[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / FunctionAttrs.cpp
blob6814dca489fc596eaf417b445d0d17754786eaf9
1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SCCIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/CGSCCPassManager.h"
27 #include "llvm/Analysis/CallGraph.h"
28 #include "llvm/Analysis/CallGraphSCCPass.h"
29 #include "llvm/Analysis/CaptureTracking.h"
30 #include "llvm/Analysis/LazyCallGraph.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/IPO.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <cassert>
62 #include <iterator>
63 #include <map>
64 #include <vector>
66 using namespace llvm;
68 #define DEBUG_TYPE "function-attrs"
70 STATISTIC(NumReadNone, "Number of functions marked readnone");
71 STATISTIC(NumReadOnly, "Number of functions marked readonly");
72 STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
73 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
74 STATISTIC(NumReturned, "Number of arguments marked returned");
75 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
76 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
77 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
78 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
79 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
80 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
81 STATISTIC(NumNoFree, "Number of functions marked as nofree");
82 STATISTIC(NumWillReturn, "Number of functions marked as willreturn");
83 STATISTIC(NumNoSync, "Number of functions marked as nosync");
85 static cl::opt<bool> EnableNonnullArgPropagation(
86 "enable-nonnull-arg-prop", cl::init(true), cl::Hidden,
87 cl::desc("Try to propagate nonnull argument attributes from callsites to "
88 "caller functions."));
90 static cl::opt<bool> DisableNoUnwindInference(
91 "disable-nounwind-inference", cl::Hidden,
92 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
94 static cl::opt<bool> DisableNoFreeInference(
95 "disable-nofree-inference", cl::Hidden,
96 cl::desc("Stop inferring nofree attribute during function-attrs pass"));
98 namespace {
100 using SCCNodeSet = SmallSetVector<Function *, 8>;
102 } // end anonymous namespace
104 /// Returns the memory access attribute for function F using AAR for AA results,
105 /// where SCCNodes is the current SCC.
107 /// If ThisBody is true, this function may examine the function body and will
108 /// return a result pertaining to this copy of the function. If it is false, the
109 /// result will be based only on AA results for the function declaration; it
110 /// will be assumed that some other (perhaps less optimized) version of the
111 /// function may be selected at link time.
112 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
113 AAResults &AAR,
114 const SCCNodeSet &SCCNodes) {
115 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
116 if (MRB == FMRB_DoesNotAccessMemory)
117 // Already perfect!
118 return MAK_ReadNone;
120 if (!ThisBody) {
121 if (AliasAnalysis::onlyReadsMemory(MRB))
122 return MAK_ReadOnly;
124 if (AliasAnalysis::doesNotReadMemory(MRB))
125 return MAK_WriteOnly;
127 // Conservatively assume it reads and writes to memory.
128 return MAK_MayWrite;
131 // Scan the function body for instructions that may read or write memory.
132 bool ReadsMemory = false;
133 bool WritesMemory = false;
134 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
135 Instruction *I = &*II;
137 // Some instructions can be ignored even if they read or write memory.
138 // Detect these now, skipping to the next instruction if one is found.
139 if (auto *Call = dyn_cast<CallBase>(I)) {
140 // Ignore calls to functions in the same SCC, as long as the call sites
141 // don't have operand bundles. Calls with operand bundles are allowed to
142 // have memory effects not described by the memory effects of the call
143 // target.
144 if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
145 SCCNodes.count(Call->getCalledFunction()))
146 continue;
147 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
148 ModRefInfo MRI = createModRefInfo(MRB);
150 // If the call doesn't access memory, we're done.
151 if (isNoModRef(MRI))
152 continue;
154 // A pseudo probe call shouldn't change any function attribute since it
155 // doesn't translate to a real instruction. It comes with a memory access
156 // tag to prevent itself being removed by optimizations and not block
157 // other instructions being optimized.
158 if (isa<PseudoProbeInst>(I))
159 continue;
161 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
162 // The call could access any memory. If that includes writes, note it.
163 if (isModSet(MRI))
164 WritesMemory = true;
165 // If it reads, note it.
166 if (isRefSet(MRI))
167 ReadsMemory = true;
168 continue;
171 // Check whether all pointer arguments point to local memory, and
172 // ignore calls that only access local memory.
173 for (auto CI = Call->arg_begin(), CE = Call->arg_end(); CI != CE; ++CI) {
174 Value *Arg = *CI;
175 if (!Arg->getType()->isPtrOrPtrVectorTy())
176 continue;
178 AAMDNodes AAInfo;
179 I->getAAMetadata(AAInfo);
180 MemoryLocation Loc = MemoryLocation::getBeforeOrAfter(Arg, AAInfo);
182 // Skip accesses to local or constant memory as they don't impact the
183 // externally visible mod/ref behavior.
184 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
185 continue;
187 if (isModSet(MRI))
188 // Writes non-local memory.
189 WritesMemory = true;
190 if (isRefSet(MRI))
191 // Ok, it reads non-local memory.
192 ReadsMemory = true;
194 continue;
195 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
196 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
197 if (!LI->isVolatile()) {
198 MemoryLocation Loc = MemoryLocation::get(LI);
199 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
200 continue;
202 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
203 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
204 if (!SI->isVolatile()) {
205 MemoryLocation Loc = MemoryLocation::get(SI);
206 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
207 continue;
209 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
210 // Ignore vaargs on local memory.
211 MemoryLocation Loc = MemoryLocation::get(VI);
212 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
213 continue;
216 // Any remaining instructions need to be taken seriously! Check if they
217 // read or write memory.
219 // Writes memory, remember that.
220 WritesMemory |= I->mayWriteToMemory();
222 // If this instruction may read memory, remember that.
223 ReadsMemory |= I->mayReadFromMemory();
226 if (WritesMemory) {
227 if (!ReadsMemory)
228 return MAK_WriteOnly;
229 else
230 return MAK_MayWrite;
233 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
236 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
237 AAResults &AAR) {
238 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
241 /// Deduce readonly/readnone attributes for the SCC.
242 template <typename AARGetterT>
243 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
244 // Check if any of the functions in the SCC read or write memory. If they
245 // write memory then they can't be marked readnone or readonly.
246 bool ReadsMemory = false;
247 bool WritesMemory = false;
248 for (Function *F : SCCNodes) {
249 // Call the callable parameter to look up AA results for this function.
250 AAResults &AAR = AARGetter(*F);
252 // Non-exact function definitions may not be selected at link time, and an
253 // alternative version that writes to memory may be selected. See the
254 // comment on GlobalValue::isDefinitionExact for more details.
255 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
256 AAR, SCCNodes)) {
257 case MAK_MayWrite:
258 return false;
259 case MAK_ReadOnly:
260 ReadsMemory = true;
261 break;
262 case MAK_WriteOnly:
263 WritesMemory = true;
264 break;
265 case MAK_ReadNone:
266 // Nothing to do!
267 break;
271 // If the SCC contains both functions that read and functions that write, then
272 // we cannot add readonly attributes.
273 if (ReadsMemory && WritesMemory)
274 return false;
276 // Success! Functions in this SCC do not access memory, or only read memory.
277 // Give them the appropriate attribute.
278 bool MadeChange = false;
280 for (Function *F : SCCNodes) {
281 if (F->doesNotAccessMemory())
282 // Already perfect!
283 continue;
285 if (F->onlyReadsMemory() && ReadsMemory)
286 // No change.
287 continue;
289 if (F->doesNotReadMemory() && WritesMemory)
290 continue;
292 MadeChange = true;
294 // Clear out any existing attributes.
295 AttrBuilder AttrsToRemove;
296 AttrsToRemove.addAttribute(Attribute::ReadOnly);
297 AttrsToRemove.addAttribute(Attribute::ReadNone);
298 AttrsToRemove.addAttribute(Attribute::WriteOnly);
300 if (!WritesMemory && !ReadsMemory) {
301 // Clear out any "access range attributes" if readnone was deduced.
302 AttrsToRemove.addAttribute(Attribute::ArgMemOnly);
303 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOnly);
304 AttrsToRemove.addAttribute(Attribute::InaccessibleMemOrArgMemOnly);
306 F->removeFnAttrs(AttrsToRemove);
308 // Add in the new attribute.
309 if (WritesMemory && !ReadsMemory)
310 F->addFnAttr(Attribute::WriteOnly);
311 else
312 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
314 if (WritesMemory && !ReadsMemory)
315 ++NumWriteOnly;
316 else if (ReadsMemory)
317 ++NumReadOnly;
318 else
319 ++NumReadNone;
322 return MadeChange;
325 namespace {
327 /// For a given pointer Argument, this retains a list of Arguments of functions
328 /// in the same SCC that the pointer data flows into. We use this to build an
329 /// SCC of the arguments.
330 struct ArgumentGraphNode {
331 Argument *Definition;
332 SmallVector<ArgumentGraphNode *, 4> Uses;
335 class ArgumentGraph {
336 // We store pointers to ArgumentGraphNode objects, so it's important that
337 // that they not move around upon insert.
338 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
340 ArgumentMapTy ArgumentMap;
342 // There is no root node for the argument graph, in fact:
343 // void f(int *x, int *y) { if (...) f(x, y); }
344 // is an example where the graph is disconnected. The SCCIterator requires a
345 // single entry point, so we maintain a fake ("synthetic") root node that
346 // uses every node. Because the graph is directed and nothing points into
347 // the root, it will not participate in any SCCs (except for its own).
348 ArgumentGraphNode SyntheticRoot;
350 public:
351 ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
353 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
355 iterator begin() { return SyntheticRoot.Uses.begin(); }
356 iterator end() { return SyntheticRoot.Uses.end(); }
357 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
359 ArgumentGraphNode *operator[](Argument *A) {
360 ArgumentGraphNode &Node = ArgumentMap[A];
361 Node.Definition = A;
362 SyntheticRoot.Uses.push_back(&Node);
363 return &Node;
367 /// This tracker checks whether callees are in the SCC, and if so it does not
368 /// consider that a capture, instead adding it to the "Uses" list and
369 /// continuing with the analysis.
370 struct ArgumentUsesTracker : public CaptureTracker {
371 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
373 void tooManyUses() override { Captured = true; }
375 bool captured(const Use *U) override {
376 CallBase *CB = dyn_cast<CallBase>(U->getUser());
377 if (!CB) {
378 Captured = true;
379 return true;
382 Function *F = CB->getCalledFunction();
383 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
384 Captured = true;
385 return true;
388 // Note: the callee and the two successor blocks *follow* the argument
389 // operands. This means there is no need to adjust UseIndex to account for
390 // these.
392 unsigned UseIndex =
393 std::distance(const_cast<const Use *>(CB->arg_begin()), U);
395 assert(UseIndex < CB->data_operands_size() &&
396 "Indirect function calls should have been filtered above!");
398 if (UseIndex >= CB->getNumArgOperands()) {
399 // Data operand, but not a argument operand -- must be a bundle operand
400 assert(CB->hasOperandBundles() && "Must be!");
402 // CaptureTracking told us that we're being captured by an operand bundle
403 // use. In this case it does not matter if the callee is within our SCC
404 // or not -- we've been captured in some unknown way, and we have to be
405 // conservative.
406 Captured = true;
407 return true;
410 if (UseIndex >= F->arg_size()) {
411 assert(F->isVarArg() && "More params than args in non-varargs call");
412 Captured = true;
413 return true;
416 Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
417 return false;
420 // True only if certainly captured (used outside our SCC).
421 bool Captured = false;
423 // Uses within our SCC.
424 SmallVector<Argument *, 4> Uses;
426 const SCCNodeSet &SCCNodes;
429 } // end anonymous namespace
431 namespace llvm {
433 template <> struct GraphTraits<ArgumentGraphNode *> {
434 using NodeRef = ArgumentGraphNode *;
435 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
437 static NodeRef getEntryNode(NodeRef A) { return A; }
438 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
439 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
442 template <>
443 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
444 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
446 static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
447 return AG->begin();
450 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
453 } // end namespace llvm
455 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
456 static Attribute::AttrKind
457 determinePointerReadAttrs(Argument *A,
458 const SmallPtrSet<Argument *, 8> &SCCNodes) {
459 SmallVector<Use *, 32> Worklist;
460 SmallPtrSet<Use *, 32> Visited;
462 // inalloca arguments are always clobbered by the call.
463 if (A->hasInAllocaAttr() || A->hasPreallocatedAttr())
464 return Attribute::None;
466 bool IsRead = false;
467 // We don't need to track IsWritten. If A is written to, return immediately.
469 for (Use &U : A->uses()) {
470 Visited.insert(&U);
471 Worklist.push_back(&U);
474 while (!Worklist.empty()) {
475 Use *U = Worklist.pop_back_val();
476 Instruction *I = cast<Instruction>(U->getUser());
478 switch (I->getOpcode()) {
479 case Instruction::BitCast:
480 case Instruction::GetElementPtr:
481 case Instruction::PHI:
482 case Instruction::Select:
483 case Instruction::AddrSpaceCast:
484 // The original value is not read/written via this if the new value isn't.
485 for (Use &UU : I->uses())
486 if (Visited.insert(&UU).second)
487 Worklist.push_back(&UU);
488 break;
490 case Instruction::Call:
491 case Instruction::Invoke: {
492 bool Captures = true;
494 if (I->getType()->isVoidTy())
495 Captures = false;
497 auto AddUsersToWorklistIfCapturing = [&] {
498 if (Captures)
499 for (Use &UU : I->uses())
500 if (Visited.insert(&UU).second)
501 Worklist.push_back(&UU);
504 CallBase &CB = cast<CallBase>(*I);
505 if (CB.doesNotAccessMemory()) {
506 AddUsersToWorklistIfCapturing();
507 continue;
510 Function *F = CB.getCalledFunction();
511 if (!F) {
512 if (CB.onlyReadsMemory()) {
513 IsRead = true;
514 AddUsersToWorklistIfCapturing();
515 continue;
517 return Attribute::None;
520 // Note: the callee and the two successor blocks *follow* the argument
521 // operands. This means there is no need to adjust UseIndex to account
522 // for these.
524 unsigned UseIndex = std::distance(CB.arg_begin(), U);
526 // U cannot be the callee operand use: since we're exploring the
527 // transitive uses of an Argument, having such a use be a callee would
528 // imply the call site is an indirect call or invoke; and we'd take the
529 // early exit above.
530 assert(UseIndex < CB.data_operands_size() &&
531 "Data operand use expected!");
533 bool IsOperandBundleUse = UseIndex >= CB.getNumArgOperands();
535 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
536 assert(F->isVarArg() && "More params than args in non-varargs call");
537 return Attribute::None;
540 Captures &= !CB.doesNotCapture(UseIndex);
542 // Since the optimizer (by design) cannot see the data flow corresponding
543 // to a operand bundle use, these cannot participate in the optimistic SCC
544 // analysis. Instead, we model the operand bundle uses as arguments in
545 // call to a function external to the SCC.
546 if (IsOperandBundleUse ||
547 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
549 // The accessors used on call site here do the right thing for calls and
550 // invokes with operand bundles.
552 if (!CB.onlyReadsMemory() && !CB.onlyReadsMemory(UseIndex))
553 return Attribute::None;
554 if (!CB.doesNotAccessMemory(UseIndex))
555 IsRead = true;
558 AddUsersToWorklistIfCapturing();
559 break;
562 case Instruction::Load:
563 // A volatile load has side effects beyond what readonly can be relied
564 // upon.
565 if (cast<LoadInst>(I)->isVolatile())
566 return Attribute::None;
568 IsRead = true;
569 break;
571 case Instruction::ICmp:
572 case Instruction::Ret:
573 break;
575 default:
576 return Attribute::None;
580 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
583 /// Deduce returned attributes for the SCC.
584 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
585 bool Changed = false;
587 // Check each function in turn, determining if an argument is always returned.
588 for (Function *F : SCCNodes) {
589 // We can infer and propagate function attributes only when we know that the
590 // definition we'll get at link time is *exactly* the definition we see now.
591 // For more details, see GlobalValue::mayBeDerefined.
592 if (!F->hasExactDefinition())
593 continue;
595 if (F->getReturnType()->isVoidTy())
596 continue;
598 // There is nothing to do if an argument is already marked as 'returned'.
599 if (llvm::any_of(F->args(),
600 [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
601 continue;
603 auto FindRetArg = [&]() -> Value * {
604 Value *RetArg = nullptr;
605 for (BasicBlock &BB : *F)
606 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
607 // Note that stripPointerCasts should look through functions with
608 // returned arguments.
609 Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
610 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
611 return nullptr;
613 if (!RetArg)
614 RetArg = RetVal;
615 else if (RetArg != RetVal)
616 return nullptr;
619 return RetArg;
622 if (Value *RetArg = FindRetArg()) {
623 auto *A = cast<Argument>(RetArg);
624 A->addAttr(Attribute::Returned);
625 ++NumReturned;
626 Changed = true;
630 return Changed;
633 /// If a callsite has arguments that are also arguments to the parent function,
634 /// try to propagate attributes from the callsite's arguments to the parent's
635 /// arguments. This may be important because inlining can cause information loss
636 /// when attribute knowledge disappears with the inlined call.
637 static bool addArgumentAttrsFromCallsites(Function &F) {
638 if (!EnableNonnullArgPropagation)
639 return false;
641 bool Changed = false;
643 // For an argument attribute to transfer from a callsite to the parent, the
644 // call must be guaranteed to execute every time the parent is called.
645 // Conservatively, just check for calls in the entry block that are guaranteed
646 // to execute.
647 // TODO: This could be enhanced by testing if the callsite post-dominates the
648 // entry block or by doing simple forward walks or backward walks to the
649 // callsite.
650 BasicBlock &Entry = F.getEntryBlock();
651 for (Instruction &I : Entry) {
652 if (auto *CB = dyn_cast<CallBase>(&I)) {
653 if (auto *CalledFunc = CB->getCalledFunction()) {
654 for (auto &CSArg : CalledFunc->args()) {
655 if (!CSArg.hasNonNullAttr(/* AllowUndefOrPoison */ false))
656 continue;
658 // If the non-null callsite argument operand is an argument to 'F'
659 // (the caller) and the call is guaranteed to execute, then the value
660 // must be non-null throughout 'F'.
661 auto *FArg = dyn_cast<Argument>(CB->getArgOperand(CSArg.getArgNo()));
662 if (FArg && !FArg->hasNonNullAttr()) {
663 FArg->addAttr(Attribute::NonNull);
664 Changed = true;
669 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
670 break;
673 return Changed;
676 static bool addReadAttr(Argument *A, Attribute::AttrKind R) {
677 assert((R == Attribute::ReadOnly || R == Attribute::ReadNone)
678 && "Must be a Read attribute.");
679 assert(A && "Argument must not be null.");
681 // If the argument already has the attribute, nothing needs to be done.
682 if (A->hasAttribute(R))
683 return false;
685 // Otherwise, remove potentially conflicting attribute, add the new one,
686 // and update statistics.
687 A->removeAttr(Attribute::WriteOnly);
688 A->removeAttr(Attribute::ReadOnly);
689 A->removeAttr(Attribute::ReadNone);
690 A->addAttr(R);
691 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
692 return true;
695 /// Deduce nocapture attributes for the SCC.
696 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
697 bool Changed = false;
699 ArgumentGraph AG;
701 // Check each function in turn, determining which pointer arguments are not
702 // captured.
703 for (Function *F : SCCNodes) {
704 // We can infer and propagate function attributes only when we know that the
705 // definition we'll get at link time is *exactly* the definition we see now.
706 // For more details, see GlobalValue::mayBeDerefined.
707 if (!F->hasExactDefinition())
708 continue;
710 Changed |= addArgumentAttrsFromCallsites(*F);
712 // Functions that are readonly (or readnone) and nounwind and don't return
713 // a value can't capture arguments. Don't analyze them.
714 if (F->onlyReadsMemory() && F->doesNotThrow() &&
715 F->getReturnType()->isVoidTy()) {
716 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
717 ++A) {
718 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
719 A->addAttr(Attribute::NoCapture);
720 ++NumNoCapture;
721 Changed = true;
724 continue;
727 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
728 ++A) {
729 if (!A->getType()->isPointerTy())
730 continue;
731 bool HasNonLocalUses = false;
732 if (!A->hasNoCaptureAttr()) {
733 ArgumentUsesTracker Tracker(SCCNodes);
734 PointerMayBeCaptured(&*A, &Tracker);
735 if (!Tracker.Captured) {
736 if (Tracker.Uses.empty()) {
737 // If it's trivially not captured, mark it nocapture now.
738 A->addAttr(Attribute::NoCapture);
739 ++NumNoCapture;
740 Changed = true;
741 } else {
742 // If it's not trivially captured and not trivially not captured,
743 // then it must be calling into another function in our SCC. Save
744 // its particulars for Argument-SCC analysis later.
745 ArgumentGraphNode *Node = AG[&*A];
746 for (Argument *Use : Tracker.Uses) {
747 Node->Uses.push_back(AG[Use]);
748 if (Use != &*A)
749 HasNonLocalUses = true;
753 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
755 if (!HasNonLocalUses && !A->onlyReadsMemory()) {
756 // Can we determine that it's readonly/readnone without doing an SCC?
757 // Note that we don't allow any calls at all here, or else our result
758 // will be dependent on the iteration order through the functions in the
759 // SCC.
760 SmallPtrSet<Argument *, 8> Self;
761 Self.insert(&*A);
762 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
763 if (R != Attribute::None)
764 Changed = addReadAttr(A, R);
769 // The graph we've collected is partial because we stopped scanning for
770 // argument uses once we solved the argument trivially. These partial nodes
771 // show up as ArgumentGraphNode objects with an empty Uses list, and for
772 // these nodes the final decision about whether they capture has already been
773 // made. If the definition doesn't have a 'nocapture' attribute by now, it
774 // captures.
776 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
777 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
778 if (ArgumentSCC.size() == 1) {
779 if (!ArgumentSCC[0]->Definition)
780 continue; // synthetic root node
782 // eg. "void f(int* x) { if (...) f(x); }"
783 if (ArgumentSCC[0]->Uses.size() == 1 &&
784 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
785 Argument *A = ArgumentSCC[0]->Definition;
786 A->addAttr(Attribute::NoCapture);
787 ++NumNoCapture;
788 Changed = true;
790 continue;
793 bool SCCCaptured = false;
794 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
795 I != E && !SCCCaptured; ++I) {
796 ArgumentGraphNode *Node = *I;
797 if (Node->Uses.empty()) {
798 if (!Node->Definition->hasNoCaptureAttr())
799 SCCCaptured = true;
802 if (SCCCaptured)
803 continue;
805 SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
806 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
807 // quickly looking up whether a given Argument is in this ArgumentSCC.
808 for (ArgumentGraphNode *I : ArgumentSCC) {
809 ArgumentSCCNodes.insert(I->Definition);
812 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
813 I != E && !SCCCaptured; ++I) {
814 ArgumentGraphNode *N = *I;
815 for (ArgumentGraphNode *Use : N->Uses) {
816 Argument *A = Use->Definition;
817 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
818 continue;
819 SCCCaptured = true;
820 break;
823 if (SCCCaptured)
824 continue;
826 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
827 Argument *A = ArgumentSCC[i]->Definition;
828 A->addAttr(Attribute::NoCapture);
829 ++NumNoCapture;
830 Changed = true;
833 // We also want to compute readonly/readnone. With a small number of false
834 // negatives, we can assume that any pointer which is captured isn't going
835 // to be provably readonly or readnone, since by definition we can't
836 // analyze all uses of a captured pointer.
838 // The false negatives happen when the pointer is captured by a function
839 // that promises readonly/readnone behaviour on the pointer, then the
840 // pointer's lifetime ends before anything that writes to arbitrary memory.
841 // Also, a readonly/readnone pointer may be returned, but returning a
842 // pointer is capturing it.
844 Attribute::AttrKind ReadAttr = Attribute::ReadNone;
845 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
846 Argument *A = ArgumentSCC[i]->Definition;
847 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
848 if (K == Attribute::ReadNone)
849 continue;
850 if (K == Attribute::ReadOnly) {
851 ReadAttr = Attribute::ReadOnly;
852 continue;
854 ReadAttr = K;
855 break;
858 if (ReadAttr != Attribute::None) {
859 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
860 Argument *A = ArgumentSCC[i]->Definition;
861 Changed = addReadAttr(A, ReadAttr);
866 return Changed;
869 /// Tests whether a function is "malloc-like".
871 /// A function is "malloc-like" if it returns either null or a pointer that
872 /// doesn't alias any other pointer visible to the caller.
873 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
874 SmallSetVector<Value *, 8> FlowsToReturn;
875 for (BasicBlock &BB : *F)
876 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
877 FlowsToReturn.insert(Ret->getReturnValue());
879 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
880 Value *RetVal = FlowsToReturn[i];
882 if (Constant *C = dyn_cast<Constant>(RetVal)) {
883 if (!C->isNullValue() && !isa<UndefValue>(C))
884 return false;
886 continue;
889 if (isa<Argument>(RetVal))
890 return false;
892 if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
893 switch (RVI->getOpcode()) {
894 // Extend the analysis by looking upwards.
895 case Instruction::BitCast:
896 case Instruction::GetElementPtr:
897 case Instruction::AddrSpaceCast:
898 FlowsToReturn.insert(RVI->getOperand(0));
899 continue;
900 case Instruction::Select: {
901 SelectInst *SI = cast<SelectInst>(RVI);
902 FlowsToReturn.insert(SI->getTrueValue());
903 FlowsToReturn.insert(SI->getFalseValue());
904 continue;
906 case Instruction::PHI: {
907 PHINode *PN = cast<PHINode>(RVI);
908 for (Value *IncValue : PN->incoming_values())
909 FlowsToReturn.insert(IncValue);
910 continue;
913 // Check whether the pointer came from an allocation.
914 case Instruction::Alloca:
915 break;
916 case Instruction::Call:
917 case Instruction::Invoke: {
918 CallBase &CB = cast<CallBase>(*RVI);
919 if (CB.hasRetAttr(Attribute::NoAlias))
920 break;
921 if (CB.getCalledFunction() && SCCNodes.count(CB.getCalledFunction()))
922 break;
923 LLVM_FALLTHROUGH;
925 default:
926 return false; // Did not come from an allocation.
929 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
930 return false;
933 return true;
936 /// Deduce noalias attributes for the SCC.
937 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
938 // Check each function in turn, determining which functions return noalias
939 // pointers.
940 for (Function *F : SCCNodes) {
941 // Already noalias.
942 if (F->returnDoesNotAlias())
943 continue;
945 // We can infer and propagate function attributes only when we know that the
946 // definition we'll get at link time is *exactly* the definition we see now.
947 // For more details, see GlobalValue::mayBeDerefined.
948 if (!F->hasExactDefinition())
949 return false;
951 // We annotate noalias return values, which are only applicable to
952 // pointer types.
953 if (!F->getReturnType()->isPointerTy())
954 continue;
956 if (!isFunctionMallocLike(F, SCCNodes))
957 return false;
960 bool MadeChange = false;
961 for (Function *F : SCCNodes) {
962 if (F->returnDoesNotAlias() ||
963 !F->getReturnType()->isPointerTy())
964 continue;
966 F->setReturnDoesNotAlias();
967 ++NumNoAlias;
968 MadeChange = true;
971 return MadeChange;
974 /// Tests whether this function is known to not return null.
976 /// Requires that the function returns a pointer.
978 /// Returns true if it believes the function will not return a null, and sets
979 /// \p Speculative based on whether the returned conclusion is a speculative
980 /// conclusion due to SCC calls.
981 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
982 bool &Speculative) {
983 assert(F->getReturnType()->isPointerTy() &&
984 "nonnull only meaningful on pointer types");
985 Speculative = false;
987 SmallSetVector<Value *, 8> FlowsToReturn;
988 for (BasicBlock &BB : *F)
989 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
990 FlowsToReturn.insert(Ret->getReturnValue());
992 auto &DL = F->getParent()->getDataLayout();
994 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
995 Value *RetVal = FlowsToReturn[i];
997 // If this value is locally known to be non-null, we're good
998 if (isKnownNonZero(RetVal, DL))
999 continue;
1001 // Otherwise, we need to look upwards since we can't make any local
1002 // conclusions.
1003 Instruction *RVI = dyn_cast<Instruction>(RetVal);
1004 if (!RVI)
1005 return false;
1006 switch (RVI->getOpcode()) {
1007 // Extend the analysis by looking upwards.
1008 case Instruction::BitCast:
1009 case Instruction::GetElementPtr:
1010 case Instruction::AddrSpaceCast:
1011 FlowsToReturn.insert(RVI->getOperand(0));
1012 continue;
1013 case Instruction::Select: {
1014 SelectInst *SI = cast<SelectInst>(RVI);
1015 FlowsToReturn.insert(SI->getTrueValue());
1016 FlowsToReturn.insert(SI->getFalseValue());
1017 continue;
1019 case Instruction::PHI: {
1020 PHINode *PN = cast<PHINode>(RVI);
1021 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1022 FlowsToReturn.insert(PN->getIncomingValue(i));
1023 continue;
1025 case Instruction::Call:
1026 case Instruction::Invoke: {
1027 CallBase &CB = cast<CallBase>(*RVI);
1028 Function *Callee = CB.getCalledFunction();
1029 // A call to a node within the SCC is assumed to return null until
1030 // proven otherwise
1031 if (Callee && SCCNodes.count(Callee)) {
1032 Speculative = true;
1033 continue;
1035 return false;
1037 default:
1038 return false; // Unknown source, may be null
1040 llvm_unreachable("should have either continued or returned");
1043 return true;
1046 /// Deduce nonnull attributes for the SCC.
1047 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
1048 // Speculative that all functions in the SCC return only nonnull
1049 // pointers. We may refute this as we analyze functions.
1050 bool SCCReturnsNonNull = true;
1052 bool MadeChange = false;
1054 // Check each function in turn, determining which functions return nonnull
1055 // pointers.
1056 for (Function *F : SCCNodes) {
1057 // Already nonnull.
1058 if (F->getAttributes().hasRetAttr(Attribute::NonNull))
1059 continue;
1061 // We can infer and propagate function attributes only when we know that the
1062 // definition we'll get at link time is *exactly* the definition we see now.
1063 // For more details, see GlobalValue::mayBeDerefined.
1064 if (!F->hasExactDefinition())
1065 return false;
1067 // We annotate nonnull return values, which are only applicable to
1068 // pointer types.
1069 if (!F->getReturnType()->isPointerTy())
1070 continue;
1072 bool Speculative = false;
1073 if (isReturnNonNull(F, SCCNodes, Speculative)) {
1074 if (!Speculative) {
1075 // Mark the function eagerly since we may discover a function
1076 // which prevents us from speculating about the entire SCC
1077 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1078 << " as nonnull\n");
1079 F->addRetAttr(Attribute::NonNull);
1080 ++NumNonNullReturn;
1081 MadeChange = true;
1083 continue;
1085 // At least one function returns something which could be null, can't
1086 // speculate any more.
1087 SCCReturnsNonNull = false;
1090 if (SCCReturnsNonNull) {
1091 for (Function *F : SCCNodes) {
1092 if (F->getAttributes().hasRetAttr(Attribute::NonNull) ||
1093 !F->getReturnType()->isPointerTy())
1094 continue;
1096 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1097 F->addRetAttr(Attribute::NonNull);
1098 ++NumNonNullReturn;
1099 MadeChange = true;
1103 return MadeChange;
1106 namespace {
1108 /// Collects a set of attribute inference requests and performs them all in one
1109 /// go on a single SCC Node. Inference involves scanning function bodies
1110 /// looking for instructions that violate attribute assumptions.
1111 /// As soon as all the bodies are fine we are free to set the attribute.
1112 /// Customization of inference for individual attributes is performed by
1113 /// providing a handful of predicates for each attribute.
1114 class AttributeInferer {
1115 public:
1116 /// Describes a request for inference of a single attribute.
1117 struct InferenceDescriptor {
1119 /// Returns true if this function does not have to be handled.
1120 /// General intent for this predicate is to provide an optimization
1121 /// for functions that do not need this attribute inference at all
1122 /// (say, for functions that already have the attribute).
1123 std::function<bool(const Function &)> SkipFunction;
1125 /// Returns true if this instruction violates attribute assumptions.
1126 std::function<bool(Instruction &)> InstrBreaksAttribute;
1128 /// Sets the inferred attribute for this function.
1129 std::function<void(Function &)> SetAttribute;
1131 /// Attribute we derive.
1132 Attribute::AttrKind AKind;
1134 /// If true, only "exact" definitions can be used to infer this attribute.
1135 /// See GlobalValue::isDefinitionExact.
1136 bool RequiresExactDefinition;
1138 InferenceDescriptor(Attribute::AttrKind AK,
1139 std::function<bool(const Function &)> SkipFunc,
1140 std::function<bool(Instruction &)> InstrScan,
1141 std::function<void(Function &)> SetAttr,
1142 bool ReqExactDef)
1143 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1144 SetAttribute(SetAttr), AKind(AK),
1145 RequiresExactDefinition(ReqExactDef) {}
1148 private:
1149 SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1151 public:
1152 void registerAttrInference(InferenceDescriptor AttrInference) {
1153 InferenceDescriptors.push_back(AttrInference);
1156 bool run(const SCCNodeSet &SCCNodes);
1159 /// Perform all the requested attribute inference actions according to the
1160 /// attribute predicates stored before.
1161 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1162 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1163 // Go through all the functions in SCC and check corresponding attribute
1164 // assumptions for each of them. Attributes that are invalid for this SCC
1165 // will be removed from InferInSCC.
1166 for (Function *F : SCCNodes) {
1168 // No attributes whose assumptions are still valid - done.
1169 if (InferInSCC.empty())
1170 return false;
1172 // Check if our attributes ever need scanning/can be scanned.
1173 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1174 if (ID.SkipFunction(*F))
1175 return false;
1177 // Remove from further inference (invalidate) when visiting a function
1178 // that has no instructions to scan/has an unsuitable definition.
1179 return F->isDeclaration() ||
1180 (ID.RequiresExactDefinition && !F->hasExactDefinition());
1183 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1184 // set up the F instructions scan to verify assumptions of the attribute.
1185 SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1186 llvm::copy_if(
1187 InferInSCC, std::back_inserter(InferInThisFunc),
1188 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1190 if (InferInThisFunc.empty())
1191 continue;
1193 // Start instruction scan.
1194 for (Instruction &I : instructions(*F)) {
1195 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1196 if (!ID.InstrBreaksAttribute(I))
1197 return false;
1198 // Remove attribute from further inference on any other functions
1199 // because attribute assumptions have just been violated.
1200 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1201 return D.AKind == ID.AKind;
1203 // Remove attribute from the rest of current instruction scan.
1204 return true;
1207 if (InferInThisFunc.empty())
1208 break;
1212 if (InferInSCC.empty())
1213 return false;
1215 bool Changed = false;
1216 for (Function *F : SCCNodes)
1217 // At this point InferInSCC contains only functions that were either:
1218 // - explicitly skipped from scan/inference, or
1219 // - verified to have no instructions that break attribute assumptions.
1220 // Hence we just go and force the attribute for all non-skipped functions.
1221 for (auto &ID : InferInSCC) {
1222 if (ID.SkipFunction(*F))
1223 continue;
1224 Changed = true;
1225 ID.SetAttribute(*F);
1227 return Changed;
1230 struct SCCNodesResult {
1231 SCCNodeSet SCCNodes;
1232 bool HasUnknownCall;
1235 } // end anonymous namespace
1237 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1238 static bool InstrBreaksNonConvergent(Instruction &I,
1239 const SCCNodeSet &SCCNodes) {
1240 const CallBase *CB = dyn_cast<CallBase>(&I);
1241 // Breaks non-convergent assumption if CS is a convergent call to a function
1242 // not in the SCC.
1243 return CB && CB->isConvergent() &&
1244 SCCNodes.count(CB->getCalledFunction()) == 0;
1247 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1248 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1249 if (!I.mayThrow())
1250 return false;
1251 if (const auto *CI = dyn_cast<CallInst>(&I)) {
1252 if (Function *Callee = CI->getCalledFunction()) {
1253 // I is a may-throw call to a function inside our SCC. This doesn't
1254 // invalidate our current working assumption that the SCC is no-throw; we
1255 // just have to scan that other function.
1256 if (SCCNodes.contains(Callee))
1257 return false;
1260 return true;
1263 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1264 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
1265 CallBase *CB = dyn_cast<CallBase>(&I);
1266 if (!CB)
1267 return false;
1269 if (CB->hasFnAttr(Attribute::NoFree))
1270 return false;
1272 // Speculatively assume in SCC.
1273 if (Function *Callee = CB->getCalledFunction())
1274 if (SCCNodes.contains(Callee))
1275 return false;
1277 return true;
1280 /// Attempt to remove convergent function attribute when possible.
1282 /// Returns true if any changes to function attributes were made.
1283 static bool inferConvergent(const SCCNodeSet &SCCNodes) {
1284 AttributeInferer AI;
1286 // Request to remove the convergent attribute from all functions in the SCC
1287 // if every callsite within the SCC is not convergent (except for calls
1288 // to functions within the SCC).
1289 // Note: Removal of the attr from the callsites will happen in
1290 // InstCombineCalls separately.
1291 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1292 Attribute::Convergent,
1293 // Skip non-convergent functions.
1294 [](const Function &F) { return !F.isConvergent(); },
1295 // Instructions that break non-convergent assumption.
1296 [SCCNodes](Instruction &I) {
1297 return InstrBreaksNonConvergent(I, SCCNodes);
1299 [](Function &F) {
1300 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1301 << "\n");
1302 F.setNotConvergent();
1304 /* RequiresExactDefinition= */ false});
1305 // Perform all the requested attribute inference actions.
1306 return AI.run(SCCNodes);
1309 /// Infer attributes from all functions in the SCC by scanning every
1310 /// instruction for compliance to the attribute assumptions. Currently it
1311 /// does:
1312 /// - addition of NoUnwind attribute
1314 /// Returns true if any changes to function attributes were made.
1315 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1316 AttributeInferer AI;
1318 if (!DisableNoUnwindInference)
1319 // Request to infer nounwind attribute for all the functions in the SCC if
1320 // every callsite within the SCC is not throwing (except for calls to
1321 // functions within the SCC). Note that nounwind attribute suffers from
1322 // derefinement - results may change depending on how functions are
1323 // optimized. Thus it can be inferred only from exact definitions.
1324 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1325 Attribute::NoUnwind,
1326 // Skip non-throwing functions.
1327 [](const Function &F) { return F.doesNotThrow(); },
1328 // Instructions that break non-throwing assumption.
1329 [&SCCNodes](Instruction &I) {
1330 return InstrBreaksNonThrowing(I, SCCNodes);
1332 [](Function &F) {
1333 LLVM_DEBUG(dbgs()
1334 << "Adding nounwind attr to fn " << F.getName() << "\n");
1335 F.setDoesNotThrow();
1336 ++NumNoUnwind;
1338 /* RequiresExactDefinition= */ true});
1340 if (!DisableNoFreeInference)
1341 // Request to infer nofree attribute for all the functions in the SCC if
1342 // every callsite within the SCC does not directly or indirectly free
1343 // memory (except for calls to functions within the SCC). Note that nofree
1344 // attribute suffers from derefinement - results may change depending on
1345 // how functions are optimized. Thus it can be inferred only from exact
1346 // definitions.
1347 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1348 Attribute::NoFree,
1349 // Skip functions known not to free memory.
1350 [](const Function &F) { return F.doesNotFreeMemory(); },
1351 // Instructions that break non-deallocating assumption.
1352 [&SCCNodes](Instruction &I) {
1353 return InstrBreaksNoFree(I, SCCNodes);
1355 [](Function &F) {
1356 LLVM_DEBUG(dbgs()
1357 << "Adding nofree attr to fn " << F.getName() << "\n");
1358 F.setDoesNotFreeMemory();
1359 ++NumNoFree;
1361 /* RequiresExactDefinition= */ true});
1363 // Perform all the requested attribute inference actions.
1364 return AI.run(SCCNodes);
1367 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1368 // Try and identify functions that do not recurse.
1370 // If the SCC contains multiple nodes we know for sure there is recursion.
1371 if (SCCNodes.size() != 1)
1372 return false;
1374 Function *F = *SCCNodes.begin();
1375 if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
1376 return false;
1378 // If all of the calls in F are identifiable and are to norecurse functions, F
1379 // is norecurse. This check also detects self-recursion as F is not currently
1380 // marked norecurse, so any called from F to F will not be marked norecurse.
1381 for (auto &BB : *F)
1382 for (auto &I : BB.instructionsWithoutDebug())
1383 if (auto *CB = dyn_cast<CallBase>(&I)) {
1384 Function *Callee = CB->getCalledFunction();
1385 if (!Callee || Callee == F || !Callee->doesNotRecurse())
1386 // Function calls a potentially recursive function.
1387 return false;
1390 // Every call was to a non-recursive function other than this function, and
1391 // we have no indirect recursion as the SCC size is one. This function cannot
1392 // recurse.
1393 F->setDoesNotRecurse();
1394 ++NumNoRecurse;
1395 return true;
1398 static bool instructionDoesNotReturn(Instruction &I) {
1399 if (auto *CB = dyn_cast<CallBase>(&I))
1400 return CB->hasFnAttr(Attribute::NoReturn);
1401 return false;
1404 // A basic block can only return if it terminates with a ReturnInst and does not
1405 // contain calls to noreturn functions.
1406 static bool basicBlockCanReturn(BasicBlock &BB) {
1407 if (!isa<ReturnInst>(BB.getTerminator()))
1408 return false;
1409 return none_of(BB, instructionDoesNotReturn);
1412 // Set the noreturn function attribute if possible.
1413 static bool addNoReturnAttrs(const SCCNodeSet &SCCNodes) {
1414 bool Changed = false;
1416 for (Function *F : SCCNodes) {
1417 if (!F || !F->hasExactDefinition() || F->hasFnAttribute(Attribute::Naked) ||
1418 F->doesNotReturn())
1419 continue;
1421 // The function can return if any basic blocks can return.
1422 // FIXME: this doesn't handle recursion or unreachable blocks.
1423 if (none_of(*F, basicBlockCanReturn)) {
1424 F->setDoesNotReturn();
1425 Changed = true;
1429 return Changed;
1432 static bool functionWillReturn(const Function &F) {
1433 // We can infer and propagate function attributes only when we know that the
1434 // definition we'll get at link time is *exactly* the definition we see now.
1435 // For more details, see GlobalValue::mayBeDerefined.
1436 if (!F.hasExactDefinition())
1437 return false;
1439 // Must-progress function without side-effects must return.
1440 if (F.mustProgress() && F.onlyReadsMemory())
1441 return true;
1443 // Can only analyze functions with a definition.
1444 if (F.isDeclaration())
1445 return false;
1447 // Functions with loops require more sophisticated analysis, as the loop
1448 // may be infinite. For now, don't try to handle them.
1449 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>> Backedges;
1450 FindFunctionBackedges(F, Backedges);
1451 if (!Backedges.empty())
1452 return false;
1454 // If there are no loops, then the function is willreturn if all calls in
1455 // it are willreturn.
1456 return all_of(instructions(F), [](const Instruction &I) {
1457 return I.willReturn();
1461 // Set the willreturn function attribute if possible.
1462 static bool addWillReturn(const SCCNodeSet &SCCNodes) {
1463 bool Changed = false;
1465 for (Function *F : SCCNodes) {
1466 if (!F || F->willReturn() || !functionWillReturn(*F))
1467 continue;
1469 F->setWillReturn();
1470 NumWillReturn++;
1471 Changed = true;
1474 return Changed;
1477 // Return true if this is an atomic which has an ordering stronger than
1478 // unordered. Note that this is different than the predicate we use in
1479 // Attributor. Here we chose to be conservative and consider monotonic
1480 // operations potentially synchronizing. We generally don't do much with
1481 // monotonic operations, so this is simply risk reduction.
1482 static bool isOrderedAtomic(Instruction *I) {
1483 if (!I->isAtomic())
1484 return false;
1486 if (auto *FI = dyn_cast<FenceInst>(I))
1487 // All legal orderings for fence are stronger than monotonic.
1488 return FI->getSyncScopeID() != SyncScope::SingleThread;
1489 else if (isa<AtomicCmpXchgInst>(I) || isa<AtomicRMWInst>(I))
1490 return true;
1491 else if (auto *SI = dyn_cast<StoreInst>(I))
1492 return !SI->isUnordered();
1493 else if (auto *LI = dyn_cast<LoadInst>(I))
1494 return !LI->isUnordered();
1495 else {
1496 llvm_unreachable("unknown atomic instruction?");
1500 static bool InstrBreaksNoSync(Instruction &I, const SCCNodeSet &SCCNodes) {
1501 // Volatile may synchronize
1502 if (I.isVolatile())
1503 return true;
1505 // An ordered atomic may synchronize. (See comment about on monotonic.)
1506 if (isOrderedAtomic(&I))
1507 return true;
1509 auto *CB = dyn_cast<CallBase>(&I);
1510 if (!CB)
1511 // Non call site cases covered by the two checks above
1512 return false;
1514 if (CB->hasFnAttr(Attribute::NoSync))
1515 return false;
1517 // Non volatile memset/memcpy/memmoves are nosync
1518 // NOTE: Only intrinsics with volatile flags should be handled here. All
1519 // others should be marked in Intrinsics.td.
1520 if (auto *MI = dyn_cast<MemIntrinsic>(&I))
1521 if (!MI->isVolatile())
1522 return false;
1524 // Speculatively assume in SCC.
1525 if (Function *Callee = CB->getCalledFunction())
1526 if (SCCNodes.contains(Callee))
1527 return false;
1529 return true;
1532 // Infer the nosync attribute.
1533 static bool addNoSyncAttr(const SCCNodeSet &SCCNodes) {
1534 AttributeInferer AI;
1535 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1536 Attribute::NoSync,
1537 // Skip already marked functions.
1538 [](const Function &F) { return F.hasNoSync(); },
1539 // Instructions that break nosync assumption.
1540 [&SCCNodes](Instruction &I) {
1541 return InstrBreaksNoSync(I, SCCNodes);
1543 [](Function &F) {
1544 LLVM_DEBUG(dbgs()
1545 << "Adding nosync attr to fn " << F.getName() << "\n");
1546 F.setNoSync();
1547 ++NumNoSync;
1549 /* RequiresExactDefinition= */ true});
1550 return AI.run(SCCNodes);
1553 static SCCNodesResult createSCCNodeSet(ArrayRef<Function *> Functions) {
1554 SCCNodesResult Res;
1555 Res.HasUnknownCall = false;
1556 for (Function *F : Functions) {
1557 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
1558 // Treat any function we're trying not to optimize as if it were an
1559 // indirect call and omit it from the node set used below.
1560 Res.HasUnknownCall = true;
1561 continue;
1563 // Track whether any functions in this SCC have an unknown call edge.
1564 // Note: if this is ever a performance hit, we can common it with
1565 // subsequent routines which also do scans over the instructions of the
1566 // function.
1567 if (!Res.HasUnknownCall) {
1568 for (Instruction &I : instructions(*F)) {
1569 if (auto *CB = dyn_cast<CallBase>(&I)) {
1570 if (!CB->getCalledFunction()) {
1571 Res.HasUnknownCall = true;
1572 break;
1577 Res.SCCNodes.insert(F);
1579 return Res;
1582 template <typename AARGetterT>
1583 static bool deriveAttrsInPostOrder(ArrayRef<Function *> Functions,
1584 AARGetterT &&AARGetter) {
1585 SCCNodesResult Nodes = createSCCNodeSet(Functions);
1586 bool Changed = false;
1588 // Bail if the SCC only contains optnone functions.
1589 if (Nodes.SCCNodes.empty())
1590 return Changed;
1592 Changed |= addArgumentReturnedAttrs(Nodes.SCCNodes);
1593 Changed |= addReadAttrs(Nodes.SCCNodes, AARGetter);
1594 Changed |= addArgumentAttrs(Nodes.SCCNodes);
1595 Changed |= inferConvergent(Nodes.SCCNodes);
1596 Changed |= addNoReturnAttrs(Nodes.SCCNodes);
1597 Changed |= addWillReturn(Nodes.SCCNodes);
1599 // If we have no external nodes participating in the SCC, we can deduce some
1600 // more precise attributes as well.
1601 if (!Nodes.HasUnknownCall) {
1602 Changed |= addNoAliasAttrs(Nodes.SCCNodes);
1603 Changed |= addNonNullAttrs(Nodes.SCCNodes);
1604 Changed |= inferAttrsFromFunctionBodies(Nodes.SCCNodes);
1605 Changed |= addNoRecurseAttrs(Nodes.SCCNodes);
1608 Changed |= addNoSyncAttr(Nodes.SCCNodes);
1610 // Finally, infer the maximal set of attributes from the ones we've inferred
1611 // above. This is handling the cases where one attribute on a signature
1612 // implies another, but for implementation reasons the inference rule for
1613 // the later is missing (or simply less sophisticated).
1614 for (Function *F : Nodes.SCCNodes)
1615 if (F)
1616 Changed |= inferAttributesFromOthers(*F);
1618 return Changed;
1621 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1622 CGSCCAnalysisManager &AM,
1623 LazyCallGraph &CG,
1624 CGSCCUpdateResult &) {
1625 FunctionAnalysisManager &FAM =
1626 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1628 // We pass a lambda into functions to wire them up to the analysis manager
1629 // for getting function analyses.
1630 auto AARGetter = [&](Function &F) -> AAResults & {
1631 return FAM.getResult<AAManager>(F);
1634 SmallVector<Function *, 8> Functions;
1635 for (LazyCallGraph::Node &N : C) {
1636 Functions.push_back(&N.getFunction());
1639 if (deriveAttrsInPostOrder(Functions, AARGetter)) {
1640 // We have not changed the call graph or removed/added functions.
1641 PreservedAnalyses PA;
1642 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1643 return PA;
1646 return PreservedAnalyses::all();
1649 namespace {
1651 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1652 // Pass identification, replacement for typeid
1653 static char ID;
1655 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1656 initializePostOrderFunctionAttrsLegacyPassPass(
1657 *PassRegistry::getPassRegistry());
1660 bool runOnSCC(CallGraphSCC &SCC) override;
1662 void getAnalysisUsage(AnalysisUsage &AU) const override {
1663 AU.setPreservesCFG();
1664 AU.addRequired<AssumptionCacheTracker>();
1665 getAAResultsAnalysisUsage(AU);
1666 CallGraphSCCPass::getAnalysisUsage(AU);
1670 } // end anonymous namespace
1672 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1673 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "function-attrs",
1674 "Deduce function attributes", false, false)
1675 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1676 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1677 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "function-attrs",
1678 "Deduce function attributes", false, false)
1680 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1681 return new PostOrderFunctionAttrsLegacyPass();
1684 template <typename AARGetterT>
1685 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1686 SmallVector<Function *, 8> Functions;
1687 for (CallGraphNode *I : SCC) {
1688 Functions.push_back(I->getFunction());
1691 return deriveAttrsInPostOrder(Functions, AARGetter);
1694 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1695 if (skipSCC(SCC))
1696 return false;
1697 return runImpl(SCC, LegacyAARGetter(*this));
1700 namespace {
1702 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1703 // Pass identification, replacement for typeid
1704 static char ID;
1706 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1707 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1708 *PassRegistry::getPassRegistry());
1711 bool runOnModule(Module &M) override;
1713 void getAnalysisUsage(AnalysisUsage &AU) const override {
1714 AU.setPreservesCFG();
1715 AU.addRequired<CallGraphWrapperPass>();
1716 AU.addPreserved<CallGraphWrapperPass>();
1720 } // end anonymous namespace
1722 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1724 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass,
1725 "rpo-function-attrs", "Deduce function attributes in RPO",
1726 false, false)
1727 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1728 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass,
1729 "rpo-function-attrs", "Deduce function attributes in RPO",
1730 false, false)
1732 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1733 return new ReversePostOrderFunctionAttrsLegacyPass();
1736 static bool addNoRecurseAttrsTopDown(Function &F) {
1737 // We check the preconditions for the function prior to calling this to avoid
1738 // the cost of building up a reversible post-order list. We assert them here
1739 // to make sure none of the invariants this relies on were violated.
1740 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1741 assert(!F.doesNotRecurse() &&
1742 "This function has already been deduced as norecurs!");
1743 assert(F.hasInternalLinkage() &&
1744 "Can only do top-down deduction for internal linkage functions!");
1746 // If F is internal and all of its uses are calls from a non-recursive
1747 // functions, then none of its calls could in fact recurse without going
1748 // through a function marked norecurse, and so we can mark this function too
1749 // as norecurse. Note that the uses must actually be calls -- otherwise
1750 // a pointer to this function could be returned from a norecurse function but
1751 // this function could be recursively (indirectly) called. Note that this
1752 // also detects if F is directly recursive as F is not yet marked as
1753 // a norecurse function.
1754 for (auto *U : F.users()) {
1755 auto *I = dyn_cast<Instruction>(U);
1756 if (!I)
1757 return false;
1758 CallBase *CB = dyn_cast<CallBase>(I);
1759 if (!CB || !CB->getParent()->getParent()->doesNotRecurse())
1760 return false;
1762 F.setDoesNotRecurse();
1763 ++NumNoRecurse;
1764 return true;
1767 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1768 // We only have a post-order SCC traversal (because SCCs are inherently
1769 // discovered in post-order), so we accumulate them in a vector and then walk
1770 // it in reverse. This is simpler than using the RPO iterator infrastructure
1771 // because we need to combine SCC detection and the PO walk of the call
1772 // graph. We can also cheat egregiously because we're primarily interested in
1773 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1774 // with multiple functions in them will clearly be recursive.
1775 SmallVector<Function *, 16> Worklist;
1776 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1777 if (I->size() != 1)
1778 continue;
1780 Function *F = I->front()->getFunction();
1781 if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1782 F->hasInternalLinkage())
1783 Worklist.push_back(F);
1786 bool Changed = false;
1787 for (auto *F : llvm::reverse(Worklist))
1788 Changed |= addNoRecurseAttrsTopDown(*F);
1790 return Changed;
1793 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1794 if (skipModule(M))
1795 return false;
1797 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1799 return deduceFunctionAttributeInRPO(M, CG);
1802 PreservedAnalyses
1803 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1804 auto &CG = AM.getResult<CallGraphAnalysis>(M);
1806 if (!deduceFunctionAttributeInRPO(M, CG))
1807 return PreservedAnalyses::all();
1809 PreservedAnalyses PA;
1810 PA.preserve<CallGraphAnalysis>();
1811 return PA;