[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / DeadArgumentElimination.cpp
blobf95cffc71c08b29305953c79955abe2f9396da9f
1 //===- DeadArgumentElimination.cpp - Eliminate dead arguments -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass deletes dead arguments from internal functions. Dead argument
10 // elimination removes arguments which are directly dead, as well as arguments
11 // only passed into function calls as dead arguments of other functions. This
12 // pass also deletes dead return values in a similar way.
14 // This pass is often useful as a cleanup pass to run after aggressive
15 // interprocedural passes, which add possibly-dead arguments or return values.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/IPO/DeadArgumentElimination.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/NoFolder.h"
36 #include "llvm/IR/PassManager.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/Use.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/IPO.h"
47 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <utility>
51 #include <vector>
53 using namespace llvm;
55 #define DEBUG_TYPE "deadargelim"
57 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
58 STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
59 STATISTIC(NumArgumentsReplacedWithUndef,
60 "Number of unread args replaced with undef");
62 namespace {
64 /// DAE - The dead argument elimination pass.
65 class DAE : public ModulePass {
66 protected:
67 // DAH uses this to specify a different ID.
68 explicit DAE(char &ID) : ModulePass(ID) {}
70 public:
71 static char ID; // Pass identification, replacement for typeid
73 DAE() : ModulePass(ID) {
74 initializeDAEPass(*PassRegistry::getPassRegistry());
77 bool runOnModule(Module &M) override {
78 if (skipModule(M))
79 return false;
80 DeadArgumentEliminationPass DAEP(ShouldHackArguments());
81 ModuleAnalysisManager DummyMAM;
82 PreservedAnalyses PA = DAEP.run(M, DummyMAM);
83 return !PA.areAllPreserved();
86 virtual bool ShouldHackArguments() const { return false; }
89 } // end anonymous namespace
91 char DAE::ID = 0;
93 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
95 namespace {
97 /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
98 /// deletes arguments to functions which are external. This is only for use
99 /// by bugpoint.
100 struct DAH : public DAE {
101 static char ID;
103 DAH() : DAE(ID) {}
105 bool ShouldHackArguments() const override { return true; }
108 } // end anonymous namespace
110 char DAH::ID = 0;
112 INITIALIZE_PASS(DAH, "deadarghaX0r",
113 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
114 false, false)
116 /// createDeadArgEliminationPass - This pass removes arguments from functions
117 /// which are not used by the body of the function.
118 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
120 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
122 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
123 /// llvm.vastart is never called, the varargs list is dead for the function.
124 bool DeadArgumentEliminationPass::DeleteDeadVarargs(Function &Fn) {
125 assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
126 if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
128 // Ensure that the function is only directly called.
129 if (Fn.hasAddressTaken())
130 return false;
132 // Don't touch naked functions. The assembly might be using an argument, or
133 // otherwise rely on the frame layout in a way that this analysis will not
134 // see.
135 if (Fn.hasFnAttribute(Attribute::Naked)) {
136 return false;
139 // Okay, we know we can transform this function if safe. Scan its body
140 // looking for calls marked musttail or calls to llvm.vastart.
141 for (BasicBlock &BB : Fn) {
142 for (Instruction &I : BB) {
143 CallInst *CI = dyn_cast<CallInst>(&I);
144 if (!CI)
145 continue;
146 if (CI->isMustTailCall())
147 return false;
148 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
149 if (II->getIntrinsicID() == Intrinsic::vastart)
150 return false;
155 // If we get here, there are no calls to llvm.vastart in the function body,
156 // remove the "..." and adjust all the calls.
158 // Start by computing a new prototype for the function, which is the same as
159 // the old function, but doesn't have isVarArg set.
160 FunctionType *FTy = Fn.getFunctionType();
162 std::vector<Type *> Params(FTy->param_begin(), FTy->param_end());
163 FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
164 Params, false);
165 unsigned NumArgs = Params.size();
167 // Create the new function body and insert it into the module...
168 Function *NF = Function::Create(NFTy, Fn.getLinkage(), Fn.getAddressSpace());
169 NF->copyAttributesFrom(&Fn);
170 NF->setComdat(Fn.getComdat());
171 Fn.getParent()->getFunctionList().insert(Fn.getIterator(), NF);
172 NF->takeName(&Fn);
174 // Loop over all of the callers of the function, transforming the call sites
175 // to pass in a smaller number of arguments into the new function.
177 std::vector<Value *> Args;
178 for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
179 CallBase *CB = dyn_cast<CallBase>(*I++);
180 if (!CB)
181 continue;
183 // Pass all the same arguments.
184 Args.assign(CB->arg_begin(), CB->arg_begin() + NumArgs);
186 // Drop any attributes that were on the vararg arguments.
187 AttributeList PAL = CB->getAttributes();
188 if (!PAL.isEmpty()) {
189 SmallVector<AttributeSet, 8> ArgAttrs;
190 for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo)
191 ArgAttrs.push_back(PAL.getParamAttrs(ArgNo));
192 PAL = AttributeList::get(Fn.getContext(), PAL.getFnAttrs(),
193 PAL.getRetAttrs(), ArgAttrs);
196 SmallVector<OperandBundleDef, 1> OpBundles;
197 CB->getOperandBundlesAsDefs(OpBundles);
199 CallBase *NewCB = nullptr;
200 if (InvokeInst *II = dyn_cast<InvokeInst>(CB)) {
201 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
202 Args, OpBundles, "", CB);
203 } else {
204 NewCB = CallInst::Create(NF, Args, OpBundles, "", CB);
205 cast<CallInst>(NewCB)->setTailCallKind(
206 cast<CallInst>(CB)->getTailCallKind());
208 NewCB->setCallingConv(CB->getCallingConv());
209 NewCB->setAttributes(PAL);
210 NewCB->copyMetadata(*CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
212 Args.clear();
214 if (!CB->use_empty())
215 CB->replaceAllUsesWith(NewCB);
217 NewCB->takeName(CB);
219 // Finally, remove the old call from the program, reducing the use-count of
220 // F.
221 CB->eraseFromParent();
224 // Since we have now created the new function, splice the body of the old
225 // function right into the new function, leaving the old rotting hulk of the
226 // function empty.
227 NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
229 // Loop over the argument list, transferring uses of the old arguments over to
230 // the new arguments, also transferring over the names as well. While we're at
231 // it, remove the dead arguments from the DeadArguments list.
232 for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
233 I2 = NF->arg_begin(); I != E; ++I, ++I2) {
234 // Move the name and users over to the new version.
235 I->replaceAllUsesWith(&*I2);
236 I2->takeName(&*I);
239 // Clone metadatas from the old function, including debug info descriptor.
240 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
241 Fn.getAllMetadata(MDs);
242 for (auto MD : MDs)
243 NF->addMetadata(MD.first, *MD.second);
245 // Fix up any BlockAddresses that refer to the function.
246 Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
247 // Delete the bitcast that we just created, so that NF does not
248 // appear to be address-taken.
249 NF->removeDeadConstantUsers();
250 // Finally, nuke the old function.
251 Fn.eraseFromParent();
252 return true;
255 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
256 /// arguments that are unused, and changes the caller parameters to be undefined
257 /// instead.
258 bool DeadArgumentEliminationPass::RemoveDeadArgumentsFromCallers(Function &Fn) {
259 // We cannot change the arguments if this TU does not define the function or
260 // if the linker may choose a function body from another TU, even if the
261 // nominal linkage indicates that other copies of the function have the same
262 // semantics. In the below example, the dead load from %p may not have been
263 // eliminated from the linker-chosen copy of f, so replacing %p with undef
264 // in callers may introduce undefined behavior.
266 // define linkonce_odr void @f(i32* %p) {
267 // %v = load i32 %p
268 // ret void
269 // }
270 if (!Fn.hasExactDefinition())
271 return false;
273 // Functions with local linkage should already have been handled, except the
274 // fragile (variadic) ones which we can improve here.
275 if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
276 return false;
278 // Don't touch naked functions. The assembly might be using an argument, or
279 // otherwise rely on the frame layout in a way that this analysis will not
280 // see.
281 if (Fn.hasFnAttribute(Attribute::Naked))
282 return false;
284 if (Fn.use_empty())
285 return false;
287 SmallVector<unsigned, 8> UnusedArgs;
288 bool Changed = false;
290 AttrBuilder UBImplyingAttributes = AttributeFuncs::getUBImplyingAttributes();
291 for (Argument &Arg : Fn.args()) {
292 if (!Arg.hasSwiftErrorAttr() && Arg.use_empty() &&
293 !Arg.hasPassPointeeByValueCopyAttr()) {
294 if (Arg.isUsedByMetadata()) {
295 Arg.replaceAllUsesWith(UndefValue::get(Arg.getType()));
296 Changed = true;
298 UnusedArgs.push_back(Arg.getArgNo());
299 Fn.removeParamAttrs(Arg.getArgNo(), UBImplyingAttributes);
303 if (UnusedArgs.empty())
304 return false;
306 for (Use &U : Fn.uses()) {
307 CallBase *CB = dyn_cast<CallBase>(U.getUser());
308 if (!CB || !CB->isCallee(&U))
309 continue;
311 // Now go through all unused args and replace them with "undef".
312 for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
313 unsigned ArgNo = UnusedArgs[I];
315 Value *Arg = CB->getArgOperand(ArgNo);
316 CB->setArgOperand(ArgNo, UndefValue::get(Arg->getType()));
317 CB->removeParamAttrs(ArgNo, UBImplyingAttributes);
319 ++NumArgumentsReplacedWithUndef;
320 Changed = true;
324 return Changed;
327 /// Convenience function that returns the number of return values. It returns 0
328 /// for void functions and 1 for functions not returning a struct. It returns
329 /// the number of struct elements for functions returning a struct.
330 static unsigned NumRetVals(const Function *F) {
331 Type *RetTy = F->getReturnType();
332 if (RetTy->isVoidTy())
333 return 0;
334 else if (StructType *STy = dyn_cast<StructType>(RetTy))
335 return STy->getNumElements();
336 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
337 return ATy->getNumElements();
338 else
339 return 1;
342 /// Returns the sub-type a function will return at a given Idx. Should
343 /// correspond to the result type of an ExtractValue instruction executed with
344 /// just that one Idx (i.e. only top-level structure is considered).
345 static Type *getRetComponentType(const Function *F, unsigned Idx) {
346 Type *RetTy = F->getReturnType();
347 assert(!RetTy->isVoidTy() && "void type has no subtype");
349 if (StructType *STy = dyn_cast<StructType>(RetTy))
350 return STy->getElementType(Idx);
351 else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
352 return ATy->getElementType();
353 else
354 return RetTy;
357 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
358 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
359 /// liveness of Use.
360 DeadArgumentEliminationPass::Liveness
361 DeadArgumentEliminationPass::MarkIfNotLive(RetOrArg Use,
362 UseVector &MaybeLiveUses) {
363 // We're live if our use or its Function is already marked as live.
364 if (IsLive(Use))
365 return Live;
367 // We're maybe live otherwise, but remember that we must become live if
368 // Use becomes live.
369 MaybeLiveUses.push_back(Use);
370 return MaybeLive;
373 /// SurveyUse - This looks at a single use of an argument or return value
374 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
375 /// if it causes the used value to become MaybeLive.
377 /// RetValNum is the return value number to use when this use is used in a
378 /// return instruction. This is used in the recursion, you should always leave
379 /// it at 0.
380 DeadArgumentEliminationPass::Liveness
381 DeadArgumentEliminationPass::SurveyUse(const Use *U, UseVector &MaybeLiveUses,
382 unsigned RetValNum) {
383 const User *V = U->getUser();
384 if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
385 // The value is returned from a function. It's only live when the
386 // function's return value is live. We use RetValNum here, for the case
387 // that U is really a use of an insertvalue instruction that uses the
388 // original Use.
389 const Function *F = RI->getParent()->getParent();
390 if (RetValNum != -1U) {
391 RetOrArg Use = CreateRet(F, RetValNum);
392 // We might be live, depending on the liveness of Use.
393 return MarkIfNotLive(Use, MaybeLiveUses);
394 } else {
395 DeadArgumentEliminationPass::Liveness Result = MaybeLive;
396 for (unsigned Ri = 0; Ri < NumRetVals(F); ++Ri) {
397 RetOrArg Use = CreateRet(F, Ri);
398 // We might be live, depending on the liveness of Use. If any
399 // sub-value is live, then the entire value is considered live. This
400 // is a conservative choice, and better tracking is possible.
401 DeadArgumentEliminationPass::Liveness SubResult =
402 MarkIfNotLive(Use, MaybeLiveUses);
403 if (Result != Live)
404 Result = SubResult;
406 return Result;
409 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
410 if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
411 && IV->hasIndices())
412 // The use we are examining is inserted into an aggregate. Our liveness
413 // depends on all uses of that aggregate, but if it is used as a return
414 // value, only index at which we were inserted counts.
415 RetValNum = *IV->idx_begin();
417 // Note that if we are used as the aggregate operand to the insertvalue,
418 // we don't change RetValNum, but do survey all our uses.
420 Liveness Result = MaybeLive;
421 for (const Use &UU : IV->uses()) {
422 Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
423 if (Result == Live)
424 break;
426 return Result;
429 if (const auto *CB = dyn_cast<CallBase>(V)) {
430 const Function *F = CB->getCalledFunction();
431 if (F) {
432 // Used in a direct call.
434 // The function argument is live if it is used as a bundle operand.
435 if (CB->isBundleOperand(U))
436 return Live;
438 // Find the argument number. We know for sure that this use is an
439 // argument, since if it was the function argument this would be an
440 // indirect call and the we know can't be looking at a value of the
441 // label type (for the invoke instruction).
442 unsigned ArgNo = CB->getArgOperandNo(U);
444 if (ArgNo >= F->getFunctionType()->getNumParams())
445 // The value is passed in through a vararg! Must be live.
446 return Live;
448 assert(CB->getArgOperand(ArgNo) == CB->getOperand(U->getOperandNo()) &&
449 "Argument is not where we expected it");
451 // Value passed to a normal call. It's only live when the corresponding
452 // argument to the called function turns out live.
453 RetOrArg Use = CreateArg(F, ArgNo);
454 return MarkIfNotLive(Use, MaybeLiveUses);
457 // Used in any other way? Value must be live.
458 return Live;
461 /// SurveyUses - This looks at all the uses of the given value
462 /// Returns the Liveness deduced from the uses of this value.
464 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
465 /// the result is Live, MaybeLiveUses might be modified but its content should
466 /// be ignored (since it might not be complete).
467 DeadArgumentEliminationPass::Liveness
468 DeadArgumentEliminationPass::SurveyUses(const Value *V,
469 UseVector &MaybeLiveUses) {
470 // Assume it's dead (which will only hold if there are no uses at all..).
471 Liveness Result = MaybeLive;
472 // Check each use.
473 for (const Use &U : V->uses()) {
474 Result = SurveyUse(&U, MaybeLiveUses);
475 if (Result == Live)
476 break;
478 return Result;
481 // SurveyFunction - This performs the initial survey of the specified function,
482 // checking out whether or not it uses any of its incoming arguments or whether
483 // any callers use the return value. This fills in the LiveValues set and Uses
484 // map.
486 // We consider arguments of non-internal functions to be intrinsically alive as
487 // well as arguments to functions which have their "address taken".
488 void DeadArgumentEliminationPass::SurveyFunction(const Function &F) {
489 // Functions with inalloca/preallocated parameters are expecting args in a
490 // particular register and memory layout.
491 if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
492 F.getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
493 MarkLive(F);
494 return;
497 // Don't touch naked functions. The assembly might be using an argument, or
498 // otherwise rely on the frame layout in a way that this analysis will not
499 // see.
500 if (F.hasFnAttribute(Attribute::Naked)) {
501 MarkLive(F);
502 return;
505 unsigned RetCount = NumRetVals(&F);
507 // Assume all return values are dead
508 using RetVals = SmallVector<Liveness, 5>;
510 RetVals RetValLiveness(RetCount, MaybeLive);
512 using RetUses = SmallVector<UseVector, 5>;
514 // These vectors map each return value to the uses that make it MaybeLive, so
515 // we can add those to the Uses map if the return value really turns out to be
516 // MaybeLive. Initialized to a list of RetCount empty lists.
517 RetUses MaybeLiveRetUses(RetCount);
519 bool HasMustTailCalls = false;
521 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
522 if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
523 if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
524 != F.getFunctionType()->getReturnType()) {
525 // We don't support old style multiple return values.
526 MarkLive(F);
527 return;
531 // If we have any returns of `musttail` results - the signature can't
532 // change
533 if (BB->getTerminatingMustTailCall() != nullptr)
534 HasMustTailCalls = true;
537 if (HasMustTailCalls) {
538 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
539 << " has musttail calls\n");
542 if (!F.hasLocalLinkage() && (!ShouldHackArguments || F.isIntrinsic())) {
543 MarkLive(F);
544 return;
547 LLVM_DEBUG(
548 dbgs() << "DeadArgumentEliminationPass - Inspecting callers for fn: "
549 << F.getName() << "\n");
550 // Keep track of the number of live retvals, so we can skip checks once all
551 // of them turn out to be live.
552 unsigned NumLiveRetVals = 0;
554 bool HasMustTailCallers = false;
556 // Loop all uses of the function.
557 for (const Use &U : F.uses()) {
558 // If the function is PASSED IN as an argument, its address has been
559 // taken.
560 const auto *CB = dyn_cast<CallBase>(U.getUser());
561 if (!CB || !CB->isCallee(&U)) {
562 MarkLive(F);
563 return;
566 // The number of arguments for `musttail` call must match the number of
567 // arguments of the caller
568 if (CB->isMustTailCall())
569 HasMustTailCallers = true;
571 // If we end up here, we are looking at a direct call to our function.
573 // Now, check how our return value(s) is/are used in this caller. Don't
574 // bother checking return values if all of them are live already.
575 if (NumLiveRetVals == RetCount)
576 continue;
578 // Check all uses of the return value.
579 for (const Use &U : CB->uses()) {
580 if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
581 // This use uses a part of our return value, survey the uses of
582 // that part and store the results for this index only.
583 unsigned Idx = *Ext->idx_begin();
584 if (RetValLiveness[Idx] != Live) {
585 RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
586 if (RetValLiveness[Idx] == Live)
587 NumLiveRetVals++;
589 } else {
590 // Used by something else than extractvalue. Survey, but assume that the
591 // result applies to all sub-values.
592 UseVector MaybeLiveAggregateUses;
593 if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
594 NumLiveRetVals = RetCount;
595 RetValLiveness.assign(RetCount, Live);
596 break;
597 } else {
598 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
599 if (RetValLiveness[Ri] != Live)
600 MaybeLiveRetUses[Ri].append(MaybeLiveAggregateUses.begin(),
601 MaybeLiveAggregateUses.end());
608 if (HasMustTailCallers) {
609 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - " << F.getName()
610 << " has musttail callers\n");
613 // Now we've inspected all callers, record the liveness of our return values.
614 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
615 MarkValue(CreateRet(&F, Ri), RetValLiveness[Ri], MaybeLiveRetUses[Ri]);
617 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Inspecting args for fn: "
618 << F.getName() << "\n");
620 // Now, check all of our arguments.
621 unsigned ArgI = 0;
622 UseVector MaybeLiveArgUses;
623 for (Function::const_arg_iterator AI = F.arg_begin(), E = F.arg_end();
624 AI != E; ++AI, ++ArgI) {
625 Liveness Result;
626 if (F.getFunctionType()->isVarArg() || HasMustTailCallers ||
627 HasMustTailCalls) {
628 // Variadic functions will already have a va_arg function expanded inside
629 // them, making them potentially very sensitive to ABI changes resulting
630 // from removing arguments entirely, so don't. For example AArch64 handles
631 // register and stack HFAs very differently, and this is reflected in the
632 // IR which has already been generated.
634 // `musttail` calls to this function restrict argument removal attempts.
635 // The signature of the caller must match the signature of the function.
637 // `musttail` calls in this function prevents us from changing its
638 // signature
639 Result = Live;
640 } else {
641 // See what the effect of this use is (recording any uses that cause
642 // MaybeLive in MaybeLiveArgUses).
643 Result = SurveyUses(&*AI, MaybeLiveArgUses);
646 // Mark the result.
647 MarkValue(CreateArg(&F, ArgI), Result, MaybeLiveArgUses);
648 // Clear the vector again for the next iteration.
649 MaybeLiveArgUses.clear();
653 /// MarkValue - This function marks the liveness of RA depending on L. If L is
654 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
655 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
656 /// live later on.
657 void DeadArgumentEliminationPass::MarkValue(const RetOrArg &RA, Liveness L,
658 const UseVector &MaybeLiveUses) {
659 switch (L) {
660 case Live:
661 MarkLive(RA);
662 break;
663 case MaybeLive:
664 assert(!IsLive(RA) && "Use is already live!");
665 for (const auto &MaybeLiveUse : MaybeLiveUses) {
666 if (IsLive(MaybeLiveUse)) {
667 // A use is live, so this value is live.
668 MarkLive(RA);
669 break;
670 } else {
671 // Note any uses of this value, so this value can be
672 // marked live whenever one of the uses becomes live.
673 Uses.insert(std::make_pair(MaybeLiveUse, RA));
676 break;
680 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
681 /// changed in any way. Additionally,
682 /// mark any values that are used as this function's parameters or by its return
683 /// values (according to Uses) live as well.
684 void DeadArgumentEliminationPass::MarkLive(const Function &F) {
685 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Intrinsically live fn: "
686 << F.getName() << "\n");
687 // Mark the function as live.
688 LiveFunctions.insert(&F);
689 // Mark all arguments as live.
690 for (unsigned ArgI = 0, E = F.arg_size(); ArgI != E; ++ArgI)
691 PropagateLiveness(CreateArg(&F, ArgI));
692 // Mark all return values as live.
693 for (unsigned Ri = 0, E = NumRetVals(&F); Ri != E; ++Ri)
694 PropagateLiveness(CreateRet(&F, Ri));
697 /// MarkLive - Mark the given return value or argument as live. Additionally,
698 /// mark any values that are used by this value (according to Uses) live as
699 /// well.
700 void DeadArgumentEliminationPass::MarkLive(const RetOrArg &RA) {
701 if (IsLive(RA))
702 return; // Already marked Live.
704 LiveValues.insert(RA);
706 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Marking "
707 << RA.getDescription() << " live\n");
708 PropagateLiveness(RA);
711 bool DeadArgumentEliminationPass::IsLive(const RetOrArg &RA) {
712 return LiveFunctions.count(RA.F) || LiveValues.count(RA);
715 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
716 /// to any other values it uses (according to Uses).
717 void DeadArgumentEliminationPass::PropagateLiveness(const RetOrArg &RA) {
718 // We don't use upper_bound (or equal_range) here, because our recursive call
719 // to ourselves is likely to cause the upper_bound (which is the first value
720 // not belonging to RA) to become erased and the iterator invalidated.
721 UseMap::iterator Begin = Uses.lower_bound(RA);
722 UseMap::iterator E = Uses.end();
723 UseMap::iterator I;
724 for (I = Begin; I != E && I->first == RA; ++I)
725 MarkLive(I->second);
727 // Erase RA from the Uses map (from the lower bound to wherever we ended up
728 // after the loop).
729 Uses.erase(Begin, I);
732 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
733 // that are not in LiveValues. Transform the function and all of the callees of
734 // the function to not have these arguments and return values.
736 bool DeadArgumentEliminationPass::RemoveDeadStuffFromFunction(Function *F) {
737 // Don't modify fully live functions
738 if (LiveFunctions.count(F))
739 return false;
741 // Start by computing a new prototype for the function, which is the same as
742 // the old function, but has fewer arguments and a different return type.
743 FunctionType *FTy = F->getFunctionType();
744 std::vector<Type*> Params;
746 // Keep track of if we have a live 'returned' argument
747 bool HasLiveReturnedArg = false;
749 // Set up to build a new list of parameter attributes.
750 SmallVector<AttributeSet, 8> ArgAttrVec;
751 const AttributeList &PAL = F->getAttributes();
753 // Remember which arguments are still alive.
754 SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
755 // Construct the new parameter list from non-dead arguments. Also construct
756 // a new set of parameter attributes to correspond. Skip the first parameter
757 // attribute, since that belongs to the return value.
758 unsigned ArgI = 0;
759 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
760 ++I, ++ArgI) {
761 RetOrArg Arg = CreateArg(F, ArgI);
762 if (LiveValues.erase(Arg)) {
763 Params.push_back(I->getType());
764 ArgAlive[ArgI] = true;
765 ArgAttrVec.push_back(PAL.getParamAttrs(ArgI));
766 HasLiveReturnedArg |= PAL.hasParamAttr(ArgI, Attribute::Returned);
767 } else {
768 ++NumArgumentsEliminated;
769 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Removing argument "
770 << ArgI << " (" << I->getName() << ") from "
771 << F->getName() << "\n");
775 // Find out the new return value.
776 Type *RetTy = FTy->getReturnType();
777 Type *NRetTy = nullptr;
778 unsigned RetCount = NumRetVals(F);
780 // -1 means unused, other numbers are the new index
781 SmallVector<int, 5> NewRetIdxs(RetCount, -1);
782 std::vector<Type*> RetTypes;
784 // If there is a function with a live 'returned' argument but a dead return
785 // value, then there are two possible actions:
786 // 1) Eliminate the return value and take off the 'returned' attribute on the
787 // argument.
788 // 2) Retain the 'returned' attribute and treat the return value (but not the
789 // entire function) as live so that it is not eliminated.
791 // It's not clear in the general case which option is more profitable because,
792 // even in the absence of explicit uses of the return value, code generation
793 // is free to use the 'returned' attribute to do things like eliding
794 // save/restores of registers across calls. Whether or not this happens is
795 // target and ABI-specific as well as depending on the amount of register
796 // pressure, so there's no good way for an IR-level pass to figure this out.
798 // Fortunately, the only places where 'returned' is currently generated by
799 // the FE are places where 'returned' is basically free and almost always a
800 // performance win, so the second option can just be used always for now.
802 // This should be revisited if 'returned' is ever applied more liberally.
803 if (RetTy->isVoidTy() || HasLiveReturnedArg) {
804 NRetTy = RetTy;
805 } else {
806 // Look at each of the original return values individually.
807 for (unsigned Ri = 0; Ri != RetCount; ++Ri) {
808 RetOrArg Ret = CreateRet(F, Ri);
809 if (LiveValues.erase(Ret)) {
810 RetTypes.push_back(getRetComponentType(F, Ri));
811 NewRetIdxs[Ri] = RetTypes.size() - 1;
812 } else {
813 ++NumRetValsEliminated;
814 LLVM_DEBUG(
815 dbgs() << "DeadArgumentEliminationPass - Removing return value "
816 << Ri << " from " << F->getName() << "\n");
819 if (RetTypes.size() > 1) {
820 // More than one return type? Reduce it down to size.
821 if (StructType *STy = dyn_cast<StructType>(RetTy)) {
822 // Make the new struct packed if we used to return a packed struct
823 // already.
824 NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
825 } else {
826 assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
827 NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
829 } else if (RetTypes.size() == 1)
830 // One return type? Just a simple value then, but only if we didn't use to
831 // return a struct with that simple value before.
832 NRetTy = RetTypes.front();
833 else if (RetTypes.empty())
834 // No return types? Make it void, but only if we didn't use to return {}.
835 NRetTy = Type::getVoidTy(F->getContext());
838 assert(NRetTy && "No new return type found?");
840 // The existing function return attributes.
841 AttrBuilder RAttrs(PAL.getRetAttrs());
843 // Remove any incompatible attributes, but only if we removed all return
844 // values. Otherwise, ensure that we don't have any conflicting attributes
845 // here. Currently, this should not be possible, but special handling might be
846 // required when new return value attributes are added.
847 if (NRetTy->isVoidTy())
848 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
849 else
850 assert(!RAttrs.overlaps(AttributeFuncs::typeIncompatible(NRetTy)) &&
851 "Return attributes no longer compatible?");
853 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
855 // Strip allocsize attributes. They might refer to the deleted arguments.
856 AttributeSet FnAttrs =
857 PAL.getFnAttrs().removeAttribute(F->getContext(), Attribute::AllocSize);
859 // Reconstruct the AttributesList based on the vector we constructed.
860 assert(ArgAttrVec.size() == Params.size());
861 AttributeList NewPAL =
862 AttributeList::get(F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
864 // Create the new function type based on the recomputed parameters.
865 FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
867 // No change?
868 if (NFTy == FTy)
869 return false;
871 // Create the new function body and insert it into the module...
872 Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace());
873 NF->copyAttributesFrom(F);
874 NF->setComdat(F->getComdat());
875 NF->setAttributes(NewPAL);
876 // Insert the new function before the old function, so we won't be processing
877 // it again.
878 F->getParent()->getFunctionList().insert(F->getIterator(), NF);
879 NF->takeName(F);
881 // Loop over all of the callers of the function, transforming the call sites
882 // to pass in a smaller number of arguments into the new function.
883 std::vector<Value*> Args;
884 while (!F->use_empty()) {
885 CallBase &CB = cast<CallBase>(*F->user_back());
887 ArgAttrVec.clear();
888 const AttributeList &CallPAL = CB.getAttributes();
890 // Adjust the call return attributes in case the function was changed to
891 // return void.
892 AttrBuilder RAttrs(CallPAL.getRetAttrs());
893 RAttrs.remove(AttributeFuncs::typeIncompatible(NRetTy));
894 AttributeSet RetAttrs = AttributeSet::get(F->getContext(), RAttrs);
896 // Declare these outside of the loops, so we can reuse them for the second
897 // loop, which loops the varargs.
898 auto I = CB.arg_begin();
899 unsigned Pi = 0;
900 // Loop over those operands, corresponding to the normal arguments to the
901 // original function, and add those that are still alive.
902 for (unsigned E = FTy->getNumParams(); Pi != E; ++I, ++Pi)
903 if (ArgAlive[Pi]) {
904 Args.push_back(*I);
905 // Get original parameter attributes, but skip return attributes.
906 AttributeSet Attrs = CallPAL.getParamAttrs(Pi);
907 if (NRetTy != RetTy && Attrs.hasAttribute(Attribute::Returned)) {
908 // If the return type has changed, then get rid of 'returned' on the
909 // call site. The alternative is to make all 'returned' attributes on
910 // call sites keep the return value alive just like 'returned'
911 // attributes on function declaration but it's less clearly a win and
912 // this is not an expected case anyway
913 ArgAttrVec.push_back(AttributeSet::get(
914 F->getContext(),
915 AttrBuilder(Attrs).removeAttribute(Attribute::Returned)));
916 } else {
917 // Otherwise, use the original attributes.
918 ArgAttrVec.push_back(Attrs);
922 // Push any varargs arguments on the list. Don't forget their attributes.
923 for (auto E = CB.arg_end(); I != E; ++I, ++Pi) {
924 Args.push_back(*I);
925 ArgAttrVec.push_back(CallPAL.getParamAttrs(Pi));
928 // Reconstruct the AttributesList based on the vector we constructed.
929 assert(ArgAttrVec.size() == Args.size());
931 // Again, be sure to remove any allocsize attributes, since their indices
932 // may now be incorrect.
933 AttributeSet FnAttrs = CallPAL.getFnAttrs().removeAttribute(
934 F->getContext(), Attribute::AllocSize);
936 AttributeList NewCallPAL = AttributeList::get(
937 F->getContext(), FnAttrs, RetAttrs, ArgAttrVec);
939 SmallVector<OperandBundleDef, 1> OpBundles;
940 CB.getOperandBundlesAsDefs(OpBundles);
942 CallBase *NewCB = nullptr;
943 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
944 NewCB = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
945 Args, OpBundles, "", CB.getParent());
946 } else {
947 NewCB = CallInst::Create(NFTy, NF, Args, OpBundles, "", &CB);
948 cast<CallInst>(NewCB)->setTailCallKind(
949 cast<CallInst>(&CB)->getTailCallKind());
951 NewCB->setCallingConv(CB.getCallingConv());
952 NewCB->setAttributes(NewCallPAL);
953 NewCB->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
954 Args.clear();
955 ArgAttrVec.clear();
957 if (!CB.use_empty() || CB.isUsedByMetadata()) {
958 if (NewCB->getType() == CB.getType()) {
959 // Return type not changed? Just replace users then.
960 CB.replaceAllUsesWith(NewCB);
961 NewCB->takeName(&CB);
962 } else if (NewCB->getType()->isVoidTy()) {
963 // If the return value is dead, replace any uses of it with undef
964 // (any non-debug value uses will get removed later on).
965 if (!CB.getType()->isX86_MMXTy())
966 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
967 } else {
968 assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
969 "Return type changed, but not into a void. The old return type"
970 " must have been a struct or an array!");
971 Instruction *InsertPt = &CB;
972 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
973 BasicBlock *NewEdge =
974 SplitEdge(NewCB->getParent(), II->getNormalDest());
975 InsertPt = &*NewEdge->getFirstInsertionPt();
978 // We used to return a struct or array. Instead of doing smart stuff
979 // with all the uses, we will just rebuild it using extract/insertvalue
980 // chaining and let instcombine clean that up.
982 // Start out building up our return value from undef
983 Value *RetVal = UndefValue::get(RetTy);
984 for (unsigned Ri = 0; Ri != RetCount; ++Ri)
985 if (NewRetIdxs[Ri] != -1) {
986 Value *V;
987 IRBuilder<NoFolder> IRB(InsertPt);
988 if (RetTypes.size() > 1)
989 // We are still returning a struct, so extract the value from our
990 // return value
991 V = IRB.CreateExtractValue(NewCB, NewRetIdxs[Ri], "newret");
992 else
993 // We are now returning a single element, so just insert that
994 V = NewCB;
995 // Insert the value at the old position
996 RetVal = IRB.CreateInsertValue(RetVal, V, Ri, "oldret");
998 // Now, replace all uses of the old call instruction with the return
999 // struct we built
1000 CB.replaceAllUsesWith(RetVal);
1001 NewCB->takeName(&CB);
1005 // Finally, remove the old call from the program, reducing the use-count of
1006 // F.
1007 CB.eraseFromParent();
1010 // Since we have now created the new function, splice the body of the old
1011 // function right into the new function, leaving the old rotting hulk of the
1012 // function empty.
1013 NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1015 // Loop over the argument list, transferring uses of the old arguments over to
1016 // the new arguments, also transferring over the names as well.
1017 ArgI = 0;
1018 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1019 I2 = NF->arg_begin();
1020 I != E; ++I, ++ArgI)
1021 if (ArgAlive[ArgI]) {
1022 // If this is a live argument, move the name and users over to the new
1023 // version.
1024 I->replaceAllUsesWith(&*I2);
1025 I2->takeName(&*I);
1026 ++I2;
1027 } else {
1028 // If this argument is dead, replace any uses of it with undef
1029 // (any non-debug value uses will get removed later on).
1030 if (!I->getType()->isX86_MMXTy())
1031 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1034 // If we change the return value of the function we must rewrite any return
1035 // instructions. Check this now.
1036 if (F->getReturnType() != NF->getReturnType())
1037 for (BasicBlock &BB : *NF)
1038 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) {
1039 IRBuilder<NoFolder> IRB(RI);
1040 Value *RetVal = nullptr;
1042 if (!NFTy->getReturnType()->isVoidTy()) {
1043 assert(RetTy->isStructTy() || RetTy->isArrayTy());
1044 // The original return value was a struct or array, insert
1045 // extractvalue/insertvalue chains to extract only the values we need
1046 // to return and insert them into our new result.
1047 // This does generate messy code, but we'll let it to instcombine to
1048 // clean that up.
1049 Value *OldRet = RI->getOperand(0);
1050 // Start out building up our return value from undef
1051 RetVal = UndefValue::get(NRetTy);
1052 for (unsigned RetI = 0; RetI != RetCount; ++RetI)
1053 if (NewRetIdxs[RetI] != -1) {
1054 Value *EV = IRB.CreateExtractValue(OldRet, RetI, "oldret");
1056 if (RetTypes.size() > 1) {
1057 // We're still returning a struct, so reinsert the value into
1058 // our new return value at the new index
1060 RetVal = IRB.CreateInsertValue(RetVal, EV, NewRetIdxs[RetI],
1061 "newret");
1062 } else {
1063 // We are now only returning a simple value, so just return the
1064 // extracted value.
1065 RetVal = EV;
1069 // Replace the return instruction with one returning the new return
1070 // value (possibly 0 if we became void).
1071 auto *NewRet = ReturnInst::Create(F->getContext(), RetVal, RI);
1072 NewRet->setDebugLoc(RI->getDebugLoc());
1073 BB.getInstList().erase(RI);
1076 // Clone metadatas from the old function, including debug info descriptor.
1077 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1078 F->getAllMetadata(MDs);
1079 for (auto MD : MDs)
1080 NF->addMetadata(MD.first, *MD.second);
1082 // Now that the old function is dead, delete it.
1083 F->eraseFromParent();
1085 return true;
1088 PreservedAnalyses DeadArgumentEliminationPass::run(Module &M,
1089 ModuleAnalysisManager &) {
1090 bool Changed = false;
1092 // First pass: Do a simple check to see if any functions can have their "..."
1093 // removed. We can do this if they never call va_start. This loop cannot be
1094 // fused with the next loop, because deleting a function invalidates
1095 // information computed while surveying other functions.
1096 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Deleting dead varargs\n");
1097 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1098 Function &F = *I++;
1099 if (F.getFunctionType()->isVarArg())
1100 Changed |= DeleteDeadVarargs(F);
1103 // Second phase:loop through the module, determining which arguments are live.
1104 // We assume all arguments are dead unless proven otherwise (allowing us to
1105 // determine that dead arguments passed into recursive functions are dead).
1107 LLVM_DEBUG(dbgs() << "DeadArgumentEliminationPass - Determining liveness\n");
1108 for (auto &F : M)
1109 SurveyFunction(F);
1111 // Now, remove all dead arguments and return values from each function in
1112 // turn.
1113 for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1114 // Increment now, because the function will probably get removed (ie.
1115 // replaced by a new one).
1116 Function *F = &*I++;
1117 Changed |= RemoveDeadStuffFromFunction(F);
1120 // Finally, look for any unused parameters in functions with non-local
1121 // linkage and replace the passed in parameters with undef.
1122 for (auto &F : M)
1123 Changed |= RemoveDeadArgumentsFromCallers(F);
1125 if (!Changed)
1126 return PreservedAnalyses::all();
1127 return PreservedAnalyses::none();