[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / ArgumentPromotion.cpp
blob5d6b750d9a4605e1a6236b284a432ab37ae31406
1 //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass promotes "by reference" arguments to be "by value" arguments. In
10 // practice, this means looking for internal functions that have pointer
11 // arguments. If it can prove, through the use of alias analysis, that an
12 // argument is *only* loaded, then it can pass the value into the function
13 // instead of the address of the value. This can cause recursive simplification
14 // of code and lead to the elimination of allocas (especially in C++ template
15 // code like the STL).
17 // This pass also handles aggregate arguments that are passed into a function,
18 // scalarizing them if the elements of the aggregate are only loaded. Note that
19 // by default it refuses to scalarize aggregates which would require passing in
20 // more than three operands to the function, because passing thousands of
21 // operands for a large array or structure is unprofitable! This limit can be
22 // configured or disabled, however.
24 // Note that this transformation could also be done for arguments that are only
25 // stored to (returning the value instead), but does not currently. This case
26 // would be best handled when and if LLVM begins supporting multiple return
27 // values from functions.
29 //===----------------------------------------------------------------------===//
31 #include "llvm/Transforms/IPO/ArgumentPromotion.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/None.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/ADT/ScopeExit.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallVector.h"
39 #include "llvm/ADT/Statistic.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/BasicAliasAnalysis.h"
43 #include "llvm/Analysis/CGSCCPassManager.h"
44 #include "llvm/Analysis/CallGraph.h"
45 #include "llvm/Analysis/CallGraphSCCPass.h"
46 #include "llvm/Analysis/LazyCallGraph.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/MemoryLocation.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/TargetTransformInfo.h"
51 #include "llvm/IR/Argument.h"
52 #include "llvm/IR/Attributes.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DerivedTypes.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/PassManager.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/Use.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/IPO.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstdint>
81 #include <functional>
82 #include <iterator>
83 #include <map>
84 #include <set>
85 #include <utility>
86 #include <vector>
88 using namespace llvm;
90 #define DEBUG_TYPE "argpromotion"
92 STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
93 STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
94 STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
95 STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
97 /// A vector used to hold the indices of a single GEP instruction
98 using IndicesVector = std::vector<uint64_t>;
100 /// DoPromotion - This method actually performs the promotion of the specified
101 /// arguments, and returns the new function. At this point, we know that it's
102 /// safe to do so.
103 static Function *
104 doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
105 SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
106 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
107 ReplaceCallSite) {
108 // Start by computing a new prototype for the function, which is the same as
109 // the old function, but has modified arguments.
110 FunctionType *FTy = F->getFunctionType();
111 std::vector<Type *> Params;
113 using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
115 // ScalarizedElements - If we are promoting a pointer that has elements
116 // accessed out of it, keep track of which elements are accessed so that we
117 // can add one argument for each.
119 // Arguments that are directly loaded will have a zero element value here, to
120 // handle cases where there are both a direct load and GEP accesses.
121 std::map<Argument *, ScalarizeTable> ScalarizedElements;
123 // OriginalLoads - Keep track of a representative load instruction from the
124 // original function so that we can tell the alias analysis implementation
125 // what the new GEP/Load instructions we are inserting look like.
126 // We need to keep the original loads for each argument and the elements
127 // of the argument that are accessed.
128 std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
130 // Attribute - Keep track of the parameter attributes for the arguments
131 // that we are *not* promoting. For the ones that we do promote, the parameter
132 // attributes are lost
133 SmallVector<AttributeSet, 8> ArgAttrVec;
134 AttributeList PAL = F->getAttributes();
136 // First, determine the new argument list
137 unsigned ArgNo = 0;
138 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
139 ++I, ++ArgNo) {
140 if (ByValArgsToTransform.count(&*I)) {
141 // Simple byval argument? Just add all the struct element types.
142 Type *AgTy = I->getParamByValType();
143 StructType *STy = cast<StructType>(AgTy);
144 llvm::append_range(Params, STy->elements());
145 ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
146 AttributeSet());
147 ++NumByValArgsPromoted;
148 } else if (!ArgsToPromote.count(&*I)) {
149 // Unchanged argument
150 Params.push_back(I->getType());
151 ArgAttrVec.push_back(PAL.getParamAttrs(ArgNo));
152 } else if (I->use_empty()) {
153 // Dead argument (which are always marked as promotable)
154 ++NumArgumentsDead;
155 } else {
156 // Okay, this is being promoted. This means that the only uses are loads
157 // or GEPs which are only used by loads
159 // In this table, we will track which indices are loaded from the argument
160 // (where direct loads are tracked as no indices).
161 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
162 for (User *U : make_early_inc_range(I->users())) {
163 Instruction *UI = cast<Instruction>(U);
164 Type *SrcTy;
165 if (LoadInst *L = dyn_cast<LoadInst>(UI))
166 SrcTy = L->getType();
167 else
168 SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
169 // Skip dead GEPs and remove them.
170 if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
171 UI->eraseFromParent();
172 continue;
175 IndicesVector Indices;
176 Indices.reserve(UI->getNumOperands() - 1);
177 // Since loads will only have a single operand, and GEPs only a single
178 // non-index operand, this will record direct loads without any indices,
179 // and gep+loads with the GEP indices.
180 for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
181 II != IE; ++II)
182 Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
183 // GEPs with a single 0 index can be merged with direct loads
184 if (Indices.size() == 1 && Indices.front() == 0)
185 Indices.clear();
186 ArgIndices.insert(std::make_pair(SrcTy, Indices));
187 LoadInst *OrigLoad;
188 if (LoadInst *L = dyn_cast<LoadInst>(UI))
189 OrigLoad = L;
190 else
191 // Take any load, we will use it only to update Alias Analysis
192 OrigLoad = cast<LoadInst>(UI->user_back());
193 OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
196 // Add a parameter to the function for each element passed in.
197 for (const auto &ArgIndex : ArgIndices) {
198 // not allowed to dereference ->begin() if size() is 0
199 Params.push_back(GetElementPtrInst::getIndexedType(
200 cast<PointerType>(I->getType())->getElementType(),
201 ArgIndex.second));
202 ArgAttrVec.push_back(AttributeSet());
203 assert(Params.back());
206 if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
207 ++NumArgumentsPromoted;
208 else
209 ++NumAggregatesPromoted;
213 Type *RetTy = FTy->getReturnType();
215 // Construct the new function type using the new arguments.
216 FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
218 // Create the new function body and insert it into the module.
219 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
220 F->getName());
221 NF->copyAttributesFrom(F);
222 NF->copyMetadata(F, 0);
224 // The new function will have the !dbg metadata copied from the original
225 // function. The original function may not be deleted, and dbg metadata need
226 // to be unique so we need to drop it.
227 F->setSubprogram(nullptr);
229 LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
230 << "From: " << *F);
232 // Recompute the parameter attributes list based on the new arguments for
233 // the function.
234 NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttrs(),
235 PAL.getRetAttrs(), ArgAttrVec));
236 ArgAttrVec.clear();
238 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
239 NF->takeName(F);
241 // Loop over all of the callers of the function, transforming the call sites
242 // to pass in the loaded pointers.
244 SmallVector<Value *, 16> Args;
245 const DataLayout &DL = F->getParent()->getDataLayout();
246 while (!F->use_empty()) {
247 CallBase &CB = cast<CallBase>(*F->user_back());
248 assert(CB.getCalledFunction() == F);
249 const AttributeList &CallPAL = CB.getAttributes();
250 IRBuilder<NoFolder> IRB(&CB);
252 // Loop over the operands, inserting GEP and loads in the caller as
253 // appropriate.
254 auto AI = CB.arg_begin();
255 ArgNo = 0;
256 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
257 ++I, ++AI, ++ArgNo)
258 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
259 Args.push_back(*AI); // Unmodified argument
260 ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
261 } else if (ByValArgsToTransform.count(&*I)) {
262 // Emit a GEP and load for each element of the struct.
263 Type *AgTy = I->getParamByValType();
264 StructType *STy = cast<StructType>(AgTy);
265 Value *Idxs[2] = {
266 ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
267 const StructLayout *SL = DL.getStructLayout(STy);
268 Align StructAlign = *I->getParamAlign();
269 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
270 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
271 auto *Idx =
272 IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
273 // TODO: Tell AA about the new values?
274 Align Alignment =
275 commonAlignment(StructAlign, SL->getElementOffset(i));
276 Args.push_back(IRB.CreateAlignedLoad(
277 STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
278 ArgAttrVec.push_back(AttributeSet());
280 } else if (!I->use_empty()) {
281 // Non-dead argument: insert GEPs and loads as appropriate.
282 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
283 // Store the Value* version of the indices in here, but declare it now
284 // for reuse.
285 std::vector<Value *> Ops;
286 for (const auto &ArgIndex : ArgIndices) {
287 Value *V = *AI;
288 LoadInst *OrigLoad =
289 OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
290 if (!ArgIndex.second.empty()) {
291 Ops.reserve(ArgIndex.second.size());
292 Type *ElTy = V->getType();
293 for (auto II : ArgIndex.second) {
294 // Use i32 to index structs, and i64 for others (pointers/arrays).
295 // This satisfies GEP constraints.
296 Type *IdxTy =
297 (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
298 : Type::getInt64Ty(F->getContext()));
299 Ops.push_back(ConstantInt::get(IdxTy, II));
300 // Keep track of the type we're currently indexing.
301 if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
302 ElTy = ElPTy->getElementType();
303 else
304 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
306 // And create a GEP to extract those indices.
307 V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
308 Ops.clear();
310 // Since we're replacing a load make sure we take the alignment
311 // of the previous load.
312 LoadInst *newLoad =
313 IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
314 newLoad->setAlignment(OrigLoad->getAlign());
315 // Transfer the AA info too.
316 AAMDNodes AAInfo;
317 OrigLoad->getAAMetadata(AAInfo);
318 newLoad->setAAMetadata(AAInfo);
320 Args.push_back(newLoad);
321 ArgAttrVec.push_back(AttributeSet());
325 // Push any varargs arguments on the list.
326 for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
327 Args.push_back(*AI);
328 ArgAttrVec.push_back(CallPAL.getParamAttrs(ArgNo));
331 SmallVector<OperandBundleDef, 1> OpBundles;
332 CB.getOperandBundlesAsDefs(OpBundles);
334 CallBase *NewCS = nullptr;
335 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
336 NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
337 Args, OpBundles, "", &CB);
338 } else {
339 auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
340 NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
341 NewCS = NewCall;
343 NewCS->setCallingConv(CB.getCallingConv());
344 NewCS->setAttributes(AttributeList::get(F->getContext(),
345 CallPAL.getFnAttrs(),
346 CallPAL.getRetAttrs(), ArgAttrVec));
347 NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
348 Args.clear();
349 ArgAttrVec.clear();
351 // Update the callgraph to know that the callsite has been transformed.
352 if (ReplaceCallSite)
353 (*ReplaceCallSite)(CB, *NewCS);
355 if (!CB.use_empty()) {
356 CB.replaceAllUsesWith(NewCS);
357 NewCS->takeName(&CB);
360 // Finally, remove the old call from the program, reducing the use-count of
361 // F.
362 CB.eraseFromParent();
365 // Since we have now created the new function, splice the body of the old
366 // function right into the new function, leaving the old rotting hulk of the
367 // function empty.
368 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
370 // Loop over the argument list, transferring uses of the old arguments over to
371 // the new arguments, also transferring over the names as well.
372 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
373 I2 = NF->arg_begin();
374 I != E; ++I) {
375 if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
376 // If this is an unmodified argument, move the name and users over to the
377 // new version.
378 I->replaceAllUsesWith(&*I2);
379 I2->takeName(&*I);
380 ++I2;
381 continue;
384 if (ByValArgsToTransform.count(&*I)) {
385 // In the callee, we create an alloca, and store each of the new incoming
386 // arguments into the alloca.
387 Instruction *InsertPt = &NF->begin()->front();
389 // Just add all the struct element types.
390 Type *AgTy = I->getParamByValType();
391 Align StructAlign = *I->getParamAlign();
392 Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
393 StructAlign, "", InsertPt);
394 StructType *STy = cast<StructType>(AgTy);
395 Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
396 nullptr};
397 const StructLayout *SL = DL.getStructLayout(STy);
399 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
400 Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
401 Value *Idx = GetElementPtrInst::Create(
402 AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
403 InsertPt);
404 I2->setName(I->getName() + "." + Twine(i));
405 Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
406 new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
409 // Anything that used the arg should now use the alloca.
410 I->replaceAllUsesWith(TheAlloca);
411 TheAlloca->takeName(&*I);
412 continue;
415 // There potentially are metadata uses for things like llvm.dbg.value.
416 // Replace them with undef, after handling the other regular uses.
417 auto RauwUndefMetadata = make_scope_exit(
418 [&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
420 if (I->use_empty())
421 continue;
423 // Otherwise, if we promoted this argument, then all users are load
424 // instructions (or GEPs with only load users), and all loads should be
425 // using the new argument that we added.
426 ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
428 while (!I->use_empty()) {
429 if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
430 assert(ArgIndices.begin()->second.empty() &&
431 "Load element should sort to front!");
432 I2->setName(I->getName() + ".val");
433 LI->replaceAllUsesWith(&*I2);
434 LI->eraseFromParent();
435 LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
436 << "' in function '" << F->getName() << "'\n");
437 } else {
438 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
439 assert(!GEP->use_empty() &&
440 "GEPs without uses should be cleaned up already");
441 IndicesVector Operands;
442 Operands.reserve(GEP->getNumIndices());
443 for (const Use &Idx : GEP->indices())
444 Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
446 // GEPs with a single 0 index can be merged with direct loads
447 if (Operands.size() == 1 && Operands.front() == 0)
448 Operands.clear();
450 Function::arg_iterator TheArg = I2;
451 for (ScalarizeTable::iterator It = ArgIndices.begin();
452 It->second != Operands; ++It, ++TheArg) {
453 assert(It != ArgIndices.end() && "GEP not handled??");
456 TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
457 make_range(Operands.begin(), Operands.end())));
459 LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
460 << "' of function '" << NF->getName() << "'\n");
462 // All of the uses must be load instructions. Replace them all with
463 // the argument specified by ArgNo.
464 while (!GEP->use_empty()) {
465 LoadInst *L = cast<LoadInst>(GEP->user_back());
466 L->replaceAllUsesWith(&*TheArg);
467 L->eraseFromParent();
469 GEP->eraseFromParent();
472 // Increment I2 past all of the arguments added for this promoted pointer.
473 std::advance(I2, ArgIndices.size());
476 return NF;
479 /// Return true if we can prove that all callees pass in a valid pointer for the
480 /// specified function argument.
481 static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
482 Function *Callee = Arg->getParent();
483 const DataLayout &DL = Callee->getParent()->getDataLayout();
485 unsigned ArgNo = Arg->getArgNo();
487 // Look at all call sites of the function. At this point we know we only have
488 // direct callees.
489 for (User *U : Callee->users()) {
490 CallBase &CB = cast<CallBase>(*U);
492 if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
493 return false;
495 return true;
498 /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
499 /// that is greater than or equal to the size of prefix, and each of the
500 /// elements in Prefix is the same as the corresponding elements in Longer.
502 /// This means it also returns true when Prefix and Longer are equal!
503 static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
504 if (Prefix.size() > Longer.size())
505 return false;
506 return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
509 /// Checks if Indices, or a prefix of Indices, is in Set.
510 static bool prefixIn(const IndicesVector &Indices,
511 std::set<IndicesVector> &Set) {
512 std::set<IndicesVector>::iterator Low;
513 Low = Set.upper_bound(Indices);
514 if (Low != Set.begin())
515 Low--;
516 // Low is now the last element smaller than or equal to Indices. This means
517 // it points to a prefix of Indices (possibly Indices itself), if such
518 // prefix exists.
520 // This load is safe if any prefix of its operands is safe to load.
521 return Low != Set.end() && isPrefix(*Low, Indices);
524 /// Mark the given indices (ToMark) as safe in the given set of indices
525 /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
526 /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
527 /// already. Furthermore, any indices that Indices is itself a prefix of, are
528 /// removed from Safe (since they are implicitely safe because of Indices now).
529 static void markIndicesSafe(const IndicesVector &ToMark,
530 std::set<IndicesVector> &Safe) {
531 std::set<IndicesVector>::iterator Low;
532 Low = Safe.upper_bound(ToMark);
533 // Guard against the case where Safe is empty
534 if (Low != Safe.begin())
535 Low--;
536 // Low is now the last element smaller than or equal to Indices. This
537 // means it points to a prefix of Indices (possibly Indices itself), if
538 // such prefix exists.
539 if (Low != Safe.end()) {
540 if (isPrefix(*Low, ToMark))
541 // If there is already a prefix of these indices (or exactly these
542 // indices) marked a safe, don't bother adding these indices
543 return;
545 // Increment Low, so we can use it as a "insert before" hint
546 ++Low;
548 // Insert
549 Low = Safe.insert(Low, ToMark);
550 ++Low;
551 // If there we're a prefix of longer index list(s), remove those
552 std::set<IndicesVector>::iterator End = Safe.end();
553 while (Low != End && isPrefix(ToMark, *Low)) {
554 std::set<IndicesVector>::iterator Remove = Low;
555 ++Low;
556 Safe.erase(Remove);
560 /// isSafeToPromoteArgument - As you might guess from the name of this method,
561 /// it checks to see if it is both safe and useful to promote the argument.
562 /// This method limits promotion of aggregates to only promote up to three
563 /// elements of the aggregate in order to avoid exploding the number of
564 /// arguments passed in.
565 static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
566 unsigned MaxElements) {
567 using GEPIndicesSet = std::set<IndicesVector>;
569 // Quick exit for unused arguments
570 if (Arg->use_empty())
571 return true;
573 // We can only promote this argument if all of the uses are loads, or are GEP
574 // instructions (with constant indices) that are subsequently loaded.
576 // Promoting the argument causes it to be loaded in the caller
577 // unconditionally. This is only safe if we can prove that either the load
578 // would have happened in the callee anyway (ie, there is a load in the entry
579 // block) or the pointer passed in at every call site is guaranteed to be
580 // valid.
581 // In the former case, invalid loads can happen, but would have happened
582 // anyway, in the latter case, invalid loads won't happen. This prevents us
583 // from introducing an invalid load that wouldn't have happened in the
584 // original code.
586 // This set will contain all sets of indices that are loaded in the entry
587 // block, and thus are safe to unconditionally load in the caller.
588 GEPIndicesSet SafeToUnconditionallyLoad;
590 // This set contains all the sets of indices that we are planning to promote.
591 // This makes it possible to limit the number of arguments added.
592 GEPIndicesSet ToPromote;
594 // If the pointer is always valid, any load with first index 0 is valid.
596 if (ByValTy)
597 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
599 // Whenever a new underlying type for the operand is found, make sure it's
600 // consistent with the GEPs and loads we've already seen and, if necessary,
601 // use it to see if all incoming pointers are valid (which implies the 0-index
602 // is safe).
603 Type *BaseTy = ByValTy;
604 auto UpdateBaseTy = [&](Type *NewBaseTy) {
605 if (BaseTy)
606 return BaseTy == NewBaseTy;
608 BaseTy = NewBaseTy;
609 if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
610 assert(SafeToUnconditionallyLoad.empty());
611 SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
614 return true;
617 // First, iterate the entry block and mark loads of (geps of) arguments as
618 // safe.
619 BasicBlock &EntryBlock = Arg->getParent()->front();
620 // Declare this here so we can reuse it
621 IndicesVector Indices;
622 for (Instruction &I : EntryBlock)
623 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
624 Value *V = LI->getPointerOperand();
625 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
626 V = GEP->getPointerOperand();
627 if (V == Arg) {
628 // This load actually loads (part of) Arg? Check the indices then.
629 Indices.reserve(GEP->getNumIndices());
630 for (Use &Idx : GEP->indices())
631 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
632 Indices.push_back(CI->getSExtValue());
633 else
634 // We found a non-constant GEP index for this argument? Bail out
635 // right away, can't promote this argument at all.
636 return false;
638 if (!UpdateBaseTy(GEP->getSourceElementType()))
639 return false;
641 // Indices checked out, mark them as safe
642 markIndicesSafe(Indices, SafeToUnconditionallyLoad);
643 Indices.clear();
645 } else if (V == Arg) {
646 // Direct loads are equivalent to a GEP with a single 0 index.
647 markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
649 if (BaseTy && LI->getType() != BaseTy)
650 return false;
652 BaseTy = LI->getType();
656 // Now, iterate all uses of the argument to see if there are any uses that are
657 // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
658 SmallVector<LoadInst *, 16> Loads;
659 IndicesVector Operands;
660 for (Use &U : Arg->uses()) {
661 User *UR = U.getUser();
662 Operands.clear();
663 if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
664 // Don't hack volatile/atomic loads
665 if (!LI->isSimple())
666 return false;
667 Loads.push_back(LI);
668 // Direct loads are equivalent to a GEP with a zero index and then a load.
669 Operands.push_back(0);
671 if (!UpdateBaseTy(LI->getType()))
672 return false;
673 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
674 if (GEP->use_empty()) {
675 // Dead GEP's cause trouble later. Just remove them if we run into
676 // them.
677 continue;
680 if (!UpdateBaseTy(GEP->getSourceElementType()))
681 return false;
683 // Ensure that all of the indices are constants.
684 for (Use &Idx : GEP->indices())
685 if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
686 Operands.push_back(C->getSExtValue());
687 else
688 return false; // Not a constant operand GEP!
690 // Ensure that the only users of the GEP are load instructions.
691 for (User *GEPU : GEP->users())
692 if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
693 // Don't hack volatile/atomic loads
694 if (!LI->isSimple())
695 return false;
696 Loads.push_back(LI);
697 } else {
698 // Other uses than load?
699 return false;
701 } else {
702 return false; // Not a load or a GEP.
705 // Now, see if it is safe to promote this load / loads of this GEP. Loading
706 // is safe if Operands, or a prefix of Operands, is marked as safe.
707 if (!prefixIn(Operands, SafeToUnconditionallyLoad))
708 return false;
710 // See if we are already promoting a load with these indices. If not, check
711 // to make sure that we aren't promoting too many elements. If so, nothing
712 // to do.
713 if (ToPromote.find(Operands) == ToPromote.end()) {
714 if (MaxElements > 0 && ToPromote.size() == MaxElements) {
715 LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
716 << Arg->getName()
717 << "' because it would require adding more "
718 << "than " << MaxElements
719 << " arguments to the function.\n");
720 // We limit aggregate promotion to only promoting up to a fixed number
721 // of elements of the aggregate.
722 return false;
724 ToPromote.insert(std::move(Operands));
728 if (Loads.empty())
729 return true; // No users, this is a dead argument.
731 // Okay, now we know that the argument is only used by load instructions and
732 // it is safe to unconditionally perform all of them. Use alias analysis to
733 // check to see if the pointer is guaranteed to not be modified from entry of
734 // the function to each of the load instructions.
736 // Because there could be several/many load instructions, remember which
737 // blocks we know to be transparent to the load.
738 df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
740 for (LoadInst *Load : Loads) {
741 // Check to see if the load is invalidated from the start of the block to
742 // the load itself.
743 BasicBlock *BB = Load->getParent();
745 MemoryLocation Loc = MemoryLocation::get(Load);
746 if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
747 return false; // Pointer is invalidated!
749 // Now check every path from the entry block to the load for transparency.
750 // To do this, we perform a depth first search on the inverse CFG from the
751 // loading block.
752 for (BasicBlock *P : predecessors(BB)) {
753 for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
754 if (AAR.canBasicBlockModify(*TranspBB, Loc))
755 return false;
759 // If the path from the entry of the function to each load is free of
760 // instructions that potentially invalidate the load, we can make the
761 // transformation!
762 return true;
765 bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
766 // There is no size information, so be conservative.
767 if (!type->isSized())
768 return false;
770 // If the alloc size is not equal to the storage size, then there are padding
771 // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
772 if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
773 return false;
775 // FIXME: This isn't the right way to check for padding in vectors with
776 // non-byte-size elements.
777 if (VectorType *seqTy = dyn_cast<VectorType>(type))
778 return isDenselyPacked(seqTy->getElementType(), DL);
780 // For array types, check for padding within members.
781 if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
782 return isDenselyPacked(seqTy->getElementType(), DL);
784 if (!isa<StructType>(type))
785 return true;
787 // Check for padding within and between elements of a struct.
788 StructType *StructTy = cast<StructType>(type);
789 const StructLayout *Layout = DL.getStructLayout(StructTy);
790 uint64_t StartPos = 0;
791 for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
792 Type *ElTy = StructTy->getElementType(i);
793 if (!isDenselyPacked(ElTy, DL))
794 return false;
795 if (StartPos != Layout->getElementOffsetInBits(i))
796 return false;
797 StartPos += DL.getTypeAllocSizeInBits(ElTy);
800 return true;
803 /// Checks if the padding bytes of an argument could be accessed.
804 static bool canPaddingBeAccessed(Argument *arg) {
805 assert(arg->hasByValAttr());
807 // Track all the pointers to the argument to make sure they are not captured.
808 SmallPtrSet<Value *, 16> PtrValues;
809 PtrValues.insert(arg);
811 // Track all of the stores.
812 SmallVector<StoreInst *, 16> Stores;
814 // Scan through the uses recursively to make sure the pointer is always used
815 // sanely.
816 SmallVector<Value *, 16> WorkList(arg->users());
817 while (!WorkList.empty()) {
818 Value *V = WorkList.pop_back_val();
819 if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
820 if (PtrValues.insert(V).second)
821 llvm::append_range(WorkList, V->users());
822 } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
823 Stores.push_back(Store);
824 } else if (!isa<LoadInst>(V)) {
825 return true;
829 // Check to make sure the pointers aren't captured
830 for (StoreInst *Store : Stores)
831 if (PtrValues.count(Store->getValueOperand()))
832 return true;
834 return false;
837 bool ArgumentPromotionPass::areFunctionArgsABICompatible(
838 const Function &F, const TargetTransformInfo &TTI,
839 SmallPtrSetImpl<Argument *> &ArgsToPromote,
840 SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
841 for (const Use &U : F.uses()) {
842 CallBase *CB = dyn_cast<CallBase>(U.getUser());
843 if (!CB)
844 return false;
845 const Function *Caller = CB->getCaller();
846 const Function *Callee = CB->getCalledFunction();
847 if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
848 !TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
849 return false;
851 return true;
854 /// PromoteArguments - This method checks the specified function to see if there
855 /// are any promotable arguments and if it is safe to promote the function (for
856 /// example, all callers are direct). If safe to promote some arguments, it
857 /// calls the DoPromotion method.
858 static Function *
859 promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
860 unsigned MaxElements,
861 Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
862 ReplaceCallSite,
863 const TargetTransformInfo &TTI) {
864 // Don't perform argument promotion for naked functions; otherwise we can end
865 // up removing parameters that are seemingly 'not used' as they are referred
866 // to in the assembly.
867 if(F->hasFnAttribute(Attribute::Naked))
868 return nullptr;
870 // Make sure that it is local to this module.
871 if (!F->hasLocalLinkage())
872 return nullptr;
874 // Don't promote arguments for variadic functions. Adding, removing, or
875 // changing non-pack parameters can change the classification of pack
876 // parameters. Frontends encode that classification at the call site in the
877 // IR, while in the callee the classification is determined dynamically based
878 // on the number of registers consumed so far.
879 if (F->isVarArg())
880 return nullptr;
882 // Don't transform functions that receive inallocas, as the transformation may
883 // not be safe depending on calling convention.
884 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
885 return nullptr;
887 // First check: see if there are any pointer arguments! If not, quick exit.
888 SmallVector<Argument *, 16> PointerArgs;
889 for (Argument &I : F->args())
890 if (I.getType()->isPointerTy())
891 PointerArgs.push_back(&I);
892 if (PointerArgs.empty())
893 return nullptr;
895 // Second check: make sure that all callers are direct callers. We can't
896 // transform functions that have indirect callers. Also see if the function
897 // is self-recursive and check that target features are compatible.
898 bool isSelfRecursive = false;
899 for (Use &U : F->uses()) {
900 CallBase *CB = dyn_cast<CallBase>(U.getUser());
901 // Must be a direct call.
902 if (CB == nullptr || !CB->isCallee(&U))
903 return nullptr;
905 // Can't change signature of musttail callee
906 if (CB->isMustTailCall())
907 return nullptr;
909 if (CB->getParent()->getParent() == F)
910 isSelfRecursive = true;
913 // Can't change signature of musttail caller
914 // FIXME: Support promoting whole chain of musttail functions
915 for (BasicBlock &BB : *F)
916 if (BB.getTerminatingMustTailCall())
917 return nullptr;
919 const DataLayout &DL = F->getParent()->getDataLayout();
921 AAResults &AAR = AARGetter(*F);
923 // Check to see which arguments are promotable. If an argument is promotable,
924 // add it to ArgsToPromote.
925 SmallPtrSet<Argument *, 8> ArgsToPromote;
926 SmallPtrSet<Argument *, 8> ByValArgsToTransform;
927 for (Argument *PtrArg : PointerArgs) {
928 Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
930 // Replace sret attribute with noalias. This reduces register pressure by
931 // avoiding a register copy.
932 if (PtrArg->hasStructRetAttr()) {
933 unsigned ArgNo = PtrArg->getArgNo();
934 F->removeParamAttr(ArgNo, Attribute::StructRet);
935 F->addParamAttr(ArgNo, Attribute::NoAlias);
936 for (Use &U : F->uses()) {
937 CallBase &CB = cast<CallBase>(*U.getUser());
938 CB.removeParamAttr(ArgNo, Attribute::StructRet);
939 CB.addParamAttr(ArgNo, Attribute::NoAlias);
943 // If this is a byval argument, and if the aggregate type is small, just
944 // pass the elements, which is always safe, if the passed value is densely
945 // packed or if we can prove the padding bytes are never accessed.
947 // Only handle arguments with specified alignment; if it's unspecified, the
948 // actual alignment of the argument is target-specific.
949 bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
950 (ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
951 !canPaddingBeAccessed(PtrArg));
952 if (isSafeToPromote) {
953 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
954 if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
955 LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
956 << PtrArg->getName()
957 << "' because it would require adding more"
958 << " than " << MaxElements
959 << " arguments to the function.\n");
960 continue;
963 // If all the elements are single-value types, we can promote it.
964 bool AllSimple = true;
965 for (const auto *EltTy : STy->elements()) {
966 if (!EltTy->isSingleValueType()) {
967 AllSimple = false;
968 break;
972 // Safe to transform, don't even bother trying to "promote" it.
973 // Passing the elements as a scalar will allow sroa to hack on
974 // the new alloca we introduce.
975 if (AllSimple) {
976 ByValArgsToTransform.insert(PtrArg);
977 continue;
982 // If the argument is a recursive type and we're in a recursive
983 // function, we could end up infinitely peeling the function argument.
984 if (isSelfRecursive) {
985 if (StructType *STy = dyn_cast<StructType>(AgTy)) {
986 bool RecursiveType =
987 llvm::is_contained(STy->elements(), PtrArg->getType());
988 if (RecursiveType)
989 continue;
993 // Otherwise, see if we can promote the pointer to its value.
994 Type *ByValTy =
995 PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
996 if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
997 ArgsToPromote.insert(PtrArg);
1000 // No promotable pointer arguments.
1001 if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
1002 return nullptr;
1004 if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
1005 *F, TTI, ArgsToPromote, ByValArgsToTransform))
1006 return nullptr;
1008 return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
1011 PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
1012 CGSCCAnalysisManager &AM,
1013 LazyCallGraph &CG,
1014 CGSCCUpdateResult &UR) {
1015 bool Changed = false, LocalChange;
1017 // Iterate until we stop promoting from this SCC.
1018 do {
1019 LocalChange = false;
1021 for (LazyCallGraph::Node &N : C) {
1022 Function &OldF = N.getFunction();
1024 FunctionAnalysisManager &FAM =
1025 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1026 // FIXME: This lambda must only be used with this function. We should
1027 // skip the lambda and just get the AA results directly.
1028 auto AARGetter = [&](Function &F) -> AAResults & {
1029 assert(&F == &OldF && "Called with an unexpected function!");
1030 return FAM.getResult<AAManager>(F);
1033 const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
1034 Function *NewF =
1035 promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
1036 if (!NewF)
1037 continue;
1038 LocalChange = true;
1040 // Directly substitute the functions in the call graph. Note that this
1041 // requires the old function to be completely dead and completely
1042 // replaced by the new function. It does no call graph updates, it merely
1043 // swaps out the particular function mapped to a particular node in the
1044 // graph.
1045 C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
1046 FAM.clear(OldF, OldF.getName());
1047 OldF.eraseFromParent();
1050 Changed |= LocalChange;
1051 } while (LocalChange);
1053 if (!Changed)
1054 return PreservedAnalyses::all();
1056 return PreservedAnalyses::none();
1059 namespace {
1061 /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
1062 struct ArgPromotion : public CallGraphSCCPass {
1063 // Pass identification, replacement for typeid
1064 static char ID;
1066 explicit ArgPromotion(unsigned MaxElements = 3)
1067 : CallGraphSCCPass(ID), MaxElements(MaxElements) {
1068 initializeArgPromotionPass(*PassRegistry::getPassRegistry());
1071 void getAnalysisUsage(AnalysisUsage &AU) const override {
1072 AU.addRequired<AssumptionCacheTracker>();
1073 AU.addRequired<TargetLibraryInfoWrapperPass>();
1074 AU.addRequired<TargetTransformInfoWrapperPass>();
1075 getAAResultsAnalysisUsage(AU);
1076 CallGraphSCCPass::getAnalysisUsage(AU);
1079 bool runOnSCC(CallGraphSCC &SCC) override;
1081 private:
1082 using llvm::Pass::doInitialization;
1084 bool doInitialization(CallGraph &CG) override;
1086 /// The maximum number of elements to expand, or 0 for unlimited.
1087 unsigned MaxElements;
1090 } // end anonymous namespace
1092 char ArgPromotion::ID = 0;
1094 INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
1095 "Promote 'by reference' arguments to scalars", false,
1096 false)
1097 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1098 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1099 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1100 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1101 INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
1102 "Promote 'by reference' arguments to scalars", false, false)
1104 Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
1105 return new ArgPromotion(MaxElements);
1108 bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
1109 if (skipSCC(SCC))
1110 return false;
1112 // Get the callgraph information that we need to update to reflect our
1113 // changes.
1114 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1116 LegacyAARGetter AARGetter(*this);
1118 bool Changed = false, LocalChange;
1120 // Iterate until we stop promoting from this SCC.
1121 do {
1122 LocalChange = false;
1123 // Attempt to promote arguments from all functions in this SCC.
1124 for (CallGraphNode *OldNode : SCC) {
1125 Function *OldF = OldNode->getFunction();
1126 if (!OldF)
1127 continue;
1129 auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
1130 Function *Caller = OldCS.getParent()->getParent();
1131 CallGraphNode *NewCalleeNode =
1132 CG.getOrInsertFunction(NewCS.getCalledFunction());
1133 CallGraphNode *CallerNode = CG[Caller];
1134 CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
1135 cast<CallBase>(NewCS), NewCalleeNode);
1138 const TargetTransformInfo &TTI =
1139 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
1140 if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
1141 {ReplaceCallSite}, TTI)) {
1142 LocalChange = true;
1144 // Update the call graph for the newly promoted function.
1145 CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
1146 NewNode->stealCalledFunctionsFrom(OldNode);
1147 if (OldNode->getNumReferences() == 0)
1148 delete CG.removeFunctionFromModule(OldNode);
1149 else
1150 OldF->setLinkage(Function::ExternalLinkage);
1152 // And updat ethe SCC we're iterating as well.
1153 SCC.ReplaceNode(OldNode, NewNode);
1156 // Remember that we changed something.
1157 Changed |= LocalChange;
1158 } while (LocalChange);
1160 return Changed;
1163 bool ArgPromotion::doInitialization(CallGraph &CG) {
1164 return CallGraphSCCPass::doInitialization(CG);