[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / GlobalOpt.cpp
blob1ffba572ff35fe271be514c7fd462b13e782be2e
1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms simple global variables that never have their address
10 // taken. If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include <cassert>
70 #include <cstdint>
71 #include <utility>
72 #include <vector>
74 using namespace llvm;
76 #define DEBUG_TYPE "globalopt"
78 STATISTIC(NumMarked , "Number of globals marked constant");
79 STATISTIC(NumUnnamed , "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA , "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted , "Number of globals deleted");
83 STATISTIC(NumGlobUses , "Number of global uses devirtualized");
84 STATISTIC(NumLocalized , "Number of globals localized");
85 STATISTIC(NumShrunkToBool , "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns , "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved , "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc, "Number of internal functions");
93 STATISTIC(NumColdCC, "Number of functions marked coldcc");
95 static cl::opt<bool>
96 EnableColdCCStressTest("enable-coldcc-stress-test",
97 cl::desc("Enable stress test of coldcc by adding "
98 "calling conv to all internal functions."),
99 cl::init(false), cl::Hidden);
101 static cl::opt<int> ColdCCRelFreq(
102 "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
103 cl::desc(
104 "Maximum block frequency, expressed as a percentage of caller's "
105 "entry frequency, for a call site to be considered cold for enabling"
106 "coldcc"));
108 /// Is this global variable possibly used by a leak checker as a root? If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable *GV) {
111 // A global variable is a root if it is a pointer, or could plausibly contain
112 // a pointer. There are two challenges; one is that we could have a struct
113 // the has an inner member which is a pointer. We recurse through the type to
114 // detect these (up to a point). The other is that we may actually be a union
115 // of a pointer and another type, and so our LLVM type is an integer which
116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117 // potentially contained here.
119 if (GV->hasPrivateLinkage())
120 return false;
122 SmallVector<Type *, 4> Types;
123 Types.push_back(GV->getValueType());
125 unsigned Limit = 20;
126 do {
127 Type *Ty = Types.pop_back_val();
128 switch (Ty->getTypeID()) {
129 default: break;
130 case Type::PointerTyID:
131 return true;
132 case Type::FixedVectorTyID:
133 case Type::ScalableVectorTyID:
134 if (cast<VectorType>(Ty)->getElementType()->isPointerTy())
135 return true;
136 break;
137 case Type::ArrayTyID:
138 Types.push_back(cast<ArrayType>(Ty)->getElementType());
139 break;
140 case Type::StructTyID: {
141 StructType *STy = cast<StructType>(Ty);
142 if (STy->isOpaque()) return true;
143 for (StructType::element_iterator I = STy->element_begin(),
144 E = STy->element_end(); I != E; ++I) {
145 Type *InnerTy = *I;
146 if (isa<PointerType>(InnerTy)) return true;
147 if (isa<StructType>(InnerTy) || isa<ArrayType>(InnerTy) ||
148 isa<VectorType>(InnerTy))
149 Types.push_back(InnerTy);
151 break;
154 if (--Limit == 0) return true;
155 } while (!Types.empty());
156 return false;
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
161 /// store.
162 static bool IsSafeComputationToRemove(
163 Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
164 do {
165 if (isa<Constant>(V))
166 return true;
167 if (!V->hasOneUse())
168 return false;
169 if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
170 isa<GlobalValue>(V))
171 return false;
172 if (isAllocationFn(V, GetTLI))
173 return true;
175 Instruction *I = cast<Instruction>(V);
176 if (I->mayHaveSideEffects())
177 return false;
178 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
179 if (!GEP->hasAllConstantIndices())
180 return false;
181 } else if (I->getNumOperands() != 1) {
182 return false;
185 V = I->getOperand(0);
186 } while (true);
189 /// This GV is a pointer root. Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
191 /// allocated.
192 static bool
193 CleanupPointerRootUsers(GlobalVariable *GV,
194 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
195 // A brief explanation of leak checkers. The goal is to find bugs where
196 // pointers are forgotten, causing an accumulating growth in memory
197 // usage over time. The common strategy for leak checkers is to explicitly
198 // allow the memory pointed to by globals at exit. This is popular because it
199 // also solves another problem where the main thread of a C++ program may shut
200 // down before other threads that are still expecting to use those globals. To
201 // handle that case, we expect the program may create a singleton and never
202 // destroy it.
204 bool Changed = false;
206 // If Dead[n].first is the only use of a malloc result, we can delete its
207 // chain of computation and the store to the global in Dead[n].second.
208 SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
210 // Constants can't be pointers to dynamically allocated memory.
211 for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
212 UI != E;) {
213 User *U = *UI++;
214 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
215 Value *V = SI->getValueOperand();
216 if (isa<Constant>(V)) {
217 Changed = true;
218 SI->eraseFromParent();
219 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
220 if (I->hasOneUse())
221 Dead.push_back(std::make_pair(I, SI));
223 } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
224 if (isa<Constant>(MSI->getValue())) {
225 Changed = true;
226 MSI->eraseFromParent();
227 } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
228 if (I->hasOneUse())
229 Dead.push_back(std::make_pair(I, MSI));
231 } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
232 GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
233 if (MemSrc && MemSrc->isConstant()) {
234 Changed = true;
235 MTI->eraseFromParent();
236 } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
237 if (I->hasOneUse())
238 Dead.push_back(std::make_pair(I, MTI));
240 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
241 if (CE->use_empty()) {
242 CE->destroyConstant();
243 Changed = true;
245 } else if (Constant *C = dyn_cast<Constant>(U)) {
246 if (isSafeToDestroyConstant(C)) {
247 C->destroyConstant();
248 // This could have invalidated UI, start over from scratch.
249 Dead.clear();
250 CleanupPointerRootUsers(GV, GetTLI);
251 return true;
256 for (int i = 0, e = Dead.size(); i != e; ++i) {
257 if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
258 Dead[i].second->eraseFromParent();
259 Instruction *I = Dead[i].first;
260 do {
261 if (isAllocationFn(I, GetTLI))
262 break;
263 Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
264 if (!J)
265 break;
266 I->eraseFromParent();
267 I = J;
268 } while (true);
269 I->eraseFromParent();
270 Changed = true;
274 return Changed;
277 /// We just marked GV constant. Loop over all users of the global, cleaning up
278 /// the obvious ones. This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft. This returns true if it made a change.
280 static bool CleanupConstantGlobalUsers(
281 Value *V, Constant *Init, const DataLayout &DL,
282 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
283 bool Changed = false;
284 // Note that we need to use a weak value handle for the worklist items. When
285 // we delete a constant array, we may also be holding pointer to one of its
286 // elements (or an element of one of its elements if we're dealing with an
287 // array of arrays) in the worklist.
288 SmallVector<WeakTrackingVH, 8> WorkList(V->users());
289 while (!WorkList.empty()) {
290 Value *UV = WorkList.pop_back_val();
291 if (!UV)
292 continue;
294 User *U = cast<User>(UV);
296 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
297 if (Init) {
298 if (auto *Casted =
299 ConstantFoldLoadThroughBitcast(Init, LI->getType(), DL)) {
300 // Replace the load with the initializer.
301 LI->replaceAllUsesWith(Casted);
302 LI->eraseFromParent();
303 Changed = true;
306 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
307 // Store must be unreachable or storing Init into the global.
308 SI->eraseFromParent();
309 Changed = true;
310 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
311 if (CE->getOpcode() == Instruction::GetElementPtr) {
312 Constant *SubInit = nullptr;
313 if (Init)
314 SubInit = ConstantFoldLoadThroughGEPConstantExpr(
315 Init, CE, V->getType()->getPointerElementType(), DL);
316 Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
317 } else if ((CE->getOpcode() == Instruction::BitCast &&
318 CE->getType()->isPointerTy()) ||
319 CE->getOpcode() == Instruction::AddrSpaceCast) {
320 // Pointer cast, delete any stores and memsets to the global.
321 Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
324 if (CE->use_empty()) {
325 CE->destroyConstant();
326 Changed = true;
328 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
329 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
330 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
331 // and will invalidate our notion of what Init is.
332 Constant *SubInit = nullptr;
333 if (!isa<ConstantExpr>(GEP->getOperand(0))) {
334 ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
335 ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
336 if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
337 SubInit = ConstantFoldLoadThroughGEPConstantExpr(
338 Init, CE, V->getType()->getPointerElementType(), DL);
340 // If the initializer is an all-null value and we have an inbounds GEP,
341 // we already know what the result of any load from that GEP is.
342 // TODO: Handle splats.
343 if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
344 SubInit = Constant::getNullValue(GEP->getResultElementType());
346 Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
348 if (GEP->use_empty()) {
349 GEP->eraseFromParent();
350 Changed = true;
352 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
353 if (MI->getRawDest() == V) {
354 MI->eraseFromParent();
355 Changed = true;
358 } else if (Constant *C = dyn_cast<Constant>(U)) {
359 // If we have a chain of dead constantexprs or other things dangling from
360 // us, and if they are all dead, nuke them without remorse.
361 if (isSafeToDestroyConstant(C)) {
362 C->destroyConstant();
363 CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
364 return true;
368 return Changed;
371 static bool isSafeSROAElementUse(Value *V);
373 /// Return true if the specified GEP is a safe user of a derived
374 /// expression from a global that we want to SROA.
375 static bool isSafeSROAGEP(User *U) {
376 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
377 // don't like < 3 operand CE's, and we don't like non-constant integer
378 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
379 // value of C.
380 if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
381 !cast<Constant>(U->getOperand(1))->isNullValue())
382 return false;
384 gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
385 ++GEPI; // Skip over the pointer index.
387 // For all other level we require that the indices are constant and inrange.
388 // In particular, consider: A[0][i]. We cannot know that the user isn't doing
389 // invalid things like allowing i to index an out-of-range subscript that
390 // accesses A[1]. This can also happen between different members of a struct
391 // in llvm IR.
392 for (; GEPI != E; ++GEPI) {
393 if (GEPI.isStruct())
394 continue;
396 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
397 if (!IdxVal || (GEPI.isBoundedSequential() &&
398 IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
399 return false;
402 return llvm::all_of(U->users(),
403 [](User *UU) { return isSafeSROAElementUse(UU); });
406 /// Return true if the specified instruction is a safe user of a derived
407 /// expression from a global that we want to SROA.
408 static bool isSafeSROAElementUse(Value *V) {
409 // We might have a dead and dangling constant hanging off of here.
410 if (Constant *C = dyn_cast<Constant>(V))
411 return isSafeToDestroyConstant(C);
413 Instruction *I = dyn_cast<Instruction>(V);
414 if (!I) return false;
416 // Loads are ok.
417 if (isa<LoadInst>(I)) return true;
419 // Stores *to* the pointer are ok.
420 if (StoreInst *SI = dyn_cast<StoreInst>(I))
421 return SI->getOperand(0) != V;
423 // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
424 return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
427 /// Look at all uses of the global and decide whether it is safe for us to
428 /// perform this transformation.
429 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
430 for (User *U : GV->users()) {
431 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
432 if (!isa<GetElementPtrInst>(U) &&
433 (!isa<ConstantExpr>(U) ||
434 cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
435 return false;
437 // Check the gep and it's users are safe to SRA
438 if (!isSafeSROAGEP(U))
439 return false;
442 return true;
445 static bool IsSRASequential(Type *T) {
446 return isa<ArrayType>(T) || isa<VectorType>(T);
448 static uint64_t GetSRASequentialNumElements(Type *T) {
449 if (ArrayType *AT = dyn_cast<ArrayType>(T))
450 return AT->getNumElements();
451 return cast<FixedVectorType>(T)->getNumElements();
453 static Type *GetSRASequentialElementType(Type *T) {
454 if (ArrayType *AT = dyn_cast<ArrayType>(T))
455 return AT->getElementType();
456 return cast<VectorType>(T)->getElementType();
458 static bool CanDoGlobalSRA(GlobalVariable *GV) {
459 Constant *Init = GV->getInitializer();
461 if (isa<StructType>(Init->getType())) {
462 // nothing to check
463 } else if (IsSRASequential(Init->getType())) {
464 if (GetSRASequentialNumElements(Init->getType()) > 16 &&
465 GV->hasNUsesOrMore(16))
466 return false; // It's not worth it.
467 } else
468 return false;
470 return GlobalUsersSafeToSRA(GV);
473 /// Copy over the debug info for a variable to its SRA replacements.
474 static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
475 uint64_t FragmentOffsetInBits,
476 uint64_t FragmentSizeInBits,
477 uint64_t VarSize) {
478 SmallVector<DIGlobalVariableExpression *, 1> GVs;
479 GV->getDebugInfo(GVs);
480 for (auto *GVE : GVs) {
481 DIVariable *Var = GVE->getVariable();
482 DIExpression *Expr = GVE->getExpression();
483 // If the FragmentSize is smaller than the variable,
484 // emit a fragment expression.
485 if (FragmentSizeInBits < VarSize) {
486 if (auto E = DIExpression::createFragmentExpression(
487 Expr, FragmentOffsetInBits, FragmentSizeInBits))
488 Expr = *E;
489 else
490 return;
492 auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
493 NGV->addDebugInfo(NGVE);
497 /// Perform scalar replacement of aggregates on the specified global variable.
498 /// This opens the door for other optimizations by exposing the behavior of the
499 /// program in a more fine-grained way. We have determined that this
500 /// transformation is safe already. We return the first global variable we
501 /// insert so that the caller can reprocess it.
502 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
503 // Make sure this global only has simple uses that we can SRA.
504 if (!CanDoGlobalSRA(GV))
505 return nullptr;
507 assert(GV->hasLocalLinkage());
508 Constant *Init = GV->getInitializer();
509 Type *Ty = Init->getType();
510 uint64_t VarSize = DL.getTypeSizeInBits(Ty);
512 std::map<unsigned, GlobalVariable *> NewGlobals;
514 // Get the alignment of the global, either explicit or target-specific.
515 Align StartAlignment =
516 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getType());
518 // Loop over all users and create replacement variables for used aggregate
519 // elements.
520 for (User *GEP : GV->users()) {
521 assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
522 Instruction::GetElementPtr) ||
523 isa<GetElementPtrInst>(GEP)) &&
524 "NonGEP CE's are not SRAable!");
526 // Ignore the 1th operand, which has to be zero or else the program is quite
527 // broken (undefined). Get the 2nd operand, which is the structure or array
528 // index.
529 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
530 if (NewGlobals.count(ElementIdx) == 1)
531 continue; // we`ve already created replacement variable
532 assert(NewGlobals.count(ElementIdx) == 0);
534 Type *ElTy = nullptr;
535 if (StructType *STy = dyn_cast<StructType>(Ty))
536 ElTy = STy->getElementType(ElementIdx);
537 else
538 ElTy = GetSRASequentialElementType(Ty);
539 assert(ElTy);
541 Constant *In = Init->getAggregateElement(ElementIdx);
542 assert(In && "Couldn't get element of initializer?");
544 GlobalVariable *NGV = new GlobalVariable(
545 ElTy, false, GlobalVariable::InternalLinkage, In,
546 GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
547 GV->getType()->getAddressSpace());
548 NGV->setExternallyInitialized(GV->isExternallyInitialized());
549 NGV->copyAttributesFrom(GV);
550 NewGlobals.insert(std::make_pair(ElementIdx, NGV));
552 if (StructType *STy = dyn_cast<StructType>(Ty)) {
553 const StructLayout &Layout = *DL.getStructLayout(STy);
555 // Calculate the known alignment of the field. If the original aggregate
556 // had 256 byte alignment for example, something might depend on that:
557 // propagate info to each field.
558 uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
559 Align NewAlign = commonAlignment(StartAlignment, FieldOffset);
560 if (NewAlign > DL.getABITypeAlign(STy->getElementType(ElementIdx)))
561 NGV->setAlignment(NewAlign);
563 // Copy over the debug info for the variable.
564 uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
565 uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
566 transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size, VarSize);
567 } else {
568 uint64_t EltSize = DL.getTypeAllocSize(ElTy);
569 Align EltAlign = DL.getABITypeAlign(ElTy);
570 uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
572 // Calculate the known alignment of the field. If the original aggregate
573 // had 256 byte alignment for example, something might depend on that:
574 // propagate info to each field.
575 Align NewAlign = commonAlignment(StartAlignment, EltSize * ElementIdx);
576 if (NewAlign > EltAlign)
577 NGV->setAlignment(NewAlign);
578 transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
579 FragmentSizeInBits, VarSize);
583 if (NewGlobals.empty())
584 return nullptr;
586 Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
587 for (auto NewGlobalVar : NewGlobals)
588 Globals.push_back(NewGlobalVar.second);
590 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
592 Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
594 // Loop over all of the uses of the global, replacing the constantexpr geps,
595 // with smaller constantexpr geps or direct references.
596 while (!GV->use_empty()) {
597 User *GEP = GV->user_back();
598 assert(((isa<ConstantExpr>(GEP) &&
599 cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
600 isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
602 // Ignore the 1th operand, which has to be zero or else the program is quite
603 // broken (undefined). Get the 2nd operand, which is the structure or array
604 // index.
605 unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
606 assert(NewGlobals.count(ElementIdx) == 1);
608 Value *NewPtr = NewGlobals[ElementIdx];
609 Type *NewTy = NewGlobals[ElementIdx]->getValueType();
611 // Form a shorter GEP if needed.
612 if (GEP->getNumOperands() > 3) {
613 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
614 SmallVector<Constant*, 8> Idxs;
615 Idxs.push_back(NullInt);
616 for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
617 Idxs.push_back(CE->getOperand(i));
618 NewPtr =
619 ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
620 } else {
621 GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
622 SmallVector<Value*, 8> Idxs;
623 Idxs.push_back(NullInt);
624 for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
625 Idxs.push_back(GEPI->getOperand(i));
626 NewPtr = GetElementPtrInst::Create(
627 NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
628 GEPI);
631 GEP->replaceAllUsesWith(NewPtr);
633 // We changed the pointer of any memory access user. Recalculate alignments.
634 for (User *U : NewPtr->users()) {
635 if (auto *Load = dyn_cast<LoadInst>(U)) {
636 Align PrefAlign = DL.getPrefTypeAlign(Load->getType());
637 Align NewAlign = getOrEnforceKnownAlignment(Load->getPointerOperand(),
638 PrefAlign, DL, Load);
639 Load->setAlignment(NewAlign);
641 if (auto *Store = dyn_cast<StoreInst>(U)) {
642 Align PrefAlign =
643 DL.getPrefTypeAlign(Store->getValueOperand()->getType());
644 Align NewAlign = getOrEnforceKnownAlignment(Store->getPointerOperand(),
645 PrefAlign, DL, Store);
646 Store->setAlignment(NewAlign);
650 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
651 GEPI->eraseFromParent();
652 else
653 cast<ConstantExpr>(GEP)->destroyConstant();
656 // Delete the old global, now that it is dead.
657 Globals.erase(GV);
658 ++NumSRA;
660 assert(NewGlobals.size() > 0);
661 return NewGlobals.begin()->second;
664 /// Return true if all users of the specified value will trap if the value is
665 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
666 /// reprocessing them.
667 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
668 SmallPtrSetImpl<const PHINode*> &PHIs) {
669 for (const User *U : V->users()) {
670 if (const Instruction *I = dyn_cast<Instruction>(U)) {
671 // If null pointer is considered valid, then all uses are non-trapping.
672 // Non address-space 0 globals have already been pruned by the caller.
673 if (NullPointerIsDefined(I->getFunction()))
674 return false;
676 if (isa<LoadInst>(U)) {
677 // Will trap.
678 } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
679 if (SI->getOperand(0) == V) {
680 //cerr << "NONTRAPPING USE: " << *U;
681 return false; // Storing the value.
683 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
684 if (CI->getCalledOperand() != V) {
685 //cerr << "NONTRAPPING USE: " << *U;
686 return false; // Not calling the ptr
688 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
689 if (II->getCalledOperand() != V) {
690 //cerr << "NONTRAPPING USE: " << *U;
691 return false; // Not calling the ptr
693 } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
694 if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
695 } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
696 if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
697 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
698 // If we've already seen this phi node, ignore it, it has already been
699 // checked.
700 if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
701 return false;
702 } else if (isa<ICmpInst>(U) &&
703 !ICmpInst::isSigned(cast<ICmpInst>(U)->getPredicate()) &&
704 isa<LoadInst>(U->getOperand(0)) &&
705 isa<ConstantPointerNull>(U->getOperand(1))) {
706 assert(isa<GlobalValue>(
707 cast<LoadInst>(U->getOperand(0))->getPointerOperand()) &&
708 "Should be GlobalVariable");
709 // This and only this kind of non-signed ICmpInst is to be replaced with
710 // the comparing of the value of the created global init bool later in
711 // optimizeGlobalAddressOfMalloc for the global variable.
712 } else {
713 //cerr << "NONTRAPPING USE: " << *U;
714 return false;
717 return true;
720 /// Return true if all uses of any loads from GV will trap if the loaded value
721 /// is null. Note that this also permits comparisons of the loaded value
722 /// against null, as a special case.
723 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
724 SmallVector<const Value *, 4> Worklist;
725 Worklist.push_back(GV);
726 while (!Worklist.empty()) {
727 const Value *P = Worklist.pop_back_val();
728 for (auto *U : P->users()) {
729 if (auto *LI = dyn_cast<LoadInst>(U)) {
730 SmallPtrSet<const PHINode *, 8> PHIs;
731 if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
732 return false;
733 } else if (auto *SI = dyn_cast<StoreInst>(U)) {
734 // Ignore stores to the global.
735 if (SI->getPointerOperand() != P)
736 return false;
737 } else if (auto *CE = dyn_cast<ConstantExpr>(U)) {
738 if (CE->stripPointerCasts() != GV)
739 return false;
740 // Check further the ConstantExpr.
741 Worklist.push_back(CE);
742 } else {
743 // We don't know or understand this user, bail out.
744 return false;
749 return true;
752 /// Get all the loads/store uses for global variable \p GV.
753 static void allUsesOfLoadAndStores(GlobalVariable *GV,
754 SmallVector<Value *, 4> &Uses) {
755 SmallVector<Value *, 4> Worklist;
756 Worklist.push_back(GV);
757 while (!Worklist.empty()) {
758 auto *P = Worklist.pop_back_val();
759 for (auto *U : P->users()) {
760 if (auto *CE = dyn_cast<ConstantExpr>(U)) {
761 Worklist.push_back(CE);
762 continue;
765 assert((isa<LoadInst>(U) || isa<StoreInst>(U)) &&
766 "Expect only load or store instructions");
767 Uses.push_back(U);
772 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
773 bool Changed = false;
774 for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
775 Instruction *I = cast<Instruction>(*UI++);
776 // Uses are non-trapping if null pointer is considered valid.
777 // Non address-space 0 globals are already pruned by the caller.
778 if (NullPointerIsDefined(I->getFunction()))
779 return false;
780 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
781 LI->setOperand(0, NewV);
782 Changed = true;
783 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
784 if (SI->getOperand(1) == V) {
785 SI->setOperand(1, NewV);
786 Changed = true;
788 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
789 CallBase *CB = cast<CallBase>(I);
790 if (CB->getCalledOperand() == V) {
791 // Calling through the pointer! Turn into a direct call, but be careful
792 // that the pointer is not also being passed as an argument.
793 CB->setCalledOperand(NewV);
794 Changed = true;
795 bool PassedAsArg = false;
796 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
797 if (CB->getArgOperand(i) == V) {
798 PassedAsArg = true;
799 CB->setArgOperand(i, NewV);
802 if (PassedAsArg) {
803 // Being passed as an argument also. Be careful to not invalidate UI!
804 UI = V->user_begin();
807 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
808 Changed |= OptimizeAwayTrappingUsesOfValue(CI,
809 ConstantExpr::getCast(CI->getOpcode(),
810 NewV, CI->getType()));
811 if (CI->use_empty()) {
812 Changed = true;
813 CI->eraseFromParent();
815 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
816 // Should handle GEP here.
817 SmallVector<Constant*, 8> Idxs;
818 Idxs.reserve(GEPI->getNumOperands()-1);
819 for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
820 i != e; ++i)
821 if (Constant *C = dyn_cast<Constant>(*i))
822 Idxs.push_back(C);
823 else
824 break;
825 if (Idxs.size() == GEPI->getNumOperands()-1)
826 Changed |= OptimizeAwayTrappingUsesOfValue(
827 GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
828 NewV, Idxs));
829 if (GEPI->use_empty()) {
830 Changed = true;
831 GEPI->eraseFromParent();
836 return Changed;
839 /// The specified global has only one non-null value stored into it. If there
840 /// are uses of the loaded value that would trap if the loaded value is
841 /// dynamically null, then we know that they cannot be reachable with a null
842 /// optimize away the load.
843 static bool OptimizeAwayTrappingUsesOfLoads(
844 GlobalVariable *GV, Constant *LV, const DataLayout &DL,
845 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
846 bool Changed = false;
848 // Keep track of whether we are able to remove all the uses of the global
849 // other than the store that defines it.
850 bool AllNonStoreUsesGone = true;
852 // Replace all uses of loads with uses of uses of the stored value.
853 for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
854 User *GlobalUser = *GUI++;
855 if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
856 Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
857 // If we were able to delete all uses of the loads
858 if (LI->use_empty()) {
859 LI->eraseFromParent();
860 Changed = true;
861 } else {
862 AllNonStoreUsesGone = false;
864 } else if (isa<StoreInst>(GlobalUser)) {
865 // Ignore the store that stores "LV" to the global.
866 assert(GlobalUser->getOperand(1) == GV &&
867 "Must be storing *to* the global");
868 } else {
869 AllNonStoreUsesGone = false;
871 // If we get here we could have other crazy uses that are transitively
872 // loaded.
873 assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
874 isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
875 isa<BitCastInst>(GlobalUser) ||
876 isa<GetElementPtrInst>(GlobalUser)) &&
877 "Only expect load and stores!");
881 if (Changed) {
882 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
883 << "\n");
884 ++NumGlobUses;
887 // If we nuked all of the loads, then none of the stores are needed either,
888 // nor is the global.
889 if (AllNonStoreUsesGone) {
890 if (isLeakCheckerRoot(GV)) {
891 Changed |= CleanupPointerRootUsers(GV, GetTLI);
892 } else {
893 Changed = true;
894 CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
896 if (GV->use_empty()) {
897 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
898 Changed = true;
899 GV->eraseFromParent();
900 ++NumDeleted;
903 return Changed;
906 /// Walk the use list of V, constant folding all of the instructions that are
907 /// foldable.
908 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
909 TargetLibraryInfo *TLI) {
910 for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
911 if (Instruction *I = dyn_cast<Instruction>(*UI++))
912 if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
913 I->replaceAllUsesWith(NewC);
915 // Advance UI to the next non-I use to avoid invalidating it!
916 // Instructions could multiply use V.
917 while (UI != E && *UI == I)
918 ++UI;
919 if (isInstructionTriviallyDead(I, TLI))
920 I->eraseFromParent();
924 /// This function takes the specified global variable, and transforms the
925 /// program as if it always contained the result of the specified malloc.
926 /// Because it is always the result of the specified malloc, there is no reason
927 /// to actually DO the malloc. Instead, turn the malloc into a global, and any
928 /// loads of GV as uses of the new global.
929 static GlobalVariable *
930 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
931 ConstantInt *NElements, const DataLayout &DL,
932 TargetLibraryInfo *TLI) {
933 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << " CALL = " << *CI
934 << '\n');
936 Type *GlobalType;
937 if (NElements->getZExtValue() == 1)
938 GlobalType = AllocTy;
939 else
940 // If we have an array allocation, the global variable is of an array.
941 GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
943 // Create the new global variable. The contents of the malloc'd memory is
944 // undefined, so initialize with an undef value.
945 GlobalVariable *NewGV = new GlobalVariable(
946 *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
947 UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
948 GV->getThreadLocalMode());
950 // If there are bitcast users of the malloc (which is typical, usually we have
951 // a malloc + bitcast) then replace them with uses of the new global. Update
952 // other users to use the global as well.
953 BitCastInst *TheBC = nullptr;
954 while (!CI->use_empty()) {
955 Instruction *User = cast<Instruction>(CI->user_back());
956 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
957 if (BCI->getType() == NewGV->getType()) {
958 BCI->replaceAllUsesWith(NewGV);
959 BCI->eraseFromParent();
960 } else {
961 BCI->setOperand(0, NewGV);
963 } else {
964 if (!TheBC)
965 TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
966 User->replaceUsesOfWith(CI, TheBC);
970 SmallPtrSet<Constant *, 1> RepValues;
971 RepValues.insert(NewGV);
973 // If there is a comparison against null, we will insert a global bool to
974 // keep track of whether the global was initialized yet or not.
975 GlobalVariable *InitBool =
976 new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
977 GlobalValue::InternalLinkage,
978 ConstantInt::getFalse(GV->getContext()),
979 GV->getName()+".init", GV->getThreadLocalMode());
980 bool InitBoolUsed = false;
982 // Loop over all instruction uses of GV, processing them in turn.
983 SmallVector<Value *, 4> Guses;
984 allUsesOfLoadAndStores(GV, Guses);
985 for (auto *U : Guses) {
986 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
987 // The global is initialized when the store to it occurs. If the stored
988 // value is null value, the global bool is set to false, otherwise true.
989 new StoreInst(ConstantInt::getBool(
990 GV->getContext(),
991 !isa<ConstantPointerNull>(SI->getValueOperand())),
992 InitBool, false, Align(1), SI->getOrdering(),
993 SI->getSyncScopeID(), SI);
994 SI->eraseFromParent();
995 continue;
998 LoadInst *LI = cast<LoadInst>(U);
999 while (!LI->use_empty()) {
1000 Use &LoadUse = *LI->use_begin();
1001 ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
1002 if (!ICI) {
1003 auto *CE = ConstantExpr::getBitCast(NewGV, LI->getType());
1004 RepValues.insert(CE);
1005 LoadUse.set(CE);
1006 continue;
1009 // Replace the cmp X, 0 with a use of the bool value.
1010 Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
1011 InitBool->getName() + ".val", false, Align(1),
1012 LI->getOrdering(), LI->getSyncScopeID(), LI);
1013 InitBoolUsed = true;
1014 switch (ICI->getPredicate()) {
1015 default: llvm_unreachable("Unknown ICmp Predicate!");
1016 case ICmpInst::ICMP_ULT: // X < null -> always false
1017 LV = ConstantInt::getFalse(GV->getContext());
1018 break;
1019 case ICmpInst::ICMP_UGE: // X >= null -> always true
1020 LV = ConstantInt::getTrue(GV->getContext());
1021 break;
1022 case ICmpInst::ICMP_ULE:
1023 case ICmpInst::ICMP_EQ:
1024 LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
1025 break;
1026 case ICmpInst::ICMP_NE:
1027 case ICmpInst::ICMP_UGT:
1028 break; // no change.
1030 ICI->replaceAllUsesWith(LV);
1031 ICI->eraseFromParent();
1033 LI->eraseFromParent();
1036 // If the initialization boolean was used, insert it, otherwise delete it.
1037 if (!InitBoolUsed) {
1038 while (!InitBool->use_empty()) // Delete initializations
1039 cast<StoreInst>(InitBool->user_back())->eraseFromParent();
1040 delete InitBool;
1041 } else
1042 GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
1044 // Now the GV is dead, nuke it and the malloc..
1045 GV->eraseFromParent();
1046 CI->eraseFromParent();
1048 // To further other optimizations, loop over all users of NewGV and try to
1049 // constant prop them. This will promote GEP instructions with constant
1050 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1051 for (auto *CE : RepValues)
1052 ConstantPropUsersOf(CE, DL, TLI);
1054 return NewGV;
1057 /// Scan the use-list of GV checking to make sure that there are no complex uses
1058 /// of GV. We permit simple things like dereferencing the pointer, but not
1059 /// storing through the address, unless it is to the specified global.
1060 static bool
1061 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst *CI,
1062 const GlobalVariable *GV) {
1063 SmallPtrSet<const Value *, 4> Visited;
1064 SmallVector<const Value *, 4> Worklist;
1065 Worklist.push_back(CI);
1067 while (!Worklist.empty()) {
1068 const Value *V = Worklist.pop_back_val();
1069 if (!Visited.insert(V).second)
1070 continue;
1072 for (const Use &VUse : V->uses()) {
1073 const User *U = VUse.getUser();
1074 if (isa<LoadInst>(U) || isa<CmpInst>(U))
1075 continue; // Fine, ignore.
1077 if (auto *SI = dyn_cast<StoreInst>(U)) {
1078 if (SI->getValueOperand() == V &&
1079 SI->getPointerOperand()->stripPointerCasts() != GV)
1080 return false; // Storing the pointer not into GV... bad.
1081 continue; // Otherwise, storing through it, or storing into GV... fine.
1084 if (auto *BCI = dyn_cast<BitCastInst>(U)) {
1085 Worklist.push_back(BCI);
1086 continue;
1089 if (auto *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1090 Worklist.push_back(GEPI);
1091 continue;
1094 return false;
1098 return true;
1101 /// This function is called when we see a pointer global variable with a single
1102 /// value stored it that is a malloc or cast of malloc.
1103 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1104 Type *AllocTy,
1105 AtomicOrdering Ordering,
1106 const DataLayout &DL,
1107 TargetLibraryInfo *TLI) {
1108 // If this is a malloc of an abstract type, don't touch it.
1109 if (!AllocTy->isSized())
1110 return false;
1112 // We can't optimize this global unless all uses of it are *known* to be
1113 // of the malloc value, not of the null initializer value (consider a use
1114 // that compares the global's value against zero to see if the malloc has
1115 // been reached). To do this, we check to see if all uses of the global
1116 // would trap if the global were null: this proves that they must all
1117 // happen after the malloc.
1118 if (!allUsesOfLoadedValueWillTrapIfNull(GV))
1119 return false;
1121 // We can't optimize this if the malloc itself is used in a complex way,
1122 // for example, being stored into multiple globals. This allows the
1123 // malloc to be stored into the specified global, loaded, gep, icmp'd.
1124 // These are all things we could transform to using the global for.
1125 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV))
1126 return false;
1128 // If we have a global that is only initialized with a fixed size malloc,
1129 // transform the program to use global memory instead of malloc'd memory.
1130 // This eliminates dynamic allocation, avoids an indirection accessing the
1131 // data, and exposes the resultant global to further GlobalOpt.
1132 // We cannot optimize the malloc if we cannot determine malloc array size.
1133 Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1134 if (!NElems)
1135 return false;
1137 if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1138 // Restrict this transformation to only working on small allocations
1139 // (2048 bytes currently), as we don't want to introduce a 16M global or
1140 // something.
1141 if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1142 OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1143 return true;
1146 return false;
1149 // Try to optimize globals based on the knowledge that only one value (besides
1150 // its initializer) is ever stored to the global.
1151 static bool
1152 optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1153 AtomicOrdering Ordering, const DataLayout &DL,
1154 function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1155 // Ignore no-op GEPs and bitcasts.
1156 StoredOnceVal = StoredOnceVal->stripPointerCasts();
1158 // If we are dealing with a pointer global that is initialized to null and
1159 // only has one (non-null) value stored into it, then we can optimize any
1160 // users of the loaded value (often calls and loads) that would trap if the
1161 // value was null.
1162 if (GV->getInitializer()->getType()->isPointerTy() &&
1163 GV->getInitializer()->isNullValue() &&
1164 StoredOnceVal->getType()->isPointerTy() &&
1165 !NullPointerIsDefined(
1166 nullptr /* F */,
1167 GV->getInitializer()->getType()->getPointerAddressSpace())) {
1168 if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1169 if (GV->getInitializer()->getType() != SOVC->getType())
1170 SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1172 // Optimize away any trapping uses of the loaded value.
1173 if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1174 return true;
1175 } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1176 auto *TLI = &GetTLI(*CI->getFunction());
1177 Type *MallocType = getMallocAllocatedType(CI, TLI);
1178 if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1179 Ordering, DL, TLI))
1180 return true;
1184 return false;
1187 /// At this point, we have learned that the only two values ever stored into GV
1188 /// are its initializer and OtherVal. See if we can shrink the global into a
1189 /// boolean and select between the two values whenever it is used. This exposes
1190 /// the values to other scalar optimizations.
1191 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1192 Type *GVElType = GV->getValueType();
1194 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1195 // an FP value, pointer or vector, don't do this optimization because a select
1196 // between them is very expensive and unlikely to lead to later
1197 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1198 // where v1 and v2 both require constant pool loads, a big loss.
1199 if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1200 GVElType->isFloatingPointTy() ||
1201 GVElType->isPointerTy() || GVElType->isVectorTy())
1202 return false;
1204 // Walk the use list of the global seeing if all the uses are load or store.
1205 // If there is anything else, bail out.
1206 for (User *U : GV->users())
1207 if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1208 return false;
1210 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV << "\n");
1212 // Create the new global, initializing it to false.
1213 GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1214 false,
1215 GlobalValue::InternalLinkage,
1216 ConstantInt::getFalse(GV->getContext()),
1217 GV->getName()+".b",
1218 GV->getThreadLocalMode(),
1219 GV->getType()->getAddressSpace());
1220 NewGV->copyAttributesFrom(GV);
1221 GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1223 Constant *InitVal = GV->getInitializer();
1224 assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1225 "No reason to shrink to bool!");
1227 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1228 GV->getDebugInfo(GVs);
1230 // If initialized to zero and storing one into the global, we can use a cast
1231 // instead of a select to synthesize the desired value.
1232 bool IsOneZero = false;
1233 bool EmitOneOrZero = true;
1234 auto *CI = dyn_cast<ConstantInt>(OtherVal);
1235 if (CI && CI->getValue().getActiveBits() <= 64) {
1236 IsOneZero = InitVal->isNullValue() && CI->isOne();
1238 auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1239 if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1240 uint64_t ValInit = CIInit->getZExtValue();
1241 uint64_t ValOther = CI->getZExtValue();
1242 uint64_t ValMinus = ValOther - ValInit;
1244 for(auto *GVe : GVs){
1245 DIGlobalVariable *DGV = GVe->getVariable();
1246 DIExpression *E = GVe->getExpression();
1247 const DataLayout &DL = GV->getParent()->getDataLayout();
1248 unsigned SizeInOctets =
1249 DL.getTypeAllocSizeInBits(NewGV->getValueType()) / 8;
1251 // It is expected that the address of global optimized variable is on
1252 // top of the stack. After optimization, value of that variable will
1253 // be ether 0 for initial value or 1 for other value. The following
1254 // expression should return constant integer value depending on the
1255 // value at global object address:
1256 // val * (ValOther - ValInit) + ValInit:
1257 // DW_OP_deref DW_OP_constu <ValMinus>
1258 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1259 SmallVector<uint64_t, 12> Ops = {
1260 dwarf::DW_OP_deref_size, SizeInOctets,
1261 dwarf::DW_OP_constu, ValMinus,
1262 dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1263 dwarf::DW_OP_plus};
1264 bool WithStackValue = true;
1265 E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1266 DIGlobalVariableExpression *DGVE =
1267 DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1268 NewGV->addDebugInfo(DGVE);
1270 EmitOneOrZero = false;
1274 if (EmitOneOrZero) {
1275 // FIXME: This will only emit address for debugger on which will
1276 // be written only 0 or 1.
1277 for(auto *GV : GVs)
1278 NewGV->addDebugInfo(GV);
1281 while (!GV->use_empty()) {
1282 Instruction *UI = cast<Instruction>(GV->user_back());
1283 if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1284 // Change the store into a boolean store.
1285 bool StoringOther = SI->getOperand(0) == OtherVal;
1286 // Only do this if we weren't storing a loaded value.
1287 Value *StoreVal;
1288 if (StoringOther || SI->getOperand(0) == InitVal) {
1289 StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1290 StoringOther);
1291 } else {
1292 // Otherwise, we are storing a previously loaded copy. To do this,
1293 // change the copy from copying the original value to just copying the
1294 // bool.
1295 Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1297 // If we've already replaced the input, StoredVal will be a cast or
1298 // select instruction. If not, it will be a load of the original
1299 // global.
1300 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1301 assert(LI->getOperand(0) == GV && "Not a copy!");
1302 // Insert a new load, to preserve the saved value.
1303 StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1304 LI->getName() + ".b", false, Align(1),
1305 LI->getOrdering(), LI->getSyncScopeID(), LI);
1306 } else {
1307 assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1308 "This is not a form that we understand!");
1309 StoreVal = StoredVal->getOperand(0);
1310 assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1313 StoreInst *NSI =
1314 new StoreInst(StoreVal, NewGV, false, Align(1), SI->getOrdering(),
1315 SI->getSyncScopeID(), SI);
1316 NSI->setDebugLoc(SI->getDebugLoc());
1317 } else {
1318 // Change the load into a load of bool then a select.
1319 LoadInst *LI = cast<LoadInst>(UI);
1320 LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1321 LI->getName() + ".b", false, Align(1),
1322 LI->getOrdering(), LI->getSyncScopeID(), LI);
1323 Instruction *NSI;
1324 if (IsOneZero)
1325 NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1326 else
1327 NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1328 NSI->takeName(LI);
1329 // Since LI is split into two instructions, NLI and NSI both inherit the
1330 // same DebugLoc
1331 NLI->setDebugLoc(LI->getDebugLoc());
1332 NSI->setDebugLoc(LI->getDebugLoc());
1333 LI->replaceAllUsesWith(NSI);
1335 UI->eraseFromParent();
1338 // Retain the name of the old global variable. People who are debugging their
1339 // programs may expect these variables to be named the same.
1340 NewGV->takeName(GV);
1341 GV->eraseFromParent();
1342 return true;
1345 static bool deleteIfDead(
1346 GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1347 GV.removeDeadConstantUsers();
1349 if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1350 return false;
1352 if (const Comdat *C = GV.getComdat())
1353 if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1354 return false;
1356 bool Dead;
1357 if (auto *F = dyn_cast<Function>(&GV))
1358 Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1359 else
1360 Dead = GV.use_empty();
1361 if (!Dead)
1362 return false;
1364 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1365 GV.eraseFromParent();
1366 ++NumDeleted;
1367 return true;
1370 static bool isPointerValueDeadOnEntryToFunction(
1371 const Function *F, GlobalValue *GV,
1372 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1373 // Find all uses of GV. We expect them all to be in F, and if we can't
1374 // identify any of the uses we bail out.
1376 // On each of these uses, identify if the memory that GV points to is
1377 // used/required/live at the start of the function. If it is not, for example
1378 // if the first thing the function does is store to the GV, the GV can
1379 // possibly be demoted.
1381 // We don't do an exhaustive search for memory operations - simply look
1382 // through bitcasts as they're quite common and benign.
1383 const DataLayout &DL = GV->getParent()->getDataLayout();
1384 SmallVector<LoadInst *, 4> Loads;
1385 SmallVector<StoreInst *, 4> Stores;
1386 for (auto *U : GV->users()) {
1387 if (Operator::getOpcode(U) == Instruction::BitCast) {
1388 for (auto *UU : U->users()) {
1389 if (auto *LI = dyn_cast<LoadInst>(UU))
1390 Loads.push_back(LI);
1391 else if (auto *SI = dyn_cast<StoreInst>(UU))
1392 Stores.push_back(SI);
1393 else
1394 return false;
1396 continue;
1399 Instruction *I = dyn_cast<Instruction>(U);
1400 if (!I)
1401 return false;
1402 assert(I->getParent()->getParent() == F);
1404 if (auto *LI = dyn_cast<LoadInst>(I))
1405 Loads.push_back(LI);
1406 else if (auto *SI = dyn_cast<StoreInst>(I))
1407 Stores.push_back(SI);
1408 else
1409 return false;
1412 // We have identified all uses of GV into loads and stores. Now check if all
1413 // of them are known not to depend on the value of the global at the function
1414 // entry point. We do this by ensuring that every load is dominated by at
1415 // least one store.
1416 auto &DT = LookupDomTree(*const_cast<Function *>(F));
1418 // The below check is quadratic. Check we're not going to do too many tests.
1419 // FIXME: Even though this will always have worst-case quadratic time, we
1420 // could put effort into minimizing the average time by putting stores that
1421 // have been shown to dominate at least one load at the beginning of the
1422 // Stores array, making subsequent dominance checks more likely to succeed
1423 // early.
1425 // The threshold here is fairly large because global->local demotion is a
1426 // very powerful optimization should it fire.
1427 const unsigned Threshold = 100;
1428 if (Loads.size() * Stores.size() > Threshold)
1429 return false;
1431 for (auto *L : Loads) {
1432 auto *LTy = L->getType();
1433 if (none_of(Stores, [&](const StoreInst *S) {
1434 auto *STy = S->getValueOperand()->getType();
1435 // The load is only dominated by the store if DomTree says so
1436 // and the number of bits loaded in L is less than or equal to
1437 // the number of bits stored in S.
1438 return DT.dominates(S, L) &&
1439 DL.getTypeStoreSize(LTy).getFixedSize() <=
1440 DL.getTypeStoreSize(STy).getFixedSize();
1442 return false;
1444 // All loads have known dependences inside F, so the global can be localized.
1445 return true;
1448 /// C may have non-instruction users. Can all of those users be turned into
1449 /// instructions?
1450 static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1451 // We don't do this exhaustively. The most common pattern that we really need
1452 // to care about is a constant GEP or constant bitcast - so just looking
1453 // through one single ConstantExpr.
1455 // The set of constants that this function returns true for must be able to be
1456 // handled by makeAllConstantUsesInstructions.
1457 for (auto *U : C->users()) {
1458 if (isa<Instruction>(U))
1459 continue;
1460 if (!isa<ConstantExpr>(U))
1461 // Non instruction, non-constantexpr user; cannot convert this.
1462 return false;
1463 for (auto *UU : U->users())
1464 if (!isa<Instruction>(UU))
1465 // A constantexpr used by another constant. We don't try and recurse any
1466 // further but just bail out at this point.
1467 return false;
1470 return true;
1473 /// C may have non-instruction users, and
1474 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1475 /// non-instruction users to instructions.
1476 static void makeAllConstantUsesInstructions(Constant *C) {
1477 SmallVector<ConstantExpr*,4> Users;
1478 for (auto *U : C->users()) {
1479 if (isa<ConstantExpr>(U))
1480 Users.push_back(cast<ConstantExpr>(U));
1481 else
1482 // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1483 // should not have returned true for C.
1484 assert(
1485 isa<Instruction>(U) &&
1486 "Can't transform non-constantexpr non-instruction to instruction!");
1489 SmallVector<Value*,4> UUsers;
1490 for (auto *U : Users) {
1491 UUsers.clear();
1492 append_range(UUsers, U->users());
1493 for (auto *UU : UUsers) {
1494 Instruction *UI = cast<Instruction>(UU);
1495 Instruction *NewU = U->getAsInstruction();
1496 NewU->insertBefore(UI);
1497 UI->replaceUsesOfWith(U, NewU);
1499 // We've replaced all the uses, so destroy the constant. (destroyConstant
1500 // will update value handles and metadata.)
1501 U->destroyConstant();
1505 /// Analyze the specified global variable and optimize
1506 /// it if possible. If we make a change, return true.
1507 static bool
1508 processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1509 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1510 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1511 auto &DL = GV->getParent()->getDataLayout();
1512 // If this is a first class global and has only one accessing function and
1513 // this function is non-recursive, we replace the global with a local alloca
1514 // in this function.
1516 // NOTE: It doesn't make sense to promote non-single-value types since we
1517 // are just replacing static memory to stack memory.
1519 // If the global is in different address space, don't bring it to stack.
1520 if (!GS.HasMultipleAccessingFunctions &&
1521 GS.AccessingFunction &&
1522 GV->getValueType()->isSingleValueType() &&
1523 GV->getType()->getAddressSpace() == 0 &&
1524 !GV->isExternallyInitialized() &&
1525 allNonInstructionUsersCanBeMadeInstructions(GV) &&
1526 GS.AccessingFunction->doesNotRecurse() &&
1527 isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1528 LookupDomTree)) {
1529 const DataLayout &DL = GV->getParent()->getDataLayout();
1531 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1532 Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1533 ->getEntryBlock().begin());
1534 Type *ElemTy = GV->getValueType();
1535 // FIXME: Pass Global's alignment when globals have alignment
1536 AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1537 GV->getName(), &FirstI);
1538 if (!isa<UndefValue>(GV->getInitializer()))
1539 new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1541 makeAllConstantUsesInstructions(GV);
1543 GV->replaceAllUsesWith(Alloca);
1544 GV->eraseFromParent();
1545 ++NumLocalized;
1546 return true;
1549 bool Changed = false;
1551 // If the global is never loaded (but may be stored to), it is dead.
1552 // Delete it now.
1553 if (!GS.IsLoaded) {
1554 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1556 if (isLeakCheckerRoot(GV)) {
1557 // Delete any constant stores to the global.
1558 Changed = CleanupPointerRootUsers(GV, GetTLI);
1559 } else {
1560 // Delete any stores we can find to the global. We may not be able to
1561 // make it completely dead though.
1562 Changed =
1563 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1566 // If the global is dead now, delete it.
1567 if (GV->use_empty()) {
1568 GV->eraseFromParent();
1569 ++NumDeleted;
1570 Changed = true;
1572 return Changed;
1575 if (GS.StoredType <= GlobalStatus::InitializerStored) {
1576 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
1578 // Don't actually mark a global constant if it's atomic because atomic loads
1579 // are implemented by a trivial cmpxchg in some edge-cases and that usually
1580 // requires write access to the variable even if it's not actually changed.
1581 if (GS.Ordering == AtomicOrdering::NotAtomic) {
1582 assert(!GV->isConstant() && "Expected a non-constant global");
1583 GV->setConstant(true);
1584 Changed = true;
1587 // Clean up any obviously simplifiable users now.
1588 Changed |= CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1590 // If the global is dead now, just nuke it.
1591 if (GV->use_empty()) {
1592 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1593 << "all users and delete global!\n");
1594 GV->eraseFromParent();
1595 ++NumDeleted;
1596 return true;
1599 // Fall through to the next check; see if we can optimize further.
1600 ++NumMarked;
1602 if (!GV->getInitializer()->getType()->isSingleValueType()) {
1603 const DataLayout &DL = GV->getParent()->getDataLayout();
1604 if (SRAGlobal(GV, DL))
1605 return true;
1607 if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
1608 // If the initial value for the global was an undef value, and if only
1609 // one other value was stored into it, we can just change the
1610 // initializer to be the stored value, then delete all stores to the
1611 // global. This allows us to mark it constant.
1612 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
1613 if (SOVConstant->getType() == GV->getValueType() &&
1614 isa<UndefValue>(GV->getInitializer())) {
1615 // Change the initial value here.
1616 GV->setInitializer(SOVConstant);
1618 // Clean up any obviously simplifiable users now.
1619 CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1621 if (GV->use_empty()) {
1622 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1623 << "simplify all users and delete global!\n");
1624 GV->eraseFromParent();
1625 ++NumDeleted;
1627 ++NumSubstitute;
1628 return true;
1631 // Try to optimize globals based on the knowledge that only one value
1632 // (besides its initializer) is ever stored to the global.
1633 if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
1634 GetTLI))
1635 return true;
1637 // Otherwise, if the global was not a boolean, we can shrink it to be a
1638 // boolean.
1639 if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
1640 if (GS.Ordering == AtomicOrdering::NotAtomic) {
1641 if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
1642 ++NumShrunkToBool;
1643 return true;
1649 return Changed;
1652 /// Analyze the specified global variable and optimize it if possible. If we
1653 /// make a change, return true.
1654 static bool
1655 processGlobal(GlobalValue &GV,
1656 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1657 function_ref<DominatorTree &(Function &)> LookupDomTree) {
1658 if (GV.getName().startswith("llvm."))
1659 return false;
1661 GlobalStatus GS;
1663 if (GlobalStatus::analyzeGlobal(&GV, GS))
1664 return false;
1666 bool Changed = false;
1667 if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
1668 auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1669 : GlobalValue::UnnamedAddr::Local;
1670 if (NewUnnamedAddr != GV.getUnnamedAddr()) {
1671 GV.setUnnamedAddr(NewUnnamedAddr);
1672 NumUnnamed++;
1673 Changed = true;
1677 // Do more involved optimizations if the global is internal.
1678 if (!GV.hasLocalLinkage())
1679 return Changed;
1681 auto *GVar = dyn_cast<GlobalVariable>(&GV);
1682 if (!GVar)
1683 return Changed;
1685 if (GVar->isConstant() || !GVar->hasInitializer())
1686 return Changed;
1688 return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
1691 /// Walk all of the direct calls of the specified function, changing them to
1692 /// FastCC.
1693 static void ChangeCalleesToFastCall(Function *F) {
1694 for (User *U : F->users()) {
1695 if (isa<BlockAddress>(U))
1696 continue;
1697 cast<CallBase>(U)->setCallingConv(CallingConv::Fast);
1701 static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
1702 Attribute::AttrKind A) {
1703 unsigned AttrIndex;
1704 if (Attrs.hasAttrSomewhere(A, &AttrIndex))
1705 return Attrs.removeAttribute(C, AttrIndex, A);
1706 return Attrs;
1709 static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
1710 F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
1711 for (User *U : F->users()) {
1712 if (isa<BlockAddress>(U))
1713 continue;
1714 CallBase *CB = cast<CallBase>(U);
1715 CB->setAttributes(StripAttr(F->getContext(), CB->getAttributes(), A));
1719 /// Return true if this is a calling convention that we'd like to change. The
1720 /// idea here is that we don't want to mess with the convention if the user
1721 /// explicitly requested something with performance implications like coldcc,
1722 /// GHC, or anyregcc.
1723 static bool hasChangeableCC(Function *F) {
1724 CallingConv::ID CC = F->getCallingConv();
1726 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1727 if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
1728 return false;
1730 // FIXME: Change CC for the whole chain of musttail calls when possible.
1732 // Can't change CC of the function that either has musttail calls, or is a
1733 // musttail callee itself
1734 for (User *U : F->users()) {
1735 if (isa<BlockAddress>(U))
1736 continue;
1737 CallInst* CI = dyn_cast<CallInst>(U);
1738 if (!CI)
1739 continue;
1741 if (CI->isMustTailCall())
1742 return false;
1745 for (BasicBlock &BB : *F)
1746 if (BB.getTerminatingMustTailCall())
1747 return false;
1749 return true;
1752 /// Return true if the block containing the call site has a BlockFrequency of
1753 /// less than ColdCCRelFreq% of the entry block.
1754 static bool isColdCallSite(CallBase &CB, BlockFrequencyInfo &CallerBFI) {
1755 const BranchProbability ColdProb(ColdCCRelFreq, 100);
1756 auto *CallSiteBB = CB.getParent();
1757 auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
1758 auto CallerEntryFreq =
1759 CallerBFI.getBlockFreq(&(CB.getCaller()->getEntryBlock()));
1760 return CallSiteFreq < CallerEntryFreq * ColdProb;
1763 // This function checks if the input function F is cold at all call sites. It
1764 // also looks each call site's containing function, returning false if the
1765 // caller function contains other non cold calls. The input vector AllCallsCold
1766 // contains a list of functions that only have call sites in cold blocks.
1767 static bool
1768 isValidCandidateForColdCC(Function &F,
1769 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1770 const std::vector<Function *> &AllCallsCold) {
1772 if (F.user_empty())
1773 return false;
1775 for (User *U : F.users()) {
1776 if (isa<BlockAddress>(U))
1777 continue;
1779 CallBase &CB = cast<CallBase>(*U);
1780 Function *CallerFunc = CB.getParent()->getParent();
1781 BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
1782 if (!isColdCallSite(CB, CallerBFI))
1783 return false;
1784 if (!llvm::is_contained(AllCallsCold, CallerFunc))
1785 return false;
1787 return true;
1790 static void changeCallSitesToColdCC(Function *F) {
1791 for (User *U : F->users()) {
1792 if (isa<BlockAddress>(U))
1793 continue;
1794 cast<CallBase>(U)->setCallingConv(CallingConv::Cold);
1798 // This function iterates over all the call instructions in the input Function
1799 // and checks that all call sites are in cold blocks and are allowed to use the
1800 // coldcc calling convention.
1801 static bool
1802 hasOnlyColdCalls(Function &F,
1803 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
1804 for (BasicBlock &BB : F) {
1805 for (Instruction &I : BB) {
1806 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1807 // Skip over isline asm instructions since they aren't function calls.
1808 if (CI->isInlineAsm())
1809 continue;
1810 Function *CalledFn = CI->getCalledFunction();
1811 if (!CalledFn)
1812 return false;
1813 if (!CalledFn->hasLocalLinkage())
1814 return false;
1815 // Skip over instrinsics since they won't remain as function calls.
1816 if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
1817 continue;
1818 // Check if it's valid to use coldcc calling convention.
1819 if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
1820 CalledFn->hasAddressTaken())
1821 return false;
1822 BlockFrequencyInfo &CallerBFI = GetBFI(F);
1823 if (!isColdCallSite(*CI, CallerBFI))
1824 return false;
1828 return true;
1831 static bool hasMustTailCallers(Function *F) {
1832 for (User *U : F->users()) {
1833 CallBase *CB = dyn_cast<CallBase>(U);
1834 if (!CB) {
1835 assert(isa<BlockAddress>(U) &&
1836 "Expected either CallBase or BlockAddress");
1837 continue;
1839 if (CB->isMustTailCall())
1840 return true;
1842 return false;
1845 static bool hasInvokeCallers(Function *F) {
1846 for (User *U : F->users())
1847 if (isa<InvokeInst>(U))
1848 return true;
1849 return false;
1852 static void RemovePreallocated(Function *F) {
1853 RemoveAttribute(F, Attribute::Preallocated);
1855 auto *M = F->getParent();
1857 IRBuilder<> Builder(M->getContext());
1859 // Cannot modify users() while iterating over it, so make a copy.
1860 SmallVector<User *, 4> PreallocatedCalls(F->users());
1861 for (User *U : PreallocatedCalls) {
1862 CallBase *CB = dyn_cast<CallBase>(U);
1863 if (!CB)
1864 continue;
1866 assert(
1867 !CB->isMustTailCall() &&
1868 "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1869 // Create copy of call without "preallocated" operand bundle.
1870 SmallVector<OperandBundleDef, 1> OpBundles;
1871 CB->getOperandBundlesAsDefs(OpBundles);
1872 CallBase *PreallocatedSetup = nullptr;
1873 for (auto *It = OpBundles.begin(); It != OpBundles.end(); ++It) {
1874 if (It->getTag() == "preallocated") {
1875 PreallocatedSetup = cast<CallBase>(*It->input_begin());
1876 OpBundles.erase(It);
1877 break;
1880 assert(PreallocatedSetup && "Did not find preallocated bundle");
1881 uint64_t ArgCount =
1882 cast<ConstantInt>(PreallocatedSetup->getArgOperand(0))->getZExtValue();
1884 assert((isa<CallInst>(CB) || isa<InvokeInst>(CB)) &&
1885 "Unknown indirect call type");
1886 CallBase *NewCB = CallBase::Create(CB, OpBundles, CB);
1887 CB->replaceAllUsesWith(NewCB);
1888 NewCB->takeName(CB);
1889 CB->eraseFromParent();
1891 Builder.SetInsertPoint(PreallocatedSetup);
1892 auto *StackSave =
1893 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stacksave));
1895 Builder.SetInsertPoint(NewCB->getNextNonDebugInstruction());
1896 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackrestore),
1897 StackSave);
1899 // Replace @llvm.call.preallocated.arg() with alloca.
1900 // Cannot modify users() while iterating over it, so make a copy.
1901 // @llvm.call.preallocated.arg() can be called with the same index multiple
1902 // times. So for each @llvm.call.preallocated.arg(), we see if we have
1903 // already created a Value* for the index, and if not, create an alloca and
1904 // bitcast right after the @llvm.call.preallocated.setup() so that it
1905 // dominates all uses.
1906 SmallVector<Value *, 2> ArgAllocas(ArgCount);
1907 SmallVector<User *, 2> PreallocatedArgs(PreallocatedSetup->users());
1908 for (auto *User : PreallocatedArgs) {
1909 auto *UseCall = cast<CallBase>(User);
1910 assert(UseCall->getCalledFunction()->getIntrinsicID() ==
1911 Intrinsic::call_preallocated_arg &&
1912 "preallocated token use was not a llvm.call.preallocated.arg");
1913 uint64_t AllocArgIndex =
1914 cast<ConstantInt>(UseCall->getArgOperand(1))->getZExtValue();
1915 Value *AllocaReplacement = ArgAllocas[AllocArgIndex];
1916 if (!AllocaReplacement) {
1917 auto AddressSpace = UseCall->getType()->getPointerAddressSpace();
1918 auto *ArgType =
1919 UseCall->getFnAttr(Attribute::Preallocated).getValueAsType();
1920 auto *InsertBefore = PreallocatedSetup->getNextNonDebugInstruction();
1921 Builder.SetInsertPoint(InsertBefore);
1922 auto *Alloca =
1923 Builder.CreateAlloca(ArgType, AddressSpace, nullptr, "paarg");
1924 auto *BitCast = Builder.CreateBitCast(
1925 Alloca, Type::getInt8PtrTy(M->getContext()), UseCall->getName());
1926 ArgAllocas[AllocArgIndex] = BitCast;
1927 AllocaReplacement = BitCast;
1930 UseCall->replaceAllUsesWith(AllocaReplacement);
1931 UseCall->eraseFromParent();
1933 // Remove @llvm.call.preallocated.setup().
1934 cast<Instruction>(PreallocatedSetup)->eraseFromParent();
1938 static bool
1939 OptimizeFunctions(Module &M,
1940 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1941 function_ref<TargetTransformInfo &(Function &)> GetTTI,
1942 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
1943 function_ref<DominatorTree &(Function &)> LookupDomTree,
1944 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1946 bool Changed = false;
1948 std::vector<Function *> AllCallsCold;
1949 for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
1950 Function *F = &*FI++;
1951 if (hasOnlyColdCalls(*F, GetBFI))
1952 AllCallsCold.push_back(F);
1955 // Optimize functions.
1956 for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
1957 Function *F = &*FI++;
1959 // Don't perform global opt pass on naked functions; we don't want fast
1960 // calling conventions for naked functions.
1961 if (F->hasFnAttribute(Attribute::Naked))
1962 continue;
1964 // Functions without names cannot be referenced outside this module.
1965 if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
1966 F->setLinkage(GlobalValue::InternalLinkage);
1968 if (deleteIfDead(*F, NotDiscardableComdats)) {
1969 Changed = true;
1970 continue;
1973 // LLVM's definition of dominance allows instructions that are cyclic
1974 // in unreachable blocks, e.g.:
1975 // %pat = select i1 %condition, @global, i16* %pat
1976 // because any instruction dominates an instruction in a block that's
1977 // not reachable from entry.
1978 // So, remove unreachable blocks from the function, because a) there's
1979 // no point in analyzing them and b) GlobalOpt should otherwise grow
1980 // some more complicated logic to break these cycles.
1981 // Removing unreachable blocks might invalidate the dominator so we
1982 // recalculate it.
1983 if (!F->isDeclaration()) {
1984 if (removeUnreachableBlocks(*F)) {
1985 auto &DT = LookupDomTree(*F);
1986 DT.recalculate(*F);
1987 Changed = true;
1991 Changed |= processGlobal(*F, GetTLI, LookupDomTree);
1993 if (!F->hasLocalLinkage())
1994 continue;
1996 // If we have an inalloca parameter that we can safely remove the
1997 // inalloca attribute from, do so. This unlocks optimizations that
1998 // wouldn't be safe in the presence of inalloca.
1999 // FIXME: We should also hoist alloca affected by this to the entry
2000 // block if possible.
2001 if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2002 !F->hasAddressTaken() && !hasMustTailCallers(F)) {
2003 RemoveAttribute(F, Attribute::InAlloca);
2004 Changed = true;
2007 // FIXME: handle invokes
2008 // FIXME: handle musttail
2009 if (F->getAttributes().hasAttrSomewhere(Attribute::Preallocated)) {
2010 if (!F->hasAddressTaken() && !hasMustTailCallers(F) &&
2011 !hasInvokeCallers(F)) {
2012 RemovePreallocated(F);
2013 Changed = true;
2015 continue;
2018 if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2019 NumInternalFunc++;
2020 TargetTransformInfo &TTI = GetTTI(*F);
2021 // Change the calling convention to coldcc if either stress testing is
2022 // enabled or the target would like to use coldcc on functions which are
2023 // cold at all call sites and the callers contain no other non coldcc
2024 // calls.
2025 if (EnableColdCCStressTest ||
2026 (TTI.useColdCCForColdCall(*F) &&
2027 isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2028 F->setCallingConv(CallingConv::Cold);
2029 changeCallSitesToColdCC(F);
2030 Changed = true;
2031 NumColdCC++;
2035 if (hasChangeableCC(F) && !F->isVarArg() &&
2036 !F->hasAddressTaken()) {
2037 // If this function has a calling convention worth changing, is not a
2038 // varargs function, and is only called directly, promote it to use the
2039 // Fast calling convention.
2040 F->setCallingConv(CallingConv::Fast);
2041 ChangeCalleesToFastCall(F);
2042 ++NumFastCallFns;
2043 Changed = true;
2046 if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2047 !F->hasAddressTaken()) {
2048 // The function is not used by a trampoline intrinsic, so it is safe
2049 // to remove the 'nest' attribute.
2050 RemoveAttribute(F, Attribute::Nest);
2051 ++NumNestRemoved;
2052 Changed = true;
2055 return Changed;
2058 static bool
2059 OptimizeGlobalVars(Module &M,
2060 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2061 function_ref<DominatorTree &(Function &)> LookupDomTree,
2062 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2063 bool Changed = false;
2065 for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2066 GVI != E; ) {
2067 GlobalVariable *GV = &*GVI++;
2068 // Global variables without names cannot be referenced outside this module.
2069 if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2070 GV->setLinkage(GlobalValue::InternalLinkage);
2071 // Simplify the initializer.
2072 if (GV->hasInitializer())
2073 if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2074 auto &DL = M.getDataLayout();
2075 // TLI is not used in the case of a Constant, so use default nullptr
2076 // for that optional parameter, since we don't have a Function to
2077 // provide GetTLI anyway.
2078 Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2079 if (New != C)
2080 GV->setInitializer(New);
2083 if (deleteIfDead(*GV, NotDiscardableComdats)) {
2084 Changed = true;
2085 continue;
2088 Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2090 return Changed;
2093 /// Evaluate a piece of a constantexpr store into a global initializer. This
2094 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
2095 /// GEP operands of Addr [0, OpNo) have been stepped into.
2096 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2097 ConstantExpr *Addr, unsigned OpNo) {
2098 // Base case of the recursion.
2099 if (OpNo == Addr->getNumOperands()) {
2100 assert(Val->getType() == Init->getType() && "Type mismatch!");
2101 return Val;
2104 SmallVector<Constant*, 32> Elts;
2105 if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2106 // Break up the constant into its elements.
2107 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2108 Elts.push_back(Init->getAggregateElement(i));
2110 // Replace the element that we are supposed to.
2111 ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2112 unsigned Idx = CU->getZExtValue();
2113 assert(Idx < STy->getNumElements() && "Struct index out of range!");
2114 Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2116 // Return the modified struct.
2117 return ConstantStruct::get(STy, Elts);
2120 ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2121 uint64_t NumElts;
2122 if (ArrayType *ATy = dyn_cast<ArrayType>(Init->getType()))
2123 NumElts = ATy->getNumElements();
2124 else
2125 NumElts = cast<FixedVectorType>(Init->getType())->getNumElements();
2127 // Break up the array into elements.
2128 for (uint64_t i = 0, e = NumElts; i != e; ++i)
2129 Elts.push_back(Init->getAggregateElement(i));
2131 assert(CI->getZExtValue() < NumElts);
2132 Elts[CI->getZExtValue()] =
2133 EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2135 if (Init->getType()->isArrayTy())
2136 return ConstantArray::get(cast<ArrayType>(Init->getType()), Elts);
2137 return ConstantVector::get(Elts);
2140 /// We have decided that Addr (which satisfies the predicate
2141 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2142 static void CommitValueTo(Constant *Val, Constant *Addr) {
2143 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2144 assert(GV->hasInitializer());
2145 GV->setInitializer(Val);
2146 return;
2149 ConstantExpr *CE = cast<ConstantExpr>(Addr);
2150 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2151 GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2154 /// Given a map of address -> value, where addresses are expected to be some form
2155 /// of either a global or a constant GEP, set the initializer for the address to
2156 /// be the value. This performs mostly the same function as CommitValueTo()
2157 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2158 /// case where the set of addresses are GEPs sharing the same underlying global,
2159 /// processing the GEPs in batches rather than individually.
2161 /// To give an example, consider the following C++ code adapted from the clang
2162 /// regression tests:
2163 /// struct S {
2164 /// int n = 10;
2165 /// int m = 2 * n;
2166 /// S(int a) : n(a) {}
2167 /// };
2169 /// template<typename T>
2170 /// struct U {
2171 /// T *r = &q;
2172 /// T q = 42;
2173 /// U *p = this;
2174 /// };
2176 /// U<S> e;
2178 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2179 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2180 /// members. This batch algorithm will simply use general CommitValueTo() method
2181 /// to handle the complex nested S struct initialization of 'q', before
2182 /// processing the outermost members in a single batch. Using CommitValueTo() to
2183 /// handle member in the outer struct is inefficient when the struct/array is
2184 /// very large as we end up creating and destroy constant arrays for each
2185 /// initialization.
2186 /// For the above case, we expect the following IR to be generated:
2188 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2189 /// %struct.S = type { i32, i32 }
2190 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2191 /// i64 0, i32 1),
2192 /// %struct.S { i32 42, i32 84 }, %struct.U* @e }
2193 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2194 /// constant expression, while the other two elements of @e are "simple".
2195 static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2196 SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2197 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2198 SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2199 SimpleCEs.reserve(Mem.size());
2201 for (const auto &I : Mem) {
2202 if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2203 GVs.push_back(std::make_pair(GV, I.second));
2204 } else {
2205 ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2206 // We don't handle the deeply recursive case using the batch method.
2207 if (GEP->getNumOperands() > 3)
2208 ComplexCEs.push_back(std::make_pair(GEP, I.second));
2209 else
2210 SimpleCEs.push_back(std::make_pair(GEP, I.second));
2214 // The algorithm below doesn't handle cases like nested structs, so use the
2215 // slower fully general method if we have to.
2216 for (auto ComplexCE : ComplexCEs)
2217 CommitValueTo(ComplexCE.second, ComplexCE.first);
2219 for (auto GVPair : GVs) {
2220 assert(GVPair.first->hasInitializer());
2221 GVPair.first->setInitializer(GVPair.second);
2224 if (SimpleCEs.empty())
2225 return;
2227 // We cache a single global's initializer elements in the case where the
2228 // subsequent address/val pair uses the same one. This avoids throwing away and
2229 // rebuilding the constant struct/vector/array just because one element is
2230 // modified at a time.
2231 SmallVector<Constant *, 32> Elts;
2232 Elts.reserve(SimpleCEs.size());
2233 GlobalVariable *CurrentGV = nullptr;
2235 auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2236 Constant *Init = GV->getInitializer();
2237 Type *Ty = Init->getType();
2238 if (Update) {
2239 if (CurrentGV) {
2240 assert(CurrentGV && "Expected a GV to commit to!");
2241 Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2242 // We have a valid cache that needs to be committed.
2243 if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2244 CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2245 else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2246 CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2247 else
2248 CurrentGV->setInitializer(ConstantVector::get(Elts));
2250 if (CurrentGV == GV)
2251 return;
2252 // Need to clear and set up cache for new initializer.
2253 CurrentGV = GV;
2254 Elts.clear();
2255 unsigned NumElts;
2256 if (auto *STy = dyn_cast<StructType>(Ty))
2257 NumElts = STy->getNumElements();
2258 else if (auto *ATy = dyn_cast<ArrayType>(Ty))
2259 NumElts = ATy->getNumElements();
2260 else
2261 NumElts = cast<FixedVectorType>(Ty)->getNumElements();
2262 for (unsigned i = 0, e = NumElts; i != e; ++i)
2263 Elts.push_back(Init->getAggregateElement(i));
2267 for (auto CEPair : SimpleCEs) {
2268 ConstantExpr *GEP = CEPair.first;
2269 Constant *Val = CEPair.second;
2271 GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2272 commitAndSetupCache(GV, GV != CurrentGV);
2273 ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2274 Elts[CI->getZExtValue()] = Val;
2276 // The last initializer in the list needs to be committed, others
2277 // will be committed on a new initializer being processed.
2278 commitAndSetupCache(CurrentGV, true);
2281 /// Evaluate static constructors in the function, if we can. Return true if we
2282 /// can, false otherwise.
2283 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2284 TargetLibraryInfo *TLI) {
2285 // Call the function.
2286 Evaluator Eval(DL, TLI);
2287 Constant *RetValDummy;
2288 bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2289 SmallVector<Constant*, 0>());
2291 if (EvalSuccess) {
2292 ++NumCtorsEvaluated;
2294 // We succeeded at evaluation: commit the result.
2295 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2296 << F->getName() << "' to "
2297 << Eval.getMutatedMemory().size() << " stores.\n");
2298 BatchCommitValueTo(Eval.getMutatedMemory());
2299 for (GlobalVariable *GV : Eval.getInvariants())
2300 GV->setConstant(true);
2303 return EvalSuccess;
2306 static int compareNames(Constant *const *A, Constant *const *B) {
2307 Value *AStripped = (*A)->stripPointerCasts();
2308 Value *BStripped = (*B)->stripPointerCasts();
2309 return AStripped->getName().compare(BStripped->getName());
2312 static void setUsedInitializer(GlobalVariable &V,
2313 const SmallPtrSetImpl<GlobalValue *> &Init) {
2314 if (Init.empty()) {
2315 V.eraseFromParent();
2316 return;
2319 // Type of pointer to the array of pointers.
2320 PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2322 SmallVector<Constant *, 8> UsedArray;
2323 for (GlobalValue *GV : Init) {
2324 Constant *Cast
2325 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2326 UsedArray.push_back(Cast);
2328 // Sort to get deterministic order.
2329 array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2330 ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2332 Module *M = V.getParent();
2333 V.removeFromParent();
2334 GlobalVariable *NV =
2335 new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2336 ConstantArray::get(ATy, UsedArray), "");
2337 NV->takeName(&V);
2338 NV->setSection("llvm.metadata");
2339 delete &V;
2342 namespace {
2344 /// An easy to access representation of llvm.used and llvm.compiler.used.
2345 class LLVMUsed {
2346 SmallPtrSet<GlobalValue *, 4> Used;
2347 SmallPtrSet<GlobalValue *, 4> CompilerUsed;
2348 GlobalVariable *UsedV;
2349 GlobalVariable *CompilerUsedV;
2351 public:
2352 LLVMUsed(Module &M) {
2353 SmallVector<GlobalValue *, 4> Vec;
2354 UsedV = collectUsedGlobalVariables(M, Vec, false);
2355 Used = {Vec.begin(), Vec.end()};
2356 Vec.clear();
2357 CompilerUsedV = collectUsedGlobalVariables(M, Vec, true);
2358 CompilerUsed = {Vec.begin(), Vec.end()};
2361 using iterator = SmallPtrSet<GlobalValue *, 4>::iterator;
2362 using used_iterator_range = iterator_range<iterator>;
2364 iterator usedBegin() { return Used.begin(); }
2365 iterator usedEnd() { return Used.end(); }
2367 used_iterator_range used() {
2368 return used_iterator_range(usedBegin(), usedEnd());
2371 iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2372 iterator compilerUsedEnd() { return CompilerUsed.end(); }
2374 used_iterator_range compilerUsed() {
2375 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2378 bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2380 bool compilerUsedCount(GlobalValue *GV) const {
2381 return CompilerUsed.count(GV);
2384 bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2385 bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2386 bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2388 bool compilerUsedInsert(GlobalValue *GV) {
2389 return CompilerUsed.insert(GV).second;
2392 void syncVariablesAndSets() {
2393 if (UsedV)
2394 setUsedInitializer(*UsedV, Used);
2395 if (CompilerUsedV)
2396 setUsedInitializer(*CompilerUsedV, CompilerUsed);
2400 } // end anonymous namespace
2402 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2403 if (GA.use_empty()) // No use at all.
2404 return false;
2406 assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2407 "We should have removed the duplicated "
2408 "element from llvm.compiler.used");
2409 if (!GA.hasOneUse())
2410 // Strictly more than one use. So at least one is not in llvm.used and
2411 // llvm.compiler.used.
2412 return true;
2414 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2415 return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2418 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2419 const LLVMUsed &U) {
2420 unsigned N = 2;
2421 assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2422 "We should have removed the duplicated "
2423 "element from llvm.compiler.used");
2424 if (U.usedCount(&V) || U.compilerUsedCount(&V))
2425 ++N;
2426 return V.hasNUsesOrMore(N);
2429 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2430 if (!GA.hasLocalLinkage())
2431 return true;
2433 return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2436 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2437 bool &RenameTarget) {
2438 RenameTarget = false;
2439 bool Ret = false;
2440 if (hasUseOtherThanLLVMUsed(GA, U))
2441 Ret = true;
2443 // If the alias is externally visible, we may still be able to simplify it.
2444 if (!mayHaveOtherReferences(GA, U))
2445 return Ret;
2447 // If the aliasee has internal linkage, give it the name and linkage
2448 // of the alias, and delete the alias. This turns:
2449 // define internal ... @f(...)
2450 // @a = alias ... @f
2451 // into:
2452 // define ... @a(...)
2453 Constant *Aliasee = GA.getAliasee();
2454 GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2455 if (!Target->hasLocalLinkage())
2456 return Ret;
2458 // Do not perform the transform if multiple aliases potentially target the
2459 // aliasee. This check also ensures that it is safe to replace the section
2460 // and other attributes of the aliasee with those of the alias.
2461 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2462 return Ret;
2464 RenameTarget = true;
2465 return true;
2468 static bool
2469 OptimizeGlobalAliases(Module &M,
2470 SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2471 bool Changed = false;
2472 LLVMUsed Used(M);
2474 for (GlobalValue *GV : Used.used())
2475 Used.compilerUsedErase(GV);
2477 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2478 I != E;) {
2479 GlobalAlias *J = &*I++;
2481 // Aliases without names cannot be referenced outside this module.
2482 if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2483 J->setLinkage(GlobalValue::InternalLinkage);
2485 if (deleteIfDead(*J, NotDiscardableComdats)) {
2486 Changed = true;
2487 continue;
2490 // If the alias can change at link time, nothing can be done - bail out.
2491 if (J->isInterposable())
2492 continue;
2494 Constant *Aliasee = J->getAliasee();
2495 GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2496 // We can't trivially replace the alias with the aliasee if the aliasee is
2497 // non-trivial in some way. We also can't replace the alias with the aliasee
2498 // if the aliasee is interposable because aliases point to the local
2499 // definition.
2500 // TODO: Try to handle non-zero GEPs of local aliasees.
2501 if (!Target || Target->isInterposable())
2502 continue;
2503 Target->removeDeadConstantUsers();
2505 // Make all users of the alias use the aliasee instead.
2506 bool RenameTarget;
2507 if (!hasUsesToReplace(*J, Used, RenameTarget))
2508 continue;
2510 J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2511 ++NumAliasesResolved;
2512 Changed = true;
2514 if (RenameTarget) {
2515 // Give the aliasee the name, linkage and other attributes of the alias.
2516 Target->takeName(&*J);
2517 Target->setLinkage(J->getLinkage());
2518 Target->setDSOLocal(J->isDSOLocal());
2519 Target->setVisibility(J->getVisibility());
2520 Target->setDLLStorageClass(J->getDLLStorageClass());
2522 if (Used.usedErase(&*J))
2523 Used.usedInsert(Target);
2525 if (Used.compilerUsedErase(&*J))
2526 Used.compilerUsedInsert(Target);
2527 } else if (mayHaveOtherReferences(*J, Used))
2528 continue;
2530 // Delete the alias.
2531 M.getAliasList().erase(J);
2532 ++NumAliasesRemoved;
2533 Changed = true;
2536 Used.syncVariablesAndSets();
2538 return Changed;
2541 static Function *
2542 FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2543 // Hack to get a default TLI before we have actual Function.
2544 auto FuncIter = M.begin();
2545 if (FuncIter == M.end())
2546 return nullptr;
2547 auto *TLI = &GetTLI(*FuncIter);
2549 LibFunc F = LibFunc_cxa_atexit;
2550 if (!TLI->has(F))
2551 return nullptr;
2553 Function *Fn = M.getFunction(TLI->getName(F));
2554 if (!Fn)
2555 return nullptr;
2557 // Now get the actual TLI for Fn.
2558 TLI = &GetTLI(*Fn);
2560 // Make sure that the function has the correct prototype.
2561 if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2562 return nullptr;
2564 return Fn;
2567 /// Returns whether the given function is an empty C++ destructor and can
2568 /// therefore be eliminated.
2569 /// Note that we assume that other optimization passes have already simplified
2570 /// the code so we simply check for 'ret'.
2571 static bool cxxDtorIsEmpty(const Function &Fn) {
2572 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2573 // nounwind, but that doesn't seem worth doing.
2574 if (Fn.isDeclaration())
2575 return false;
2577 for (auto &I : Fn.getEntryBlock()) {
2578 if (isa<DbgInfoIntrinsic>(I))
2579 continue;
2580 if (isa<ReturnInst>(I))
2581 return true;
2582 break;
2584 return false;
2587 static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2588 /// Itanium C++ ABI p3.3.5:
2590 /// After constructing a global (or local static) object, that will require
2591 /// destruction on exit, a termination function is registered as follows:
2593 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2595 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2596 /// call f(p) when DSO d is unloaded, before all such termination calls
2597 /// registered before this one. It returns zero if registration is
2598 /// successful, nonzero on failure.
2600 // This pass will look for calls to __cxa_atexit where the function is trivial
2601 // and remove them.
2602 bool Changed = false;
2604 for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2605 I != E;) {
2606 // We're only interested in calls. Theoretically, we could handle invoke
2607 // instructions as well, but neither llvm-gcc nor clang generate invokes
2608 // to __cxa_atexit.
2609 CallInst *CI = dyn_cast<CallInst>(*I++);
2610 if (!CI)
2611 continue;
2613 Function *DtorFn =
2614 dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2615 if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2616 continue;
2618 // Just remove the call.
2619 CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2620 CI->eraseFromParent();
2622 ++NumCXXDtorsRemoved;
2624 Changed |= true;
2627 return Changed;
2630 static bool optimizeGlobalsInModule(
2631 Module &M, const DataLayout &DL,
2632 function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2633 function_ref<TargetTransformInfo &(Function &)> GetTTI,
2634 function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2635 function_ref<DominatorTree &(Function &)> LookupDomTree) {
2636 SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2637 bool Changed = false;
2638 bool LocalChange = true;
2639 while (LocalChange) {
2640 LocalChange = false;
2642 NotDiscardableComdats.clear();
2643 for (const GlobalVariable &GV : M.globals())
2644 if (const Comdat *C = GV.getComdat())
2645 if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2646 NotDiscardableComdats.insert(C);
2647 for (Function &F : M)
2648 if (const Comdat *C = F.getComdat())
2649 if (!F.isDefTriviallyDead())
2650 NotDiscardableComdats.insert(C);
2651 for (GlobalAlias &GA : M.aliases())
2652 if (const Comdat *C = GA.getComdat())
2653 if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2654 NotDiscardableComdats.insert(C);
2656 // Delete functions that are trivially dead, ccc -> fastcc
2657 LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2658 NotDiscardableComdats);
2660 // Optimize global_ctors list.
2661 LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2662 return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2665 // Optimize non-address-taken globals.
2666 LocalChange |=
2667 OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2669 // Resolve aliases, when possible.
2670 LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2672 // Try to remove trivial global destructors if they are not removed
2673 // already.
2674 Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2675 if (CXAAtExitFn)
2676 LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2678 Changed |= LocalChange;
2681 // TODO: Move all global ctors functions to the end of the module for code
2682 // layout.
2684 return Changed;
2687 PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2688 auto &DL = M.getDataLayout();
2689 auto &FAM =
2690 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2691 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2692 return FAM.getResult<DominatorTreeAnalysis>(F);
2694 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2695 return FAM.getResult<TargetLibraryAnalysis>(F);
2697 auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2698 return FAM.getResult<TargetIRAnalysis>(F);
2701 auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
2702 return FAM.getResult<BlockFrequencyAnalysis>(F);
2705 if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
2706 return PreservedAnalyses::all();
2707 return PreservedAnalyses::none();
2710 namespace {
2712 struct GlobalOptLegacyPass : public ModulePass {
2713 static char ID; // Pass identification, replacement for typeid
2715 GlobalOptLegacyPass() : ModulePass(ID) {
2716 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2719 bool runOnModule(Module &M) override {
2720 if (skipModule(M))
2721 return false;
2723 auto &DL = M.getDataLayout();
2724 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
2725 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
2727 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
2728 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2730 auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
2731 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2734 auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
2735 return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2738 return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
2739 LookupDomTree);
2742 void getAnalysisUsage(AnalysisUsage &AU) const override {
2743 AU.addRequired<TargetLibraryInfoWrapperPass>();
2744 AU.addRequired<TargetTransformInfoWrapperPass>();
2745 AU.addRequired<DominatorTreeWrapperPass>();
2746 AU.addRequired<BlockFrequencyInfoWrapperPass>();
2750 } // end anonymous namespace
2752 char GlobalOptLegacyPass::ID = 0;
2754 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
2755 "Global Variable Optimizer", false, false)
2756 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2757 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2758 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
2759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2760 INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
2761 "Global Variable Optimizer", false, false)
2763 ModulePass *llvm::createGlobalOptimizerPass() {
2764 return new GlobalOptLegacyPass();