1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph. The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/InlineOrder.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetLibraryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
63 #include "llvm/Transforms/Utils/Cloning.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/ModuleUtils.h"
76 #define DEBUG_TYPE "inline"
78 STATISTIC(NumInlined
, "Number of functions inlined");
79 STATISTIC(NumCallsDeleted
, "Number of call sites deleted, not inlined");
80 STATISTIC(NumDeleted
, "Number of functions deleted because all callers found");
81 STATISTIC(NumMergedAllocas
, "Number of allocas merged together");
83 /// Flag to disable manual alloca merging.
85 /// Merging of allocas was originally done as a stack-size saving technique
86 /// prior to LLVM's code generator having support for stack coloring based on
87 /// lifetime markers. It is now in the process of being removed. To experiment
88 /// with disabling it and relying fully on lifetime marker based stack
89 /// coloring, you can pass this flag to LLVM.
91 DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
92 cl::init(false), cl::Hidden
);
94 extern cl::opt
<InlinerFunctionImportStatsOpts
> InlinerFunctionImportStats
;
96 static cl::opt
<std::string
> CGSCCInlineReplayFile(
97 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
99 "Optimization remarks file containing inline remarks to be replayed "
100 "by inlining from cgscc inline remarks."),
103 static cl::opt
<bool> InlineEnablePriorityOrder(
104 "inline-enable-priority-order", cl::Hidden
, cl::init(false),
105 cl::desc("Enable the priority inline order for the inliner"));
107 LegacyInlinerBase::LegacyInlinerBase(char &ID
) : CallGraphSCCPass(ID
) {}
109 LegacyInlinerBase::LegacyInlinerBase(char &ID
, bool InsertLifetime
)
110 : CallGraphSCCPass(ID
), InsertLifetime(InsertLifetime
) {}
112 /// For this class, we declare that we require and preserve the call graph.
113 /// If the derived class implements this method, it should
114 /// always explicitly call the implementation here.
115 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage
&AU
) const {
116 AU
.addRequired
<AssumptionCacheTracker
>();
117 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
118 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
119 getAAResultsAnalysisUsage(AU
);
120 CallGraphSCCPass::getAnalysisUsage(AU
);
123 using InlinedArrayAllocasTy
= DenseMap
<ArrayType
*, std::vector
<AllocaInst
*>>;
125 /// Look at all of the allocas that we inlined through this call site. If we
126 /// have already inlined other allocas through other calls into this function,
127 /// then we know that they have disjoint lifetimes and that we can merge them.
129 /// There are many heuristics possible for merging these allocas, and the
130 /// different options have different tradeoffs. One thing that we *really*
131 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
132 /// longer address taken and so they can be promoted.
134 /// Our "solution" for that is to only merge allocas whose outermost type is an
135 /// array type. These are usually not promoted because someone is using a
136 /// variable index into them. These are also often the most important ones to
139 /// A better solution would be to have real memory lifetime markers in the IR
140 /// and not have the inliner do any merging of allocas at all. This would
141 /// allow the backend to do proper stack slot coloring of all allocas that
142 /// *actually make it to the backend*, which is really what we want.
144 /// Because we don't have this information, we do this simple and useful hack.
145 static void mergeInlinedArrayAllocas(Function
*Caller
, InlineFunctionInfo
&IFI
,
146 InlinedArrayAllocasTy
&InlinedArrayAllocas
,
148 SmallPtrSet
<AllocaInst
*, 16> UsedAllocas
;
150 // When processing our SCC, check to see if the call site was inlined from
151 // some other call site. For example, if we're processing "A" in this code:
153 // B() { x = alloca ... C() }
154 // C() { y = alloca ... }
155 // Assume that C was not inlined into B initially, and so we're processing A
156 // and decide to inline B into A. Doing this makes an alloca available for
157 // reuse and makes a callsite (C) available for inlining. When we process
158 // the C call site we don't want to do any alloca merging between X and Y
159 // because their scopes are not disjoint. We could make this smarter by
160 // keeping track of the inline history for each alloca in the
161 // InlinedArrayAllocas but this isn't likely to be a significant win.
162 if (InlineHistory
!= -1) // Only do merging for top-level call sites in SCC.
165 // Loop over all the allocas we have so far and see if they can be merged with
166 // a previously inlined alloca. If not, remember that we had it.
167 for (unsigned AllocaNo
= 0, E
= IFI
.StaticAllocas
.size(); AllocaNo
!= E
;
169 AllocaInst
*AI
= IFI
.StaticAllocas
[AllocaNo
];
171 // Don't bother trying to merge array allocations (they will usually be
172 // canonicalized to be an allocation *of* an array), or allocations whose
173 // type is not itself an array (because we're afraid of pessimizing SRoA).
174 ArrayType
*ATy
= dyn_cast
<ArrayType
>(AI
->getAllocatedType());
175 if (!ATy
|| AI
->isArrayAllocation())
178 // Get the list of all available allocas for this array type.
179 std::vector
<AllocaInst
*> &AllocasForType
= InlinedArrayAllocas
[ATy
];
181 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
182 // that we have to be careful not to reuse the same "available" alloca for
183 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
184 // set to keep track of which "available" allocas are being used by this
185 // function. Also, AllocasForType can be empty of course!
186 bool MergedAwayAlloca
= false;
187 for (AllocaInst
*AvailableAlloca
: AllocasForType
) {
188 Align Align1
= AI
->getAlign();
189 Align Align2
= AvailableAlloca
->getAlign();
191 // The available alloca has to be in the right function, not in some other
192 // function in this SCC.
193 if (AvailableAlloca
->getParent() != AI
->getParent())
196 // If the inlined function already uses this alloca then we can't reuse
198 if (!UsedAllocas
.insert(AvailableAlloca
).second
)
201 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
203 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
204 << "\n\t\tINTO: " << *AvailableAlloca
<< '\n');
206 // Move affected dbg.declare calls immediately after the new alloca to
207 // avoid the situation when a dbg.declare precedes its alloca.
208 if (auto *L
= LocalAsMetadata::getIfExists(AI
))
209 if (auto *MDV
= MetadataAsValue::getIfExists(AI
->getContext(), L
))
210 for (User
*U
: MDV
->users())
211 if (DbgDeclareInst
*DDI
= dyn_cast
<DbgDeclareInst
>(U
))
212 DDI
->moveBefore(AvailableAlloca
->getNextNode());
214 AI
->replaceAllUsesWith(AvailableAlloca
);
217 AvailableAlloca
->setAlignment(AI
->getAlign());
219 AI
->eraseFromParent();
220 MergedAwayAlloca
= true;
222 IFI
.StaticAllocas
[AllocaNo
] = nullptr;
226 // If we already nuked the alloca, we're done with it.
227 if (MergedAwayAlloca
)
230 // If we were unable to merge away the alloca either because there are no
231 // allocas of the right type available or because we reused them all
232 // already, remember that this alloca came from an inlined function and mark
233 // it used so we don't reuse it for other allocas from this inline
235 AllocasForType
.push_back(AI
);
236 UsedAllocas
.insert(AI
);
240 /// If it is possible to inline the specified call site,
241 /// do so and update the CallGraph for this operation.
243 /// This function also does some basic book-keeping to update the IR. The
244 /// InlinedArrayAllocas map keeps track of any allocas that are already
245 /// available from other functions inlined into the caller. If we are able to
246 /// inline this call site we attempt to reuse already available allocas or add
247 /// any new allocas to the set if not possible.
248 static InlineResult
inlineCallIfPossible(
249 CallBase
&CB
, InlineFunctionInfo
&IFI
,
250 InlinedArrayAllocasTy
&InlinedArrayAllocas
, int InlineHistory
,
251 bool InsertLifetime
, function_ref
<AAResults
&(Function
&)> &AARGetter
,
252 ImportedFunctionsInliningStatistics
&ImportedFunctionsStats
) {
253 Function
*Callee
= CB
.getCalledFunction();
254 Function
*Caller
= CB
.getCaller();
256 AAResults
&AAR
= AARGetter(*Callee
);
258 // Try to inline the function. Get the list of static allocas that were
260 InlineResult IR
= InlineFunction(CB
, IFI
, &AAR
, InsertLifetime
);
264 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
265 ImportedFunctionsStats
.recordInline(*Caller
, *Callee
);
267 AttributeFuncs::mergeAttributesForInlining(*Caller
, *Callee
);
269 if (!DisableInlinedAllocaMerging
)
270 mergeInlinedArrayAllocas(Caller
, IFI
, InlinedArrayAllocas
, InlineHistory
);
272 return IR
; // success
275 /// Return true if the specified inline history ID
276 /// indicates an inline history that includes the specified function.
277 static bool inlineHistoryIncludes(
278 Function
*F
, int InlineHistoryID
,
279 const SmallVectorImpl
<std::pair
<Function
*, int>> &InlineHistory
) {
280 while (InlineHistoryID
!= -1) {
281 assert(unsigned(InlineHistoryID
) < InlineHistory
.size() &&
282 "Invalid inline history ID");
283 if (InlineHistory
[InlineHistoryID
].first
== F
)
285 InlineHistoryID
= InlineHistory
[InlineHistoryID
].second
;
290 bool LegacyInlinerBase::doInitialization(CallGraph
&CG
) {
291 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
292 ImportedFunctionsStats
.setModuleInfo(CG
.getModule());
293 return false; // No changes to CallGraph.
296 bool LegacyInlinerBase::runOnSCC(CallGraphSCC
&SCC
) {
299 return inlineCalls(SCC
);
303 inlineCallsImpl(CallGraphSCC
&SCC
, CallGraph
&CG
,
304 std::function
<AssumptionCache
&(Function
&)> GetAssumptionCache
,
305 ProfileSummaryInfo
*PSI
,
306 std::function
<const TargetLibraryInfo
&(Function
&)> GetTLI
,
308 function_ref
<InlineCost(CallBase
&CB
)> GetInlineCost
,
309 function_ref
<AAResults
&(Function
&)> AARGetter
,
310 ImportedFunctionsInliningStatistics
&ImportedFunctionsStats
) {
311 SmallPtrSet
<Function
*, 8> SCCFunctions
;
312 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
313 for (CallGraphNode
*Node
: SCC
) {
314 Function
*F
= Node
->getFunction();
316 SCCFunctions
.insert(F
);
317 LLVM_DEBUG(dbgs() << " " << (F
? F
->getName() : "INDIRECTNODE"));
320 // Scan through and identify all call sites ahead of time so that we only
321 // inline call sites in the original functions, not call sites that result
322 // from inlining other functions.
323 SmallVector
<std::pair
<CallBase
*, int>, 16> CallSites
;
325 // When inlining a callee produces new call sites, we want to keep track of
326 // the fact that they were inlined from the callee. This allows us to avoid
327 // infinite inlining in some obscure cases. To represent this, we use an
328 // index into the InlineHistory vector.
329 SmallVector
<std::pair
<Function
*, int>, 8> InlineHistory
;
331 for (CallGraphNode
*Node
: SCC
) {
332 Function
*F
= Node
->getFunction();
333 if (!F
|| F
->isDeclaration())
336 OptimizationRemarkEmitter
ORE(F
);
337 for (BasicBlock
&BB
: *F
)
338 for (Instruction
&I
: BB
) {
339 auto *CB
= dyn_cast
<CallBase
>(&I
);
340 // If this isn't a call, or it is a call to an intrinsic, it can
342 if (!CB
|| isa
<IntrinsicInst
>(I
))
345 // If this is a direct call to an external function, we can never inline
346 // it. If it is an indirect call, inlining may resolve it to be a
347 // direct call, so we keep it.
348 if (Function
*Callee
= CB
->getCalledFunction())
349 if (Callee
->isDeclaration()) {
352 setInlineRemark(*CB
, "unavailable definition");
354 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoDefinition", &I
)
355 << NV("Callee", Callee
) << " will not be inlined into "
356 << NV("Caller", CB
->getCaller())
357 << " because its definition is unavailable"
363 CallSites
.push_back(std::make_pair(CB
, -1));
367 LLVM_DEBUG(dbgs() << ": " << CallSites
.size() << " call sites.\n");
369 // If there are no calls in this function, exit early.
370 if (CallSites
.empty())
373 // Now that we have all of the call sites, move the ones to functions in the
374 // current SCC to the end of the list.
375 unsigned FirstCallInSCC
= CallSites
.size();
376 for (unsigned I
= 0; I
< FirstCallInSCC
; ++I
)
377 if (Function
*F
= CallSites
[I
].first
->getCalledFunction())
378 if (SCCFunctions
.count(F
))
379 std::swap(CallSites
[I
--], CallSites
[--FirstCallInSCC
]);
381 InlinedArrayAllocasTy InlinedArrayAllocas
;
382 InlineFunctionInfo
InlineInfo(&CG
, GetAssumptionCache
, PSI
);
384 // Now that we have all of the call sites, loop over them and inline them if
385 // it looks profitable to do so.
386 bool Changed
= false;
390 // Iterate over the outer loop because inlining functions can cause indirect
391 // calls to become direct calls.
392 // CallSites may be modified inside so ranged for loop can not be used.
393 for (unsigned CSi
= 0; CSi
!= CallSites
.size(); ++CSi
) {
394 auto &P
= CallSites
[CSi
];
395 CallBase
&CB
= *P
.first
;
396 const int InlineHistoryID
= P
.second
;
398 Function
*Caller
= CB
.getCaller();
399 Function
*Callee
= CB
.getCalledFunction();
401 // We can only inline direct calls to non-declarations.
402 if (!Callee
|| Callee
->isDeclaration())
405 bool IsTriviallyDead
= isInstructionTriviallyDead(&CB
, &GetTLI(*Caller
));
407 if (!IsTriviallyDead
) {
408 // If this call site was obtained by inlining another function, verify
409 // that the include path for the function did not include the callee
410 // itself. If so, we'd be recursively inlining the same function,
411 // which would provide the same callsites, which would cause us to
412 // infinitely inline.
413 if (InlineHistoryID
!= -1 &&
414 inlineHistoryIncludes(Callee
, InlineHistoryID
, InlineHistory
)) {
415 setInlineRemark(CB
, "recursive");
420 // FIXME for new PM: because of the old PM we currently generate ORE and
421 // in turn BFI on demand. With the new PM, the ORE dependency should
422 // just become a regular analysis dependency.
423 OptimizationRemarkEmitter
ORE(Caller
);
425 auto OIC
= shouldInline(CB
, GetInlineCost
, ORE
);
426 // If the policy determines that we should inline this function,
427 // delete the call instead.
431 // If this call site is dead and it is to a readonly function, we should
432 // just delete the call instead of trying to inline it, regardless of
433 // size. This happens because IPSCCP propagates the result out of the
434 // call and then we're left with the dead call.
435 if (IsTriviallyDead
) {
436 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB
<< "\n");
437 // Update the call graph by deleting the edge from Callee to Caller.
438 setInlineRemark(CB
, "trivially dead");
439 CG
[Caller
]->removeCallEdgeFor(CB
);
440 CB
.eraseFromParent();
443 // Get DebugLoc to report. CB will be invalid after Inliner.
444 DebugLoc DLoc
= CB
.getDebugLoc();
445 BasicBlock
*Block
= CB
.getParent();
447 // Attempt to inline the function.
450 InlineResult IR
= inlineCallIfPossible(
451 CB
, InlineInfo
, InlinedArrayAllocas
, InlineHistoryID
,
452 InsertLifetime
, AARGetter
, ImportedFunctionsStats
);
453 if (!IR
.isSuccess()) {
454 setInlineRemark(CB
, std::string(IR
.getFailureReason()) + "; " +
455 inlineCostStr(*OIC
));
457 return OptimizationRemarkMissed(DEBUG_TYPE
, "NotInlined", DLoc
,
459 << NV("Callee", Callee
) << " will not be inlined into "
460 << NV("Caller", Caller
) << ": "
461 << NV("Reason", IR
.getFailureReason());
467 emitInlinedInto(ORE
, DLoc
, Block
, *Callee
, *Caller
, *OIC
);
469 // If inlining this function gave us any new call sites, throw them
470 // onto our worklist to process. They are useful inline candidates.
471 if (!InlineInfo
.InlinedCalls
.empty()) {
472 // Create a new inline history entry for this, so that we remember
473 // that these new callsites came about due to inlining Callee.
474 int NewHistoryID
= InlineHistory
.size();
475 InlineHistory
.push_back(std::make_pair(Callee
, InlineHistoryID
));
478 // Make sure no dupplicates in the inline candidates. This could
479 // happen when a callsite is simpilfied to reusing the return value
480 // of another callsite during function cloning, thus the other
481 // callsite will be reconsidered here.
482 DenseSet
<CallBase
*> DbgCallSites
;
483 for (auto &II
: CallSites
)
484 DbgCallSites
.insert(II
.first
);
487 for (Value
*Ptr
: InlineInfo
.InlinedCalls
) {
489 assert(DbgCallSites
.count(dyn_cast
<CallBase
>(Ptr
)) == 0);
492 std::make_pair(dyn_cast
<CallBase
>(Ptr
), NewHistoryID
));
497 // If we inlined or deleted the last possible call site to the function,
498 // delete the function body now.
499 if (Callee
&& Callee
->use_empty() && Callee
->hasLocalLinkage() &&
500 // TODO: Can remove if in SCC now.
501 !SCCFunctions
.count(Callee
) &&
502 // The function may be apparently dead, but if there are indirect
503 // callgraph references to the node, we cannot delete it yet, this
504 // could invalidate the CGSCC iterator.
505 CG
[Callee
]->getNumReferences() == 0) {
506 LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
507 << Callee
->getName() << "\n");
508 CallGraphNode
*CalleeNode
= CG
[Callee
];
510 // Remove any call graph edges from the callee to its callees.
511 CalleeNode
->removeAllCalledFunctions();
513 // Removing the node for callee from the call graph and delete it.
514 delete CG
.removeFunctionFromModule(CalleeNode
);
518 // Remove this call site from the list. If possible, use
519 // swap/pop_back for efficiency, but do not use it if doing so would
520 // move a call site to a function in this SCC before the
521 // 'FirstCallInSCC' barrier.
522 if (SCC
.isSingular()) {
523 CallSites
[CSi
] = CallSites
.back();
524 CallSites
.pop_back();
526 CallSites
.erase(CallSites
.begin() + CSi
);
533 } while (LocalChange
);
538 bool LegacyInlinerBase::inlineCalls(CallGraphSCC
&SCC
) {
539 CallGraph
&CG
= getAnalysis
<CallGraphWrapperPass
>().getCallGraph();
540 ACT
= &getAnalysis
<AssumptionCacheTracker
>();
541 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
542 GetTLI
= [&](Function
&F
) -> const TargetLibraryInfo
& {
543 return getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
545 auto GetAssumptionCache
= [&](Function
&F
) -> AssumptionCache
& {
546 return ACT
->getAssumptionCache(F
);
548 return inlineCallsImpl(
549 SCC
, CG
, GetAssumptionCache
, PSI
, GetTLI
, InsertLifetime
,
550 [&](CallBase
&CB
) { return getInlineCost(CB
); }, LegacyAARGetter(*this),
551 ImportedFunctionsStats
);
554 /// Remove now-dead linkonce functions at the end of
555 /// processing to avoid breaking the SCC traversal.
556 bool LegacyInlinerBase::doFinalization(CallGraph
&CG
) {
557 if (InlinerFunctionImportStats
!= InlinerFunctionImportStatsOpts::No
)
558 ImportedFunctionsStats
.dump(InlinerFunctionImportStats
==
559 InlinerFunctionImportStatsOpts::Verbose
);
560 return removeDeadFunctions(CG
);
563 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
564 bool LegacyInlinerBase::removeDeadFunctions(CallGraph
&CG
,
565 bool AlwaysInlineOnly
) {
566 SmallVector
<CallGraphNode
*, 16> FunctionsToRemove
;
567 SmallVector
<Function
*, 16> DeadFunctionsInComdats
;
569 auto RemoveCGN
= [&](CallGraphNode
*CGN
) {
570 // Remove any call graph edges from the function to its callees.
571 CGN
->removeAllCalledFunctions();
573 // Remove any edges from the external node to the function's call graph
574 // node. These edges might have been made irrelegant due to
575 // optimization of the program.
576 CG
.getExternalCallingNode()->removeAnyCallEdgeTo(CGN
);
578 // Removing the node for callee from the call graph and delete it.
579 FunctionsToRemove
.push_back(CGN
);
582 // Scan for all of the functions, looking for ones that should now be removed
583 // from the program. Insert the dead ones in the FunctionsToRemove set.
584 for (const auto &I
: CG
) {
585 CallGraphNode
*CGN
= I
.second
.get();
586 Function
*F
= CGN
->getFunction();
587 if (!F
|| F
->isDeclaration())
590 // Handle the case when this function is called and we only want to care
591 // about always-inline functions. This is a bit of a hack to share code
592 // between here and the InlineAlways pass.
593 if (AlwaysInlineOnly
&& !F
->hasFnAttribute(Attribute::AlwaysInline
))
596 // If the only remaining users of the function are dead constants, remove
598 F
->removeDeadConstantUsers();
600 if (!F
->isDefTriviallyDead())
603 // It is unsafe to drop a function with discardable linkage from a COMDAT
604 // without also dropping the other members of the COMDAT.
605 // The inliner doesn't visit non-function entities which are in COMDAT
606 // groups so it is unsafe to do so *unless* the linkage is local.
607 if (!F
->hasLocalLinkage()) {
608 if (F
->hasComdat()) {
609 DeadFunctionsInComdats
.push_back(F
);
616 if (!DeadFunctionsInComdats
.empty()) {
617 // Filter out the functions whose comdats remain alive.
618 filterDeadComdatFunctions(CG
.getModule(), DeadFunctionsInComdats
);
620 for (Function
*F
: DeadFunctionsInComdats
)
624 if (FunctionsToRemove
.empty())
627 // Now that we know which functions to delete, do so. We didn't want to do
628 // this inline, because that would invalidate our CallGraph::iterator
631 // Note that it doesn't matter that we are iterating over a non-stable order
632 // here to do this, it doesn't matter which order the functions are deleted
634 array_pod_sort(FunctionsToRemove
.begin(), FunctionsToRemove
.end());
635 FunctionsToRemove
.erase(
636 std::unique(FunctionsToRemove
.begin(), FunctionsToRemove
.end()),
637 FunctionsToRemove
.end());
638 for (CallGraphNode
*CGN
: FunctionsToRemove
) {
639 delete CG
.removeFunctionFromModule(CGN
);
646 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result
&MAM
,
647 FunctionAnalysisManager
&FAM
, Module
&M
) {
649 return *OwnedAdvisor
;
651 auto *IAA
= MAM
.getCachedResult
<InlineAdvisorAnalysis
>(M
);
653 // It should still be possible to run the inliner as a stand-alone SCC pass,
654 // for test scenarios. In that case, we default to the
655 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
656 // runs. It also uses just the default InlineParams.
657 // In this case, we need to use the provided FAM, which is valid for the
658 // duration of the inliner pass, and thus the lifetime of the owned advisor.
659 // The one we would get from the MAM can be invalidated as a result of the
660 // inliner's activity.
662 std::make_unique
<DefaultInlineAdvisor
>(M
, FAM
, getInlineParams());
664 if (!CGSCCInlineReplayFile
.empty())
665 OwnedAdvisor
= std::make_unique
<ReplayInlineAdvisor
>(
666 M
, FAM
, M
.getContext(), std::move(OwnedAdvisor
),
667 CGSCCInlineReplayFile
,
668 /*EmitRemarks=*/true);
670 return *OwnedAdvisor
;
672 assert(IAA
->getAdvisor() &&
673 "Expected a present InlineAdvisorAnalysis also have an "
674 "InlineAdvisor initialized");
675 return *IAA
->getAdvisor();
678 PreservedAnalyses
InlinerPass::run(LazyCallGraph::SCC
&InitialC
,
679 CGSCCAnalysisManager
&AM
, LazyCallGraph
&CG
,
680 CGSCCUpdateResult
&UR
) {
681 const auto &MAMProxy
=
682 AM
.getResult
<ModuleAnalysisManagerCGSCCProxy
>(InitialC
, CG
);
683 bool Changed
= false;
685 assert(InitialC
.size() > 0 && "Cannot handle an empty SCC!");
686 Module
&M
= *InitialC
.begin()->getFunction().getParent();
687 ProfileSummaryInfo
*PSI
= MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(M
);
689 FunctionAnalysisManager
&FAM
=
690 AM
.getResult
<FunctionAnalysisManagerCGSCCProxy
>(InitialC
, CG
)
693 InlineAdvisor
&Advisor
= getAdvisor(MAMProxy
, FAM
, M
);
694 Advisor
.onPassEntry();
696 auto AdvisorOnExit
= make_scope_exit([&] { Advisor
.onPassExit(); });
698 // We use a single common worklist for calls across the entire SCC. We
699 // process these in-order and append new calls introduced during inlining to
700 // the end. The PriorityInlineOrder is optional here, in which the smaller
701 // callee would have a higher priority to inline.
703 // Note that this particular order of processing is actually critical to
704 // avoid very bad behaviors. Consider *highly connected* call graphs where
705 // each function contains a small amount of code and a couple of calls to
706 // other functions. Because the LLVM inliner is fundamentally a bottom-up
707 // inliner, it can handle gracefully the fact that these all appear to be
708 // reasonable inlining candidates as it will flatten things until they become
709 // too big to inline, and then move on and flatten another batch.
711 // However, when processing call edges *within* an SCC we cannot rely on this
712 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
713 // functions we can end up incrementally inlining N calls into each of
714 // N functions because each incremental inlining decision looks good and we
715 // don't have a topological ordering to prevent explosions.
717 // To compensate for this, we don't process transitive edges made immediate
718 // by inlining until we've done one pass of inlining across the entire SCC.
719 // Large, highly connected SCCs still lead to some amount of code bloat in
720 // this model, but it is uniformly spread across all the functions in the SCC
721 // and eventually they all become too large to inline, rather than
722 // incrementally maknig a single function grow in a super linear fashion.
723 std::unique_ptr
<InlineOrder
<std::pair
<CallBase
*, int>>> Calls
;
724 if (InlineEnablePriorityOrder
)
725 Calls
= std::make_unique
<PriorityInlineOrder
<InlineSizePriority
>>();
727 Calls
= std::make_unique
<DefaultInlineOrder
<std::pair
<CallBase
*, int>>>();
728 assert(Calls
!= nullptr && "Expected an initialized InlineOrder");
730 // Populate the initial list of calls in this SCC.
731 for (auto &N
: InitialC
) {
733 FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(N
.getFunction());
734 // We want to generally process call sites top-down in order for
735 // simplifications stemming from replacing the call with the returned value
736 // after inlining to be visible to subsequent inlining decisions.
737 // FIXME: Using instructions sequence is a really bad way to do this.
738 // Instead we should do an actual RPO walk of the function body.
739 for (Instruction
&I
: instructions(N
.getFunction()))
740 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
741 if (Function
*Callee
= CB
->getCalledFunction()) {
742 if (!Callee
->isDeclaration())
743 Calls
->push({CB
, -1});
744 else if (!isa
<IntrinsicInst
>(I
)) {
746 setInlineRemark(*CB
, "unavailable definition");
748 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoDefinition", &I
)
749 << NV("Callee", Callee
) << " will not be inlined into "
750 << NV("Caller", CB
->getCaller())
751 << " because its definition is unavailable"
758 return PreservedAnalyses::all();
760 // Capture updatable variable for the current SCC.
763 // When inlining a callee produces new call sites, we want to keep track of
764 // the fact that they were inlined from the callee. This allows us to avoid
765 // infinite inlining in some obscure cases. To represent this, we use an
766 // index into the InlineHistory vector.
767 SmallVector
<std::pair
<Function
*, int>, 16> InlineHistory
;
769 // Track a set vector of inlined callees so that we can augment the caller
770 // with all of their edges in the call graph before pruning out the ones that
771 // got simplified away.
772 SmallSetVector
<Function
*, 4> InlinedCallees
;
774 // Track the dead functions to delete once finished with inlining calls. We
775 // defer deleting these to make it easier to handle the call graph updates.
776 SmallVector
<Function
*, 4> DeadFunctions
;
778 // Loop forward over all of the calls.
779 while (!Calls
->empty()) {
780 // We expect the calls to typically be batched with sequences of calls that
781 // have the same caller, so we first set up some shared infrastructure for
782 // this caller. We also do any pruning we can at this layer on the caller
784 Function
&F
= *Calls
->front().first
->getCaller();
785 LazyCallGraph::Node
&N
= *CG
.lookup(F
);
786 if (CG
.lookupSCC(N
) != C
) {
791 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F
.getName() << "\n"
792 << " Function size: " << F
.getInstructionCount()
795 auto GetAssumptionCache
= [&](Function
&F
) -> AssumptionCache
& {
796 return FAM
.getResult
<AssumptionAnalysis
>(F
);
799 // Now process as many calls as we have within this caller in the sequence.
800 // We bail out as soon as the caller has to change so we can update the
801 // call graph and prepare the context of that new caller.
802 bool DidInline
= false;
803 while (!Calls
->empty() && Calls
->front().first
->getCaller() == &F
) {
804 auto P
= Calls
->pop();
805 CallBase
*CB
= P
.first
;
806 const int InlineHistoryID
= P
.second
;
807 Function
&Callee
= *CB
->getCalledFunction();
809 if (InlineHistoryID
!= -1 &&
810 inlineHistoryIncludes(&Callee
, InlineHistoryID
, InlineHistory
)) {
811 setInlineRemark(*CB
, "recursive");
815 // Check if this inlining may repeat breaking an SCC apart that has
816 // already been split once before. In that case, inlining here may
817 // trigger infinite inlining, much like is prevented within the inliner
818 // itself by the InlineHistory above, but spread across CGSCC iterations
819 // and thus hidden from the full inline history.
820 if (CG
.lookupSCC(*CG
.lookup(Callee
)) == C
&&
821 UR
.InlinedInternalEdges
.count({&N
, C
})) {
822 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
823 "previously split out of this SCC by inlining: "
824 << F
.getName() << " -> " << Callee
.getName() << "\n");
825 setInlineRemark(*CB
, "recursive SCC split");
829 auto Advice
= Advisor
.getAdvice(*CB
, OnlyMandatory
);
830 // Check whether we want to inline this callsite.
831 if (!Advice
->isInliningRecommended()) {
832 Advice
->recordUnattemptedInlining();
836 // Setup the data structure used to plumb customization into the
837 // `InlineFunction` routine.
838 InlineFunctionInfo
IFI(
839 /*cg=*/nullptr, GetAssumptionCache
, PSI
,
840 &FAM
.getResult
<BlockFrequencyAnalysis
>(*(CB
->getCaller())),
841 &FAM
.getResult
<BlockFrequencyAnalysis
>(Callee
));
844 InlineFunction(*CB
, IFI
, &FAM
.getResult
<AAManager
>(*CB
->getCaller()));
845 if (!IR
.isSuccess()) {
846 Advice
->recordUnsuccessfulInlining(IR
);
851 InlinedCallees
.insert(&Callee
);
854 LLVM_DEBUG(dbgs() << " Size after inlining: "
855 << F
.getInstructionCount() << "\n");
857 // Add any new callsites to defined functions to the worklist.
858 if (!IFI
.InlinedCallSites
.empty()) {
859 int NewHistoryID
= InlineHistory
.size();
860 InlineHistory
.push_back({&Callee
, InlineHistoryID
});
862 for (CallBase
*ICB
: reverse(IFI
.InlinedCallSites
)) {
863 Function
*NewCallee
= ICB
->getCalledFunction();
864 assert(!(NewCallee
&& NewCallee
->isIntrinsic()) &&
865 "Intrinsic calls should not be tracked.");
867 // Try to promote an indirect (virtual) call without waiting for
868 // the post-inline cleanup and the next DevirtSCCRepeatedPass
869 // iteration because the next iteration may not happen and we may
871 if (tryPromoteCall(*ICB
))
872 NewCallee
= ICB
->getCalledFunction();
875 if (!NewCallee
->isDeclaration())
876 Calls
->push({ICB
, NewHistoryID
});
880 // Merge the attributes based on the inlining.
881 AttributeFuncs::mergeAttributesForInlining(F
, Callee
);
883 // For local functions, check whether this makes the callee trivially
884 // dead. In that case, we can drop the body of the function eagerly
885 // which may reduce the number of callers of other functions to one,
886 // changing inline cost thresholds.
887 bool CalleeWasDeleted
= false;
888 if (Callee
.hasLocalLinkage()) {
889 // To check this we also need to nuke any dead constant uses (perhaps
890 // made dead by this operation on other functions).
891 Callee
.removeDeadConstantUsers();
892 if (Callee
.use_empty() && !CG
.isLibFunction(Callee
)) {
893 Calls
->erase_if([&](const std::pair
<CallBase
*, int> &Call
) {
894 return Call
.first
->getCaller() == &Callee
;
896 // Clear the body and queue the function itself for deletion when we
897 // finish inlining and call graph updates.
898 // Note that after this point, it is an error to do anything other
899 // than use the callee's address or delete it.
900 Callee
.dropAllReferences();
901 assert(!is_contained(DeadFunctions
, &Callee
) &&
902 "Cannot put cause a function to become dead twice!");
903 DeadFunctions
.push_back(&Callee
);
904 CalleeWasDeleted
= true;
907 if (CalleeWasDeleted
)
908 Advice
->recordInliningWithCalleeDeleted();
910 Advice
->recordInlining();
917 // At this point, since we have made changes we have at least removed
918 // a call instruction. However, in the process we do some incremental
919 // simplification of the surrounding code. This simplification can
920 // essentially do all of the same things as a function pass and we can
921 // re-use the exact same logic for updating the call graph to reflect the
924 // Inside the update, we also update the FunctionAnalysisManager in the
925 // proxy for this particular SCC. We do this as the SCC may have changed and
926 // as we're going to mutate this particular function we want to make sure
927 // the proxy is in place to forward any invalidation events.
928 LazyCallGraph::SCC
*OldC
= C
;
929 C
= &updateCGAndAnalysisManagerForCGSCCPass(CG
, *C
, N
, AM
, UR
, FAM
);
930 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C
<< "\n");
932 // If this causes an SCC to split apart into multiple smaller SCCs, there
933 // is a subtle risk we need to prepare for. Other transformations may
934 // expose an "infinite inlining" opportunity later, and because of the SCC
935 // mutation, we will revisit this function and potentially re-inline. If we
936 // do, and that re-inlining also has the potentially to mutate the SCC
937 // structure, the infinite inlining problem can manifest through infinite
938 // SCC splits and merges. To avoid this, we capture the originating caller
939 // node and the SCC containing the call edge. This is a slight over
940 // approximation of the possible inlining decisions that must be avoided,
941 // but is relatively efficient to store. We use C != OldC to know when
942 // a new SCC is generated and the original SCC may be generated via merge
943 // in later iterations.
945 // It is also possible that even if no new SCC is generated
946 // (i.e., C == OldC), the original SCC could be split and then merged
947 // into the same one as itself. and the original SCC will be added into
948 // UR.CWorklist again, we want to catch such cases too.
950 // FIXME: This seems like a very heavyweight way of retaining the inline
951 // history, we should look for a more efficient way of tracking it.
952 if ((C
!= OldC
|| UR
.CWorklist
.count(OldC
)) &&
953 llvm::any_of(InlinedCallees
, [&](Function
*Callee
) {
954 return CG
.lookupSCC(*CG
.lookup(*Callee
)) == OldC
;
956 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
957 "retaining this to avoid infinite inlining.\n");
958 UR
.InlinedInternalEdges
.insert({&N
, OldC
});
960 InlinedCallees
.clear();
963 // Now that we've finished inlining all of the calls across this SCC, delete
964 // all of the trivially dead functions, updating the call graph and the CGSCC
965 // pass manager in the process.
967 // Note that this walks a pointer set which has non-deterministic order but
968 // that is OK as all we do is delete things and add pointers to unordered
970 for (Function
*DeadF
: DeadFunctions
) {
971 // Get the necessary information out of the call graph and nuke the
972 // function there. Also, clear out any cached analyses.
973 auto &DeadC
= *CG
.lookupSCC(*CG
.lookup(*DeadF
));
974 FAM
.clear(*DeadF
, DeadF
->getName());
975 AM
.clear(DeadC
, DeadC
.getName());
976 auto &DeadRC
= DeadC
.getOuterRefSCC();
977 CG
.removeDeadFunction(*DeadF
);
979 // Mark the relevant parts of the call graph as invalid so we don't visit
981 UR
.InvalidatedSCCs
.insert(&DeadC
);
982 UR
.InvalidatedRefSCCs
.insert(&DeadRC
);
984 // If the updated SCC was the one containing the deleted function, clear it.
985 if (&DeadC
== UR
.UpdatedC
)
986 UR
.UpdatedC
= nullptr;
988 // And delete the actual function from the module.
989 // The Advisor may use Function pointers to efficiently index various
990 // internal maps, e.g. for memoization. Function cleanup passes like
991 // argument promotion create new functions. It is possible for a new
992 // function to be allocated at the address of a deleted function. We could
993 // index using names, but that's inefficient. Alternatively, we let the
994 // Advisor free the functions when it sees fit.
995 DeadF
->getBasicBlockList().clear();
996 M
.getFunctionList().remove(DeadF
);
1002 return PreservedAnalyses::all();
1004 // Even if we change the IR, we update the core CGSCC data structures and so
1005 // can preserve the proxy to the function analysis manager.
1006 PreservedAnalyses PA
;
1007 PA
.preserve
<FunctionAnalysisManagerCGSCCProxy
>();
1011 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params
,
1012 bool MandatoryFirst
,
1013 InliningAdvisorMode Mode
,
1014 unsigned MaxDevirtIterations
)
1015 : Params(Params
), Mode(Mode
), MaxDevirtIterations(MaxDevirtIterations
),
1017 // Run the inliner first. The theory is that we are walking bottom-up and so
1018 // the callees have already been fully optimized, and we want to inline them
1019 // into the callers so that our optimizations can reflect that.
1020 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1021 // because it makes profile annotation in the backend inaccurate.
1023 PM
.addPass(InlinerPass(/*OnlyMandatory*/ true));
1024 PM
.addPass(InlinerPass());
1027 PreservedAnalyses
ModuleInlinerWrapperPass::run(Module
&M
,
1028 ModuleAnalysisManager
&MAM
) {
1029 auto &IAA
= MAM
.getResult
<InlineAdvisorAnalysis
>(M
);
1030 if (!IAA
.tryCreate(Params
, Mode
, CGSCCInlineReplayFile
)) {
1031 M
.getContext().emitError(
1032 "Could not setup Inlining Advisor for the requested "
1033 "mode and/or options");
1034 return PreservedAnalyses::all();
1037 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1038 // to detect when we devirtualize indirect calls and iterate the SCC passes
1039 // in that case to try and catch knock-on inlining or function attrs
1040 // opportunities. Then we add it to the module pipeline by walking the SCCs
1041 // in postorder (or bottom-up).
1042 // If MaxDevirtIterations is 0, we just don't use the devirtualization
1044 if (MaxDevirtIterations
== 0)
1045 MPM
.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM
)));
1047 MPM
.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1048 createDevirtSCCRepeatedPass(std::move(PM
), MaxDevirtIterations
)));
1053 // The ModulePassManager has already taken care of invalidating analyses.
1054 return PreservedAnalyses::all();