[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / Inliner.cpp
blobb3480bf8cf1b1dc6b2c3c3fba941315817b0226c
1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph. The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/InlineOrder.h"
35 #include "llvm/Analysis/LazyCallGraph.h"
36 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/TargetLibraryInfo.h"
39 #include "llvm/Analysis/TargetTransformInfo.h"
40 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/DiagnosticInfo.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/IntrinsicInst.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
63 #include "llvm/Transforms/Utils/Cloning.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/ModuleUtils.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <functional>
69 #include <sstream>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
74 using namespace llvm;
76 #define DEBUG_TYPE "inline"
78 STATISTIC(NumInlined, "Number of functions inlined");
79 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
80 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
81 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
83 /// Flag to disable manual alloca merging.
84 ///
85 /// Merging of allocas was originally done as a stack-size saving technique
86 /// prior to LLVM's code generator having support for stack coloring based on
87 /// lifetime markers. It is now in the process of being removed. To experiment
88 /// with disabling it and relying fully on lifetime marker based stack
89 /// coloring, you can pass this flag to LLVM.
90 static cl::opt<bool>
91 DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
92 cl::init(false), cl::Hidden);
94 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
96 static cl::opt<std::string> CGSCCInlineReplayFile(
97 "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
98 cl::desc(
99 "Optimization remarks file containing inline remarks to be replayed "
100 "by inlining from cgscc inline remarks."),
101 cl::Hidden);
103 static cl::opt<bool> InlineEnablePriorityOrder(
104 "inline-enable-priority-order", cl::Hidden, cl::init(false),
105 cl::desc("Enable the priority inline order for the inliner"));
107 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
109 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
110 : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
112 /// For this class, we declare that we require and preserve the call graph.
113 /// If the derived class implements this method, it should
114 /// always explicitly call the implementation here.
115 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
116 AU.addRequired<AssumptionCacheTracker>();
117 AU.addRequired<ProfileSummaryInfoWrapperPass>();
118 AU.addRequired<TargetLibraryInfoWrapperPass>();
119 getAAResultsAnalysisUsage(AU);
120 CallGraphSCCPass::getAnalysisUsage(AU);
123 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
125 /// Look at all of the allocas that we inlined through this call site. If we
126 /// have already inlined other allocas through other calls into this function,
127 /// then we know that they have disjoint lifetimes and that we can merge them.
129 /// There are many heuristics possible for merging these allocas, and the
130 /// different options have different tradeoffs. One thing that we *really*
131 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
132 /// longer address taken and so they can be promoted.
134 /// Our "solution" for that is to only merge allocas whose outermost type is an
135 /// array type. These are usually not promoted because someone is using a
136 /// variable index into them. These are also often the most important ones to
137 /// merge.
139 /// A better solution would be to have real memory lifetime markers in the IR
140 /// and not have the inliner do any merging of allocas at all. This would
141 /// allow the backend to do proper stack slot coloring of all allocas that
142 /// *actually make it to the backend*, which is really what we want.
144 /// Because we don't have this information, we do this simple and useful hack.
145 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
146 InlinedArrayAllocasTy &InlinedArrayAllocas,
147 int InlineHistory) {
148 SmallPtrSet<AllocaInst *, 16> UsedAllocas;
150 // When processing our SCC, check to see if the call site was inlined from
151 // some other call site. For example, if we're processing "A" in this code:
152 // A() { B() }
153 // B() { x = alloca ... C() }
154 // C() { y = alloca ... }
155 // Assume that C was not inlined into B initially, and so we're processing A
156 // and decide to inline B into A. Doing this makes an alloca available for
157 // reuse and makes a callsite (C) available for inlining. When we process
158 // the C call site we don't want to do any alloca merging between X and Y
159 // because their scopes are not disjoint. We could make this smarter by
160 // keeping track of the inline history for each alloca in the
161 // InlinedArrayAllocas but this isn't likely to be a significant win.
162 if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
163 return;
165 // Loop over all the allocas we have so far and see if they can be merged with
166 // a previously inlined alloca. If not, remember that we had it.
167 for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
168 ++AllocaNo) {
169 AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
171 // Don't bother trying to merge array allocations (they will usually be
172 // canonicalized to be an allocation *of* an array), or allocations whose
173 // type is not itself an array (because we're afraid of pessimizing SRoA).
174 ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
175 if (!ATy || AI->isArrayAllocation())
176 continue;
178 // Get the list of all available allocas for this array type.
179 std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
181 // Loop over the allocas in AllocasForType to see if we can reuse one. Note
182 // that we have to be careful not to reuse the same "available" alloca for
183 // multiple different allocas that we just inlined, we use the 'UsedAllocas'
184 // set to keep track of which "available" allocas are being used by this
185 // function. Also, AllocasForType can be empty of course!
186 bool MergedAwayAlloca = false;
187 for (AllocaInst *AvailableAlloca : AllocasForType) {
188 Align Align1 = AI->getAlign();
189 Align Align2 = AvailableAlloca->getAlign();
191 // The available alloca has to be in the right function, not in some other
192 // function in this SCC.
193 if (AvailableAlloca->getParent() != AI->getParent())
194 continue;
196 // If the inlined function already uses this alloca then we can't reuse
197 // it.
198 if (!UsedAllocas.insert(AvailableAlloca).second)
199 continue;
201 // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
202 // success!
203 LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI
204 << "\n\t\tINTO: " << *AvailableAlloca << '\n');
206 // Move affected dbg.declare calls immediately after the new alloca to
207 // avoid the situation when a dbg.declare precedes its alloca.
208 if (auto *L = LocalAsMetadata::getIfExists(AI))
209 if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
210 for (User *U : MDV->users())
211 if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
212 DDI->moveBefore(AvailableAlloca->getNextNode());
214 AI->replaceAllUsesWith(AvailableAlloca);
216 if (Align1 > Align2)
217 AvailableAlloca->setAlignment(AI->getAlign());
219 AI->eraseFromParent();
220 MergedAwayAlloca = true;
221 ++NumMergedAllocas;
222 IFI.StaticAllocas[AllocaNo] = nullptr;
223 break;
226 // If we already nuked the alloca, we're done with it.
227 if (MergedAwayAlloca)
228 continue;
230 // If we were unable to merge away the alloca either because there are no
231 // allocas of the right type available or because we reused them all
232 // already, remember that this alloca came from an inlined function and mark
233 // it used so we don't reuse it for other allocas from this inline
234 // operation.
235 AllocasForType.push_back(AI);
236 UsedAllocas.insert(AI);
240 /// If it is possible to inline the specified call site,
241 /// do so and update the CallGraph for this operation.
243 /// This function also does some basic book-keeping to update the IR. The
244 /// InlinedArrayAllocas map keeps track of any allocas that are already
245 /// available from other functions inlined into the caller. If we are able to
246 /// inline this call site we attempt to reuse already available allocas or add
247 /// any new allocas to the set if not possible.
248 static InlineResult inlineCallIfPossible(
249 CallBase &CB, InlineFunctionInfo &IFI,
250 InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
251 bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
252 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
253 Function *Callee = CB.getCalledFunction();
254 Function *Caller = CB.getCaller();
256 AAResults &AAR = AARGetter(*Callee);
258 // Try to inline the function. Get the list of static allocas that were
259 // inlined.
260 InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
261 if (!IR.isSuccess())
262 return IR;
264 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
265 ImportedFunctionsStats.recordInline(*Caller, *Callee);
267 AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
269 if (!DisableInlinedAllocaMerging)
270 mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
272 return IR; // success
275 /// Return true if the specified inline history ID
276 /// indicates an inline history that includes the specified function.
277 static bool inlineHistoryIncludes(
278 Function *F, int InlineHistoryID,
279 const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
280 while (InlineHistoryID != -1) {
281 assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
282 "Invalid inline history ID");
283 if (InlineHistory[InlineHistoryID].first == F)
284 return true;
285 InlineHistoryID = InlineHistory[InlineHistoryID].second;
287 return false;
290 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
291 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
292 ImportedFunctionsStats.setModuleInfo(CG.getModule());
293 return false; // No changes to CallGraph.
296 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
297 if (skipSCC(SCC))
298 return false;
299 return inlineCalls(SCC);
302 static bool
303 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
304 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
305 ProfileSummaryInfo *PSI,
306 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
307 bool InsertLifetime,
308 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
309 function_ref<AAResults &(Function &)> AARGetter,
310 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
311 SmallPtrSet<Function *, 8> SCCFunctions;
312 LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
313 for (CallGraphNode *Node : SCC) {
314 Function *F = Node->getFunction();
315 if (F)
316 SCCFunctions.insert(F);
317 LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
320 // Scan through and identify all call sites ahead of time so that we only
321 // inline call sites in the original functions, not call sites that result
322 // from inlining other functions.
323 SmallVector<std::pair<CallBase *, int>, 16> CallSites;
325 // When inlining a callee produces new call sites, we want to keep track of
326 // the fact that they were inlined from the callee. This allows us to avoid
327 // infinite inlining in some obscure cases. To represent this, we use an
328 // index into the InlineHistory vector.
329 SmallVector<std::pair<Function *, int>, 8> InlineHistory;
331 for (CallGraphNode *Node : SCC) {
332 Function *F = Node->getFunction();
333 if (!F || F->isDeclaration())
334 continue;
336 OptimizationRemarkEmitter ORE(F);
337 for (BasicBlock &BB : *F)
338 for (Instruction &I : BB) {
339 auto *CB = dyn_cast<CallBase>(&I);
340 // If this isn't a call, or it is a call to an intrinsic, it can
341 // never be inlined.
342 if (!CB || isa<IntrinsicInst>(I))
343 continue;
345 // If this is a direct call to an external function, we can never inline
346 // it. If it is an indirect call, inlining may resolve it to be a
347 // direct call, so we keep it.
348 if (Function *Callee = CB->getCalledFunction())
349 if (Callee->isDeclaration()) {
350 using namespace ore;
352 setInlineRemark(*CB, "unavailable definition");
353 ORE.emit([&]() {
354 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
355 << NV("Callee", Callee) << " will not be inlined into "
356 << NV("Caller", CB->getCaller())
357 << " because its definition is unavailable"
358 << setIsVerbose();
360 continue;
363 CallSites.push_back(std::make_pair(CB, -1));
367 LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
369 // If there are no calls in this function, exit early.
370 if (CallSites.empty())
371 return false;
373 // Now that we have all of the call sites, move the ones to functions in the
374 // current SCC to the end of the list.
375 unsigned FirstCallInSCC = CallSites.size();
376 for (unsigned I = 0; I < FirstCallInSCC; ++I)
377 if (Function *F = CallSites[I].first->getCalledFunction())
378 if (SCCFunctions.count(F))
379 std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
381 InlinedArrayAllocasTy InlinedArrayAllocas;
382 InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
384 // Now that we have all of the call sites, loop over them and inline them if
385 // it looks profitable to do so.
386 bool Changed = false;
387 bool LocalChange;
388 do {
389 LocalChange = false;
390 // Iterate over the outer loop because inlining functions can cause indirect
391 // calls to become direct calls.
392 // CallSites may be modified inside so ranged for loop can not be used.
393 for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
394 auto &P = CallSites[CSi];
395 CallBase &CB = *P.first;
396 const int InlineHistoryID = P.second;
398 Function *Caller = CB.getCaller();
399 Function *Callee = CB.getCalledFunction();
401 // We can only inline direct calls to non-declarations.
402 if (!Callee || Callee->isDeclaration())
403 continue;
405 bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
407 if (!IsTriviallyDead) {
408 // If this call site was obtained by inlining another function, verify
409 // that the include path for the function did not include the callee
410 // itself. If so, we'd be recursively inlining the same function,
411 // which would provide the same callsites, which would cause us to
412 // infinitely inline.
413 if (InlineHistoryID != -1 &&
414 inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
415 setInlineRemark(CB, "recursive");
416 continue;
420 // FIXME for new PM: because of the old PM we currently generate ORE and
421 // in turn BFI on demand. With the new PM, the ORE dependency should
422 // just become a regular analysis dependency.
423 OptimizationRemarkEmitter ORE(Caller);
425 auto OIC = shouldInline(CB, GetInlineCost, ORE);
426 // If the policy determines that we should inline this function,
427 // delete the call instead.
428 if (!OIC)
429 continue;
431 // If this call site is dead and it is to a readonly function, we should
432 // just delete the call instead of trying to inline it, regardless of
433 // size. This happens because IPSCCP propagates the result out of the
434 // call and then we're left with the dead call.
435 if (IsTriviallyDead) {
436 LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << CB << "\n");
437 // Update the call graph by deleting the edge from Callee to Caller.
438 setInlineRemark(CB, "trivially dead");
439 CG[Caller]->removeCallEdgeFor(CB);
440 CB.eraseFromParent();
441 ++NumCallsDeleted;
442 } else {
443 // Get DebugLoc to report. CB will be invalid after Inliner.
444 DebugLoc DLoc = CB.getDebugLoc();
445 BasicBlock *Block = CB.getParent();
447 // Attempt to inline the function.
448 using namespace ore;
450 InlineResult IR = inlineCallIfPossible(
451 CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
452 InsertLifetime, AARGetter, ImportedFunctionsStats);
453 if (!IR.isSuccess()) {
454 setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
455 inlineCostStr(*OIC));
456 ORE.emit([&]() {
457 return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
458 Block)
459 << NV("Callee", Callee) << " will not be inlined into "
460 << NV("Caller", Caller) << ": "
461 << NV("Reason", IR.getFailureReason());
463 continue;
465 ++NumInlined;
467 emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
469 // If inlining this function gave us any new call sites, throw them
470 // onto our worklist to process. They are useful inline candidates.
471 if (!InlineInfo.InlinedCalls.empty()) {
472 // Create a new inline history entry for this, so that we remember
473 // that these new callsites came about due to inlining Callee.
474 int NewHistoryID = InlineHistory.size();
475 InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
477 #ifndef NDEBUG
478 // Make sure no dupplicates in the inline candidates. This could
479 // happen when a callsite is simpilfied to reusing the return value
480 // of another callsite during function cloning, thus the other
481 // callsite will be reconsidered here.
482 DenseSet<CallBase *> DbgCallSites;
483 for (auto &II : CallSites)
484 DbgCallSites.insert(II.first);
485 #endif
487 for (Value *Ptr : InlineInfo.InlinedCalls) {
488 #ifndef NDEBUG
489 assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
490 #endif
491 CallSites.push_back(
492 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
497 // If we inlined or deleted the last possible call site to the function,
498 // delete the function body now.
499 if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
500 // TODO: Can remove if in SCC now.
501 !SCCFunctions.count(Callee) &&
502 // The function may be apparently dead, but if there are indirect
503 // callgraph references to the node, we cannot delete it yet, this
504 // could invalidate the CGSCC iterator.
505 CG[Callee]->getNumReferences() == 0) {
506 LLVM_DEBUG(dbgs() << " -> Deleting dead function: "
507 << Callee->getName() << "\n");
508 CallGraphNode *CalleeNode = CG[Callee];
510 // Remove any call graph edges from the callee to its callees.
511 CalleeNode->removeAllCalledFunctions();
513 // Removing the node for callee from the call graph and delete it.
514 delete CG.removeFunctionFromModule(CalleeNode);
515 ++NumDeleted;
518 // Remove this call site from the list. If possible, use
519 // swap/pop_back for efficiency, but do not use it if doing so would
520 // move a call site to a function in this SCC before the
521 // 'FirstCallInSCC' barrier.
522 if (SCC.isSingular()) {
523 CallSites[CSi] = CallSites.back();
524 CallSites.pop_back();
525 } else {
526 CallSites.erase(CallSites.begin() + CSi);
528 --CSi;
530 Changed = true;
531 LocalChange = true;
533 } while (LocalChange);
535 return Changed;
538 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
539 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
540 ACT = &getAnalysis<AssumptionCacheTracker>();
541 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
542 GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
543 return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
545 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
546 return ACT->getAssumptionCache(F);
548 return inlineCallsImpl(
549 SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
550 [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
551 ImportedFunctionsStats);
554 /// Remove now-dead linkonce functions at the end of
555 /// processing to avoid breaking the SCC traversal.
556 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
557 if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
558 ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
559 InlinerFunctionImportStatsOpts::Verbose);
560 return removeDeadFunctions(CG);
563 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
564 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
565 bool AlwaysInlineOnly) {
566 SmallVector<CallGraphNode *, 16> FunctionsToRemove;
567 SmallVector<Function *, 16> DeadFunctionsInComdats;
569 auto RemoveCGN = [&](CallGraphNode *CGN) {
570 // Remove any call graph edges from the function to its callees.
571 CGN->removeAllCalledFunctions();
573 // Remove any edges from the external node to the function's call graph
574 // node. These edges might have been made irrelegant due to
575 // optimization of the program.
576 CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
578 // Removing the node for callee from the call graph and delete it.
579 FunctionsToRemove.push_back(CGN);
582 // Scan for all of the functions, looking for ones that should now be removed
583 // from the program. Insert the dead ones in the FunctionsToRemove set.
584 for (const auto &I : CG) {
585 CallGraphNode *CGN = I.second.get();
586 Function *F = CGN->getFunction();
587 if (!F || F->isDeclaration())
588 continue;
590 // Handle the case when this function is called and we only want to care
591 // about always-inline functions. This is a bit of a hack to share code
592 // between here and the InlineAlways pass.
593 if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
594 continue;
596 // If the only remaining users of the function are dead constants, remove
597 // them.
598 F->removeDeadConstantUsers();
600 if (!F->isDefTriviallyDead())
601 continue;
603 // It is unsafe to drop a function with discardable linkage from a COMDAT
604 // without also dropping the other members of the COMDAT.
605 // The inliner doesn't visit non-function entities which are in COMDAT
606 // groups so it is unsafe to do so *unless* the linkage is local.
607 if (!F->hasLocalLinkage()) {
608 if (F->hasComdat()) {
609 DeadFunctionsInComdats.push_back(F);
610 continue;
614 RemoveCGN(CGN);
616 if (!DeadFunctionsInComdats.empty()) {
617 // Filter out the functions whose comdats remain alive.
618 filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
619 // Remove the rest.
620 for (Function *F : DeadFunctionsInComdats)
621 RemoveCGN(CG[F]);
624 if (FunctionsToRemove.empty())
625 return false;
627 // Now that we know which functions to delete, do so. We didn't want to do
628 // this inline, because that would invalidate our CallGraph::iterator
629 // objects. :(
631 // Note that it doesn't matter that we are iterating over a non-stable order
632 // here to do this, it doesn't matter which order the functions are deleted
633 // in.
634 array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
635 FunctionsToRemove.erase(
636 std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
637 FunctionsToRemove.end());
638 for (CallGraphNode *CGN : FunctionsToRemove) {
639 delete CG.removeFunctionFromModule(CGN);
640 ++NumDeleted;
642 return true;
645 InlineAdvisor &
646 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
647 FunctionAnalysisManager &FAM, Module &M) {
648 if (OwnedAdvisor)
649 return *OwnedAdvisor;
651 auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
652 if (!IAA) {
653 // It should still be possible to run the inliner as a stand-alone SCC pass,
654 // for test scenarios. In that case, we default to the
655 // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
656 // runs. It also uses just the default InlineParams.
657 // In this case, we need to use the provided FAM, which is valid for the
658 // duration of the inliner pass, and thus the lifetime of the owned advisor.
659 // The one we would get from the MAM can be invalidated as a result of the
660 // inliner's activity.
661 OwnedAdvisor =
662 std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams());
664 if (!CGSCCInlineReplayFile.empty())
665 OwnedAdvisor = std::make_unique<ReplayInlineAdvisor>(
666 M, FAM, M.getContext(), std::move(OwnedAdvisor),
667 CGSCCInlineReplayFile,
668 /*EmitRemarks=*/true);
670 return *OwnedAdvisor;
672 assert(IAA->getAdvisor() &&
673 "Expected a present InlineAdvisorAnalysis also have an "
674 "InlineAdvisor initialized");
675 return *IAA->getAdvisor();
678 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
679 CGSCCAnalysisManager &AM, LazyCallGraph &CG,
680 CGSCCUpdateResult &UR) {
681 const auto &MAMProxy =
682 AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
683 bool Changed = false;
685 assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
686 Module &M = *InitialC.begin()->getFunction().getParent();
687 ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
689 FunctionAnalysisManager &FAM =
690 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
691 .getManager();
693 InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
694 Advisor.onPassEntry();
696 auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
698 // We use a single common worklist for calls across the entire SCC. We
699 // process these in-order and append new calls introduced during inlining to
700 // the end. The PriorityInlineOrder is optional here, in which the smaller
701 // callee would have a higher priority to inline.
703 // Note that this particular order of processing is actually critical to
704 // avoid very bad behaviors. Consider *highly connected* call graphs where
705 // each function contains a small amount of code and a couple of calls to
706 // other functions. Because the LLVM inliner is fundamentally a bottom-up
707 // inliner, it can handle gracefully the fact that these all appear to be
708 // reasonable inlining candidates as it will flatten things until they become
709 // too big to inline, and then move on and flatten another batch.
711 // However, when processing call edges *within* an SCC we cannot rely on this
712 // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
713 // functions we can end up incrementally inlining N calls into each of
714 // N functions because each incremental inlining decision looks good and we
715 // don't have a topological ordering to prevent explosions.
717 // To compensate for this, we don't process transitive edges made immediate
718 // by inlining until we've done one pass of inlining across the entire SCC.
719 // Large, highly connected SCCs still lead to some amount of code bloat in
720 // this model, but it is uniformly spread across all the functions in the SCC
721 // and eventually they all become too large to inline, rather than
722 // incrementally maknig a single function grow in a super linear fashion.
723 std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls;
724 if (InlineEnablePriorityOrder)
725 Calls = std::make_unique<PriorityInlineOrder<InlineSizePriority>>();
726 else
727 Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>();
728 assert(Calls != nullptr && "Expected an initialized InlineOrder");
730 // Populate the initial list of calls in this SCC.
731 for (auto &N : InitialC) {
732 auto &ORE =
733 FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
734 // We want to generally process call sites top-down in order for
735 // simplifications stemming from replacing the call with the returned value
736 // after inlining to be visible to subsequent inlining decisions.
737 // FIXME: Using instructions sequence is a really bad way to do this.
738 // Instead we should do an actual RPO walk of the function body.
739 for (Instruction &I : instructions(N.getFunction()))
740 if (auto *CB = dyn_cast<CallBase>(&I))
741 if (Function *Callee = CB->getCalledFunction()) {
742 if (!Callee->isDeclaration())
743 Calls->push({CB, -1});
744 else if (!isa<IntrinsicInst>(I)) {
745 using namespace ore;
746 setInlineRemark(*CB, "unavailable definition");
747 ORE.emit([&]() {
748 return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
749 << NV("Callee", Callee) << " will not be inlined into "
750 << NV("Caller", CB->getCaller())
751 << " because its definition is unavailable"
752 << setIsVerbose();
757 if (Calls->empty())
758 return PreservedAnalyses::all();
760 // Capture updatable variable for the current SCC.
761 auto *C = &InitialC;
763 // When inlining a callee produces new call sites, we want to keep track of
764 // the fact that they were inlined from the callee. This allows us to avoid
765 // infinite inlining in some obscure cases. To represent this, we use an
766 // index into the InlineHistory vector.
767 SmallVector<std::pair<Function *, int>, 16> InlineHistory;
769 // Track a set vector of inlined callees so that we can augment the caller
770 // with all of their edges in the call graph before pruning out the ones that
771 // got simplified away.
772 SmallSetVector<Function *, 4> InlinedCallees;
774 // Track the dead functions to delete once finished with inlining calls. We
775 // defer deleting these to make it easier to handle the call graph updates.
776 SmallVector<Function *, 4> DeadFunctions;
778 // Loop forward over all of the calls.
779 while (!Calls->empty()) {
780 // We expect the calls to typically be batched with sequences of calls that
781 // have the same caller, so we first set up some shared infrastructure for
782 // this caller. We also do any pruning we can at this layer on the caller
783 // alone.
784 Function &F = *Calls->front().first->getCaller();
785 LazyCallGraph::Node &N = *CG.lookup(F);
786 if (CG.lookupSCC(N) != C) {
787 Calls->pop();
788 continue;
791 LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
792 << " Function size: " << F.getInstructionCount()
793 << "\n");
795 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
796 return FAM.getResult<AssumptionAnalysis>(F);
799 // Now process as many calls as we have within this caller in the sequence.
800 // We bail out as soon as the caller has to change so we can update the
801 // call graph and prepare the context of that new caller.
802 bool DidInline = false;
803 while (!Calls->empty() && Calls->front().first->getCaller() == &F) {
804 auto P = Calls->pop();
805 CallBase *CB = P.first;
806 const int InlineHistoryID = P.second;
807 Function &Callee = *CB->getCalledFunction();
809 if (InlineHistoryID != -1 &&
810 inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
811 setInlineRemark(*CB, "recursive");
812 continue;
815 // Check if this inlining may repeat breaking an SCC apart that has
816 // already been split once before. In that case, inlining here may
817 // trigger infinite inlining, much like is prevented within the inliner
818 // itself by the InlineHistory above, but spread across CGSCC iterations
819 // and thus hidden from the full inline history.
820 if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
821 UR.InlinedInternalEdges.count({&N, C})) {
822 LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
823 "previously split out of this SCC by inlining: "
824 << F.getName() << " -> " << Callee.getName() << "\n");
825 setInlineRemark(*CB, "recursive SCC split");
826 continue;
829 auto Advice = Advisor.getAdvice(*CB, OnlyMandatory);
830 // Check whether we want to inline this callsite.
831 if (!Advice->isInliningRecommended()) {
832 Advice->recordUnattemptedInlining();
833 continue;
836 // Setup the data structure used to plumb customization into the
837 // `InlineFunction` routine.
838 InlineFunctionInfo IFI(
839 /*cg=*/nullptr, GetAssumptionCache, PSI,
840 &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
841 &FAM.getResult<BlockFrequencyAnalysis>(Callee));
843 InlineResult IR =
844 InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
845 if (!IR.isSuccess()) {
846 Advice->recordUnsuccessfulInlining(IR);
847 continue;
850 DidInline = true;
851 InlinedCallees.insert(&Callee);
852 ++NumInlined;
854 LLVM_DEBUG(dbgs() << " Size after inlining: "
855 << F.getInstructionCount() << "\n");
857 // Add any new callsites to defined functions to the worklist.
858 if (!IFI.InlinedCallSites.empty()) {
859 int NewHistoryID = InlineHistory.size();
860 InlineHistory.push_back({&Callee, InlineHistoryID});
862 for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
863 Function *NewCallee = ICB->getCalledFunction();
864 assert(!(NewCallee && NewCallee->isIntrinsic()) &&
865 "Intrinsic calls should not be tracked.");
866 if (!NewCallee) {
867 // Try to promote an indirect (virtual) call without waiting for
868 // the post-inline cleanup and the next DevirtSCCRepeatedPass
869 // iteration because the next iteration may not happen and we may
870 // miss inlining it.
871 if (tryPromoteCall(*ICB))
872 NewCallee = ICB->getCalledFunction();
874 if (NewCallee)
875 if (!NewCallee->isDeclaration())
876 Calls->push({ICB, NewHistoryID});
880 // Merge the attributes based on the inlining.
881 AttributeFuncs::mergeAttributesForInlining(F, Callee);
883 // For local functions, check whether this makes the callee trivially
884 // dead. In that case, we can drop the body of the function eagerly
885 // which may reduce the number of callers of other functions to one,
886 // changing inline cost thresholds.
887 bool CalleeWasDeleted = false;
888 if (Callee.hasLocalLinkage()) {
889 // To check this we also need to nuke any dead constant uses (perhaps
890 // made dead by this operation on other functions).
891 Callee.removeDeadConstantUsers();
892 if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
893 Calls->erase_if([&](const std::pair<CallBase *, int> &Call) {
894 return Call.first->getCaller() == &Callee;
896 // Clear the body and queue the function itself for deletion when we
897 // finish inlining and call graph updates.
898 // Note that after this point, it is an error to do anything other
899 // than use the callee's address or delete it.
900 Callee.dropAllReferences();
901 assert(!is_contained(DeadFunctions, &Callee) &&
902 "Cannot put cause a function to become dead twice!");
903 DeadFunctions.push_back(&Callee);
904 CalleeWasDeleted = true;
907 if (CalleeWasDeleted)
908 Advice->recordInliningWithCalleeDeleted();
909 else
910 Advice->recordInlining();
913 if (!DidInline)
914 continue;
915 Changed = true;
917 // At this point, since we have made changes we have at least removed
918 // a call instruction. However, in the process we do some incremental
919 // simplification of the surrounding code. This simplification can
920 // essentially do all of the same things as a function pass and we can
921 // re-use the exact same logic for updating the call graph to reflect the
922 // change.
924 // Inside the update, we also update the FunctionAnalysisManager in the
925 // proxy for this particular SCC. We do this as the SCC may have changed and
926 // as we're going to mutate this particular function we want to make sure
927 // the proxy is in place to forward any invalidation events.
928 LazyCallGraph::SCC *OldC = C;
929 C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
930 LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
932 // If this causes an SCC to split apart into multiple smaller SCCs, there
933 // is a subtle risk we need to prepare for. Other transformations may
934 // expose an "infinite inlining" opportunity later, and because of the SCC
935 // mutation, we will revisit this function and potentially re-inline. If we
936 // do, and that re-inlining also has the potentially to mutate the SCC
937 // structure, the infinite inlining problem can manifest through infinite
938 // SCC splits and merges. To avoid this, we capture the originating caller
939 // node and the SCC containing the call edge. This is a slight over
940 // approximation of the possible inlining decisions that must be avoided,
941 // but is relatively efficient to store. We use C != OldC to know when
942 // a new SCC is generated and the original SCC may be generated via merge
943 // in later iterations.
945 // It is also possible that even if no new SCC is generated
946 // (i.e., C == OldC), the original SCC could be split and then merged
947 // into the same one as itself. and the original SCC will be added into
948 // UR.CWorklist again, we want to catch such cases too.
950 // FIXME: This seems like a very heavyweight way of retaining the inline
951 // history, we should look for a more efficient way of tracking it.
952 if ((C != OldC || UR.CWorklist.count(OldC)) &&
953 llvm::any_of(InlinedCallees, [&](Function *Callee) {
954 return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
955 })) {
956 LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
957 "retaining this to avoid infinite inlining.\n");
958 UR.InlinedInternalEdges.insert({&N, OldC});
960 InlinedCallees.clear();
963 // Now that we've finished inlining all of the calls across this SCC, delete
964 // all of the trivially dead functions, updating the call graph and the CGSCC
965 // pass manager in the process.
967 // Note that this walks a pointer set which has non-deterministic order but
968 // that is OK as all we do is delete things and add pointers to unordered
969 // sets.
970 for (Function *DeadF : DeadFunctions) {
971 // Get the necessary information out of the call graph and nuke the
972 // function there. Also, clear out any cached analyses.
973 auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
974 FAM.clear(*DeadF, DeadF->getName());
975 AM.clear(DeadC, DeadC.getName());
976 auto &DeadRC = DeadC.getOuterRefSCC();
977 CG.removeDeadFunction(*DeadF);
979 // Mark the relevant parts of the call graph as invalid so we don't visit
980 // them.
981 UR.InvalidatedSCCs.insert(&DeadC);
982 UR.InvalidatedRefSCCs.insert(&DeadRC);
984 // If the updated SCC was the one containing the deleted function, clear it.
985 if (&DeadC == UR.UpdatedC)
986 UR.UpdatedC = nullptr;
988 // And delete the actual function from the module.
989 // The Advisor may use Function pointers to efficiently index various
990 // internal maps, e.g. for memoization. Function cleanup passes like
991 // argument promotion create new functions. It is possible for a new
992 // function to be allocated at the address of a deleted function. We could
993 // index using names, but that's inefficient. Alternatively, we let the
994 // Advisor free the functions when it sees fit.
995 DeadF->getBasicBlockList().clear();
996 M.getFunctionList().remove(DeadF);
998 ++NumDeleted;
1001 if (!Changed)
1002 return PreservedAnalyses::all();
1004 // Even if we change the IR, we update the core CGSCC data structures and so
1005 // can preserve the proxy to the function analysis manager.
1006 PreservedAnalyses PA;
1007 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1008 return PA;
1011 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1012 bool MandatoryFirst,
1013 InliningAdvisorMode Mode,
1014 unsigned MaxDevirtIterations)
1015 : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
1016 PM(), MPM() {
1017 // Run the inliner first. The theory is that we are walking bottom-up and so
1018 // the callees have already been fully optimized, and we want to inline them
1019 // into the callers so that our optimizations can reflect that.
1020 // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1021 // because it makes profile annotation in the backend inaccurate.
1022 if (MandatoryFirst)
1023 PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1024 PM.addPass(InlinerPass());
1027 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1028 ModuleAnalysisManager &MAM) {
1029 auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1030 if (!IAA.tryCreate(Params, Mode, CGSCCInlineReplayFile)) {
1031 M.getContext().emitError(
1032 "Could not setup Inlining Advisor for the requested "
1033 "mode and/or options");
1034 return PreservedAnalyses::all();
1037 // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1038 // to detect when we devirtualize indirect calls and iterate the SCC passes
1039 // in that case to try and catch knock-on inlining or function attrs
1040 // opportunities. Then we add it to the module pipeline by walking the SCCs
1041 // in postorder (or bottom-up).
1042 // If MaxDevirtIterations is 0, we just don't use the devirtualization
1043 // wrapper.
1044 if (MaxDevirtIterations == 0)
1045 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1046 else
1047 MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1048 createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1049 MPM.run(M, MAM);
1051 IAA.clear();
1053 // The ModulePassManager has already taken care of invalidating analyses.
1054 return PreservedAnalyses::all();