[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / CalledValuePropagation.cpp
blob74f11fa309592e8efc2eed68c1ed45fd44d9569f
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that attaches !callees metadata to
10 // indirect call sites. For a given call site, the metadata, if present,
11 // indicates the set of functions the call site could possibly target at
12 // run-time. This metadata is added to indirect call sites when the set of
13 // possible targets can be determined by analysis and is known to be small. The
14 // analysis driving the transformation is similar to constant propagation and
15 // makes uses of the generic sparse propagation solver.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
20 #include "llvm/Analysis/SparsePropagation.h"
21 #include "llvm/Analysis/ValueLatticeUtils.h"
22 #include "llvm/IR/MDBuilder.h"
23 #include "llvm/InitializePasses.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Transforms/IPO.h"
26 using namespace llvm;
28 #define DEBUG_TYPE "called-value-propagation"
30 /// The maximum number of functions to track per lattice value. Once the number
31 /// of functions a call site can possibly target exceeds this threshold, it's
32 /// lattice value becomes overdefined. The number of possible lattice values is
33 /// bounded by Ch(F, M), where F is the number of functions in the module and M
34 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
35 /// likely can't do anything useful for call sites with a large number of
36 /// possible targets, anyway.
37 static cl::opt<unsigned> MaxFunctionsPerValue(
38 "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
39 cl::desc("The maximum number of functions to track per lattice value"));
41 namespace {
42 /// To enable interprocedural analysis, we assign LLVM values to the following
43 /// groups. The register group represents SSA registers, the return group
44 /// represents the return values of functions, and the memory group represents
45 /// in-memory values. An LLVM Value can technically be in more than one group.
46 /// It's necessary to distinguish these groups so we can, for example, track a
47 /// global variable separately from the value stored at its location.
48 enum class IPOGrouping { Register, Return, Memory };
50 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
51 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
53 /// The lattice value type used by our custom lattice function. It holds the
54 /// lattice state, and a set of functions.
55 class CVPLatticeVal {
56 public:
57 /// The states of the lattice values. Only the FunctionSet state is
58 /// interesting. It indicates the set of functions to which an LLVM value may
59 /// refer.
60 enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
62 /// Comparator for sorting the functions set. We want to keep the order
63 /// deterministic for testing, etc.
64 struct Compare {
65 bool operator()(const Function *LHS, const Function *RHS) const {
66 return LHS->getName() < RHS->getName();
70 CVPLatticeVal() : LatticeState(Undefined) {}
71 CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
72 CVPLatticeVal(std::vector<Function *> &&Functions)
73 : LatticeState(FunctionSet), Functions(std::move(Functions)) {
74 assert(llvm::is_sorted(this->Functions, Compare()));
77 /// Get a reference to the functions held by this lattice value. The number
78 /// of functions will be zero for states other than FunctionSet.
79 const std::vector<Function *> &getFunctions() const {
80 return Functions;
83 /// Returns true if the lattice value is in the FunctionSet state.
84 bool isFunctionSet() const { return LatticeState == FunctionSet; }
86 bool operator==(const CVPLatticeVal &RHS) const {
87 return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90 bool operator!=(const CVPLatticeVal &RHS) const {
91 return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94 private:
95 /// Holds the state this lattice value is in.
96 CVPLatticeStateTy LatticeState;
98 /// Holds functions indicating the possible targets of call sites. This set
99 /// is empty for lattice values in the undefined, overdefined, and untracked
100 /// states. The maximum size of the set is controlled by
101 /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
102 /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
103 /// small and efficiently copyable.
104 // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
105 std::vector<Function *> Functions;
108 /// The custom lattice function used by the generic sparse propagation solver.
109 /// It handles merging lattice values and computing new lattice values for
110 /// constants, arguments, values returned from trackable functions, and values
111 /// located in trackable global variables. It also computes the lattice values
112 /// that change as a result of executing instructions.
113 class CVPLatticeFunc
114 : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
115 public:
116 CVPLatticeFunc()
117 : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
118 CVPLatticeVal(CVPLatticeVal::Overdefined),
119 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
121 /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
122 CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
123 switch (Key.getInt()) {
124 case IPOGrouping::Register:
125 if (isa<Instruction>(Key.getPointer())) {
126 return getUndefVal();
127 } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
128 if (canTrackArgumentsInterprocedurally(A->getParent()))
129 return getUndefVal();
130 } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
131 return computeConstant(C);
133 return getOverdefinedVal();
134 case IPOGrouping::Memory:
135 case IPOGrouping::Return:
136 if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
137 if (canTrackGlobalVariableInterprocedurally(GV))
138 return computeConstant(GV->getInitializer());
139 } else if (auto *F = cast<Function>(Key.getPointer()))
140 if (canTrackReturnsInterprocedurally(F))
141 return getUndefVal();
143 return getOverdefinedVal();
146 /// Merge the two given lattice values. The interesting cases are merging two
147 /// FunctionSet values and a FunctionSet value with an Undefined value. For
148 /// these cases, we simply union the function sets. If the size of the union
149 /// is greater than the maximum functions we track, the merged value is
150 /// overdefined.
151 CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
152 if (X == getOverdefinedVal() || Y == getOverdefinedVal())
153 return getOverdefinedVal();
154 if (X == getUndefVal() && Y == getUndefVal())
155 return getUndefVal();
156 std::vector<Function *> Union;
157 std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
158 Y.getFunctions().begin(), Y.getFunctions().end(),
159 std::back_inserter(Union), CVPLatticeVal::Compare{});
160 if (Union.size() > MaxFunctionsPerValue)
161 return getOverdefinedVal();
162 return CVPLatticeVal(std::move(Union));
165 /// Compute the lattice values that change as a result of executing the given
166 /// instruction. The changed values are stored in \p ChangedValues. We handle
167 /// just a few kinds of instructions since we're only propagating values that
168 /// can be called.
169 void ComputeInstructionState(
170 Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
171 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
172 switch (I.getOpcode()) {
173 case Instruction::Call:
174 case Instruction::Invoke:
175 return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
176 case Instruction::Load:
177 return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
178 case Instruction::Ret:
179 return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
180 case Instruction::Select:
181 return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
182 case Instruction::Store:
183 return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
184 default:
185 return visitInst(I, ChangedValues, SS);
189 /// Print the given CVPLatticeVal to the specified stream.
190 void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
191 if (LV == getUndefVal())
192 OS << "Undefined ";
193 else if (LV == getOverdefinedVal())
194 OS << "Overdefined";
195 else if (LV == getUntrackedVal())
196 OS << "Untracked ";
197 else
198 OS << "FunctionSet";
201 /// Print the given CVPLatticeKey to the specified stream.
202 void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
203 if (Key.getInt() == IPOGrouping::Register)
204 OS << "<reg> ";
205 else if (Key.getInt() == IPOGrouping::Memory)
206 OS << "<mem> ";
207 else if (Key.getInt() == IPOGrouping::Return)
208 OS << "<ret> ";
209 if (isa<Function>(Key.getPointer()))
210 OS << Key.getPointer()->getName();
211 else
212 OS << *Key.getPointer();
215 /// We collect a set of indirect calls when visiting call sites. This method
216 /// returns a reference to that set.
217 SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
219 private:
220 /// Holds the indirect calls we encounter during the analysis. We will attach
221 /// metadata to these calls after the analysis indicating the functions the
222 /// calls can possibly target.
223 SmallPtrSet<CallBase *, 32> IndirectCalls;
225 /// Compute a new lattice value for the given constant. The constant, after
226 /// stripping any pointer casts, should be a Function. We ignore null
227 /// pointers as an optimization, since calling these values is undefined
228 /// behavior.
229 CVPLatticeVal computeConstant(Constant *C) {
230 if (isa<ConstantPointerNull>(C))
231 return CVPLatticeVal(CVPLatticeVal::FunctionSet);
232 if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
233 return CVPLatticeVal({F});
234 return getOverdefinedVal();
237 /// Handle return instructions. The function's return state is the merge of
238 /// the returned value state and the function's return state.
239 void visitReturn(ReturnInst &I,
240 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
241 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
242 Function *F = I.getParent()->getParent();
243 if (F->getReturnType()->isVoidTy())
244 return;
245 auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
246 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
247 ChangedValues[RetF] =
248 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
251 /// Handle call sites. The state of a called function's formal arguments is
252 /// the merge of the argument state with the call sites corresponding actual
253 /// argument state. The call site state is the merge of the call site state
254 /// with the returned value state of the called function.
255 void visitCallBase(CallBase &CB,
256 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
257 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
258 Function *F = CB.getCalledFunction();
259 auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
261 // If this is an indirect call, save it so we can quickly revisit it when
262 // attaching metadata.
263 if (!F)
264 IndirectCalls.insert(&CB);
266 // If we can't track the function's return values, there's nothing to do.
267 if (!F || !canTrackReturnsInterprocedurally(F)) {
268 // Void return, No need to create and update CVPLattice state as no one
269 // can use it.
270 if (CB.getType()->isVoidTy())
271 return;
272 ChangedValues[RegI] = getOverdefinedVal();
273 return;
276 // Inform the solver that the called function is executable, and perform
277 // the merges for the arguments and return value.
278 SS.MarkBlockExecutable(&F->front());
279 auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
280 for (Argument &A : F->args()) {
281 auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
282 auto RegActual =
283 CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
284 ChangedValues[RegFormal] =
285 MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
288 // Void return, No need to create and update CVPLattice state as no one can
289 // use it.
290 if (CB.getType()->isVoidTy())
291 return;
293 ChangedValues[RegI] =
294 MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
297 /// Handle select instructions. The select instruction state is the merge the
298 /// true and false value states.
299 void visitSelect(SelectInst &I,
300 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
301 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
302 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
303 auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
304 auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
305 ChangedValues[RegI] =
306 MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
309 /// Handle load instructions. If the pointer operand of the load is a global
310 /// variable, we attempt to track the value. The loaded value state is the
311 /// merge of the loaded value state with the global variable state.
312 void visitLoad(LoadInst &I,
313 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
314 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
315 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
316 if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
317 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
318 ChangedValues[RegI] =
319 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
320 } else {
321 ChangedValues[RegI] = getOverdefinedVal();
325 /// Handle store instructions. If the pointer operand of the store is a
326 /// global variable, we attempt to track the value. The global variable state
327 /// is the merge of the stored value state with the global variable state.
328 void visitStore(StoreInst &I,
329 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
330 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
331 auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
332 if (!GV)
333 return;
334 auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
335 auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
336 ChangedValues[MemGV] =
337 MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
340 /// Handle all other instructions. All other instructions are marked
341 /// overdefined.
342 void visitInst(Instruction &I,
343 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
344 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
345 // Simply bail if this instruction has no user.
346 if (I.use_empty())
347 return;
348 auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
349 ChangedValues[RegI] = getOverdefinedVal();
352 } // namespace
354 namespace llvm {
355 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
356 /// must translate between LatticeKeys and LLVM Values when adding Values to
357 /// its work list and inspecting the state of control-flow related values.
358 template <> struct LatticeKeyInfo<CVPLatticeKey> {
359 static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
360 return Key.getPointer();
362 static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
363 return CVPLatticeKey(V, IPOGrouping::Register);
366 } // namespace llvm
368 static bool runCVP(Module &M) {
369 // Our custom lattice function and generic sparse propagation solver.
370 CVPLatticeFunc Lattice;
371 SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
373 // For each function in the module, if we can't track its arguments, let the
374 // generic solver assume it is executable.
375 for (Function &F : M)
376 if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
377 Solver.MarkBlockExecutable(&F.front());
379 // Solver our custom lattice. In doing so, we will also build a set of
380 // indirect call sites.
381 Solver.Solve();
383 // Attach metadata to the indirect call sites that were collected indicating
384 // the set of functions they can possibly target.
385 bool Changed = false;
386 MDBuilder MDB(M.getContext());
387 for (CallBase *C : Lattice.getIndirectCalls()) {
388 auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
389 CVPLatticeVal LV = Solver.getExistingValueState(RegI);
390 if (!LV.isFunctionSet() || LV.getFunctions().empty())
391 continue;
392 MDNode *Callees = MDB.createCallees(LV.getFunctions());
393 C->setMetadata(LLVMContext::MD_callees, Callees);
394 Changed = true;
397 return Changed;
400 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
401 ModuleAnalysisManager &) {
402 runCVP(M);
403 return PreservedAnalyses::all();
406 namespace {
407 class CalledValuePropagationLegacyPass : public ModulePass {
408 public:
409 static char ID;
411 void getAnalysisUsage(AnalysisUsage &AU) const override {
412 AU.setPreservesAll();
415 CalledValuePropagationLegacyPass() : ModulePass(ID) {
416 initializeCalledValuePropagationLegacyPassPass(
417 *PassRegistry::getPassRegistry());
420 bool runOnModule(Module &M) override {
421 if (skipModule(M))
422 return false;
423 return runCVP(M);
426 } // namespace
428 char CalledValuePropagationLegacyPass::ID = 0;
429 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
430 "Called Value Propagation", false, false)
432 ModulePass *llvm::createCalledValuePropagationPass() {
433 return new CalledValuePropagationLegacyPass();