1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms simple global variables that never have their address
10 // taken. If obviously true, it marks read/write globals as constant, deletes
11 // variables only stored to, etc.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/GlobalOpt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/BinaryFormat/Dwarf.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Use.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/AtomicOrdering.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/IPO.h"
65 #include "llvm/Transforms/Utils/CtorUtils.h"
66 #include "llvm/Transforms/Utils/Evaluator.h"
67 #include "llvm/Transforms/Utils/GlobalStatus.h"
68 #include "llvm/Transforms/Utils/Local.h"
76 #define DEBUG_TYPE "globalopt"
78 STATISTIC(NumMarked
, "Number of globals marked constant");
79 STATISTIC(NumUnnamed
, "Number of globals marked unnamed_addr");
80 STATISTIC(NumSRA
, "Number of aggregate globals broken into scalars");
81 STATISTIC(NumSubstitute
,"Number of globals with initializers stored into them");
82 STATISTIC(NumDeleted
, "Number of globals deleted");
83 STATISTIC(NumGlobUses
, "Number of global uses devirtualized");
84 STATISTIC(NumLocalized
, "Number of globals localized");
85 STATISTIC(NumShrunkToBool
, "Number of global vars shrunk to booleans");
86 STATISTIC(NumFastCallFns
, "Number of functions converted to fastcc");
87 STATISTIC(NumCtorsEvaluated
, "Number of static ctors evaluated");
88 STATISTIC(NumNestRemoved
, "Number of nest attributes removed");
89 STATISTIC(NumAliasesResolved
, "Number of global aliases resolved");
90 STATISTIC(NumAliasesRemoved
, "Number of global aliases eliminated");
91 STATISTIC(NumCXXDtorsRemoved
, "Number of global C++ destructors removed");
92 STATISTIC(NumInternalFunc
, "Number of internal functions");
93 STATISTIC(NumColdCC
, "Number of functions marked coldcc");
96 EnableColdCCStressTest("enable-coldcc-stress-test",
97 cl::desc("Enable stress test of coldcc by adding "
98 "calling conv to all internal functions."),
99 cl::init(false), cl::Hidden
);
101 static cl::opt
<int> ColdCCRelFreq(
102 "coldcc-rel-freq", cl::Hidden
, cl::init(2), cl::ZeroOrMore
,
104 "Maximum block frequency, expressed as a percentage of caller's "
105 "entry frequency, for a call site to be considered cold for enabling"
108 /// Is this global variable possibly used by a leak checker as a root? If so,
109 /// we might not really want to eliminate the stores to it.
110 static bool isLeakCheckerRoot(GlobalVariable
*GV
) {
111 // A global variable is a root if it is a pointer, or could plausibly contain
112 // a pointer. There are two challenges; one is that we could have a struct
113 // the has an inner member which is a pointer. We recurse through the type to
114 // detect these (up to a point). The other is that we may actually be a union
115 // of a pointer and another type, and so our LLVM type is an integer which
116 // gets converted into a pointer, or our type is an [i8 x #] with a pointer
117 // potentially contained here.
119 if (GV
->hasPrivateLinkage())
122 SmallVector
<Type
*, 4> Types
;
123 Types
.push_back(GV
->getValueType());
127 Type
*Ty
= Types
.pop_back_val();
128 switch (Ty
->getTypeID()) {
130 case Type::PointerTyID
:
132 case Type::FixedVectorTyID
:
133 case Type::ScalableVectorTyID
:
134 if (cast
<VectorType
>(Ty
)->getElementType()->isPointerTy())
137 case Type::ArrayTyID
:
138 Types
.push_back(cast
<ArrayType
>(Ty
)->getElementType());
140 case Type::StructTyID
: {
141 StructType
*STy
= cast
<StructType
>(Ty
);
142 if (STy
->isOpaque()) return true;
143 for (StructType::element_iterator I
= STy
->element_begin(),
144 E
= STy
->element_end(); I
!= E
; ++I
) {
146 if (isa
<PointerType
>(InnerTy
)) return true;
147 if (isa
<StructType
>(InnerTy
) || isa
<ArrayType
>(InnerTy
) ||
148 isa
<VectorType
>(InnerTy
))
149 Types
.push_back(InnerTy
);
154 if (--Limit
== 0) return true;
155 } while (!Types
.empty());
159 /// Given a value that is stored to a global but never read, determine whether
160 /// it's safe to remove the store and the chain of computation that feeds the
162 static bool IsSafeComputationToRemove(
163 Value
*V
, function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
165 if (isa
<Constant
>(V
))
169 if (isa
<LoadInst
>(V
) || isa
<InvokeInst
>(V
) || isa
<Argument
>(V
) ||
172 if (isAllocationFn(V
, GetTLI
))
175 Instruction
*I
= cast
<Instruction
>(V
);
176 if (I
->mayHaveSideEffects())
178 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
179 if (!GEP
->hasAllConstantIndices())
181 } else if (I
->getNumOperands() != 1) {
185 V
= I
->getOperand(0);
189 /// This GV is a pointer root. Loop over all users of the global and clean up
190 /// any that obviously don't assign the global a value that isn't dynamically
193 CleanupPointerRootUsers(GlobalVariable
*GV
,
194 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
195 // A brief explanation of leak checkers. The goal is to find bugs where
196 // pointers are forgotten, causing an accumulating growth in memory
197 // usage over time. The common strategy for leak checkers is to explicitly
198 // allow the memory pointed to by globals at exit. This is popular because it
199 // also solves another problem where the main thread of a C++ program may shut
200 // down before other threads that are still expecting to use those globals. To
201 // handle that case, we expect the program may create a singleton and never
204 bool Changed
= false;
206 // If Dead[n].first is the only use of a malloc result, we can delete its
207 // chain of computation and the store to the global in Dead[n].second.
208 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 32> Dead
;
210 // Constants can't be pointers to dynamically allocated memory.
211 for (Value::user_iterator UI
= GV
->user_begin(), E
= GV
->user_end();
214 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
215 Value
*V
= SI
->getValueOperand();
216 if (isa
<Constant
>(V
)) {
218 SI
->eraseFromParent();
219 } else if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
221 Dead
.push_back(std::make_pair(I
, SI
));
223 } else if (MemSetInst
*MSI
= dyn_cast
<MemSetInst
>(U
)) {
224 if (isa
<Constant
>(MSI
->getValue())) {
226 MSI
->eraseFromParent();
227 } else if (Instruction
*I
= dyn_cast
<Instruction
>(MSI
->getValue())) {
229 Dead
.push_back(std::make_pair(I
, MSI
));
231 } else if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(U
)) {
232 GlobalVariable
*MemSrc
= dyn_cast
<GlobalVariable
>(MTI
->getSource());
233 if (MemSrc
&& MemSrc
->isConstant()) {
235 MTI
->eraseFromParent();
236 } else if (Instruction
*I
= dyn_cast
<Instruction
>(MemSrc
)) {
238 Dead
.push_back(std::make_pair(I
, MTI
));
240 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
241 if (CE
->use_empty()) {
242 CE
->destroyConstant();
245 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
246 if (isSafeToDestroyConstant(C
)) {
247 C
->destroyConstant();
248 // This could have invalidated UI, start over from scratch.
250 CleanupPointerRootUsers(GV
, GetTLI
);
256 for (int i
= 0, e
= Dead
.size(); i
!= e
; ++i
) {
257 if (IsSafeComputationToRemove(Dead
[i
].first
, GetTLI
)) {
258 Dead
[i
].second
->eraseFromParent();
259 Instruction
*I
= Dead
[i
].first
;
261 if (isAllocationFn(I
, GetTLI
))
263 Instruction
*J
= dyn_cast
<Instruction
>(I
->getOperand(0));
266 I
->eraseFromParent();
269 I
->eraseFromParent();
277 /// We just marked GV constant. Loop over all users of the global, cleaning up
278 /// the obvious ones. This is largely just a quick scan over the use list to
279 /// clean up the easy and obvious cruft. This returns true if it made a change.
280 static bool CleanupConstantGlobalUsers(
281 Value
*V
, Constant
*Init
, const DataLayout
&DL
,
282 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
283 bool Changed
= false;
284 // Note that we need to use a weak value handle for the worklist items. When
285 // we delete a constant array, we may also be holding pointer to one of its
286 // elements (or an element of one of its elements if we're dealing with an
287 // array of arrays) in the worklist.
288 SmallVector
<WeakTrackingVH
, 8> WorkList(V
->users());
289 while (!WorkList
.empty()) {
290 Value
*UV
= WorkList
.pop_back_val();
294 User
*U
= cast
<User
>(UV
);
296 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
)) {
299 ConstantFoldLoadThroughBitcast(Init
, LI
->getType(), DL
)) {
300 // Replace the load with the initializer.
301 LI
->replaceAllUsesWith(Casted
);
302 LI
->eraseFromParent();
306 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
307 // Store must be unreachable or storing Init into the global.
308 SI
->eraseFromParent();
310 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(U
)) {
311 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
312 Constant
*SubInit
= nullptr;
314 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(
315 Init
, CE
, V
->getType()->getPointerElementType(), DL
);
316 Changed
|= CleanupConstantGlobalUsers(CE
, SubInit
, DL
, GetTLI
);
317 } else if ((CE
->getOpcode() == Instruction::BitCast
&&
318 CE
->getType()->isPointerTy()) ||
319 CE
->getOpcode() == Instruction::AddrSpaceCast
) {
320 // Pointer cast, delete any stores and memsets to the global.
321 Changed
|= CleanupConstantGlobalUsers(CE
, nullptr, DL
, GetTLI
);
324 if (CE
->use_empty()) {
325 CE
->destroyConstant();
328 } else if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(U
)) {
329 // Do not transform "gepinst (gep constexpr (GV))" here, because forming
330 // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
331 // and will invalidate our notion of what Init is.
332 Constant
*SubInit
= nullptr;
333 if (!isa
<ConstantExpr
>(GEP
->getOperand(0))) {
334 ConstantExpr
*CE
= dyn_cast_or_null
<ConstantExpr
>(
335 ConstantFoldInstruction(GEP
, DL
, &GetTLI(*GEP
->getFunction())));
336 if (Init
&& CE
&& CE
->getOpcode() == Instruction::GetElementPtr
)
337 SubInit
= ConstantFoldLoadThroughGEPConstantExpr(
338 Init
, CE
, V
->getType()->getPointerElementType(), DL
);
340 // If the initializer is an all-null value and we have an inbounds GEP,
341 // we already know what the result of any load from that GEP is.
342 // TODO: Handle splats.
343 if (Init
&& isa
<ConstantAggregateZero
>(Init
) && GEP
->isInBounds())
344 SubInit
= Constant::getNullValue(GEP
->getResultElementType());
346 Changed
|= CleanupConstantGlobalUsers(GEP
, SubInit
, DL
, GetTLI
);
348 if (GEP
->use_empty()) {
349 GEP
->eraseFromParent();
352 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
)) { // memset/cpy/mv
353 if (MI
->getRawDest() == V
) {
354 MI
->eraseFromParent();
358 } else if (Constant
*C
= dyn_cast
<Constant
>(U
)) {
359 // If we have a chain of dead constantexprs or other things dangling from
360 // us, and if they are all dead, nuke them without remorse.
361 if (isSafeToDestroyConstant(C
)) {
362 C
->destroyConstant();
363 CleanupConstantGlobalUsers(V
, Init
, DL
, GetTLI
);
371 static bool isSafeSROAElementUse(Value
*V
);
373 /// Return true if the specified GEP is a safe user of a derived
374 /// expression from a global that we want to SROA.
375 static bool isSafeSROAGEP(User
*U
) {
376 // Check to see if this ConstantExpr GEP is SRA'able. In particular, we
377 // don't like < 3 operand CE's, and we don't like non-constant integer
378 // indices. This enforces that all uses are 'gep GV, 0, C, ...' for some
380 if (U
->getNumOperands() < 3 || !isa
<Constant
>(U
->getOperand(1)) ||
381 !cast
<Constant
>(U
->getOperand(1))->isNullValue())
384 gep_type_iterator GEPI
= gep_type_begin(U
), E
= gep_type_end(U
);
385 ++GEPI
; // Skip over the pointer index.
387 // For all other level we require that the indices are constant and inrange.
388 // In particular, consider: A[0][i]. We cannot know that the user isn't doing
389 // invalid things like allowing i to index an out-of-range subscript that
390 // accesses A[1]. This can also happen between different members of a struct
392 for (; GEPI
!= E
; ++GEPI
) {
396 ConstantInt
*IdxVal
= dyn_cast
<ConstantInt
>(GEPI
.getOperand());
397 if (!IdxVal
|| (GEPI
.isBoundedSequential() &&
398 IdxVal
->getZExtValue() >= GEPI
.getSequentialNumElements()))
402 return llvm::all_of(U
->users(),
403 [](User
*UU
) { return isSafeSROAElementUse(UU
); });
406 /// Return true if the specified instruction is a safe user of a derived
407 /// expression from a global that we want to SROA.
408 static bool isSafeSROAElementUse(Value
*V
) {
409 // We might have a dead and dangling constant hanging off of here.
410 if (Constant
*C
= dyn_cast
<Constant
>(V
))
411 return isSafeToDestroyConstant(C
);
413 Instruction
*I
= dyn_cast
<Instruction
>(V
);
414 if (!I
) return false;
417 if (isa
<LoadInst
>(I
)) return true;
419 // Stores *to* the pointer are ok.
420 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
421 return SI
->getOperand(0) != V
;
423 // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
424 return isa
<GetElementPtrInst
>(I
) && isSafeSROAGEP(I
);
427 /// Look at all uses of the global and decide whether it is safe for us to
428 /// perform this transformation.
429 static bool GlobalUsersSafeToSRA(GlobalValue
*GV
) {
430 for (User
*U
: GV
->users()) {
431 // The user of the global must be a GEP Inst or a ConstantExpr GEP.
432 if (!isa
<GetElementPtrInst
>(U
) &&
433 (!isa
<ConstantExpr
>(U
) ||
434 cast
<ConstantExpr
>(U
)->getOpcode() != Instruction::GetElementPtr
))
437 // Check the gep and it's users are safe to SRA
438 if (!isSafeSROAGEP(U
))
445 static bool IsSRASequential(Type
*T
) {
446 return isa
<ArrayType
>(T
) || isa
<VectorType
>(T
);
448 static uint64_t GetSRASequentialNumElements(Type
*T
) {
449 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
450 return AT
->getNumElements();
451 return cast
<FixedVectorType
>(T
)->getNumElements();
453 static Type
*GetSRASequentialElementType(Type
*T
) {
454 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
455 return AT
->getElementType();
456 return cast
<VectorType
>(T
)->getElementType();
458 static bool CanDoGlobalSRA(GlobalVariable
*GV
) {
459 Constant
*Init
= GV
->getInitializer();
461 if (isa
<StructType
>(Init
->getType())) {
463 } else if (IsSRASequential(Init
->getType())) {
464 if (GetSRASequentialNumElements(Init
->getType()) > 16 &&
465 GV
->hasNUsesOrMore(16))
466 return false; // It's not worth it.
470 return GlobalUsersSafeToSRA(GV
);
473 /// Copy over the debug info for a variable to its SRA replacements.
474 static void transferSRADebugInfo(GlobalVariable
*GV
, GlobalVariable
*NGV
,
475 uint64_t FragmentOffsetInBits
,
476 uint64_t FragmentSizeInBits
,
478 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
479 GV
->getDebugInfo(GVs
);
480 for (auto *GVE
: GVs
) {
481 DIVariable
*Var
= GVE
->getVariable();
482 DIExpression
*Expr
= GVE
->getExpression();
483 // If the FragmentSize is smaller than the variable,
484 // emit a fragment expression.
485 if (FragmentSizeInBits
< VarSize
) {
486 if (auto E
= DIExpression::createFragmentExpression(
487 Expr
, FragmentOffsetInBits
, FragmentSizeInBits
))
492 auto *NGVE
= DIGlobalVariableExpression::get(GVE
->getContext(), Var
, Expr
);
493 NGV
->addDebugInfo(NGVE
);
497 /// Perform scalar replacement of aggregates on the specified global variable.
498 /// This opens the door for other optimizations by exposing the behavior of the
499 /// program in a more fine-grained way. We have determined that this
500 /// transformation is safe already. We return the first global variable we
501 /// insert so that the caller can reprocess it.
502 static GlobalVariable
*SRAGlobal(GlobalVariable
*GV
, const DataLayout
&DL
) {
503 // Make sure this global only has simple uses that we can SRA.
504 if (!CanDoGlobalSRA(GV
))
507 assert(GV
->hasLocalLinkage());
508 Constant
*Init
= GV
->getInitializer();
509 Type
*Ty
= Init
->getType();
510 uint64_t VarSize
= DL
.getTypeSizeInBits(Ty
);
512 std::map
<unsigned, GlobalVariable
*> NewGlobals
;
514 // Get the alignment of the global, either explicit or target-specific.
515 Align StartAlignment
=
516 DL
.getValueOrABITypeAlignment(GV
->getAlign(), GV
->getType());
518 // Loop over all users and create replacement variables for used aggregate
520 for (User
*GEP
: GV
->users()) {
521 assert(((isa
<ConstantExpr
>(GEP
) && cast
<ConstantExpr
>(GEP
)->getOpcode() ==
522 Instruction::GetElementPtr
) ||
523 isa
<GetElementPtrInst
>(GEP
)) &&
524 "NonGEP CE's are not SRAable!");
526 // Ignore the 1th operand, which has to be zero or else the program is quite
527 // broken (undefined). Get the 2nd operand, which is the structure or array
529 unsigned ElementIdx
= cast
<ConstantInt
>(GEP
->getOperand(2))->getZExtValue();
530 if (NewGlobals
.count(ElementIdx
) == 1)
531 continue; // we`ve already created replacement variable
532 assert(NewGlobals
.count(ElementIdx
) == 0);
534 Type
*ElTy
= nullptr;
535 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
536 ElTy
= STy
->getElementType(ElementIdx
);
538 ElTy
= GetSRASequentialElementType(Ty
);
541 Constant
*In
= Init
->getAggregateElement(ElementIdx
);
542 assert(In
&& "Couldn't get element of initializer?");
544 GlobalVariable
*NGV
= new GlobalVariable(
545 ElTy
, false, GlobalVariable::InternalLinkage
, In
,
546 GV
->getName() + "." + Twine(ElementIdx
), GV
->getThreadLocalMode(),
547 GV
->getType()->getAddressSpace());
548 NGV
->setExternallyInitialized(GV
->isExternallyInitialized());
549 NGV
->copyAttributesFrom(GV
);
550 NewGlobals
.insert(std::make_pair(ElementIdx
, NGV
));
552 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
553 const StructLayout
&Layout
= *DL
.getStructLayout(STy
);
555 // Calculate the known alignment of the field. If the original aggregate
556 // had 256 byte alignment for example, something might depend on that:
557 // propagate info to each field.
558 uint64_t FieldOffset
= Layout
.getElementOffset(ElementIdx
);
559 Align NewAlign
= commonAlignment(StartAlignment
, FieldOffset
);
560 if (NewAlign
> DL
.getABITypeAlign(STy
->getElementType(ElementIdx
)))
561 NGV
->setAlignment(NewAlign
);
563 // Copy over the debug info for the variable.
564 uint64_t Size
= DL
.getTypeAllocSizeInBits(NGV
->getValueType());
565 uint64_t FragmentOffsetInBits
= Layout
.getElementOffsetInBits(ElementIdx
);
566 transferSRADebugInfo(GV
, NGV
, FragmentOffsetInBits
, Size
, VarSize
);
568 uint64_t EltSize
= DL
.getTypeAllocSize(ElTy
);
569 Align EltAlign
= DL
.getABITypeAlign(ElTy
);
570 uint64_t FragmentSizeInBits
= DL
.getTypeAllocSizeInBits(ElTy
);
572 // Calculate the known alignment of the field. If the original aggregate
573 // had 256 byte alignment for example, something might depend on that:
574 // propagate info to each field.
575 Align NewAlign
= commonAlignment(StartAlignment
, EltSize
* ElementIdx
);
576 if (NewAlign
> EltAlign
)
577 NGV
->setAlignment(NewAlign
);
578 transferSRADebugInfo(GV
, NGV
, FragmentSizeInBits
* ElementIdx
,
579 FragmentSizeInBits
, VarSize
);
583 if (NewGlobals
.empty())
586 Module::GlobalListType
&Globals
= GV
->getParent()->getGlobalList();
587 for (auto NewGlobalVar
: NewGlobals
)
588 Globals
.push_back(NewGlobalVar
.second
);
590 LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV
<< "\n");
592 Constant
*NullInt
=Constant::getNullValue(Type::getInt32Ty(GV
->getContext()));
594 // Loop over all of the uses of the global, replacing the constantexpr geps,
595 // with smaller constantexpr geps or direct references.
596 while (!GV
->use_empty()) {
597 User
*GEP
= GV
->user_back();
598 assert(((isa
<ConstantExpr
>(GEP
) &&
599 cast
<ConstantExpr
>(GEP
)->getOpcode()==Instruction::GetElementPtr
)||
600 isa
<GetElementPtrInst
>(GEP
)) && "NonGEP CE's are not SRAable!");
602 // Ignore the 1th operand, which has to be zero or else the program is quite
603 // broken (undefined). Get the 2nd operand, which is the structure or array
605 unsigned ElementIdx
= cast
<ConstantInt
>(GEP
->getOperand(2))->getZExtValue();
606 assert(NewGlobals
.count(ElementIdx
) == 1);
608 Value
*NewPtr
= NewGlobals
[ElementIdx
];
609 Type
*NewTy
= NewGlobals
[ElementIdx
]->getValueType();
611 // Form a shorter GEP if needed.
612 if (GEP
->getNumOperands() > 3) {
613 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(GEP
)) {
614 SmallVector
<Constant
*, 8> Idxs
;
615 Idxs
.push_back(NullInt
);
616 for (unsigned i
= 3, e
= CE
->getNumOperands(); i
!= e
; ++i
)
617 Idxs
.push_back(CE
->getOperand(i
));
619 ConstantExpr::getGetElementPtr(NewTy
, cast
<Constant
>(NewPtr
), Idxs
);
621 GetElementPtrInst
*GEPI
= cast
<GetElementPtrInst
>(GEP
);
622 SmallVector
<Value
*, 8> Idxs
;
623 Idxs
.push_back(NullInt
);
624 for (unsigned i
= 3, e
= GEPI
->getNumOperands(); i
!= e
; ++i
)
625 Idxs
.push_back(GEPI
->getOperand(i
));
626 NewPtr
= GetElementPtrInst::Create(
627 NewTy
, NewPtr
, Idxs
, GEPI
->getName() + "." + Twine(ElementIdx
),
631 GEP
->replaceAllUsesWith(NewPtr
);
633 // We changed the pointer of any memory access user. Recalculate alignments.
634 for (User
*U
: NewPtr
->users()) {
635 if (auto *Load
= dyn_cast
<LoadInst
>(U
)) {
636 Align PrefAlign
= DL
.getPrefTypeAlign(Load
->getType());
637 Align NewAlign
= getOrEnforceKnownAlignment(Load
->getPointerOperand(),
638 PrefAlign
, DL
, Load
);
639 Load
->setAlignment(NewAlign
);
641 if (auto *Store
= dyn_cast
<StoreInst
>(U
)) {
643 DL
.getPrefTypeAlign(Store
->getValueOperand()->getType());
644 Align NewAlign
= getOrEnforceKnownAlignment(Store
->getPointerOperand(),
645 PrefAlign
, DL
, Store
);
646 Store
->setAlignment(NewAlign
);
650 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(GEP
))
651 GEPI
->eraseFromParent();
653 cast
<ConstantExpr
>(GEP
)->destroyConstant();
656 // Delete the old global, now that it is dead.
660 assert(NewGlobals
.size() > 0);
661 return NewGlobals
.begin()->second
;
664 /// Return true if all users of the specified value will trap if the value is
665 /// dynamically null. PHIs keeps track of any phi nodes we've seen to avoid
666 /// reprocessing them.
667 static bool AllUsesOfValueWillTrapIfNull(const Value
*V
,
668 SmallPtrSetImpl
<const PHINode
*> &PHIs
) {
669 for (const User
*U
: V
->users()) {
670 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
)) {
671 // If null pointer is considered valid, then all uses are non-trapping.
672 // Non address-space 0 globals have already been pruned by the caller.
673 if (NullPointerIsDefined(I
->getFunction()))
676 if (isa
<LoadInst
>(U
)) {
678 } else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
679 if (SI
->getOperand(0) == V
) {
680 //cerr << "NONTRAPPING USE: " << *U;
681 return false; // Storing the value.
683 } else if (const CallInst
*CI
= dyn_cast
<CallInst
>(U
)) {
684 if (CI
->getCalledOperand() != V
) {
685 //cerr << "NONTRAPPING USE: " << *U;
686 return false; // Not calling the ptr
688 } else if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(U
)) {
689 if (II
->getCalledOperand() != V
) {
690 //cerr << "NONTRAPPING USE: " << *U;
691 return false; // Not calling the ptr
693 } else if (const BitCastInst
*CI
= dyn_cast
<BitCastInst
>(U
)) {
694 if (!AllUsesOfValueWillTrapIfNull(CI
, PHIs
)) return false;
695 } else if (const GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
696 if (!AllUsesOfValueWillTrapIfNull(GEPI
, PHIs
)) return false;
697 } else if (const PHINode
*PN
= dyn_cast
<PHINode
>(U
)) {
698 // If we've already seen this phi node, ignore it, it has already been
700 if (PHIs
.insert(PN
).second
&& !AllUsesOfValueWillTrapIfNull(PN
, PHIs
))
702 } else if (isa
<ICmpInst
>(U
) &&
703 !ICmpInst::isSigned(cast
<ICmpInst
>(U
)->getPredicate()) &&
704 isa
<LoadInst
>(U
->getOperand(0)) &&
705 isa
<ConstantPointerNull
>(U
->getOperand(1))) {
706 assert(isa
<GlobalValue
>(
707 cast
<LoadInst
>(U
->getOperand(0))->getPointerOperand()) &&
708 "Should be GlobalVariable");
709 // This and only this kind of non-signed ICmpInst is to be replaced with
710 // the comparing of the value of the created global init bool later in
711 // optimizeGlobalAddressOfMalloc for the global variable.
713 //cerr << "NONTRAPPING USE: " << *U;
720 /// Return true if all uses of any loads from GV will trap if the loaded value
721 /// is null. Note that this also permits comparisons of the loaded value
722 /// against null, as a special case.
723 static bool allUsesOfLoadedValueWillTrapIfNull(const GlobalVariable
*GV
) {
724 SmallVector
<const Value
*, 4> Worklist
;
725 Worklist
.push_back(GV
);
726 while (!Worklist
.empty()) {
727 const Value
*P
= Worklist
.pop_back_val();
728 for (auto *U
: P
->users()) {
729 if (auto *LI
= dyn_cast
<LoadInst
>(U
)) {
730 SmallPtrSet
<const PHINode
*, 8> PHIs
;
731 if (!AllUsesOfValueWillTrapIfNull(LI
, PHIs
))
733 } else if (auto *SI
= dyn_cast
<StoreInst
>(U
)) {
734 // Ignore stores to the global.
735 if (SI
->getPointerOperand() != P
)
737 } else if (auto *CE
= dyn_cast
<ConstantExpr
>(U
)) {
738 if (CE
->stripPointerCasts() != GV
)
740 // Check further the ConstantExpr.
741 Worklist
.push_back(CE
);
743 // We don't know or understand this user, bail out.
752 /// Get all the loads/store uses for global variable \p GV.
753 static void allUsesOfLoadAndStores(GlobalVariable
*GV
,
754 SmallVector
<Value
*, 4> &Uses
) {
755 SmallVector
<Value
*, 4> Worklist
;
756 Worklist
.push_back(GV
);
757 while (!Worklist
.empty()) {
758 auto *P
= Worklist
.pop_back_val();
759 for (auto *U
: P
->users()) {
760 if (auto *CE
= dyn_cast
<ConstantExpr
>(U
)) {
761 Worklist
.push_back(CE
);
765 assert((isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
)) &&
766 "Expect only load or store instructions");
772 static bool OptimizeAwayTrappingUsesOfValue(Value
*V
, Constant
*NewV
) {
773 bool Changed
= false;
774 for (auto UI
= V
->user_begin(), E
= V
->user_end(); UI
!= E
; ) {
775 Instruction
*I
= cast
<Instruction
>(*UI
++);
776 // Uses are non-trapping if null pointer is considered valid.
777 // Non address-space 0 globals are already pruned by the caller.
778 if (NullPointerIsDefined(I
->getFunction()))
780 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
781 LI
->setOperand(0, NewV
);
783 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
784 if (SI
->getOperand(1) == V
) {
785 SI
->setOperand(1, NewV
);
788 } else if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) {
789 CallBase
*CB
= cast
<CallBase
>(I
);
790 if (CB
->getCalledOperand() == V
) {
791 // Calling through the pointer! Turn into a direct call, but be careful
792 // that the pointer is not also being passed as an argument.
793 CB
->setCalledOperand(NewV
);
795 bool PassedAsArg
= false;
796 for (unsigned i
= 0, e
= CB
->arg_size(); i
!= e
; ++i
)
797 if (CB
->getArgOperand(i
) == V
) {
799 CB
->setArgOperand(i
, NewV
);
803 // Being passed as an argument also. Be careful to not invalidate UI!
804 UI
= V
->user_begin();
807 } else if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
808 Changed
|= OptimizeAwayTrappingUsesOfValue(CI
,
809 ConstantExpr::getCast(CI
->getOpcode(),
810 NewV
, CI
->getType()));
811 if (CI
->use_empty()) {
813 CI
->eraseFromParent();
815 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
816 // Should handle GEP here.
817 SmallVector
<Constant
*, 8> Idxs
;
818 Idxs
.reserve(GEPI
->getNumOperands()-1);
819 for (User::op_iterator i
= GEPI
->op_begin() + 1, e
= GEPI
->op_end();
821 if (Constant
*C
= dyn_cast
<Constant
>(*i
))
825 if (Idxs
.size() == GEPI
->getNumOperands()-1)
826 Changed
|= OptimizeAwayTrappingUsesOfValue(
827 GEPI
, ConstantExpr::getGetElementPtr(GEPI
->getSourceElementType(),
829 if (GEPI
->use_empty()) {
831 GEPI
->eraseFromParent();
839 /// The specified global has only one non-null value stored into it. If there
840 /// are uses of the loaded value that would trap if the loaded value is
841 /// dynamically null, then we know that they cannot be reachable with a null
842 /// optimize away the load.
843 static bool OptimizeAwayTrappingUsesOfLoads(
844 GlobalVariable
*GV
, Constant
*LV
, const DataLayout
&DL
,
845 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
846 bool Changed
= false;
848 // Keep track of whether we are able to remove all the uses of the global
849 // other than the store that defines it.
850 bool AllNonStoreUsesGone
= true;
852 // Replace all uses of loads with uses of uses of the stored value.
853 for (Value::user_iterator GUI
= GV
->user_begin(), E
= GV
->user_end(); GUI
!= E
;){
854 User
*GlobalUser
= *GUI
++;
855 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(GlobalUser
)) {
856 Changed
|= OptimizeAwayTrappingUsesOfValue(LI
, LV
);
857 // If we were able to delete all uses of the loads
858 if (LI
->use_empty()) {
859 LI
->eraseFromParent();
862 AllNonStoreUsesGone
= false;
864 } else if (isa
<StoreInst
>(GlobalUser
)) {
865 // Ignore the store that stores "LV" to the global.
866 assert(GlobalUser
->getOperand(1) == GV
&&
867 "Must be storing *to* the global");
869 AllNonStoreUsesGone
= false;
871 // If we get here we could have other crazy uses that are transitively
873 assert((isa
<PHINode
>(GlobalUser
) || isa
<SelectInst
>(GlobalUser
) ||
874 isa
<ConstantExpr
>(GlobalUser
) || isa
<CmpInst
>(GlobalUser
) ||
875 isa
<BitCastInst
>(GlobalUser
) ||
876 isa
<GetElementPtrInst
>(GlobalUser
)) &&
877 "Only expect load and stores!");
882 LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
887 // If we nuked all of the loads, then none of the stores are needed either,
888 // nor is the global.
889 if (AllNonStoreUsesGone
) {
890 if (isLeakCheckerRoot(GV
)) {
891 Changed
|= CleanupPointerRootUsers(GV
, GetTLI
);
894 CleanupConstantGlobalUsers(GV
, nullptr, DL
, GetTLI
);
896 if (GV
->use_empty()) {
897 LLVM_DEBUG(dbgs() << " *** GLOBAL NOW DEAD!\n");
899 GV
->eraseFromParent();
906 /// Walk the use list of V, constant folding all of the instructions that are
908 static void ConstantPropUsersOf(Value
*V
, const DataLayout
&DL
,
909 TargetLibraryInfo
*TLI
) {
910 for (Value::user_iterator UI
= V
->user_begin(), E
= V
->user_end(); UI
!= E
; )
911 if (Instruction
*I
= dyn_cast
<Instruction
>(*UI
++))
912 if (Constant
*NewC
= ConstantFoldInstruction(I
, DL
, TLI
)) {
913 I
->replaceAllUsesWith(NewC
);
915 // Advance UI to the next non-I use to avoid invalidating it!
916 // Instructions could multiply use V.
917 while (UI
!= E
&& *UI
== I
)
919 if (isInstructionTriviallyDead(I
, TLI
))
920 I
->eraseFromParent();
924 /// This function takes the specified global variable, and transforms the
925 /// program as if it always contained the result of the specified malloc.
926 /// Because it is always the result of the specified malloc, there is no reason
927 /// to actually DO the malloc. Instead, turn the malloc into a global, and any
928 /// loads of GV as uses of the new global.
929 static GlobalVariable
*
930 OptimizeGlobalAddressOfMalloc(GlobalVariable
*GV
, CallInst
*CI
, Type
*AllocTy
,
931 ConstantInt
*NElements
, const DataLayout
&DL
,
932 TargetLibraryInfo
*TLI
) {
933 LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV
<< " CALL = " << *CI
937 if (NElements
->getZExtValue() == 1)
938 GlobalType
= AllocTy
;
940 // If we have an array allocation, the global variable is of an array.
941 GlobalType
= ArrayType::get(AllocTy
, NElements
->getZExtValue());
943 // Create the new global variable. The contents of the malloc'd memory is
944 // undefined, so initialize with an undef value.
945 GlobalVariable
*NewGV
= new GlobalVariable(
946 *GV
->getParent(), GlobalType
, false, GlobalValue::InternalLinkage
,
947 UndefValue::get(GlobalType
), GV
->getName() + ".body", nullptr,
948 GV
->getThreadLocalMode());
950 // If there are bitcast users of the malloc (which is typical, usually we have
951 // a malloc + bitcast) then replace them with uses of the new global. Update
952 // other users to use the global as well.
953 BitCastInst
*TheBC
= nullptr;
954 while (!CI
->use_empty()) {
955 Instruction
*User
= cast
<Instruction
>(CI
->user_back());
956 if (BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(User
)) {
957 if (BCI
->getType() == NewGV
->getType()) {
958 BCI
->replaceAllUsesWith(NewGV
);
959 BCI
->eraseFromParent();
961 BCI
->setOperand(0, NewGV
);
965 TheBC
= new BitCastInst(NewGV
, CI
->getType(), "newgv", CI
);
966 User
->replaceUsesOfWith(CI
, TheBC
);
970 SmallPtrSet
<Constant
*, 1> RepValues
;
971 RepValues
.insert(NewGV
);
973 // If there is a comparison against null, we will insert a global bool to
974 // keep track of whether the global was initialized yet or not.
975 GlobalVariable
*InitBool
=
976 new GlobalVariable(Type::getInt1Ty(GV
->getContext()), false,
977 GlobalValue::InternalLinkage
,
978 ConstantInt::getFalse(GV
->getContext()),
979 GV
->getName()+".init", GV
->getThreadLocalMode());
980 bool InitBoolUsed
= false;
982 // Loop over all instruction uses of GV, processing them in turn.
983 SmallVector
<Value
*, 4> Guses
;
984 allUsesOfLoadAndStores(GV
, Guses
);
985 for (auto *U
: Guses
) {
986 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
)) {
987 // The global is initialized when the store to it occurs. If the stored
988 // value is null value, the global bool is set to false, otherwise true.
989 new StoreInst(ConstantInt::getBool(
991 !isa
<ConstantPointerNull
>(SI
->getValueOperand())),
992 InitBool
, false, Align(1), SI
->getOrdering(),
993 SI
->getSyncScopeID(), SI
);
994 SI
->eraseFromParent();
998 LoadInst
*LI
= cast
<LoadInst
>(U
);
999 while (!LI
->use_empty()) {
1000 Use
&LoadUse
= *LI
->use_begin();
1001 ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(LoadUse
.getUser());
1003 auto *CE
= ConstantExpr::getBitCast(NewGV
, LI
->getType());
1004 RepValues
.insert(CE
);
1009 // Replace the cmp X, 0 with a use of the bool value.
1010 Value
*LV
= new LoadInst(InitBool
->getValueType(), InitBool
,
1011 InitBool
->getName() + ".val", false, Align(1),
1012 LI
->getOrdering(), LI
->getSyncScopeID(), LI
);
1013 InitBoolUsed
= true;
1014 switch (ICI
->getPredicate()) {
1015 default: llvm_unreachable("Unknown ICmp Predicate!");
1016 case ICmpInst::ICMP_ULT
: // X < null -> always false
1017 LV
= ConstantInt::getFalse(GV
->getContext());
1019 case ICmpInst::ICMP_UGE
: // X >= null -> always true
1020 LV
= ConstantInt::getTrue(GV
->getContext());
1022 case ICmpInst::ICMP_ULE
:
1023 case ICmpInst::ICMP_EQ
:
1024 LV
= BinaryOperator::CreateNot(LV
, "notinit", ICI
);
1026 case ICmpInst::ICMP_NE
:
1027 case ICmpInst::ICMP_UGT
:
1028 break; // no change.
1030 ICI
->replaceAllUsesWith(LV
);
1031 ICI
->eraseFromParent();
1033 LI
->eraseFromParent();
1036 // If the initialization boolean was used, insert it, otherwise delete it.
1037 if (!InitBoolUsed
) {
1038 while (!InitBool
->use_empty()) // Delete initializations
1039 cast
<StoreInst
>(InitBool
->user_back())->eraseFromParent();
1042 GV
->getParent()->getGlobalList().insert(GV
->getIterator(), InitBool
);
1044 // Now the GV is dead, nuke it and the malloc..
1045 GV
->eraseFromParent();
1046 CI
->eraseFromParent();
1048 // To further other optimizations, loop over all users of NewGV and try to
1049 // constant prop them. This will promote GEP instructions with constant
1050 // indices into GEP constant-exprs, which will allow global-opt to hack on it.
1051 for (auto *CE
: RepValues
)
1052 ConstantPropUsersOf(CE
, DL
, TLI
);
1057 /// Scan the use-list of GV checking to make sure that there are no complex uses
1058 /// of GV. We permit simple things like dereferencing the pointer, but not
1059 /// storing through the address, unless it is to the specified global.
1061 valueIsOnlyUsedLocallyOrStoredToOneGlobal(const CallInst
*CI
,
1062 const GlobalVariable
*GV
) {
1063 SmallPtrSet
<const Value
*, 4> Visited
;
1064 SmallVector
<const Value
*, 4> Worklist
;
1065 Worklist
.push_back(CI
);
1067 while (!Worklist
.empty()) {
1068 const Value
*V
= Worklist
.pop_back_val();
1069 if (!Visited
.insert(V
).second
)
1072 for (const Use
&VUse
: V
->uses()) {
1073 const User
*U
= VUse
.getUser();
1074 if (isa
<LoadInst
>(U
) || isa
<CmpInst
>(U
))
1075 continue; // Fine, ignore.
1077 if (auto *SI
= dyn_cast
<StoreInst
>(U
)) {
1078 if (SI
->getValueOperand() == V
&&
1079 SI
->getPointerOperand()->stripPointerCasts() != GV
)
1080 return false; // Storing the pointer not into GV... bad.
1081 continue; // Otherwise, storing through it, or storing into GV... fine.
1084 if (auto *BCI
= dyn_cast
<BitCastInst
>(U
)) {
1085 Worklist
.push_back(BCI
);
1089 if (auto *GEPI
= dyn_cast
<GetElementPtrInst
>(U
)) {
1090 Worklist
.push_back(GEPI
);
1101 /// This function is called when we see a pointer global variable with a single
1102 /// value stored it that is a malloc or cast of malloc.
1103 static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable
*GV
, CallInst
*CI
,
1105 AtomicOrdering Ordering
,
1106 const DataLayout
&DL
,
1107 TargetLibraryInfo
*TLI
) {
1108 // If this is a malloc of an abstract type, don't touch it.
1109 if (!AllocTy
->isSized())
1112 // We can't optimize this global unless all uses of it are *known* to be
1113 // of the malloc value, not of the null initializer value (consider a use
1114 // that compares the global's value against zero to see if the malloc has
1115 // been reached). To do this, we check to see if all uses of the global
1116 // would trap if the global were null: this proves that they must all
1117 // happen after the malloc.
1118 if (!allUsesOfLoadedValueWillTrapIfNull(GV
))
1121 // We can't optimize this if the malloc itself is used in a complex way,
1122 // for example, being stored into multiple globals. This allows the
1123 // malloc to be stored into the specified global, loaded, gep, icmp'd.
1124 // These are all things we could transform to using the global for.
1125 if (!valueIsOnlyUsedLocallyOrStoredToOneGlobal(CI
, GV
))
1128 // If we have a global that is only initialized with a fixed size malloc,
1129 // transform the program to use global memory instead of malloc'd memory.
1130 // This eliminates dynamic allocation, avoids an indirection accessing the
1131 // data, and exposes the resultant global to further GlobalOpt.
1132 // We cannot optimize the malloc if we cannot determine malloc array size.
1133 Value
*NElems
= getMallocArraySize(CI
, DL
, TLI
, true);
1137 if (ConstantInt
*NElements
= dyn_cast
<ConstantInt
>(NElems
))
1138 // Restrict this transformation to only working on small allocations
1139 // (2048 bytes currently), as we don't want to introduce a 16M global or
1141 if (NElements
->getZExtValue() * DL
.getTypeAllocSize(AllocTy
) < 2048) {
1142 OptimizeGlobalAddressOfMalloc(GV
, CI
, AllocTy
, NElements
, DL
, TLI
);
1149 // Try to optimize globals based on the knowledge that only one value (besides
1150 // its initializer) is ever stored to the global.
1152 optimizeOnceStoredGlobal(GlobalVariable
*GV
, Value
*StoredOnceVal
,
1153 AtomicOrdering Ordering
, const DataLayout
&DL
,
1154 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
1155 // Ignore no-op GEPs and bitcasts.
1156 StoredOnceVal
= StoredOnceVal
->stripPointerCasts();
1158 // If we are dealing with a pointer global that is initialized to null and
1159 // only has one (non-null) value stored into it, then we can optimize any
1160 // users of the loaded value (often calls and loads) that would trap if the
1162 if (GV
->getInitializer()->getType()->isPointerTy() &&
1163 GV
->getInitializer()->isNullValue() &&
1164 StoredOnceVal
->getType()->isPointerTy() &&
1165 !NullPointerIsDefined(
1167 GV
->getInitializer()->getType()->getPointerAddressSpace())) {
1168 if (Constant
*SOVC
= dyn_cast
<Constant
>(StoredOnceVal
)) {
1169 if (GV
->getInitializer()->getType() != SOVC
->getType())
1170 SOVC
= ConstantExpr::getBitCast(SOVC
, GV
->getInitializer()->getType());
1172 // Optimize away any trapping uses of the loaded value.
1173 if (OptimizeAwayTrappingUsesOfLoads(GV
, SOVC
, DL
, GetTLI
))
1175 } else if (CallInst
*CI
= extractMallocCall(StoredOnceVal
, GetTLI
)) {
1176 auto *TLI
= &GetTLI(*CI
->getFunction());
1177 Type
*MallocType
= getMallocAllocatedType(CI
, TLI
);
1178 if (MallocType
&& tryToOptimizeStoreOfMallocToGlobal(GV
, CI
, MallocType
,
1187 /// At this point, we have learned that the only two values ever stored into GV
1188 /// are its initializer and OtherVal. See if we can shrink the global into a
1189 /// boolean and select between the two values whenever it is used. This exposes
1190 /// the values to other scalar optimizations.
1191 static bool TryToShrinkGlobalToBoolean(GlobalVariable
*GV
, Constant
*OtherVal
) {
1192 Type
*GVElType
= GV
->getValueType();
1194 // If GVElType is already i1, it is already shrunk. If the type of the GV is
1195 // an FP value, pointer or vector, don't do this optimization because a select
1196 // between them is very expensive and unlikely to lead to later
1197 // simplification. In these cases, we typically end up with "cond ? v1 : v2"
1198 // where v1 and v2 both require constant pool loads, a big loss.
1199 if (GVElType
== Type::getInt1Ty(GV
->getContext()) ||
1200 GVElType
->isFloatingPointTy() ||
1201 GVElType
->isPointerTy() || GVElType
->isVectorTy())
1204 // Walk the use list of the global seeing if all the uses are load or store.
1205 // If there is anything else, bail out.
1206 for (User
*U
: GV
->users())
1207 if (!isa
<LoadInst
>(U
) && !isa
<StoreInst
>(U
))
1210 LLVM_DEBUG(dbgs() << " *** SHRINKING TO BOOL: " << *GV
<< "\n");
1212 // Create the new global, initializing it to false.
1213 GlobalVariable
*NewGV
= new GlobalVariable(Type::getInt1Ty(GV
->getContext()),
1215 GlobalValue::InternalLinkage
,
1216 ConstantInt::getFalse(GV
->getContext()),
1218 GV
->getThreadLocalMode(),
1219 GV
->getType()->getAddressSpace());
1220 NewGV
->copyAttributesFrom(GV
);
1221 GV
->getParent()->getGlobalList().insert(GV
->getIterator(), NewGV
);
1223 Constant
*InitVal
= GV
->getInitializer();
1224 assert(InitVal
->getType() != Type::getInt1Ty(GV
->getContext()) &&
1225 "No reason to shrink to bool!");
1227 SmallVector
<DIGlobalVariableExpression
*, 1> GVs
;
1228 GV
->getDebugInfo(GVs
);
1230 // If initialized to zero and storing one into the global, we can use a cast
1231 // instead of a select to synthesize the desired value.
1232 bool IsOneZero
= false;
1233 bool EmitOneOrZero
= true;
1234 auto *CI
= dyn_cast
<ConstantInt
>(OtherVal
);
1235 if (CI
&& CI
->getValue().getActiveBits() <= 64) {
1236 IsOneZero
= InitVal
->isNullValue() && CI
->isOne();
1238 auto *CIInit
= dyn_cast
<ConstantInt
>(GV
->getInitializer());
1239 if (CIInit
&& CIInit
->getValue().getActiveBits() <= 64) {
1240 uint64_t ValInit
= CIInit
->getZExtValue();
1241 uint64_t ValOther
= CI
->getZExtValue();
1242 uint64_t ValMinus
= ValOther
- ValInit
;
1244 for(auto *GVe
: GVs
){
1245 DIGlobalVariable
*DGV
= GVe
->getVariable();
1246 DIExpression
*E
= GVe
->getExpression();
1247 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1248 unsigned SizeInOctets
=
1249 DL
.getTypeAllocSizeInBits(NewGV
->getValueType()) / 8;
1251 // It is expected that the address of global optimized variable is on
1252 // top of the stack. After optimization, value of that variable will
1253 // be ether 0 for initial value or 1 for other value. The following
1254 // expression should return constant integer value depending on the
1255 // value at global object address:
1256 // val * (ValOther - ValInit) + ValInit:
1257 // DW_OP_deref DW_OP_constu <ValMinus>
1258 // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1259 SmallVector
<uint64_t, 12> Ops
= {
1260 dwarf::DW_OP_deref_size
, SizeInOctets
,
1261 dwarf::DW_OP_constu
, ValMinus
,
1262 dwarf::DW_OP_mul
, dwarf::DW_OP_constu
, ValInit
,
1264 bool WithStackValue
= true;
1265 E
= DIExpression::prependOpcodes(E
, Ops
, WithStackValue
);
1266 DIGlobalVariableExpression
*DGVE
=
1267 DIGlobalVariableExpression::get(NewGV
->getContext(), DGV
, E
);
1268 NewGV
->addDebugInfo(DGVE
);
1270 EmitOneOrZero
= false;
1274 if (EmitOneOrZero
) {
1275 // FIXME: This will only emit address for debugger on which will
1276 // be written only 0 or 1.
1278 NewGV
->addDebugInfo(GV
);
1281 while (!GV
->use_empty()) {
1282 Instruction
*UI
= cast
<Instruction
>(GV
->user_back());
1283 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UI
)) {
1284 // Change the store into a boolean store.
1285 bool StoringOther
= SI
->getOperand(0) == OtherVal
;
1286 // Only do this if we weren't storing a loaded value.
1288 if (StoringOther
|| SI
->getOperand(0) == InitVal
) {
1289 StoreVal
= ConstantInt::get(Type::getInt1Ty(GV
->getContext()),
1292 // Otherwise, we are storing a previously loaded copy. To do this,
1293 // change the copy from copying the original value to just copying the
1295 Instruction
*StoredVal
= cast
<Instruction
>(SI
->getOperand(0));
1297 // If we've already replaced the input, StoredVal will be a cast or
1298 // select instruction. If not, it will be a load of the original
1300 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(StoredVal
)) {
1301 assert(LI
->getOperand(0) == GV
&& "Not a copy!");
1302 // Insert a new load, to preserve the saved value.
1303 StoreVal
= new LoadInst(NewGV
->getValueType(), NewGV
,
1304 LI
->getName() + ".b", false, Align(1),
1305 LI
->getOrdering(), LI
->getSyncScopeID(), LI
);
1307 assert((isa
<CastInst
>(StoredVal
) || isa
<SelectInst
>(StoredVal
)) &&
1308 "This is not a form that we understand!");
1309 StoreVal
= StoredVal
->getOperand(0);
1310 assert(isa
<LoadInst
>(StoreVal
) && "Not a load of NewGV!");
1314 new StoreInst(StoreVal
, NewGV
, false, Align(1), SI
->getOrdering(),
1315 SI
->getSyncScopeID(), SI
);
1316 NSI
->setDebugLoc(SI
->getDebugLoc());
1318 // Change the load into a load of bool then a select.
1319 LoadInst
*LI
= cast
<LoadInst
>(UI
);
1320 LoadInst
*NLI
= new LoadInst(NewGV
->getValueType(), NewGV
,
1321 LI
->getName() + ".b", false, Align(1),
1322 LI
->getOrdering(), LI
->getSyncScopeID(), LI
);
1325 NSI
= new ZExtInst(NLI
, LI
->getType(), "", LI
);
1327 NSI
= SelectInst::Create(NLI
, OtherVal
, InitVal
, "", LI
);
1329 // Since LI is split into two instructions, NLI and NSI both inherit the
1331 NLI
->setDebugLoc(LI
->getDebugLoc());
1332 NSI
->setDebugLoc(LI
->getDebugLoc());
1333 LI
->replaceAllUsesWith(NSI
);
1335 UI
->eraseFromParent();
1338 // Retain the name of the old global variable. People who are debugging their
1339 // programs may expect these variables to be named the same.
1340 NewGV
->takeName(GV
);
1341 GV
->eraseFromParent();
1345 static bool deleteIfDead(
1346 GlobalValue
&GV
, SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
1347 GV
.removeDeadConstantUsers();
1349 if (!GV
.isDiscardableIfUnused() && !GV
.isDeclaration())
1352 if (const Comdat
*C
= GV
.getComdat())
1353 if (!GV
.hasLocalLinkage() && NotDiscardableComdats
.count(C
))
1357 if (auto *F
= dyn_cast
<Function
>(&GV
))
1358 Dead
= (F
->isDeclaration() && F
->use_empty()) || F
->isDefTriviallyDead();
1360 Dead
= GV
.use_empty();
1364 LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV
<< "\n");
1365 GV
.eraseFromParent();
1370 static bool isPointerValueDeadOnEntryToFunction(
1371 const Function
*F
, GlobalValue
*GV
,
1372 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
1373 // Find all uses of GV. We expect them all to be in F, and if we can't
1374 // identify any of the uses we bail out.
1376 // On each of these uses, identify if the memory that GV points to is
1377 // used/required/live at the start of the function. If it is not, for example
1378 // if the first thing the function does is store to the GV, the GV can
1379 // possibly be demoted.
1381 // We don't do an exhaustive search for memory operations - simply look
1382 // through bitcasts as they're quite common and benign.
1383 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1384 SmallVector
<LoadInst
*, 4> Loads
;
1385 SmallVector
<StoreInst
*, 4> Stores
;
1386 for (auto *U
: GV
->users()) {
1387 if (Operator::getOpcode(U
) == Instruction::BitCast
) {
1388 for (auto *UU
: U
->users()) {
1389 if (auto *LI
= dyn_cast
<LoadInst
>(UU
))
1390 Loads
.push_back(LI
);
1391 else if (auto *SI
= dyn_cast
<StoreInst
>(UU
))
1392 Stores
.push_back(SI
);
1399 Instruction
*I
= dyn_cast
<Instruction
>(U
);
1402 assert(I
->getParent()->getParent() == F
);
1404 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
1405 Loads
.push_back(LI
);
1406 else if (auto *SI
= dyn_cast
<StoreInst
>(I
))
1407 Stores
.push_back(SI
);
1412 // We have identified all uses of GV into loads and stores. Now check if all
1413 // of them are known not to depend on the value of the global at the function
1414 // entry point. We do this by ensuring that every load is dominated by at
1416 auto &DT
= LookupDomTree(*const_cast<Function
*>(F
));
1418 // The below check is quadratic. Check we're not going to do too many tests.
1419 // FIXME: Even though this will always have worst-case quadratic time, we
1420 // could put effort into minimizing the average time by putting stores that
1421 // have been shown to dominate at least one load at the beginning of the
1422 // Stores array, making subsequent dominance checks more likely to succeed
1425 // The threshold here is fairly large because global->local demotion is a
1426 // very powerful optimization should it fire.
1427 const unsigned Threshold
= 100;
1428 if (Loads
.size() * Stores
.size() > Threshold
)
1431 for (auto *L
: Loads
) {
1432 auto *LTy
= L
->getType();
1433 if (none_of(Stores
, [&](const StoreInst
*S
) {
1434 auto *STy
= S
->getValueOperand()->getType();
1435 // The load is only dominated by the store if DomTree says so
1436 // and the number of bits loaded in L is less than or equal to
1437 // the number of bits stored in S.
1438 return DT
.dominates(S
, L
) &&
1439 DL
.getTypeStoreSize(LTy
).getFixedSize() <=
1440 DL
.getTypeStoreSize(STy
).getFixedSize();
1444 // All loads have known dependences inside F, so the global can be localized.
1448 /// C may have non-instruction users. Can all of those users be turned into
1450 static bool allNonInstructionUsersCanBeMadeInstructions(Constant
*C
) {
1451 // We don't do this exhaustively. The most common pattern that we really need
1452 // to care about is a constant GEP or constant bitcast - so just looking
1453 // through one single ConstantExpr.
1455 // The set of constants that this function returns true for must be able to be
1456 // handled by makeAllConstantUsesInstructions.
1457 for (auto *U
: C
->users()) {
1458 if (isa
<Instruction
>(U
))
1460 if (!isa
<ConstantExpr
>(U
))
1461 // Non instruction, non-constantexpr user; cannot convert this.
1463 for (auto *UU
: U
->users())
1464 if (!isa
<Instruction
>(UU
))
1465 // A constantexpr used by another constant. We don't try and recurse any
1466 // further but just bail out at this point.
1473 /// C may have non-instruction users, and
1474 /// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1475 /// non-instruction users to instructions.
1476 static void makeAllConstantUsesInstructions(Constant
*C
) {
1477 SmallVector
<ConstantExpr
*,4> Users
;
1478 for (auto *U
: C
->users()) {
1479 if (isa
<ConstantExpr
>(U
))
1480 Users
.push_back(cast
<ConstantExpr
>(U
));
1482 // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1483 // should not have returned true for C.
1485 isa
<Instruction
>(U
) &&
1486 "Can't transform non-constantexpr non-instruction to instruction!");
1489 SmallVector
<Value
*,4> UUsers
;
1490 for (auto *U
: Users
) {
1492 append_range(UUsers
, U
->users());
1493 for (auto *UU
: UUsers
) {
1494 Instruction
*UI
= cast
<Instruction
>(UU
);
1495 Instruction
*NewU
= U
->getAsInstruction();
1496 NewU
->insertBefore(UI
);
1497 UI
->replaceUsesOfWith(U
, NewU
);
1499 // We've replaced all the uses, so destroy the constant. (destroyConstant
1500 // will update value handles and metadata.)
1501 U
->destroyConstant();
1505 /// Analyze the specified global variable and optimize
1506 /// it if possible. If we make a change, return true.
1508 processInternalGlobal(GlobalVariable
*GV
, const GlobalStatus
&GS
,
1509 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
1510 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
1511 auto &DL
= GV
->getParent()->getDataLayout();
1512 // If this is a first class global and has only one accessing function and
1513 // this function is non-recursive, we replace the global with a local alloca
1514 // in this function.
1516 // NOTE: It doesn't make sense to promote non-single-value types since we
1517 // are just replacing static memory to stack memory.
1519 // If the global is in different address space, don't bring it to stack.
1520 if (!GS
.HasMultipleAccessingFunctions
&&
1521 GS
.AccessingFunction
&&
1522 GV
->getValueType()->isSingleValueType() &&
1523 GV
->getType()->getAddressSpace() == 0 &&
1524 !GV
->isExternallyInitialized() &&
1525 allNonInstructionUsersCanBeMadeInstructions(GV
) &&
1526 GS
.AccessingFunction
->doesNotRecurse() &&
1527 isPointerValueDeadOnEntryToFunction(GS
.AccessingFunction
, GV
,
1529 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1531 LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV
<< "\n");
1532 Instruction
&FirstI
= const_cast<Instruction
&>(*GS
.AccessingFunction
1533 ->getEntryBlock().begin());
1534 Type
*ElemTy
= GV
->getValueType();
1535 // FIXME: Pass Global's alignment when globals have alignment
1536 AllocaInst
*Alloca
= new AllocaInst(ElemTy
, DL
.getAllocaAddrSpace(), nullptr,
1537 GV
->getName(), &FirstI
);
1538 if (!isa
<UndefValue
>(GV
->getInitializer()))
1539 new StoreInst(GV
->getInitializer(), Alloca
, &FirstI
);
1541 makeAllConstantUsesInstructions(GV
);
1543 GV
->replaceAllUsesWith(Alloca
);
1544 GV
->eraseFromParent();
1549 bool Changed
= false;
1551 // If the global is never loaded (but may be stored to), it is dead.
1554 LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV
<< "\n");
1556 if (isLeakCheckerRoot(GV
)) {
1557 // Delete any constant stores to the global.
1558 Changed
= CleanupPointerRootUsers(GV
, GetTLI
);
1560 // Delete any stores we can find to the global. We may not be able to
1561 // make it completely dead though.
1563 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, GetTLI
);
1566 // If the global is dead now, delete it.
1567 if (GV
->use_empty()) {
1568 GV
->eraseFromParent();
1575 if (GS
.StoredType
<= GlobalStatus::InitializerStored
) {
1576 LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV
<< "\n");
1578 // Don't actually mark a global constant if it's atomic because atomic loads
1579 // are implemented by a trivial cmpxchg in some edge-cases and that usually
1580 // requires write access to the variable even if it's not actually changed.
1581 if (GS
.Ordering
== AtomicOrdering::NotAtomic
) {
1582 assert(!GV
->isConstant() && "Expected a non-constant global");
1583 GV
->setConstant(true);
1587 // Clean up any obviously simplifiable users now.
1588 Changed
|= CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, GetTLI
);
1590 // If the global is dead now, just nuke it.
1591 if (GV
->use_empty()) {
1592 LLVM_DEBUG(dbgs() << " *** Marking constant allowed us to simplify "
1593 << "all users and delete global!\n");
1594 GV
->eraseFromParent();
1599 // Fall through to the next check; see if we can optimize further.
1602 if (!GV
->getInitializer()->getType()->isSingleValueType()) {
1603 const DataLayout
&DL
= GV
->getParent()->getDataLayout();
1604 if (SRAGlobal(GV
, DL
))
1607 if (GS
.StoredType
== GlobalStatus::StoredOnce
&& GS
.StoredOnceValue
) {
1608 // If the initial value for the global was an undef value, and if only
1609 // one other value was stored into it, we can just change the
1610 // initializer to be the stored value, then delete all stores to the
1611 // global. This allows us to mark it constant.
1612 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
))
1613 if (SOVConstant
->getType() == GV
->getValueType() &&
1614 isa
<UndefValue
>(GV
->getInitializer())) {
1615 // Change the initial value here.
1616 GV
->setInitializer(SOVConstant
);
1618 // Clean up any obviously simplifiable users now.
1619 CleanupConstantGlobalUsers(GV
, GV
->getInitializer(), DL
, GetTLI
);
1621 if (GV
->use_empty()) {
1622 LLVM_DEBUG(dbgs() << " *** Substituting initializer allowed us to "
1623 << "simplify all users and delete global!\n");
1624 GV
->eraseFromParent();
1631 // Try to optimize globals based on the knowledge that only one value
1632 // (besides its initializer) is ever stored to the global.
1633 if (optimizeOnceStoredGlobal(GV
, GS
.StoredOnceValue
, GS
.Ordering
, DL
,
1637 // Otherwise, if the global was not a boolean, we can shrink it to be a
1639 if (Constant
*SOVConstant
= dyn_cast
<Constant
>(GS
.StoredOnceValue
)) {
1640 if (GS
.Ordering
== AtomicOrdering::NotAtomic
) {
1641 if (TryToShrinkGlobalToBoolean(GV
, SOVConstant
)) {
1652 /// Analyze the specified global variable and optimize it if possible. If we
1653 /// make a change, return true.
1655 processGlobal(GlobalValue
&GV
,
1656 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
1657 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
1658 if (GV
.getName().startswith("llvm."))
1663 if (GlobalStatus::analyzeGlobal(&GV
, GS
))
1666 bool Changed
= false;
1667 if (!GS
.IsCompared
&& !GV
.hasGlobalUnnamedAddr()) {
1668 auto NewUnnamedAddr
= GV
.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
1669 : GlobalValue::UnnamedAddr::Local
;
1670 if (NewUnnamedAddr
!= GV
.getUnnamedAddr()) {
1671 GV
.setUnnamedAddr(NewUnnamedAddr
);
1677 // Do more involved optimizations if the global is internal.
1678 if (!GV
.hasLocalLinkage())
1681 auto *GVar
= dyn_cast
<GlobalVariable
>(&GV
);
1685 if (GVar
->isConstant() || !GVar
->hasInitializer())
1688 return processInternalGlobal(GVar
, GS
, GetTLI
, LookupDomTree
) || Changed
;
1691 /// Walk all of the direct calls of the specified function, changing them to
1693 static void ChangeCalleesToFastCall(Function
*F
) {
1694 for (User
*U
: F
->users()) {
1695 if (isa
<BlockAddress
>(U
))
1697 cast
<CallBase
>(U
)->setCallingConv(CallingConv::Fast
);
1701 static AttributeList
StripAttr(LLVMContext
&C
, AttributeList Attrs
,
1702 Attribute::AttrKind A
) {
1704 if (Attrs
.hasAttrSomewhere(A
, &AttrIndex
))
1705 return Attrs
.removeAttribute(C
, AttrIndex
, A
);
1709 static void RemoveAttribute(Function
*F
, Attribute::AttrKind A
) {
1710 F
->setAttributes(StripAttr(F
->getContext(), F
->getAttributes(), A
));
1711 for (User
*U
: F
->users()) {
1712 if (isa
<BlockAddress
>(U
))
1714 CallBase
*CB
= cast
<CallBase
>(U
);
1715 CB
->setAttributes(StripAttr(F
->getContext(), CB
->getAttributes(), A
));
1719 /// Return true if this is a calling convention that we'd like to change. The
1720 /// idea here is that we don't want to mess with the convention if the user
1721 /// explicitly requested something with performance implications like coldcc,
1722 /// GHC, or anyregcc.
1723 static bool hasChangeableCC(Function
*F
) {
1724 CallingConv::ID CC
= F
->getCallingConv();
1726 // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
1727 if (CC
!= CallingConv::C
&& CC
!= CallingConv::X86_ThisCall
)
1730 // FIXME: Change CC for the whole chain of musttail calls when possible.
1732 // Can't change CC of the function that either has musttail calls, or is a
1733 // musttail callee itself
1734 for (User
*U
: F
->users()) {
1735 if (isa
<BlockAddress
>(U
))
1737 CallInst
* CI
= dyn_cast
<CallInst
>(U
);
1741 if (CI
->isMustTailCall())
1745 for (BasicBlock
&BB
: *F
)
1746 if (BB
.getTerminatingMustTailCall())
1752 /// Return true if the block containing the call site has a BlockFrequency of
1753 /// less than ColdCCRelFreq% of the entry block.
1754 static bool isColdCallSite(CallBase
&CB
, BlockFrequencyInfo
&CallerBFI
) {
1755 const BranchProbability
ColdProb(ColdCCRelFreq
, 100);
1756 auto *CallSiteBB
= CB
.getParent();
1757 auto CallSiteFreq
= CallerBFI
.getBlockFreq(CallSiteBB
);
1758 auto CallerEntryFreq
=
1759 CallerBFI
.getBlockFreq(&(CB
.getCaller()->getEntryBlock()));
1760 return CallSiteFreq
< CallerEntryFreq
* ColdProb
;
1763 // This function checks if the input function F is cold at all call sites. It
1764 // also looks each call site's containing function, returning false if the
1765 // caller function contains other non cold calls. The input vector AllCallsCold
1766 // contains a list of functions that only have call sites in cold blocks.
1768 isValidCandidateForColdCC(Function
&F
,
1769 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
,
1770 const std::vector
<Function
*> &AllCallsCold
) {
1775 for (User
*U
: F
.users()) {
1776 if (isa
<BlockAddress
>(U
))
1779 CallBase
&CB
= cast
<CallBase
>(*U
);
1780 Function
*CallerFunc
= CB
.getParent()->getParent();
1781 BlockFrequencyInfo
&CallerBFI
= GetBFI(*CallerFunc
);
1782 if (!isColdCallSite(CB
, CallerBFI
))
1784 if (!llvm::is_contained(AllCallsCold
, CallerFunc
))
1790 static void changeCallSitesToColdCC(Function
*F
) {
1791 for (User
*U
: F
->users()) {
1792 if (isa
<BlockAddress
>(U
))
1794 cast
<CallBase
>(U
)->setCallingConv(CallingConv::Cold
);
1798 // This function iterates over all the call instructions in the input Function
1799 // and checks that all call sites are in cold blocks and are allowed to use the
1800 // coldcc calling convention.
1802 hasOnlyColdCalls(Function
&F
,
1803 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
) {
1804 for (BasicBlock
&BB
: F
) {
1805 for (Instruction
&I
: BB
) {
1806 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1807 // Skip over isline asm instructions since they aren't function calls.
1808 if (CI
->isInlineAsm())
1810 Function
*CalledFn
= CI
->getCalledFunction();
1813 if (!CalledFn
->hasLocalLinkage())
1815 // Skip over instrinsics since they won't remain as function calls.
1816 if (CalledFn
->getIntrinsicID() != Intrinsic::not_intrinsic
)
1818 // Check if it's valid to use coldcc calling convention.
1819 if (!hasChangeableCC(CalledFn
) || CalledFn
->isVarArg() ||
1820 CalledFn
->hasAddressTaken())
1822 BlockFrequencyInfo
&CallerBFI
= GetBFI(F
);
1823 if (!isColdCallSite(*CI
, CallerBFI
))
1831 static bool hasMustTailCallers(Function
*F
) {
1832 for (User
*U
: F
->users()) {
1833 CallBase
*CB
= dyn_cast
<CallBase
>(U
);
1835 assert(isa
<BlockAddress
>(U
) &&
1836 "Expected either CallBase or BlockAddress");
1839 if (CB
->isMustTailCall())
1845 static bool hasInvokeCallers(Function
*F
) {
1846 for (User
*U
: F
->users())
1847 if (isa
<InvokeInst
>(U
))
1852 static void RemovePreallocated(Function
*F
) {
1853 RemoveAttribute(F
, Attribute::Preallocated
);
1855 auto *M
= F
->getParent();
1857 IRBuilder
<> Builder(M
->getContext());
1859 // Cannot modify users() while iterating over it, so make a copy.
1860 SmallVector
<User
*, 4> PreallocatedCalls(F
->users());
1861 for (User
*U
: PreallocatedCalls
) {
1862 CallBase
*CB
= dyn_cast
<CallBase
>(U
);
1867 !CB
->isMustTailCall() &&
1868 "Shouldn't call RemotePreallocated() on a musttail preallocated call");
1869 // Create copy of call without "preallocated" operand bundle.
1870 SmallVector
<OperandBundleDef
, 1> OpBundles
;
1871 CB
->getOperandBundlesAsDefs(OpBundles
);
1872 CallBase
*PreallocatedSetup
= nullptr;
1873 for (auto *It
= OpBundles
.begin(); It
!= OpBundles
.end(); ++It
) {
1874 if (It
->getTag() == "preallocated") {
1875 PreallocatedSetup
= cast
<CallBase
>(*It
->input_begin());
1876 OpBundles
.erase(It
);
1880 assert(PreallocatedSetup
&& "Did not find preallocated bundle");
1882 cast
<ConstantInt
>(PreallocatedSetup
->getArgOperand(0))->getZExtValue();
1884 assert((isa
<CallInst
>(CB
) || isa
<InvokeInst
>(CB
)) &&
1885 "Unknown indirect call type");
1886 CallBase
*NewCB
= CallBase::Create(CB
, OpBundles
, CB
);
1887 CB
->replaceAllUsesWith(NewCB
);
1888 NewCB
->takeName(CB
);
1889 CB
->eraseFromParent();
1891 Builder
.SetInsertPoint(PreallocatedSetup
);
1893 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::stacksave
));
1895 Builder
.SetInsertPoint(NewCB
->getNextNonDebugInstruction());
1896 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::stackrestore
),
1899 // Replace @llvm.call.preallocated.arg() with alloca.
1900 // Cannot modify users() while iterating over it, so make a copy.
1901 // @llvm.call.preallocated.arg() can be called with the same index multiple
1902 // times. So for each @llvm.call.preallocated.arg(), we see if we have
1903 // already created a Value* for the index, and if not, create an alloca and
1904 // bitcast right after the @llvm.call.preallocated.setup() so that it
1905 // dominates all uses.
1906 SmallVector
<Value
*, 2> ArgAllocas(ArgCount
);
1907 SmallVector
<User
*, 2> PreallocatedArgs(PreallocatedSetup
->users());
1908 for (auto *User
: PreallocatedArgs
) {
1909 auto *UseCall
= cast
<CallBase
>(User
);
1910 assert(UseCall
->getCalledFunction()->getIntrinsicID() ==
1911 Intrinsic::call_preallocated_arg
&&
1912 "preallocated token use was not a llvm.call.preallocated.arg");
1913 uint64_t AllocArgIndex
=
1914 cast
<ConstantInt
>(UseCall
->getArgOperand(1))->getZExtValue();
1915 Value
*AllocaReplacement
= ArgAllocas
[AllocArgIndex
];
1916 if (!AllocaReplacement
) {
1917 auto AddressSpace
= UseCall
->getType()->getPointerAddressSpace();
1919 UseCall
->getFnAttr(Attribute::Preallocated
).getValueAsType();
1920 auto *InsertBefore
= PreallocatedSetup
->getNextNonDebugInstruction();
1921 Builder
.SetInsertPoint(InsertBefore
);
1923 Builder
.CreateAlloca(ArgType
, AddressSpace
, nullptr, "paarg");
1924 auto *BitCast
= Builder
.CreateBitCast(
1925 Alloca
, Type::getInt8PtrTy(M
->getContext()), UseCall
->getName());
1926 ArgAllocas
[AllocArgIndex
] = BitCast
;
1927 AllocaReplacement
= BitCast
;
1930 UseCall
->replaceAllUsesWith(AllocaReplacement
);
1931 UseCall
->eraseFromParent();
1933 // Remove @llvm.call.preallocated.setup().
1934 cast
<Instruction
>(PreallocatedSetup
)->eraseFromParent();
1939 OptimizeFunctions(Module
&M
,
1940 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
1941 function_ref
<TargetTransformInfo
&(Function
&)> GetTTI
,
1942 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
,
1943 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
1944 SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
1946 bool Changed
= false;
1948 std::vector
<Function
*> AllCallsCold
;
1949 for (Module::iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
;) {
1950 Function
*F
= &*FI
++;
1951 if (hasOnlyColdCalls(*F
, GetBFI
))
1952 AllCallsCold
.push_back(F
);
1955 // Optimize functions.
1956 for (Module::iterator FI
= M
.begin(), E
= M
.end(); FI
!= E
; ) {
1957 Function
*F
= &*FI
++;
1959 // Don't perform global opt pass on naked functions; we don't want fast
1960 // calling conventions for naked functions.
1961 if (F
->hasFnAttribute(Attribute::Naked
))
1964 // Functions without names cannot be referenced outside this module.
1965 if (!F
->hasName() && !F
->isDeclaration() && !F
->hasLocalLinkage())
1966 F
->setLinkage(GlobalValue::InternalLinkage
);
1968 if (deleteIfDead(*F
, NotDiscardableComdats
)) {
1973 // LLVM's definition of dominance allows instructions that are cyclic
1974 // in unreachable blocks, e.g.:
1975 // %pat = select i1 %condition, @global, i16* %pat
1976 // because any instruction dominates an instruction in a block that's
1977 // not reachable from entry.
1978 // So, remove unreachable blocks from the function, because a) there's
1979 // no point in analyzing them and b) GlobalOpt should otherwise grow
1980 // some more complicated logic to break these cycles.
1981 // Removing unreachable blocks might invalidate the dominator so we
1983 if (!F
->isDeclaration()) {
1984 if (removeUnreachableBlocks(*F
)) {
1985 auto &DT
= LookupDomTree(*F
);
1991 Changed
|= processGlobal(*F
, GetTLI
, LookupDomTree
);
1993 if (!F
->hasLocalLinkage())
1996 // If we have an inalloca parameter that we can safely remove the
1997 // inalloca attribute from, do so. This unlocks optimizations that
1998 // wouldn't be safe in the presence of inalloca.
1999 // FIXME: We should also hoist alloca affected by this to the entry
2000 // block if possible.
2001 if (F
->getAttributes().hasAttrSomewhere(Attribute::InAlloca
) &&
2002 !F
->hasAddressTaken() && !hasMustTailCallers(F
)) {
2003 RemoveAttribute(F
, Attribute::InAlloca
);
2007 // FIXME: handle invokes
2008 // FIXME: handle musttail
2009 if (F
->getAttributes().hasAttrSomewhere(Attribute::Preallocated
)) {
2010 if (!F
->hasAddressTaken() && !hasMustTailCallers(F
) &&
2011 !hasInvokeCallers(F
)) {
2012 RemovePreallocated(F
);
2018 if (hasChangeableCC(F
) && !F
->isVarArg() && !F
->hasAddressTaken()) {
2020 TargetTransformInfo
&TTI
= GetTTI(*F
);
2021 // Change the calling convention to coldcc if either stress testing is
2022 // enabled or the target would like to use coldcc on functions which are
2023 // cold at all call sites and the callers contain no other non coldcc
2025 if (EnableColdCCStressTest
||
2026 (TTI
.useColdCCForColdCall(*F
) &&
2027 isValidCandidateForColdCC(*F
, GetBFI
, AllCallsCold
))) {
2028 F
->setCallingConv(CallingConv::Cold
);
2029 changeCallSitesToColdCC(F
);
2035 if (hasChangeableCC(F
) && !F
->isVarArg() &&
2036 !F
->hasAddressTaken()) {
2037 // If this function has a calling convention worth changing, is not a
2038 // varargs function, and is only called directly, promote it to use the
2039 // Fast calling convention.
2040 F
->setCallingConv(CallingConv::Fast
);
2041 ChangeCalleesToFastCall(F
);
2046 if (F
->getAttributes().hasAttrSomewhere(Attribute::Nest
) &&
2047 !F
->hasAddressTaken()) {
2048 // The function is not used by a trampoline intrinsic, so it is safe
2049 // to remove the 'nest' attribute.
2050 RemoveAttribute(F
, Attribute::Nest
);
2059 OptimizeGlobalVars(Module
&M
,
2060 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
2061 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
2062 SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
2063 bool Changed
= false;
2065 for (Module::global_iterator GVI
= M
.global_begin(), E
= M
.global_end();
2067 GlobalVariable
*GV
= &*GVI
++;
2068 // Global variables without names cannot be referenced outside this module.
2069 if (!GV
->hasName() && !GV
->isDeclaration() && !GV
->hasLocalLinkage())
2070 GV
->setLinkage(GlobalValue::InternalLinkage
);
2071 // Simplify the initializer.
2072 if (GV
->hasInitializer())
2073 if (auto *C
= dyn_cast
<Constant
>(GV
->getInitializer())) {
2074 auto &DL
= M
.getDataLayout();
2075 // TLI is not used in the case of a Constant, so use default nullptr
2076 // for that optional parameter, since we don't have a Function to
2077 // provide GetTLI anyway.
2078 Constant
*New
= ConstantFoldConstant(C
, DL
, /*TLI*/ nullptr);
2080 GV
->setInitializer(New
);
2083 if (deleteIfDead(*GV
, NotDiscardableComdats
)) {
2088 Changed
|= processGlobal(*GV
, GetTLI
, LookupDomTree
);
2093 /// Evaluate a piece of a constantexpr store into a global initializer. This
2094 /// returns 'Init' modified to reflect 'Val' stored into it. At this point, the
2095 /// GEP operands of Addr [0, OpNo) have been stepped into.
2096 static Constant
*EvaluateStoreInto(Constant
*Init
, Constant
*Val
,
2097 ConstantExpr
*Addr
, unsigned OpNo
) {
2098 // Base case of the recursion.
2099 if (OpNo
== Addr
->getNumOperands()) {
2100 assert(Val
->getType() == Init
->getType() && "Type mismatch!");
2104 SmallVector
<Constant
*, 32> Elts
;
2105 if (StructType
*STy
= dyn_cast
<StructType
>(Init
->getType())) {
2106 // Break up the constant into its elements.
2107 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
2108 Elts
.push_back(Init
->getAggregateElement(i
));
2110 // Replace the element that we are supposed to.
2111 ConstantInt
*CU
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2112 unsigned Idx
= CU
->getZExtValue();
2113 assert(Idx
< STy
->getNumElements() && "Struct index out of range!");
2114 Elts
[Idx
] = EvaluateStoreInto(Elts
[Idx
], Val
, Addr
, OpNo
+1);
2116 // Return the modified struct.
2117 return ConstantStruct::get(STy
, Elts
);
2120 ConstantInt
*CI
= cast
<ConstantInt
>(Addr
->getOperand(OpNo
));
2122 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Init
->getType()))
2123 NumElts
= ATy
->getNumElements();
2125 NumElts
= cast
<FixedVectorType
>(Init
->getType())->getNumElements();
2127 // Break up the array into elements.
2128 for (uint64_t i
= 0, e
= NumElts
; i
!= e
; ++i
)
2129 Elts
.push_back(Init
->getAggregateElement(i
));
2131 assert(CI
->getZExtValue() < NumElts
);
2132 Elts
[CI
->getZExtValue()] =
2133 EvaluateStoreInto(Elts
[CI
->getZExtValue()], Val
, Addr
, OpNo
+1);
2135 if (Init
->getType()->isArrayTy())
2136 return ConstantArray::get(cast
<ArrayType
>(Init
->getType()), Elts
);
2137 return ConstantVector::get(Elts
);
2140 /// We have decided that Addr (which satisfies the predicate
2141 /// isSimpleEnoughPointerToCommit) should get Val as its value. Make it happen.
2142 static void CommitValueTo(Constant
*Val
, Constant
*Addr
) {
2143 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
2144 assert(GV
->hasInitializer());
2145 GV
->setInitializer(Val
);
2149 ConstantExpr
*CE
= cast
<ConstantExpr
>(Addr
);
2150 GlobalVariable
*GV
= cast
<GlobalVariable
>(CE
->getOperand(0));
2151 GV
->setInitializer(EvaluateStoreInto(GV
->getInitializer(), Val
, CE
, 2));
2154 /// Given a map of address -> value, where addresses are expected to be some form
2155 /// of either a global or a constant GEP, set the initializer for the address to
2156 /// be the value. This performs mostly the same function as CommitValueTo()
2157 /// and EvaluateStoreInto() but is optimized to be more efficient for the common
2158 /// case where the set of addresses are GEPs sharing the same underlying global,
2159 /// processing the GEPs in batches rather than individually.
2161 /// To give an example, consider the following C++ code adapted from the clang
2162 /// regression tests:
2166 /// S(int a) : n(a) {}
2169 /// template<typename T>
2178 /// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2179 /// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2180 /// members. This batch algorithm will simply use general CommitValueTo() method
2181 /// to handle the complex nested S struct initialization of 'q', before
2182 /// processing the outermost members in a single batch. Using CommitValueTo() to
2183 /// handle member in the outer struct is inefficient when the struct/array is
2184 /// very large as we end up creating and destroy constant arrays for each
2186 /// For the above case, we expect the following IR to be generated:
2188 /// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2189 /// %struct.S = type { i32, i32 }
2190 /// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2192 /// %struct.S { i32 42, i32 84 }, %struct.U* @e }
2193 /// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2194 /// constant expression, while the other two elements of @e are "simple".
2195 static void BatchCommitValueTo(const DenseMap
<Constant
*, Constant
*> &Mem
) {
2196 SmallVector
<std::pair
<GlobalVariable
*, Constant
*>, 32> GVs
;
2197 SmallVector
<std::pair
<ConstantExpr
*, Constant
*>, 32> ComplexCEs
;
2198 SmallVector
<std::pair
<ConstantExpr
*, Constant
*>, 32> SimpleCEs
;
2199 SimpleCEs
.reserve(Mem
.size());
2201 for (const auto &I
: Mem
) {
2202 if (auto *GV
= dyn_cast
<GlobalVariable
>(I
.first
)) {
2203 GVs
.push_back(std::make_pair(GV
, I
.second
));
2205 ConstantExpr
*GEP
= cast
<ConstantExpr
>(I
.first
);
2206 // We don't handle the deeply recursive case using the batch method.
2207 if (GEP
->getNumOperands() > 3)
2208 ComplexCEs
.push_back(std::make_pair(GEP
, I
.second
));
2210 SimpleCEs
.push_back(std::make_pair(GEP
, I
.second
));
2214 // The algorithm below doesn't handle cases like nested structs, so use the
2215 // slower fully general method if we have to.
2216 for (auto ComplexCE
: ComplexCEs
)
2217 CommitValueTo(ComplexCE
.second
, ComplexCE
.first
);
2219 for (auto GVPair
: GVs
) {
2220 assert(GVPair
.first
->hasInitializer());
2221 GVPair
.first
->setInitializer(GVPair
.second
);
2224 if (SimpleCEs
.empty())
2227 // We cache a single global's initializer elements in the case where the
2228 // subsequent address/val pair uses the same one. This avoids throwing away and
2229 // rebuilding the constant struct/vector/array just because one element is
2230 // modified at a time.
2231 SmallVector
<Constant
*, 32> Elts
;
2232 Elts
.reserve(SimpleCEs
.size());
2233 GlobalVariable
*CurrentGV
= nullptr;
2235 auto commitAndSetupCache
= [&](GlobalVariable
*GV
, bool Update
) {
2236 Constant
*Init
= GV
->getInitializer();
2237 Type
*Ty
= Init
->getType();
2240 assert(CurrentGV
&& "Expected a GV to commit to!");
2241 Type
*CurrentInitTy
= CurrentGV
->getInitializer()->getType();
2242 // We have a valid cache that needs to be committed.
2243 if (StructType
*STy
= dyn_cast
<StructType
>(CurrentInitTy
))
2244 CurrentGV
->setInitializer(ConstantStruct::get(STy
, Elts
));
2245 else if (ArrayType
*ArrTy
= dyn_cast
<ArrayType
>(CurrentInitTy
))
2246 CurrentGV
->setInitializer(ConstantArray::get(ArrTy
, Elts
));
2248 CurrentGV
->setInitializer(ConstantVector::get(Elts
));
2250 if (CurrentGV
== GV
)
2252 // Need to clear and set up cache for new initializer.
2256 if (auto *STy
= dyn_cast
<StructType
>(Ty
))
2257 NumElts
= STy
->getNumElements();
2258 else if (auto *ATy
= dyn_cast
<ArrayType
>(Ty
))
2259 NumElts
= ATy
->getNumElements();
2261 NumElts
= cast
<FixedVectorType
>(Ty
)->getNumElements();
2262 for (unsigned i
= 0, e
= NumElts
; i
!= e
; ++i
)
2263 Elts
.push_back(Init
->getAggregateElement(i
));
2267 for (auto CEPair
: SimpleCEs
) {
2268 ConstantExpr
*GEP
= CEPair
.first
;
2269 Constant
*Val
= CEPair
.second
;
2271 GlobalVariable
*GV
= cast
<GlobalVariable
>(GEP
->getOperand(0));
2272 commitAndSetupCache(GV
, GV
!= CurrentGV
);
2273 ConstantInt
*CI
= cast
<ConstantInt
>(GEP
->getOperand(2));
2274 Elts
[CI
->getZExtValue()] = Val
;
2276 // The last initializer in the list needs to be committed, others
2277 // will be committed on a new initializer being processed.
2278 commitAndSetupCache(CurrentGV
, true);
2281 /// Evaluate static constructors in the function, if we can. Return true if we
2282 /// can, false otherwise.
2283 static bool EvaluateStaticConstructor(Function
*F
, const DataLayout
&DL
,
2284 TargetLibraryInfo
*TLI
) {
2285 // Call the function.
2286 Evaluator
Eval(DL
, TLI
);
2287 Constant
*RetValDummy
;
2288 bool EvalSuccess
= Eval
.EvaluateFunction(F
, RetValDummy
,
2289 SmallVector
<Constant
*, 0>());
2292 ++NumCtorsEvaluated
;
2294 // We succeeded at evaluation: commit the result.
2295 LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2296 << F
->getName() << "' to "
2297 << Eval
.getMutatedMemory().size() << " stores.\n");
2298 BatchCommitValueTo(Eval
.getMutatedMemory());
2299 for (GlobalVariable
*GV
: Eval
.getInvariants())
2300 GV
->setConstant(true);
2306 static int compareNames(Constant
*const *A
, Constant
*const *B
) {
2307 Value
*AStripped
= (*A
)->stripPointerCasts();
2308 Value
*BStripped
= (*B
)->stripPointerCasts();
2309 return AStripped
->getName().compare(BStripped
->getName());
2312 static void setUsedInitializer(GlobalVariable
&V
,
2313 const SmallPtrSetImpl
<GlobalValue
*> &Init
) {
2315 V
.eraseFromParent();
2319 // Type of pointer to the array of pointers.
2320 PointerType
*Int8PtrTy
= Type::getInt8PtrTy(V
.getContext(), 0);
2322 SmallVector
<Constant
*, 8> UsedArray
;
2323 for (GlobalValue
*GV
: Init
) {
2325 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV
, Int8PtrTy
);
2326 UsedArray
.push_back(Cast
);
2328 // Sort to get deterministic order.
2329 array_pod_sort(UsedArray
.begin(), UsedArray
.end(), compareNames
);
2330 ArrayType
*ATy
= ArrayType::get(Int8PtrTy
, UsedArray
.size());
2332 Module
*M
= V
.getParent();
2333 V
.removeFromParent();
2334 GlobalVariable
*NV
=
2335 new GlobalVariable(*M
, ATy
, false, GlobalValue::AppendingLinkage
,
2336 ConstantArray::get(ATy
, UsedArray
), "");
2338 NV
->setSection("llvm.metadata");
2344 /// An easy to access representation of llvm.used and llvm.compiler.used.
2346 SmallPtrSet
<GlobalValue
*, 4> Used
;
2347 SmallPtrSet
<GlobalValue
*, 4> CompilerUsed
;
2348 GlobalVariable
*UsedV
;
2349 GlobalVariable
*CompilerUsedV
;
2352 LLVMUsed(Module
&M
) {
2353 SmallVector
<GlobalValue
*, 4> Vec
;
2354 UsedV
= collectUsedGlobalVariables(M
, Vec
, false);
2355 Used
= {Vec
.begin(), Vec
.end()};
2357 CompilerUsedV
= collectUsedGlobalVariables(M
, Vec
, true);
2358 CompilerUsed
= {Vec
.begin(), Vec
.end()};
2361 using iterator
= SmallPtrSet
<GlobalValue
*, 4>::iterator
;
2362 using used_iterator_range
= iterator_range
<iterator
>;
2364 iterator
usedBegin() { return Used
.begin(); }
2365 iterator
usedEnd() { return Used
.end(); }
2367 used_iterator_range
used() {
2368 return used_iterator_range(usedBegin(), usedEnd());
2371 iterator
compilerUsedBegin() { return CompilerUsed
.begin(); }
2372 iterator
compilerUsedEnd() { return CompilerUsed
.end(); }
2374 used_iterator_range
compilerUsed() {
2375 return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2378 bool usedCount(GlobalValue
*GV
) const { return Used
.count(GV
); }
2380 bool compilerUsedCount(GlobalValue
*GV
) const {
2381 return CompilerUsed
.count(GV
);
2384 bool usedErase(GlobalValue
*GV
) { return Used
.erase(GV
); }
2385 bool compilerUsedErase(GlobalValue
*GV
) { return CompilerUsed
.erase(GV
); }
2386 bool usedInsert(GlobalValue
*GV
) { return Used
.insert(GV
).second
; }
2388 bool compilerUsedInsert(GlobalValue
*GV
) {
2389 return CompilerUsed
.insert(GV
).second
;
2392 void syncVariablesAndSets() {
2394 setUsedInitializer(*UsedV
, Used
);
2396 setUsedInitializer(*CompilerUsedV
, CompilerUsed
);
2400 } // end anonymous namespace
2402 static bool hasUseOtherThanLLVMUsed(GlobalAlias
&GA
, const LLVMUsed
&U
) {
2403 if (GA
.use_empty()) // No use at all.
2406 assert((!U
.usedCount(&GA
) || !U
.compilerUsedCount(&GA
)) &&
2407 "We should have removed the duplicated "
2408 "element from llvm.compiler.used");
2409 if (!GA
.hasOneUse())
2410 // Strictly more than one use. So at least one is not in llvm.used and
2411 // llvm.compiler.used.
2414 // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2415 return !U
.usedCount(&GA
) && !U
.compilerUsedCount(&GA
);
2418 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue
&V
,
2419 const LLVMUsed
&U
) {
2421 assert((!U
.usedCount(&V
) || !U
.compilerUsedCount(&V
)) &&
2422 "We should have removed the duplicated "
2423 "element from llvm.compiler.used");
2424 if (U
.usedCount(&V
) || U
.compilerUsedCount(&V
))
2426 return V
.hasNUsesOrMore(N
);
2429 static bool mayHaveOtherReferences(GlobalAlias
&GA
, const LLVMUsed
&U
) {
2430 if (!GA
.hasLocalLinkage())
2433 return U
.usedCount(&GA
) || U
.compilerUsedCount(&GA
);
2436 static bool hasUsesToReplace(GlobalAlias
&GA
, const LLVMUsed
&U
,
2437 bool &RenameTarget
) {
2438 RenameTarget
= false;
2440 if (hasUseOtherThanLLVMUsed(GA
, U
))
2443 // If the alias is externally visible, we may still be able to simplify it.
2444 if (!mayHaveOtherReferences(GA
, U
))
2447 // If the aliasee has internal linkage, give it the name and linkage
2448 // of the alias, and delete the alias. This turns:
2449 // define internal ... @f(...)
2450 // @a = alias ... @f
2452 // define ... @a(...)
2453 Constant
*Aliasee
= GA
.getAliasee();
2454 GlobalValue
*Target
= cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2455 if (!Target
->hasLocalLinkage())
2458 // Do not perform the transform if multiple aliases potentially target the
2459 // aliasee. This check also ensures that it is safe to replace the section
2460 // and other attributes of the aliasee with those of the alias.
2461 if (hasMoreThanOneUseOtherThanLLVMUsed(*Target
, U
))
2464 RenameTarget
= true;
2469 OptimizeGlobalAliases(Module
&M
,
2470 SmallPtrSetImpl
<const Comdat
*> &NotDiscardableComdats
) {
2471 bool Changed
= false;
2474 for (GlobalValue
*GV
: Used
.used())
2475 Used
.compilerUsedErase(GV
);
2477 for (Module::alias_iterator I
= M
.alias_begin(), E
= M
.alias_end();
2479 GlobalAlias
*J
= &*I
++;
2481 // Aliases without names cannot be referenced outside this module.
2482 if (!J
->hasName() && !J
->isDeclaration() && !J
->hasLocalLinkage())
2483 J
->setLinkage(GlobalValue::InternalLinkage
);
2485 if (deleteIfDead(*J
, NotDiscardableComdats
)) {
2490 // If the alias can change at link time, nothing can be done - bail out.
2491 if (J
->isInterposable())
2494 Constant
*Aliasee
= J
->getAliasee();
2495 GlobalValue
*Target
= dyn_cast
<GlobalValue
>(Aliasee
->stripPointerCasts());
2496 // We can't trivially replace the alias with the aliasee if the aliasee is
2497 // non-trivial in some way. We also can't replace the alias with the aliasee
2498 // if the aliasee is interposable because aliases point to the local
2500 // TODO: Try to handle non-zero GEPs of local aliasees.
2501 if (!Target
|| Target
->isInterposable())
2503 Target
->removeDeadConstantUsers();
2505 // Make all users of the alias use the aliasee instead.
2507 if (!hasUsesToReplace(*J
, Used
, RenameTarget
))
2510 J
->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee
, J
->getType()));
2511 ++NumAliasesResolved
;
2515 // Give the aliasee the name, linkage and other attributes of the alias.
2516 Target
->takeName(&*J
);
2517 Target
->setLinkage(J
->getLinkage());
2518 Target
->setDSOLocal(J
->isDSOLocal());
2519 Target
->setVisibility(J
->getVisibility());
2520 Target
->setDLLStorageClass(J
->getDLLStorageClass());
2522 if (Used
.usedErase(&*J
))
2523 Used
.usedInsert(Target
);
2525 if (Used
.compilerUsedErase(&*J
))
2526 Used
.compilerUsedInsert(Target
);
2527 } else if (mayHaveOtherReferences(*J
, Used
))
2530 // Delete the alias.
2531 M
.getAliasList().erase(J
);
2532 ++NumAliasesRemoved
;
2536 Used
.syncVariablesAndSets();
2542 FindCXAAtExit(Module
&M
, function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
) {
2543 // Hack to get a default TLI before we have actual Function.
2544 auto FuncIter
= M
.begin();
2545 if (FuncIter
== M
.end())
2547 auto *TLI
= &GetTLI(*FuncIter
);
2549 LibFunc F
= LibFunc_cxa_atexit
;
2553 Function
*Fn
= M
.getFunction(TLI
->getName(F
));
2557 // Now get the actual TLI for Fn.
2560 // Make sure that the function has the correct prototype.
2561 if (!TLI
->getLibFunc(*Fn
, F
) || F
!= LibFunc_cxa_atexit
)
2567 /// Returns whether the given function is an empty C++ destructor and can
2568 /// therefore be eliminated.
2569 /// Note that we assume that other optimization passes have already simplified
2570 /// the code so we simply check for 'ret'.
2571 static bool cxxDtorIsEmpty(const Function
&Fn
) {
2572 // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2573 // nounwind, but that doesn't seem worth doing.
2574 if (Fn
.isDeclaration())
2577 for (auto &I
: Fn
.getEntryBlock()) {
2578 if (isa
<DbgInfoIntrinsic
>(I
))
2580 if (isa
<ReturnInst
>(I
))
2587 static bool OptimizeEmptyGlobalCXXDtors(Function
*CXAAtExitFn
) {
2588 /// Itanium C++ ABI p3.3.5:
2590 /// After constructing a global (or local static) object, that will require
2591 /// destruction on exit, a termination function is registered as follows:
2593 /// extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2595 /// This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2596 /// call f(p) when DSO d is unloaded, before all such termination calls
2597 /// registered before this one. It returns zero if registration is
2598 /// successful, nonzero on failure.
2600 // This pass will look for calls to __cxa_atexit where the function is trivial
2602 bool Changed
= false;
2604 for (auto I
= CXAAtExitFn
->user_begin(), E
= CXAAtExitFn
->user_end();
2606 // We're only interested in calls. Theoretically, we could handle invoke
2607 // instructions as well, but neither llvm-gcc nor clang generate invokes
2609 CallInst
*CI
= dyn_cast
<CallInst
>(*I
++);
2614 dyn_cast
<Function
>(CI
->getArgOperand(0)->stripPointerCasts());
2615 if (!DtorFn
|| !cxxDtorIsEmpty(*DtorFn
))
2618 // Just remove the call.
2619 CI
->replaceAllUsesWith(Constant::getNullValue(CI
->getType()));
2620 CI
->eraseFromParent();
2622 ++NumCXXDtorsRemoved
;
2630 static bool optimizeGlobalsInModule(
2631 Module
&M
, const DataLayout
&DL
,
2632 function_ref
<TargetLibraryInfo
&(Function
&)> GetTLI
,
2633 function_ref
<TargetTransformInfo
&(Function
&)> GetTTI
,
2634 function_ref
<BlockFrequencyInfo
&(Function
&)> GetBFI
,
2635 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
2636 SmallPtrSet
<const Comdat
*, 8> NotDiscardableComdats
;
2637 bool Changed
= false;
2638 bool LocalChange
= true;
2639 while (LocalChange
) {
2640 LocalChange
= false;
2642 NotDiscardableComdats
.clear();
2643 for (const GlobalVariable
&GV
: M
.globals())
2644 if (const Comdat
*C
= GV
.getComdat())
2645 if (!GV
.isDiscardableIfUnused() || !GV
.use_empty())
2646 NotDiscardableComdats
.insert(C
);
2647 for (Function
&F
: M
)
2648 if (const Comdat
*C
= F
.getComdat())
2649 if (!F
.isDefTriviallyDead())
2650 NotDiscardableComdats
.insert(C
);
2651 for (GlobalAlias
&GA
: M
.aliases())
2652 if (const Comdat
*C
= GA
.getComdat())
2653 if (!GA
.isDiscardableIfUnused() || !GA
.use_empty())
2654 NotDiscardableComdats
.insert(C
);
2656 // Delete functions that are trivially dead, ccc -> fastcc
2657 LocalChange
|= OptimizeFunctions(M
, GetTLI
, GetTTI
, GetBFI
, LookupDomTree
,
2658 NotDiscardableComdats
);
2660 // Optimize global_ctors list.
2661 LocalChange
|= optimizeGlobalCtorsList(M
, [&](Function
*F
) {
2662 return EvaluateStaticConstructor(F
, DL
, &GetTLI(*F
));
2665 // Optimize non-address-taken globals.
2667 OptimizeGlobalVars(M
, GetTLI
, LookupDomTree
, NotDiscardableComdats
);
2669 // Resolve aliases, when possible.
2670 LocalChange
|= OptimizeGlobalAliases(M
, NotDiscardableComdats
);
2672 // Try to remove trivial global destructors if they are not removed
2674 Function
*CXAAtExitFn
= FindCXAAtExit(M
, GetTLI
);
2676 LocalChange
|= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn
);
2678 Changed
|= LocalChange
;
2681 // TODO: Move all global ctors functions to the end of the module for code
2687 PreservedAnalyses
GlobalOptPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
2688 auto &DL
= M
.getDataLayout();
2690 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
2691 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
&{
2692 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
2694 auto GetTLI
= [&FAM
](Function
&F
) -> TargetLibraryInfo
& {
2695 return FAM
.getResult
<TargetLibraryAnalysis
>(F
);
2697 auto GetTTI
= [&FAM
](Function
&F
) -> TargetTransformInfo
& {
2698 return FAM
.getResult
<TargetIRAnalysis
>(F
);
2701 auto GetBFI
= [&FAM
](Function
&F
) -> BlockFrequencyInfo
& {
2702 return FAM
.getResult
<BlockFrequencyAnalysis
>(F
);
2705 if (!optimizeGlobalsInModule(M
, DL
, GetTLI
, GetTTI
, GetBFI
, LookupDomTree
))
2706 return PreservedAnalyses::all();
2707 return PreservedAnalyses::none();
2712 struct GlobalOptLegacyPass
: public ModulePass
{
2713 static char ID
; // Pass identification, replacement for typeid
2715 GlobalOptLegacyPass() : ModulePass(ID
) {
2716 initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
2719 bool runOnModule(Module
&M
) override
{
2723 auto &DL
= M
.getDataLayout();
2724 auto LookupDomTree
= [this](Function
&F
) -> DominatorTree
& {
2725 return this->getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
2727 auto GetTLI
= [this](Function
&F
) -> TargetLibraryInfo
& {
2728 return this->getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
2730 auto GetTTI
= [this](Function
&F
) -> TargetTransformInfo
& {
2731 return this->getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
2734 auto GetBFI
= [this](Function
&F
) -> BlockFrequencyInfo
& {
2735 return this->getAnalysis
<BlockFrequencyInfoWrapperPass
>(F
).getBFI();
2738 return optimizeGlobalsInModule(M
, DL
, GetTLI
, GetTTI
, GetBFI
,
2742 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
2743 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
2744 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
2745 AU
.addRequired
<DominatorTreeWrapperPass
>();
2746 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
2750 } // end anonymous namespace
2752 char GlobalOptLegacyPass::ID
= 0;
2754 INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass
, "globalopt",
2755 "Global Variable Optimizer", false, false)
2756 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
2757 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
2758 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
2759 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
2760 INITIALIZE_PASS_END(GlobalOptLegacyPass
, "globalopt",
2761 "Global Variable Optimizer", false, false)
2763 ModulePass
*llvm::createGlobalOptimizerPass() {
2764 return new GlobalOptLegacyPass();