[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / ThinLTOBitcodeWriter.cpp
blobb7734b427431dc474b3cf824f7a5a018f6ada966
1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Object/ModuleSymbolTable.h"
23 #include "llvm/Pass.h"
24 #include "llvm/Support/ScopedPrinter.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Transforms/IPO.h"
27 #include "llvm/Transforms/IPO/FunctionAttrs.h"
28 #include "llvm/Transforms/IPO/FunctionImport.h"
29 #include "llvm/Transforms/IPO/LowerTypeTests.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
31 #include "llvm/Transforms/Utils/ModuleUtils.h"
32 using namespace llvm;
34 namespace {
36 // Determine if a promotion alias should be created for a symbol name.
37 static bool allowPromotionAlias(const std::string &Name) {
38 // Promotion aliases are used only in inline assembly. It's safe to
39 // simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
40 // and MCAsmInfoXCOFF::isAcceptableChar().
41 for (const char &C : Name) {
42 if (isAlnum(C) || C == '_' || C == '.')
43 continue;
44 return false;
46 return true;
49 // Promote each local-linkage entity defined by ExportM and used by ImportM by
50 // changing visibility and appending the given ModuleId.
51 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
52 SetVector<GlobalValue *> &PromoteExtra) {
53 DenseMap<const Comdat *, Comdat *> RenamedComdats;
54 for (auto &ExportGV : ExportM.global_values()) {
55 if (!ExportGV.hasLocalLinkage())
56 continue;
58 auto Name = ExportGV.getName();
59 GlobalValue *ImportGV = nullptr;
60 if (!PromoteExtra.count(&ExportGV)) {
61 ImportGV = ImportM.getNamedValue(Name);
62 if (!ImportGV)
63 continue;
64 ImportGV->removeDeadConstantUsers();
65 if (ImportGV->use_empty()) {
66 ImportGV->eraseFromParent();
67 continue;
71 std::string OldName = Name.str();
72 std::string NewName = (Name + ModuleId).str();
74 if (const auto *C = ExportGV.getComdat())
75 if (C->getName() == Name)
76 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
78 ExportGV.setName(NewName);
79 ExportGV.setLinkage(GlobalValue::ExternalLinkage);
80 ExportGV.setVisibility(GlobalValue::HiddenVisibility);
82 if (ImportGV) {
83 ImportGV->setName(NewName);
84 ImportGV->setVisibility(GlobalValue::HiddenVisibility);
87 if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
88 // Create a local alias with the original name to avoid breaking
89 // references from inline assembly.
90 std::string Alias = ".set " + OldName + "," + NewName + "\n";
91 ExportM.appendModuleInlineAsm(Alias);
95 if (!RenamedComdats.empty())
96 for (auto &GO : ExportM.global_objects())
97 if (auto *C = GO.getComdat()) {
98 auto Replacement = RenamedComdats.find(C);
99 if (Replacement != RenamedComdats.end())
100 GO.setComdat(Replacement->second);
104 // Promote all internal (i.e. distinct) type ids used by the module by replacing
105 // them with external type ids formed using the module id.
107 // Note that this needs to be done before we clone the module because each clone
108 // will receive its own set of distinct metadata nodes.
109 void promoteTypeIds(Module &M, StringRef ModuleId) {
110 DenseMap<Metadata *, Metadata *> LocalToGlobal;
111 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
112 Metadata *MD =
113 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
115 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
116 Metadata *&GlobalMD = LocalToGlobal[MD];
117 if (!GlobalMD) {
118 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
119 GlobalMD = MDString::get(M.getContext(), NewName);
122 CI->setArgOperand(ArgNo,
123 MetadataAsValue::get(M.getContext(), GlobalMD));
127 if (Function *TypeTestFunc =
128 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
129 for (const Use &U : TypeTestFunc->uses()) {
130 auto CI = cast<CallInst>(U.getUser());
131 ExternalizeTypeId(CI, 1);
135 if (Function *TypeCheckedLoadFunc =
136 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
137 for (const Use &U : TypeCheckedLoadFunc->uses()) {
138 auto CI = cast<CallInst>(U.getUser());
139 ExternalizeTypeId(CI, 2);
143 for (GlobalObject &GO : M.global_objects()) {
144 SmallVector<MDNode *, 1> MDs;
145 GO.getMetadata(LLVMContext::MD_type, MDs);
147 GO.eraseMetadata(LLVMContext::MD_type);
148 for (auto MD : MDs) {
149 auto I = LocalToGlobal.find(MD->getOperand(1));
150 if (I == LocalToGlobal.end()) {
151 GO.addMetadata(LLVMContext::MD_type, *MD);
152 continue;
154 GO.addMetadata(
155 LLVMContext::MD_type,
156 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
161 // Drop unused globals, and drop type information from function declarations.
162 // FIXME: If we made functions typeless then there would be no need to do this.
163 void simplifyExternals(Module &M) {
164 FunctionType *EmptyFT =
165 FunctionType::get(Type::getVoidTy(M.getContext()), false);
167 for (auto I = M.begin(), E = M.end(); I != E;) {
168 Function &F = *I++;
169 if (F.isDeclaration() && F.use_empty()) {
170 F.eraseFromParent();
171 continue;
174 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
175 // Changing the type of an intrinsic may invalidate the IR.
176 F.getName().startswith("llvm."))
177 continue;
179 Function *NewF =
180 Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
181 F.getAddressSpace(), "", &M);
182 NewF->copyAttributesFrom(&F);
183 // Only copy function attribtues.
184 NewF->setAttributes(AttributeList::get(M.getContext(),
185 AttributeList::FunctionIndex,
186 F.getAttributes().getFnAttrs()));
187 NewF->takeName(&F);
188 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
189 F.eraseFromParent();
192 for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
193 GlobalVariable &GV = *I++;
194 if (GV.isDeclaration() && GV.use_empty()) {
195 GV.eraseFromParent();
196 continue;
201 static void
202 filterModule(Module *M,
203 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
204 std::vector<GlobalValue *> V;
205 for (GlobalValue &GV : M->global_values())
206 if (!ShouldKeepDefinition(&GV))
207 V.push_back(&GV);
209 for (GlobalValue *GV : V)
210 if (!convertToDeclaration(*GV))
211 GV->eraseFromParent();
214 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
215 if (auto *F = dyn_cast<Function>(C))
216 return Fn(F);
217 if (isa<GlobalValue>(C))
218 return;
219 for (Value *Op : C->operands())
220 forEachVirtualFunction(cast<Constant>(Op), Fn);
223 // Clone any @llvm[.compiler].used over to the new module and append
224 // values whose defs were cloned into that module.
225 static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
226 bool CompilerUsed) {
227 SmallVector<GlobalValue *, 4> Used, NewUsed;
228 // First collect those in the llvm[.compiler].used set.
229 collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
230 // Next build a set of the equivalent values defined in DestM.
231 for (auto *V : Used) {
232 auto *GV = DestM.getNamedValue(V->getName());
233 if (GV && !GV->isDeclaration())
234 NewUsed.push_back(GV);
236 // Finally, add them to a llvm[.compiler].used variable in DestM.
237 if (CompilerUsed)
238 appendToCompilerUsed(DestM, NewUsed);
239 else
240 appendToUsed(DestM, NewUsed);
243 // If it's possible to split M into regular and thin LTO parts, do so and write
244 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
245 // regular LTO bitcode file to OS.
246 void splitAndWriteThinLTOBitcode(
247 raw_ostream &OS, raw_ostream *ThinLinkOS,
248 function_ref<AAResults &(Function &)> AARGetter, Module &M) {
249 std::string ModuleId = getUniqueModuleId(&M);
250 if (ModuleId.empty()) {
251 // We couldn't generate a module ID for this module, write it out as a
252 // regular LTO module with an index for summary-based dead stripping.
253 ProfileSummaryInfo PSI(M);
254 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
255 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
256 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
258 if (ThinLinkOS)
259 // We don't have a ThinLTO part, but still write the module to the
260 // ThinLinkOS if requested so that the expected output file is produced.
261 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
262 &Index);
264 return;
267 promoteTypeIds(M, ModuleId);
269 // Returns whether a global or its associated global has attached type
270 // metadata. The former may participate in CFI or whole-program
271 // devirtualization, so they need to appear in the merged module instead of
272 // the thin LTO module. Similarly, globals that are associated with globals
273 // with type metadata need to appear in the merged module because they will
274 // reference the global's section directly.
275 auto HasTypeMetadata = [](const GlobalObject *GO) {
276 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
277 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
278 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
279 if (AssocGO->hasMetadata(LLVMContext::MD_type))
280 return true;
281 return GO->hasMetadata(LLVMContext::MD_type);
284 // Collect the set of virtual functions that are eligible for virtual constant
285 // propagation. Each eligible function must not access memory, must return
286 // an integer of width <=64 bits, must take at least one argument, must not
287 // use its first argument (assumed to be "this") and all arguments other than
288 // the first one must be of <=64 bit integer type.
290 // Note that we test whether this copy of the function is readnone, rather
291 // than testing function attributes, which must hold for any copy of the
292 // function, even a less optimized version substituted at link time. This is
293 // sound because the virtual constant propagation optimizations effectively
294 // inline all implementations of the virtual function into each call site,
295 // rather than using function attributes to perform local optimization.
296 DenseSet<const Function *> EligibleVirtualFns;
297 // If any member of a comdat lives in MergedM, put all members of that
298 // comdat in MergedM to keep the comdat together.
299 DenseSet<const Comdat *> MergedMComdats;
300 for (GlobalVariable &GV : M.globals())
301 if (HasTypeMetadata(&GV)) {
302 if (const auto *C = GV.getComdat())
303 MergedMComdats.insert(C);
304 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
305 auto *RT = dyn_cast<IntegerType>(F->getReturnType());
306 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
307 !F->arg_begin()->use_empty())
308 return;
309 for (auto &Arg : drop_begin(F->args())) {
310 auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
311 if (!ArgT || ArgT->getBitWidth() > 64)
312 return;
314 if (!F->isDeclaration() &&
315 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
316 EligibleVirtualFns.insert(F);
320 ValueToValueMapTy VMap;
321 std::unique_ptr<Module> MergedM(
322 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
323 if (const auto *C = GV->getComdat())
324 if (MergedMComdats.count(C))
325 return true;
326 if (auto *F = dyn_cast<Function>(GV))
327 return EligibleVirtualFns.count(F);
328 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
329 return HasTypeMetadata(GVar);
330 return false;
331 }));
332 StripDebugInfo(*MergedM);
333 MergedM->setModuleInlineAsm("");
335 // Clone any llvm.*used globals to ensure the included values are
336 // not deleted.
337 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
338 cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
340 for (Function &F : *MergedM)
341 if (!F.isDeclaration()) {
342 // Reset the linkage of all functions eligible for virtual constant
343 // propagation. The canonical definitions live in the thin LTO module so
344 // that they can be imported.
345 F.setLinkage(GlobalValue::AvailableExternallyLinkage);
346 F.setComdat(nullptr);
349 SetVector<GlobalValue *> CfiFunctions;
350 for (auto &F : M)
351 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
352 CfiFunctions.insert(&F);
354 // Remove all globals with type metadata, globals with comdats that live in
355 // MergedM, and aliases pointing to such globals from the thin LTO module.
356 filterModule(&M, [&](const GlobalValue *GV) {
357 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
358 if (HasTypeMetadata(GVar))
359 return false;
360 if (const auto *C = GV->getComdat())
361 if (MergedMComdats.count(C))
362 return false;
363 return true;
366 promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
367 promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
369 auto &Ctx = MergedM->getContext();
370 SmallVector<MDNode *, 8> CfiFunctionMDs;
371 for (auto V : CfiFunctions) {
372 Function &F = *cast<Function>(V);
373 SmallVector<MDNode *, 2> Types;
374 F.getMetadata(LLVMContext::MD_type, Types);
376 SmallVector<Metadata *, 4> Elts;
377 Elts.push_back(MDString::get(Ctx, F.getName()));
378 CfiFunctionLinkage Linkage;
379 if (lowertypetests::isJumpTableCanonical(&F))
380 Linkage = CFL_Definition;
381 else if (F.hasExternalWeakLinkage())
382 Linkage = CFL_WeakDeclaration;
383 else
384 Linkage = CFL_Declaration;
385 Elts.push_back(ConstantAsMetadata::get(
386 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
387 append_range(Elts, Types);
388 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
391 if(!CfiFunctionMDs.empty()) {
392 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
393 for (auto MD : CfiFunctionMDs)
394 NMD->addOperand(MD);
397 SmallVector<MDNode *, 8> FunctionAliases;
398 for (auto &A : M.aliases()) {
399 if (!isa<Function>(A.getAliasee()))
400 continue;
402 auto *F = cast<Function>(A.getAliasee());
404 Metadata *Elts[] = {
405 MDString::get(Ctx, A.getName()),
406 MDString::get(Ctx, F->getName()),
407 ConstantAsMetadata::get(
408 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
409 ConstantAsMetadata::get(
410 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
413 FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
416 if (!FunctionAliases.empty()) {
417 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
418 for (auto MD : FunctionAliases)
419 NMD->addOperand(MD);
422 SmallVector<MDNode *, 8> Symvers;
423 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
424 Function *F = M.getFunction(Name);
425 if (!F || F->use_empty())
426 return;
428 Symvers.push_back(MDTuple::get(
429 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
432 if (!Symvers.empty()) {
433 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
434 for (auto MD : Symvers)
435 NMD->addOperand(MD);
438 simplifyExternals(*MergedM);
440 // FIXME: Try to re-use BSI and PFI from the original module here.
441 ProfileSummaryInfo PSI(M);
442 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
444 // Mark the merged module as requiring full LTO. We still want an index for
445 // it though, so that it can participate in summary-based dead stripping.
446 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
447 ModuleSummaryIndex MergedMIndex =
448 buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
450 SmallVector<char, 0> Buffer;
452 BitcodeWriter W(Buffer);
453 // Save the module hash produced for the full bitcode, which will
454 // be used in the backends, and use that in the minimized bitcode
455 // produced for the full link.
456 ModuleHash ModHash = {{0}};
457 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
458 /*GenerateHash=*/true, &ModHash);
459 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
460 W.writeSymtab();
461 W.writeStrtab();
462 OS << Buffer;
464 // If a minimized bitcode module was requested for the thin link, only
465 // the information that is needed by thin link will be written in the
466 // given OS (the merged module will be written as usual).
467 if (ThinLinkOS) {
468 Buffer.clear();
469 BitcodeWriter W2(Buffer);
470 StripDebugInfo(M);
471 W2.writeThinLinkBitcode(M, Index, ModHash);
472 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
473 &MergedMIndex);
474 W2.writeSymtab();
475 W2.writeStrtab();
476 *ThinLinkOS << Buffer;
480 // Check if the LTO Unit splitting has been enabled.
481 bool enableSplitLTOUnit(Module &M) {
482 bool EnableSplitLTOUnit = false;
483 if (auto *MD = mdconst::extract_or_null<ConstantInt>(
484 M.getModuleFlag("EnableSplitLTOUnit")))
485 EnableSplitLTOUnit = MD->getZExtValue();
486 return EnableSplitLTOUnit;
489 // Returns whether this module needs to be split because it uses type metadata.
490 bool hasTypeMetadata(Module &M) {
491 for (auto &GO : M.global_objects()) {
492 if (GO.hasMetadata(LLVMContext::MD_type))
493 return true;
495 return false;
498 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
499 function_ref<AAResults &(Function &)> AARGetter,
500 Module &M, const ModuleSummaryIndex *Index) {
501 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
502 // See if this module has any type metadata. If so, we try to split it
503 // or at least promote type ids to enable WPD.
504 if (hasTypeMetadata(M)) {
505 if (enableSplitLTOUnit(M))
506 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
507 // Promote type ids as needed for index-based WPD.
508 std::string ModuleId = getUniqueModuleId(&M);
509 if (!ModuleId.empty()) {
510 promoteTypeIds(M, ModuleId);
511 // Need to rebuild the index so that it contains type metadata
512 // for the newly promoted type ids.
513 // FIXME: Probably should not bother building the index at all
514 // in the caller of writeThinLTOBitcode (which does so via the
515 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
516 // anyway whenever there is type metadata (here or in
517 // splitAndWriteThinLTOBitcode). Just always build it once via the
518 // buildModuleSummaryIndex when Module(s) are ready.
519 ProfileSummaryInfo PSI(M);
520 NewIndex = std::make_unique<ModuleSummaryIndex>(
521 buildModuleSummaryIndex(M, nullptr, &PSI));
522 Index = NewIndex.get();
526 // Write it out as an unsplit ThinLTO module.
528 // Save the module hash produced for the full bitcode, which will
529 // be used in the backends, and use that in the minimized bitcode
530 // produced for the full link.
531 ModuleHash ModHash = {{0}};
532 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
533 /*GenerateHash=*/true, &ModHash);
534 // If a minimized bitcode module was requested for the thin link, only
535 // the information that is needed by thin link will be written in the
536 // given OS.
537 if (ThinLinkOS && Index)
538 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
541 class WriteThinLTOBitcode : public ModulePass {
542 raw_ostream &OS; // raw_ostream to print on
543 // The output stream on which to emit a minimized module for use
544 // just in the thin link, if requested.
545 raw_ostream *ThinLinkOS;
547 public:
548 static char ID; // Pass identification, replacement for typeid
549 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
550 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
553 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
554 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
555 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
558 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
560 bool runOnModule(Module &M) override {
561 const ModuleSummaryIndex *Index =
562 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
563 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
564 return true;
566 void getAnalysisUsage(AnalysisUsage &AU) const override {
567 AU.setPreservesAll();
568 AU.addRequired<AssumptionCacheTracker>();
569 AU.addRequired<ModuleSummaryIndexWrapperPass>();
570 AU.addRequired<TargetLibraryInfoWrapperPass>();
573 } // anonymous namespace
575 char WriteThinLTOBitcode::ID = 0;
576 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
577 "Write ThinLTO Bitcode", false, true)
578 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
579 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
580 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
581 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
582 "Write ThinLTO Bitcode", false, true)
584 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
585 raw_ostream *ThinLinkOS) {
586 return new WriteThinLTOBitcode(Str, ThinLinkOS);
589 PreservedAnalyses
590 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
591 FunctionAnalysisManager &FAM =
592 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
593 writeThinLTOBitcode(OS, ThinLinkOS,
594 [&FAM](Function &F) -> AAResults & {
595 return FAM.getResult<AAManager>(F);
597 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
598 return PreservedAnalyses::all();