChains
;
1467 // Handle return values that must be copied to memory.
1468 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1469 CCValAssign
&VA
= RVLocs
[i
];
1472 assert(VA
.isMemLoc());
1474 report_fatal_error("Can't return value from vararg function in memory");
1477 int Offset
= VA
.getLocMemOffset();
1478 unsigned ObjSize
= VA
.getLocVT().getSizeInBits() / 8;
1479 // Create the frame index object for the memory location.
1480 int FI
= MFI
.CreateFixedObject(ObjSize
, Offset
, false);
1482 // Create a SelectionDAG node corresponding to a store
1483 // to this memory location.
1484 SDValue FIN
= DAG
.getFrameIndex(FI
, MVT::i32
);
1485 MemOpChains
.push_back(DAG
.getStore(
1486 Chain
, dl
, OutVals
[i
], FIN
,
1487 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
)));
1490 // Transform all store nodes into one single node because
1491 // all stores are independent of each other.
1492 if (!MemOpChains
.empty())
1493 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
1495 // Now handle return values copied to registers.
1496 for (unsigned i
= 0, e
= RVLocs
.size(); i
!= e
; ++i
) {
1497 CCValAssign
&VA
= RVLocs
[i
];
1500 // Copy the result values into the output registers.
1501 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), OutVals
[i
], Flag
);
1503 // guarantee that all emitted copies are
1504 // stuck together, avoiding something bad
1505 Flag
= Chain
.getValue(1);
1506 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
1509 RetOps
[0] = Chain
; // Update chain.
1511 // Add the flag if we have it.
1513 RetOps
.push_back(Flag
);
1515 return DAG
.getNode(XCoreISD::RETSP
, dl
, MVT::Other
, RetOps
);
1518 //===----------------------------------------------------------------------===//
1519 // Other Lowering Code
1520 //===----------------------------------------------------------------------===//
1523 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1524 MachineBasicBlock
*BB
) const {
1525 const TargetInstrInfo
&TII
= *Subtarget
.getInstrInfo();
1526 DebugLoc dl
= MI
.getDebugLoc();
1527 assert((MI
.getOpcode() == XCore::SELECT_CC
) &&
1528 "Unexpected instr type to insert");
1530 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1531 // control-flow pattern. The incoming instruction knows the destination vreg
1532 // to set, the condition code register to branch on, the true/false values to
1533 // select between, and a branch opcode to use.
1534 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1535 MachineFunction::iterator It
= ++BB
->getIterator();
1540 // cmpTY ccX, r1, r2
1542 // fallthrough --> copy0MBB
1543 MachineBasicBlock
*thisMBB
= BB
;
1544 MachineFunction
*F
= BB
->getParent();
1545 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1546 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
1547 F
->insert(It
, copy0MBB
);
1548 F
->insert(It
, sinkMBB
);
1550 // Transfer the remainder of BB and its successor edges to sinkMBB.
1551 sinkMBB
->splice(sinkMBB
->begin(), BB
,
1552 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1553 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1555 // Next, add the true and fallthrough blocks as its successors.
1556 BB
->addSuccessor(copy0MBB
);
1557 BB
->addSuccessor(sinkMBB
);
1559 BuildMI(BB
, dl
, TII
.get(XCore::BRFT_lru6
))
1560 .addReg(MI
.getOperand(1).getReg())
1564 // %FalseValue = ...
1565 // # fallthrough to sinkMBB
1568 // Update machine-CFG edges
1569 BB
->addSuccessor(sinkMBB
);
1572 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1575 BuildMI(*BB
, BB
->begin(), dl
, TII
.get(XCore::PHI
), MI
.getOperand(0).getReg())
1576 .addReg(MI
.getOperand(3).getReg())
1578 .addReg(MI
.getOperand(2).getReg())
1581 MI
.eraseFromParent(); // The pseudo instruction is gone now.
1585 //===----------------------------------------------------------------------===//
1586 // Target Optimization Hooks
1587 //===----------------------------------------------------------------------===//
1589 SDValue
XCoreTargetLowering::PerformDAGCombine(SDNode
*N
,
1590 DAGCombinerInfo
&DCI
) const {
1591 SelectionDAG
&DAG
= DCI
.DAG
;
1593 switch (N
->getOpcode()) {
1595 case ISD::INTRINSIC_VOID
:
1596 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
1597 case Intrinsic::xcore_outt
:
1598 case Intrinsic::xcore_outct
:
1599 case Intrinsic::xcore_chkct
: {
1600 SDValue OutVal
= N
->getOperand(3);
1601 // These instructions ignore the high bits.
1602 if (OutVal
.hasOneUse()) {
1603 unsigned BitWidth
= OutVal
.getValueSizeInBits();
1604 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 8);
1606 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
1607 !DCI
.isBeforeLegalizeOps());
1608 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1609 if (TLI
.ShrinkDemandedConstant(OutVal
, DemandedMask
, TLO
) ||
1610 TLI
.SimplifyDemandedBits(OutVal
, DemandedMask
, Known
, TLO
))
1611 DCI
.CommitTargetLoweringOpt(TLO
);
1615 case Intrinsic::xcore_setpt
: {
1616 SDValue Time
= N
->getOperand(3);
1617 // This instruction ignores the high bits.
1618 if (Time
.hasOneUse()) {
1619 unsigned BitWidth
= Time
.getValueSizeInBits();
1620 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
1622 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
1623 !DCI
.isBeforeLegalizeOps());
1624 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1625 if (TLI
.ShrinkDemandedConstant(Time
, DemandedMask
, TLO
) ||
1626 TLI
.SimplifyDemandedBits(Time
, DemandedMask
, Known
, TLO
))
1627 DCI
.CommitTargetLoweringOpt(TLO
);
1633 case XCoreISD::LADD
: {
1634 SDValue N0
= N
->getOperand(0);
1635 SDValue N1
= N
->getOperand(1);
1636 SDValue N2
= N
->getOperand(2);
1637 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1638 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1639 EVT VT
= N0
.getValueType();
1641 // canonicalize constant to RHS
1643 return DAG
.getNode(XCoreISD::LADD
, dl
, DAG
.getVTList(VT
, VT
), N1
, N0
, N2
);
1645 // fold (ladd 0, 0, x) -> 0, x & 1
1646 if (N0C
&& N0C
->isNullValue() && N1C
&& N1C
->isNullValue()) {
1647 SDValue Carry
= DAG
.getConstant(0, dl
, VT
);
1648 SDValue Result
= DAG
.getNode(ISD::AND
, dl
, VT
, N2
,
1649 DAG
.getConstant(1, dl
, VT
));
1650 SDValue Ops
[] = { Result
, Carry
};
1651 return DAG
.getMergeValues(Ops
, dl
);
1654 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1656 if (N1C
&& N1C
->isNullValue() && N
->hasNUsesOfValue(0, 1)) {
1657 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
1658 VT
.getSizeInBits() - 1);
1659 KnownBits Known
= DAG
.computeKnownBits(N2
);
1660 if ((Known
.Zero
& Mask
) == Mask
) {
1661 SDValue Carry
= DAG
.getConstant(0, dl
, VT
);
1662 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, VT
, N0
, N2
);
1663 SDValue Ops
[] = { Result
, Carry
};
1664 return DAG
.getMergeValues(Ops
, dl
);
1669 case XCoreISD::LSUB
: {
1670 SDValue N0
= N
->getOperand(0);
1671 SDValue N1
= N
->getOperand(1);
1672 SDValue N2
= N
->getOperand(2);
1673 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1674 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1675 EVT VT
= N0
.getValueType();
1677 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1678 if (N0C
&& N0C
->isNullValue() && N1C
&& N1C
->isNullValue()) {
1679 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
1680 VT
.getSizeInBits() - 1);
1681 KnownBits Known
= DAG
.computeKnownBits(N2
);
1682 if ((Known
.Zero
& Mask
) == Mask
) {
1683 SDValue Borrow
= N2
;
1684 SDValue Result
= DAG
.getNode(ISD::SUB
, dl
, VT
,
1685 DAG
.getConstant(0, dl
, VT
), N2
);
1686 SDValue Ops
[] = { Result
, Borrow
};
1687 return DAG
.getMergeValues(Ops
, dl
);
1691 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1693 if (N1C
&& N1C
->isNullValue() && N
->hasNUsesOfValue(0, 1)) {
1694 APInt Mask
= APInt::getHighBitsSet(VT
.getSizeInBits(),
1695 VT
.getSizeInBits() - 1);
1696 KnownBits Known
= DAG
.computeKnownBits(N2
);
1697 if ((Known
.Zero
& Mask
) == Mask
) {
1698 SDValue Borrow
= DAG
.getConstant(0, dl
, VT
);
1699 SDValue Result
= DAG
.getNode(ISD::SUB
, dl
, VT
, N0
, N2
);
1700 SDValue Ops
[] = { Result
, Borrow
};
1701 return DAG
.getMergeValues(Ops
, dl
);
1706 case XCoreISD::LMUL
: {
1707 SDValue N0
= N
->getOperand(0);
1708 SDValue N1
= N
->getOperand(1);
1709 SDValue N2
= N
->getOperand(2);
1710 SDValue N3
= N
->getOperand(3);
1711 ConstantSDNode
*N0C
= dyn_cast
<ConstantSDNode
>(N0
);
1712 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
1713 EVT VT
= N0
.getValueType();
1714 // Canonicalize multiplicative constant to RHS. If both multiplicative
1715 // operands are constant canonicalize smallest to RHS.
1716 if ((N0C
&& !N1C
) ||
1717 (N0C
&& N1C
&& N0C
->getZExtValue() < N1C
->getZExtValue()))
1718 return DAG
.getNode(XCoreISD::LMUL
, dl
, DAG
.getVTList(VT
, VT
),
1722 if (N1C
&& N1C
->isNullValue()) {
1723 // If the high result is unused fold to add(a, b)
1724 if (N
->hasNUsesOfValue(0, 0)) {
1725 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
, VT
, N2
, N3
);
1726 SDValue Ops
[] = { Lo
, Lo
};
1727 return DAG
.getMergeValues(Ops
, dl
);
1729 // Otherwise fold to ladd(a, b, 0)
1731 DAG
.getNode(XCoreISD::LADD
, dl
, DAG
.getVTList(VT
, VT
), N2
, N3
, N1
);
1732 SDValue
Carry(Result
.getNode(), 1);
1733 SDValue Ops
[] = { Carry
, Result
};
1734 return DAG
.getMergeValues(Ops
, dl
);
1739 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1740 // lmul(x, y, a, b). The high result of lmul will be ignored.
1741 // This is only profitable if the intermediate results are unused
1743 SDValue Mul0
, Mul1
, Addend0
, Addend1
;
1744 if (N
->getValueType(0) == MVT::i32
&&
1745 isADDADDMUL(SDValue(N
, 0), Mul0
, Mul1
, Addend0
, Addend1
, true)) {
1746 SDValue Ignored
= DAG
.getNode(XCoreISD::LMUL
, dl
,
1747 DAG
.getVTList(MVT::i32
, MVT::i32
), Mul0
,
1748 Mul1
, Addend0
, Addend1
);
1749 SDValue
Result(Ignored
.getNode(), 1);
1752 APInt HighMask
= APInt::getHighBitsSet(64, 32);
1753 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1754 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1755 // before type legalization as it is messy to match the operands after
1757 if (N
->getValueType(0) == MVT::i64
&&
1758 isADDADDMUL(SDValue(N
, 0), Mul0
, Mul1
, Addend0
, Addend1
, false) &&
1759 DAG
.MaskedValueIsZero(Mul0
, HighMask
) &&
1760 DAG
.MaskedValueIsZero(Mul1
, HighMask
) &&
1761 DAG
.MaskedValueIsZero(Addend0
, HighMask
) &&
1762 DAG
.MaskedValueIsZero(Addend1
, HighMask
)) {
1763 SDValue Mul0L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1764 Mul0
, DAG
.getConstant(0, dl
, MVT::i32
));
1765 SDValue Mul1L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1766 Mul1
, DAG
.getConstant(0, dl
, MVT::i32
));
1767 SDValue Addend0L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1768 Addend0
, DAG
.getConstant(0, dl
, MVT::i32
));
1769 SDValue Addend1L
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
,
1770 Addend1
, DAG
.getConstant(0, dl
, MVT::i32
));
1771 SDValue Hi
= DAG
.getNode(XCoreISD::LMUL
, dl
,
1772 DAG
.getVTList(MVT::i32
, MVT::i32
), Mul0L
, Mul1L
,
1773 Addend0L
, Addend1L
);
1774 SDValue
Lo(Hi
.getNode(), 1);
1775 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
1780 // Replace unaligned store of unaligned load with memmove.
1781 StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
1782 if (!DCI
.isBeforeLegalize() ||
1783 allowsMemoryAccessForAlignment(*DAG
.getContext(), DAG
.getDataLayout(),
1785 *ST
->getMemOperand()) ||
1786 ST
->isVolatile() || ST
->isIndexed()) {
1789 SDValue Chain
= ST
->getChain();
1791 unsigned StoreBits
= ST
->getMemoryVT().getStoreSizeInBits();
1792 assert((StoreBits
% 8) == 0 &&
1793 "Store size in bits must be a multiple of 8");
1794 unsigned Alignment
= ST
->getAlignment();
1796 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(ST
->getValue())) {
1797 if (LD
->hasNUsesOfValue(1, 0) && ST
->getMemoryVT() == LD
->getMemoryVT() &&
1798 LD
->getAlignment() == Alignment
&&
1799 !LD
->isVolatile() && !LD
->isIndexed() &&
1800 Chain
.reachesChainWithoutSideEffects(SDValue(LD
, 1))) {
1801 bool isTail
= isInTailCallPosition(DAG
, ST
, Chain
);
1802 return DAG
.getMemmove(Chain
, dl
, ST
->getBasePtr(), LD
->getBasePtr(),
1803 DAG
.getConstant(StoreBits
/ 8, dl
, MVT::i32
),
1804 Align(Alignment
), false, isTail
,
1805 ST
->getPointerInfo(), LD
->getPointerInfo());
1814 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
1816 const APInt
&DemandedElts
,
1817 const SelectionDAG
&DAG
,
1818 unsigned Depth
) const {
1820 switch (Op
.getOpcode()) {
1822 case XCoreISD::LADD
:
1823 case XCoreISD::LSUB
:
1824 if (Op
.getResNo() == 1) {
1825 // Top bits of carry / borrow are clear.
1826 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1827 Known
.getBitWidth() - 1);
1830 case ISD::INTRINSIC_W_CHAIN
:
1832 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
1834 case Intrinsic::xcore_getts
:
1835 // High bits are known to be zero.
1836 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1837 Known
.getBitWidth() - 16);
1839 case Intrinsic::xcore_int
:
1840 case Intrinsic::xcore_inct
:
1841 // High bits are known to be zero.
1842 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1843 Known
.getBitWidth() - 8);
1845 case Intrinsic::xcore_testct
:
1846 // Result is either 0 or 1.
1847 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1848 Known
.getBitWidth() - 1);
1850 case Intrinsic::xcore_testwct
:
1851 // Result is in the range 0 - 4.
1852 Known
.Zero
= APInt::getHighBitsSet(Known
.getBitWidth(),
1853 Known
.getBitWidth() - 3);
1861 //===----------------------------------------------------------------------===//
1862 // Addressing mode description hooks
1863 //===----------------------------------------------------------------------===//
1865 static inline bool isImmUs(int64_t val
)
1867 return (val
>= 0 && val
<= 11);
1870 static inline bool isImmUs2(int64_t val
)
1872 return (val
%2 == 0 && isImmUs(val
/2));
1875 static inline bool isImmUs4(int64_t val
)
1877 return (val
%4 == 0 && isImmUs(val
/4));
1880 /// isLegalAddressingMode - Return true if the addressing mode represented
1881 /// by AM is legal for this target, for a load/store of the specified type.
1882 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
1883 const AddrMode
&AM
, Type
*Ty
,
1885 Instruction
*I
) const {
1886 if (Ty
->getTypeID() == Type::VoidTyID
)
1887 return AM
.Scale
== 0 && isImmUs(AM
.BaseOffs
) && isImmUs4(AM
.BaseOffs
);
1889 unsigned Size
= DL
.getTypeAllocSize(Ty
);
1891 return Size
>= 4 && !AM
.HasBaseReg
&& AM
.Scale
== 0 &&
1898 if (AM
.Scale
== 0) {
1899 return isImmUs(AM
.BaseOffs
);
1902 return AM
.Scale
== 1 && AM
.BaseOffs
== 0;
1906 if (AM
.Scale
== 0) {
1907 return isImmUs2(AM
.BaseOffs
);
1910 return AM
.Scale
== 2 && AM
.BaseOffs
== 0;
1913 if (AM
.Scale
== 0) {
1914 return isImmUs4(AM
.BaseOffs
);
1917 return AM
.Scale
== 4 && AM
.BaseOffs
== 0;
1921 //===----------------------------------------------------------------------===//
1922 // XCore Inline Assembly Support
1923 //===----------------------------------------------------------------------===//
1925 std::pair
<unsigned, const TargetRegisterClass
*>
1926 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
1927 StringRef Constraint
,
1929 if (Constraint
.size() == 1) {
1930 switch (Constraint
[0]) {
1933 return std::make_pair(0U, &XCore::GRRegsRegClass
);
1936 // Use the default implementation in TargetLowering to convert the register
1937 // constraint into a member of a register class.
1938 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);