[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / IPO / WholeProgramDevirt.cpp
bloba7e68a6767a6b51e6a790558fc2304ba31a7b7c9
1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
48 // is supported.
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Errc.h"
91 #include "llvm/Support/Error.h"
92 #include "llvm/Support/FileSystem.h"
93 #include "llvm/Support/GlobPattern.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Transforms/IPO.h"
96 #include "llvm/Transforms/IPO/FunctionAttrs.h"
97 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
99 #include <algorithm>
100 #include <cstddef>
101 #include <map>
102 #include <set>
103 #include <string>
105 using namespace llvm;
106 using namespace wholeprogramdevirt;
108 #define DEBUG_TYPE "wholeprogramdevirt"
110 static cl::opt<PassSummaryAction> ClSummaryAction(
111 "wholeprogramdevirt-summary-action",
112 cl::desc("What to do with the summary when running this pass"),
113 cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
114 clEnumValN(PassSummaryAction::Import, "import",
115 "Import typeid resolutions from summary and globals"),
116 clEnumValN(PassSummaryAction::Export, "export",
117 "Export typeid resolutions to summary and globals")),
118 cl::Hidden);
120 static cl::opt<std::string> ClReadSummary(
121 "wholeprogramdevirt-read-summary",
122 cl::desc(
123 "Read summary from given bitcode or YAML file before running pass"),
124 cl::Hidden);
126 static cl::opt<std::string> ClWriteSummary(
127 "wholeprogramdevirt-write-summary",
128 cl::desc("Write summary to given bitcode or YAML file after running pass. "
129 "Output file format is deduced from extension: *.bc means writing "
130 "bitcode, otherwise YAML"),
131 cl::Hidden);
133 static cl::opt<unsigned>
134 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
135 cl::init(10), cl::ZeroOrMore,
136 cl::desc("Maximum number of call targets per "
137 "call site to enable branch funnels"));
139 static cl::opt<bool>
140 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
141 cl::init(false), cl::ZeroOrMore,
142 cl::desc("Print index-based devirtualization messages"));
144 /// Provide a way to force enable whole program visibility in tests.
145 /// This is needed to support legacy tests that don't contain
146 /// !vcall_visibility metadata (the mere presense of type tests
147 /// previously implied hidden visibility).
148 static cl::opt<bool>
149 WholeProgramVisibility("whole-program-visibility", cl::init(false),
150 cl::Hidden, cl::ZeroOrMore,
151 cl::desc("Enable whole program visibility"));
153 /// Provide a way to force disable whole program for debugging or workarounds,
154 /// when enabled via the linker.
155 static cl::opt<bool> DisableWholeProgramVisibility(
156 "disable-whole-program-visibility", cl::init(false), cl::Hidden,
157 cl::ZeroOrMore,
158 cl::desc("Disable whole program visibility (overrides enabling options)"));
160 /// Provide way to prevent certain function from being devirtualized
161 static cl::list<std::string>
162 SkipFunctionNames("wholeprogramdevirt-skip",
163 cl::desc("Prevent function(s) from being devirtualized"),
164 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated);
166 /// Mechanism to add runtime checking of devirtualization decisions, trapping on
167 /// any that are not correct. Useful for debugging undefined behavior leading to
168 /// failures with WPD.
169 static cl::opt<bool>
170 CheckDevirt("wholeprogramdevirt-check", cl::init(false), cl::Hidden,
171 cl::ZeroOrMore,
172 cl::desc("Add code to trap on incorrect devirtualizations"));
174 namespace {
175 struct PatternList {
176 std::vector<GlobPattern> Patterns;
177 template <class T> void init(const T &StringList) {
178 for (const auto &S : StringList)
179 if (Expected<GlobPattern> Pat = GlobPattern::create(S))
180 Patterns.push_back(std::move(*Pat));
182 bool match(StringRef S) {
183 for (const GlobPattern &P : Patterns)
184 if (P.match(S))
185 return true;
186 return false;
189 } // namespace
191 // Find the minimum offset that we may store a value of size Size bits at. If
192 // IsAfter is set, look for an offset before the object, otherwise look for an
193 // offset after the object.
194 uint64_t
195 wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
196 bool IsAfter, uint64_t Size) {
197 // Find a minimum offset taking into account only vtable sizes.
198 uint64_t MinByte = 0;
199 for (const VirtualCallTarget &Target : Targets) {
200 if (IsAfter)
201 MinByte = std::max(MinByte, Target.minAfterBytes());
202 else
203 MinByte = std::max(MinByte, Target.minBeforeBytes());
206 // Build a vector of arrays of bytes covering, for each target, a slice of the
207 // used region (see AccumBitVector::BytesUsed in
208 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
209 // this aligns the used regions to start at MinByte.
211 // In this example, A, B and C are vtables, # is a byte already allocated for
212 // a virtual function pointer, AAAA... (etc.) are the used regions for the
213 // vtables and Offset(X) is the value computed for the Offset variable below
214 // for X.
216 // Offset(A)
217 // | |
218 // |MinByte
219 // A: ################AAAAAAAA|AAAAAAAA
220 // B: ########BBBBBBBBBBBBBBBB|BBBB
221 // C: ########################|CCCCCCCCCCCCCCCC
222 // | Offset(B) |
224 // This code produces the slices of A, B and C that appear after the divider
225 // at MinByte.
226 std::vector<ArrayRef<uint8_t>> Used;
227 for (const VirtualCallTarget &Target : Targets) {
228 ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
229 : Target.TM->Bits->Before.BytesUsed;
230 uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
231 : MinByte - Target.minBeforeBytes();
233 // Disregard used regions that are smaller than Offset. These are
234 // effectively all-free regions that do not need to be checked.
235 if (VTUsed.size() > Offset)
236 Used.push_back(VTUsed.slice(Offset));
239 if (Size == 1) {
240 // Find a free bit in each member of Used.
241 for (unsigned I = 0;; ++I) {
242 uint8_t BitsUsed = 0;
243 for (auto &&B : Used)
244 if (I < B.size())
245 BitsUsed |= B[I];
246 if (BitsUsed != 0xff)
247 return (MinByte + I) * 8 +
248 countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
250 } else {
251 // Find a free (Size/8) byte region in each member of Used.
252 // FIXME: see if alignment helps.
253 for (unsigned I = 0;; ++I) {
254 for (auto &&B : Used) {
255 unsigned Byte = 0;
256 while ((I + Byte) < B.size() && Byte < (Size / 8)) {
257 if (B[I + Byte])
258 goto NextI;
259 ++Byte;
262 return (MinByte + I) * 8;
263 NextI:;
268 void wholeprogramdevirt::setBeforeReturnValues(
269 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
270 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
271 if (BitWidth == 1)
272 OffsetByte = -(AllocBefore / 8 + 1);
273 else
274 OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
275 OffsetBit = AllocBefore % 8;
277 for (VirtualCallTarget &Target : Targets) {
278 if (BitWidth == 1)
279 Target.setBeforeBit(AllocBefore);
280 else
281 Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
285 void wholeprogramdevirt::setAfterReturnValues(
286 MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
287 unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
288 if (BitWidth == 1)
289 OffsetByte = AllocAfter / 8;
290 else
291 OffsetByte = (AllocAfter + 7) / 8;
292 OffsetBit = AllocAfter % 8;
294 for (VirtualCallTarget &Target : Targets) {
295 if (BitWidth == 1)
296 Target.setAfterBit(AllocAfter);
297 else
298 Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
302 VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
303 : Fn(Fn), TM(TM),
304 IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
306 namespace {
308 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
309 // tables, and the ByteOffset is the offset in bytes from the address point to
310 // the virtual function pointer.
311 struct VTableSlot {
312 Metadata *TypeID;
313 uint64_t ByteOffset;
316 } // end anonymous namespace
318 namespace llvm {
320 template <> struct DenseMapInfo<VTableSlot> {
321 static VTableSlot getEmptyKey() {
322 return {DenseMapInfo<Metadata *>::getEmptyKey(),
323 DenseMapInfo<uint64_t>::getEmptyKey()};
325 static VTableSlot getTombstoneKey() {
326 return {DenseMapInfo<Metadata *>::getTombstoneKey(),
327 DenseMapInfo<uint64_t>::getTombstoneKey()};
329 static unsigned getHashValue(const VTableSlot &I) {
330 return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
331 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
333 static bool isEqual(const VTableSlot &LHS,
334 const VTableSlot &RHS) {
335 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
339 template <> struct DenseMapInfo<VTableSlotSummary> {
340 static VTableSlotSummary getEmptyKey() {
341 return {DenseMapInfo<StringRef>::getEmptyKey(),
342 DenseMapInfo<uint64_t>::getEmptyKey()};
344 static VTableSlotSummary getTombstoneKey() {
345 return {DenseMapInfo<StringRef>::getTombstoneKey(),
346 DenseMapInfo<uint64_t>::getTombstoneKey()};
348 static unsigned getHashValue(const VTableSlotSummary &I) {
349 return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
350 DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
352 static bool isEqual(const VTableSlotSummary &LHS,
353 const VTableSlotSummary &RHS) {
354 return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
358 } // end namespace llvm
360 namespace {
362 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
363 // the indirect virtual call.
364 struct VirtualCallSite {
365 Value *VTable = nullptr;
366 CallBase &CB;
368 // If non-null, this field points to the associated unsafe use count stored in
369 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
370 // of that field for details.
371 unsigned *NumUnsafeUses = nullptr;
373 void
374 emitRemark(const StringRef OptName, const StringRef TargetName,
375 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
376 Function *F = CB.getCaller();
377 DebugLoc DLoc = CB.getDebugLoc();
378 BasicBlock *Block = CB.getParent();
380 using namespace ore;
381 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
382 << NV("Optimization", OptName)
383 << ": devirtualized a call to "
384 << NV("FunctionName", TargetName));
387 void replaceAndErase(
388 const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
389 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
390 Value *New) {
391 if (RemarksEnabled)
392 emitRemark(OptName, TargetName, OREGetter);
393 CB.replaceAllUsesWith(New);
394 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
395 BranchInst::Create(II->getNormalDest(), &CB);
396 II->getUnwindDest()->removePredecessor(II->getParent());
398 CB.eraseFromParent();
399 // This use is no longer unsafe.
400 if (NumUnsafeUses)
401 --*NumUnsafeUses;
405 // Call site information collected for a specific VTableSlot and possibly a list
406 // of constant integer arguments. The grouping by arguments is handled by the
407 // VTableSlotInfo class.
408 struct CallSiteInfo {
409 /// The set of call sites for this slot. Used during regular LTO and the
410 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
411 /// call sites that appear in the merged module itself); in each of these
412 /// cases we are directly operating on the call sites at the IR level.
413 std::vector<VirtualCallSite> CallSites;
415 /// Whether all call sites represented by this CallSiteInfo, including those
416 /// in summaries, have been devirtualized. This starts off as true because a
417 /// default constructed CallSiteInfo represents no call sites.
418 bool AllCallSitesDevirted = true;
420 // These fields are used during the export phase of ThinLTO and reflect
421 // information collected from function summaries.
423 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
424 /// this slot.
425 bool SummaryHasTypeTestAssumeUsers = false;
427 /// CFI-specific: a vector containing the list of function summaries that use
428 /// the llvm.type.checked.load intrinsic and therefore will require
429 /// resolutions for llvm.type.test in order to implement CFI checks if
430 /// devirtualization was unsuccessful. If devirtualization was successful, the
431 /// pass will clear this vector by calling markDevirt(). If at the end of the
432 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
433 /// to each of the function summaries in the vector.
434 std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
435 std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
437 bool isExported() const {
438 return SummaryHasTypeTestAssumeUsers ||
439 !SummaryTypeCheckedLoadUsers.empty();
442 void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
443 SummaryTypeCheckedLoadUsers.push_back(FS);
444 AllCallSitesDevirted = false;
447 void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
448 SummaryTypeTestAssumeUsers.push_back(FS);
449 SummaryHasTypeTestAssumeUsers = true;
450 AllCallSitesDevirted = false;
453 void markDevirt() {
454 AllCallSitesDevirted = true;
456 // As explained in the comment for SummaryTypeCheckedLoadUsers.
457 SummaryTypeCheckedLoadUsers.clear();
461 // Call site information collected for a specific VTableSlot.
462 struct VTableSlotInfo {
463 // The set of call sites which do not have all constant integer arguments
464 // (excluding "this").
465 CallSiteInfo CSInfo;
467 // The set of call sites with all constant integer arguments (excluding
468 // "this"), grouped by argument list.
469 std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
471 void addCallSite(Value *VTable, CallBase &CB, unsigned *NumUnsafeUses);
473 private:
474 CallSiteInfo &findCallSiteInfo(CallBase &CB);
477 CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallBase &CB) {
478 std::vector<uint64_t> Args;
479 auto *CBType = dyn_cast<IntegerType>(CB.getType());
480 if (!CBType || CBType->getBitWidth() > 64 || CB.arg_empty())
481 return CSInfo;
482 for (auto &&Arg : drop_begin(CB.args())) {
483 auto *CI = dyn_cast<ConstantInt>(Arg);
484 if (!CI || CI->getBitWidth() > 64)
485 return CSInfo;
486 Args.push_back(CI->getZExtValue());
488 return ConstCSInfo[Args];
491 void VTableSlotInfo::addCallSite(Value *VTable, CallBase &CB,
492 unsigned *NumUnsafeUses) {
493 auto &CSI = findCallSiteInfo(CB);
494 CSI.AllCallSitesDevirted = false;
495 CSI.CallSites.push_back({VTable, CB, NumUnsafeUses});
498 struct DevirtModule {
499 Module &M;
500 function_ref<AAResults &(Function &)> AARGetter;
501 function_ref<DominatorTree &(Function &)> LookupDomTree;
503 ModuleSummaryIndex *ExportSummary;
504 const ModuleSummaryIndex *ImportSummary;
506 IntegerType *Int8Ty;
507 PointerType *Int8PtrTy;
508 IntegerType *Int32Ty;
509 IntegerType *Int64Ty;
510 IntegerType *IntPtrTy;
511 /// Sizeless array type, used for imported vtables. This provides a signal
512 /// to analyzers that these imports may alias, as they do for example
513 /// when multiple unique return values occur in the same vtable.
514 ArrayType *Int8Arr0Ty;
516 bool RemarksEnabled;
517 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
519 MapVector<VTableSlot, VTableSlotInfo> CallSlots;
521 // Calls that have already been optimized. We may add a call to multiple
522 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
523 // optimize a call more than once.
524 SmallPtrSet<CallBase *, 8> OptimizedCalls;
526 // This map keeps track of the number of "unsafe" uses of a loaded function
527 // pointer. The key is the associated llvm.type.test intrinsic call generated
528 // by this pass. An unsafe use is one that calls the loaded function pointer
529 // directly. Every time we eliminate an unsafe use (for example, by
530 // devirtualizing it or by applying virtual constant propagation), we
531 // decrement the value stored in this map. If a value reaches zero, we can
532 // eliminate the type check by RAUWing the associated llvm.type.test call with
533 // true.
534 std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
535 PatternList FunctionsToSkip;
537 DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
538 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
539 function_ref<DominatorTree &(Function &)> LookupDomTree,
540 ModuleSummaryIndex *ExportSummary,
541 const ModuleSummaryIndex *ImportSummary)
542 : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
543 ExportSummary(ExportSummary), ImportSummary(ImportSummary),
544 Int8Ty(Type::getInt8Ty(M.getContext())),
545 Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
546 Int32Ty(Type::getInt32Ty(M.getContext())),
547 Int64Ty(Type::getInt64Ty(M.getContext())),
548 IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
549 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M.getContext()), 0)),
550 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
551 assert(!(ExportSummary && ImportSummary));
552 FunctionsToSkip.init(SkipFunctionNames);
555 bool areRemarksEnabled();
557 void
558 scanTypeTestUsers(Function *TypeTestFunc,
559 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
560 void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
562 void buildTypeIdentifierMap(
563 std::vector<VTableBits> &Bits,
564 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
565 bool
566 tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
567 const std::set<TypeMemberInfo> &TypeMemberInfos,
568 uint64_t ByteOffset);
570 void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
571 bool &IsExported);
572 bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
573 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
574 VTableSlotInfo &SlotInfo,
575 WholeProgramDevirtResolution *Res);
577 void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
578 bool &IsExported);
579 void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
580 VTableSlotInfo &SlotInfo,
581 WholeProgramDevirtResolution *Res, VTableSlot Slot);
583 bool tryEvaluateFunctionsWithArgs(
584 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
585 ArrayRef<uint64_t> Args);
587 void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
588 uint64_t TheRetVal);
589 bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
590 CallSiteInfo &CSInfo,
591 WholeProgramDevirtResolution::ByArg *Res);
593 // Returns the global symbol name that is used to export information about the
594 // given vtable slot and list of arguments.
595 std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
596 StringRef Name);
598 bool shouldExportConstantsAsAbsoluteSymbols();
600 // This function is called during the export phase to create a symbol
601 // definition containing information about the given vtable slot and list of
602 // arguments.
603 void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
604 Constant *C);
605 void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
606 uint32_t Const, uint32_t &Storage);
608 // This function is called during the import phase to create a reference to
609 // the symbol definition created during the export phase.
610 Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
611 StringRef Name);
612 Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
613 StringRef Name, IntegerType *IntTy,
614 uint32_t Storage);
616 Constant *getMemberAddr(const TypeMemberInfo *M);
618 void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
619 Constant *UniqueMemberAddr);
620 bool tryUniqueRetValOpt(unsigned BitWidth,
621 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
622 CallSiteInfo &CSInfo,
623 WholeProgramDevirtResolution::ByArg *Res,
624 VTableSlot Slot, ArrayRef<uint64_t> Args);
626 void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
627 Constant *Byte, Constant *Bit);
628 bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
629 VTableSlotInfo &SlotInfo,
630 WholeProgramDevirtResolution *Res, VTableSlot Slot);
632 void rebuildGlobal(VTableBits &B);
634 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
635 void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
637 // If we were able to eliminate all unsafe uses for a type checked load,
638 // eliminate the associated type tests by replacing them with true.
639 void removeRedundantTypeTests();
641 bool run();
643 // Lower the module using the action and summary passed as command line
644 // arguments. For testing purposes only.
645 static bool
646 runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
647 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
648 function_ref<DominatorTree &(Function &)> LookupDomTree);
651 struct DevirtIndex {
652 ModuleSummaryIndex &ExportSummary;
653 // The set in which to record GUIDs exported from their module by
654 // devirtualization, used by client to ensure they are not internalized.
655 std::set<GlobalValue::GUID> &ExportedGUIDs;
656 // A map in which to record the information necessary to locate the WPD
657 // resolution for local targets in case they are exported by cross module
658 // importing.
659 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
661 MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
663 PatternList FunctionsToSkip;
665 DevirtIndex(
666 ModuleSummaryIndex &ExportSummary,
667 std::set<GlobalValue::GUID> &ExportedGUIDs,
668 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
669 : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
670 LocalWPDTargetsMap(LocalWPDTargetsMap) {
671 FunctionsToSkip.init(SkipFunctionNames);
674 bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
675 const TypeIdCompatibleVtableInfo TIdInfo,
676 uint64_t ByteOffset);
678 bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
679 VTableSlotSummary &SlotSummary,
680 VTableSlotInfo &SlotInfo,
681 WholeProgramDevirtResolution *Res,
682 std::set<ValueInfo> &DevirtTargets);
684 void run();
687 struct WholeProgramDevirt : public ModulePass {
688 static char ID;
690 bool UseCommandLine = false;
692 ModuleSummaryIndex *ExportSummary = nullptr;
693 const ModuleSummaryIndex *ImportSummary = nullptr;
695 WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
696 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
699 WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
700 const ModuleSummaryIndex *ImportSummary)
701 : ModulePass(ID), ExportSummary(ExportSummary),
702 ImportSummary(ImportSummary) {
703 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
706 bool runOnModule(Module &M) override {
707 if (skipModule(M))
708 return false;
710 // In the new pass manager, we can request the optimization
711 // remark emitter pass on a per-function-basis, which the
712 // OREGetter will do for us.
713 // In the old pass manager, this is harder, so we just build
714 // an optimization remark emitter on the fly, when we need it.
715 std::unique_ptr<OptimizationRemarkEmitter> ORE;
716 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
717 ORE = std::make_unique<OptimizationRemarkEmitter>(F);
718 return *ORE;
721 auto LookupDomTree = [this](Function &F) -> DominatorTree & {
722 return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
725 if (UseCommandLine)
726 return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
727 LookupDomTree);
729 return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
730 ExportSummary, ImportSummary)
731 .run();
734 void getAnalysisUsage(AnalysisUsage &AU) const override {
735 AU.addRequired<AssumptionCacheTracker>();
736 AU.addRequired<TargetLibraryInfoWrapperPass>();
737 AU.addRequired<DominatorTreeWrapperPass>();
741 } // end anonymous namespace
743 INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
744 "Whole program devirtualization", false, false)
745 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
746 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
747 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
748 INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
749 "Whole program devirtualization", false, false)
750 char WholeProgramDevirt::ID = 0;
752 ModulePass *
753 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
754 const ModuleSummaryIndex *ImportSummary) {
755 return new WholeProgramDevirt(ExportSummary, ImportSummary);
758 PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
759 ModuleAnalysisManager &AM) {
760 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
761 auto AARGetter = [&](Function &F) -> AAResults & {
762 return FAM.getResult<AAManager>(F);
764 auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
765 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
767 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
768 return FAM.getResult<DominatorTreeAnalysis>(F);
770 if (UseCommandLine) {
771 if (DevirtModule::runForTesting(M, AARGetter, OREGetter, LookupDomTree))
772 return PreservedAnalyses::all();
773 return PreservedAnalyses::none();
775 if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
776 ImportSummary)
777 .run())
778 return PreservedAnalyses::all();
779 return PreservedAnalyses::none();
782 // Enable whole program visibility if enabled by client (e.g. linker) or
783 // internal option, and not force disabled.
784 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO) {
785 return (WholeProgramVisibilityEnabledInLTO || WholeProgramVisibility) &&
786 !DisableWholeProgramVisibility;
789 namespace llvm {
791 /// If whole program visibility asserted, then upgrade all public vcall
792 /// visibility metadata on vtable definitions to linkage unit visibility in
793 /// Module IR (for regular or hybrid LTO).
794 void updateVCallVisibilityInModule(
795 Module &M, bool WholeProgramVisibilityEnabledInLTO,
796 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
797 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
798 return;
799 for (GlobalVariable &GV : M.globals())
800 // Add linkage unit visibility to any variable with type metadata, which are
801 // the vtable definitions. We won't have an existing vcall_visibility
802 // metadata on vtable definitions with public visibility.
803 if (GV.hasMetadata(LLVMContext::MD_type) &&
804 GV.getVCallVisibility() == GlobalObject::VCallVisibilityPublic &&
805 // Don't upgrade the visibility for symbols exported to the dynamic
806 // linker, as we have no information on their eventual use.
807 !DynamicExportSymbols.count(GV.getGUID()))
808 GV.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit);
811 /// If whole program visibility asserted, then upgrade all public vcall
812 /// visibility metadata on vtable definition summaries to linkage unit
813 /// visibility in Module summary index (for ThinLTO).
814 void updateVCallVisibilityInIndex(
815 ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO,
816 const DenseSet<GlobalValue::GUID> &DynamicExportSymbols) {
817 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO))
818 return;
819 for (auto &P : Index) {
820 for (auto &S : P.second.SummaryList) {
821 auto *GVar = dyn_cast<GlobalVarSummary>(S.get());
822 if (!GVar ||
823 GVar->getVCallVisibility() != GlobalObject::VCallVisibilityPublic ||
824 // Don't upgrade the visibility for symbols exported to the dynamic
825 // linker, as we have no information on their eventual use.
826 DynamicExportSymbols.count(P.first))
827 continue;
828 GVar->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit);
833 void runWholeProgramDevirtOnIndex(
834 ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
835 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
836 DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
839 void updateIndexWPDForExports(
840 ModuleSummaryIndex &Summary,
841 function_ref<bool(StringRef, ValueInfo)> isExported,
842 std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
843 for (auto &T : LocalWPDTargetsMap) {
844 auto &VI = T.first;
845 // This was enforced earlier during trySingleImplDevirt.
846 assert(VI.getSummaryList().size() == 1 &&
847 "Devirt of local target has more than one copy");
848 auto &S = VI.getSummaryList()[0];
849 if (!isExported(S->modulePath(), VI))
850 continue;
852 // It's been exported by a cross module import.
853 for (auto &SlotSummary : T.second) {
854 auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
855 assert(TIdSum);
856 auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
857 assert(WPDRes != TIdSum->WPDRes.end());
858 WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
859 WPDRes->second.SingleImplName,
860 Summary.getModuleHash(S->modulePath()));
865 } // end namespace llvm
867 static Error checkCombinedSummaryForTesting(ModuleSummaryIndex *Summary) {
868 // Check that summary index contains regular LTO module when performing
869 // export to prevent occasional use of index from pure ThinLTO compilation
870 // (-fno-split-lto-module). This kind of summary index is passed to
871 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
872 const auto &ModPaths = Summary->modulePaths();
873 if (ClSummaryAction != PassSummaryAction::Import &&
874 ModPaths.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
875 ModPaths.end())
876 return createStringError(
877 errc::invalid_argument,
878 "combined summary should contain Regular LTO module");
879 return ErrorSuccess();
882 bool DevirtModule::runForTesting(
883 Module &M, function_ref<AAResults &(Function &)> AARGetter,
884 function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
885 function_ref<DominatorTree &(Function &)> LookupDomTree) {
886 std::unique_ptr<ModuleSummaryIndex> Summary =
887 std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
889 // Handle the command-line summary arguments. This code is for testing
890 // purposes only, so we handle errors directly.
891 if (!ClReadSummary.empty()) {
892 ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
893 ": ");
894 auto ReadSummaryFile =
895 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
896 if (Expected<std::unique_ptr<ModuleSummaryIndex>> SummaryOrErr =
897 getModuleSummaryIndex(*ReadSummaryFile)) {
898 Summary = std::move(*SummaryOrErr);
899 ExitOnErr(checkCombinedSummaryForTesting(Summary.get()));
900 } else {
901 // Try YAML if we've failed with bitcode.
902 consumeError(SummaryOrErr.takeError());
903 yaml::Input In(ReadSummaryFile->getBuffer());
904 In >> *Summary;
905 ExitOnErr(errorCodeToError(In.error()));
909 bool Changed =
910 DevirtModule(M, AARGetter, OREGetter, LookupDomTree,
911 ClSummaryAction == PassSummaryAction::Export ? Summary.get()
912 : nullptr,
913 ClSummaryAction == PassSummaryAction::Import ? Summary.get()
914 : nullptr)
915 .run();
917 if (!ClWriteSummary.empty()) {
918 ExitOnError ExitOnErr(
919 "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
920 std::error_code EC;
921 if (StringRef(ClWriteSummary).endswith(".bc")) {
922 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_None);
923 ExitOnErr(errorCodeToError(EC));
924 WriteIndexToFile(*Summary, OS);
925 } else {
926 raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_TextWithCRLF);
927 ExitOnErr(errorCodeToError(EC));
928 yaml::Output Out(OS);
929 Out << *Summary;
933 return Changed;
936 void DevirtModule::buildTypeIdentifierMap(
937 std::vector<VTableBits> &Bits,
938 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
939 DenseMap<GlobalVariable *, VTableBits *> GVToBits;
940 Bits.reserve(M.getGlobalList().size());
941 SmallVector<MDNode *, 2> Types;
942 for (GlobalVariable &GV : M.globals()) {
943 Types.clear();
944 GV.getMetadata(LLVMContext::MD_type, Types);
945 if (GV.isDeclaration() || Types.empty())
946 continue;
948 VTableBits *&BitsPtr = GVToBits[&GV];
949 if (!BitsPtr) {
950 Bits.emplace_back();
951 Bits.back().GV = &GV;
952 Bits.back().ObjectSize =
953 M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
954 BitsPtr = &Bits.back();
957 for (MDNode *Type : Types) {
958 auto TypeID = Type->getOperand(1).get();
960 uint64_t Offset =
961 cast<ConstantInt>(
962 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
963 ->getZExtValue();
965 TypeIdMap[TypeID].insert({BitsPtr, Offset});
970 bool DevirtModule::tryFindVirtualCallTargets(
971 std::vector<VirtualCallTarget> &TargetsForSlot,
972 const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
973 for (const TypeMemberInfo &TM : TypeMemberInfos) {
974 if (!TM.Bits->GV->isConstant())
975 return false;
977 // We cannot perform whole program devirtualization analysis on a vtable
978 // with public LTO visibility.
979 if (TM.Bits->GV->getVCallVisibility() ==
980 GlobalObject::VCallVisibilityPublic)
981 return false;
983 Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
984 TM.Offset + ByteOffset, M);
985 if (!Ptr)
986 return false;
988 auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
989 if (!Fn)
990 return false;
992 if (FunctionsToSkip.match(Fn->getName()))
993 return false;
995 // We can disregard __cxa_pure_virtual as a possible call target, as
996 // calls to pure virtuals are UB.
997 if (Fn->getName() == "__cxa_pure_virtual")
998 continue;
1000 TargetsForSlot.push_back({Fn, &TM});
1003 // Give up if we couldn't find any targets.
1004 return !TargetsForSlot.empty();
1007 bool DevirtIndex::tryFindVirtualCallTargets(
1008 std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
1009 uint64_t ByteOffset) {
1010 for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
1011 // Find a representative copy of the vtable initializer.
1012 // We can have multiple available_externally, linkonce_odr and weak_odr
1013 // vtable initializers. We can also have multiple external vtable
1014 // initializers in the case of comdats, which we cannot check here.
1015 // The linker should give an error in this case.
1017 // Also, handle the case of same-named local Vtables with the same path
1018 // and therefore the same GUID. This can happen if there isn't enough
1019 // distinguishing path when compiling the source file. In that case we
1020 // conservatively return false early.
1021 const GlobalVarSummary *VS = nullptr;
1022 bool LocalFound = false;
1023 for (auto &S : P.VTableVI.getSummaryList()) {
1024 if (GlobalValue::isLocalLinkage(S->linkage())) {
1025 if (LocalFound)
1026 return false;
1027 LocalFound = true;
1029 auto *CurVS = cast<GlobalVarSummary>(S->getBaseObject());
1030 if (!CurVS->vTableFuncs().empty() ||
1031 // Previously clang did not attach the necessary type metadata to
1032 // available_externally vtables, in which case there would not
1033 // be any vtable functions listed in the summary and we need
1034 // to treat this case conservatively (in case the bitcode is old).
1035 // However, we will also not have any vtable functions in the
1036 // case of a pure virtual base class. In that case we do want
1037 // to set VS to avoid treating it conservatively.
1038 !GlobalValue::isAvailableExternallyLinkage(S->linkage())) {
1039 VS = CurVS;
1040 // We cannot perform whole program devirtualization analysis on a vtable
1041 // with public LTO visibility.
1042 if (VS->getVCallVisibility() == GlobalObject::VCallVisibilityPublic)
1043 return false;
1046 // There will be no VS if all copies are available_externally having no
1047 // type metadata. In that case we can't safely perform WPD.
1048 if (!VS)
1049 return false;
1050 if (!VS->isLive())
1051 continue;
1052 for (auto VTP : VS->vTableFuncs()) {
1053 if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
1054 continue;
1056 TargetsForSlot.push_back(VTP.FuncVI);
1060 // Give up if we couldn't find any targets.
1061 return !TargetsForSlot.empty();
1064 void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
1065 Constant *TheFn, bool &IsExported) {
1066 // Don't devirtualize function if we're told to skip it
1067 // in -wholeprogramdevirt-skip.
1068 if (FunctionsToSkip.match(TheFn->stripPointerCasts()->getName()))
1069 return;
1070 auto Apply = [&](CallSiteInfo &CSInfo) {
1071 for (auto &&VCallSite : CSInfo.CallSites) {
1072 if (!OptimizedCalls.insert(&VCallSite.CB).second)
1073 continue;
1075 if (RemarksEnabled)
1076 VCallSite.emitRemark("single-impl",
1077 TheFn->stripPointerCasts()->getName(), OREGetter);
1078 auto &CB = VCallSite.CB;
1079 assert(!CB.getCalledFunction() && "devirtualizing direct call?");
1080 IRBuilder<> Builder(&CB);
1081 Value *Callee =
1082 Builder.CreateBitCast(TheFn, CB.getCalledOperand()->getType());
1084 // If checking is enabled, add support to compare the virtual function
1085 // pointer to the devirtualized target. In case of a mismatch, perform a
1086 // debug trap.
1087 if (CheckDevirt) {
1088 auto *Cond = Builder.CreateICmpNE(CB.getCalledOperand(), Callee);
1089 Instruction *ThenTerm =
1090 SplitBlockAndInsertIfThen(Cond, &CB, /*Unreachable=*/false);
1091 Builder.SetInsertPoint(ThenTerm);
1092 Function *TrapFn = Intrinsic::getDeclaration(&M, Intrinsic::debugtrap);
1093 auto *CallTrap = Builder.CreateCall(TrapFn);
1094 CallTrap->setDebugLoc(CB.getDebugLoc());
1097 // Devirtualize.
1098 CB.setCalledOperand(Callee);
1100 // This use is no longer unsafe.
1101 if (VCallSite.NumUnsafeUses)
1102 --*VCallSite.NumUnsafeUses;
1104 if (CSInfo.isExported())
1105 IsExported = true;
1106 CSInfo.markDevirt();
1108 Apply(SlotInfo.CSInfo);
1109 for (auto &P : SlotInfo.ConstCSInfo)
1110 Apply(P.second);
1113 static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
1114 // We can't add calls if we haven't seen a definition
1115 if (Callee.getSummaryList().empty())
1116 return false;
1118 // Insert calls into the summary index so that the devirtualized targets
1119 // are eligible for import.
1120 // FIXME: Annotate type tests with hotness. For now, mark these as hot
1121 // to better ensure we have the opportunity to inline them.
1122 bool IsExported = false;
1123 auto &S = Callee.getSummaryList()[0];
1124 CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
1125 auto AddCalls = [&](CallSiteInfo &CSInfo) {
1126 for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
1127 FS->addCall({Callee, CI});
1128 IsExported |= S->modulePath() != FS->modulePath();
1130 for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
1131 FS->addCall({Callee, CI});
1132 IsExported |= S->modulePath() != FS->modulePath();
1135 AddCalls(SlotInfo.CSInfo);
1136 for (auto &P : SlotInfo.ConstCSInfo)
1137 AddCalls(P.second);
1138 return IsExported;
1141 bool DevirtModule::trySingleImplDevirt(
1142 ModuleSummaryIndex *ExportSummary,
1143 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1144 WholeProgramDevirtResolution *Res) {
1145 // See if the program contains a single implementation of this virtual
1146 // function.
1147 Function *TheFn = TargetsForSlot[0].Fn;
1148 for (auto &&Target : TargetsForSlot)
1149 if (TheFn != Target.Fn)
1150 return false;
1152 // If so, update each call site to call that implementation directly.
1153 if (RemarksEnabled)
1154 TargetsForSlot[0].WasDevirt = true;
1156 bool IsExported = false;
1157 applySingleImplDevirt(SlotInfo, TheFn, IsExported);
1158 if (!IsExported)
1159 return false;
1161 // If the only implementation has local linkage, we must promote to external
1162 // to make it visible to thin LTO objects. We can only get here during the
1163 // ThinLTO export phase.
1164 if (TheFn->hasLocalLinkage()) {
1165 std::string NewName = (TheFn->getName() + ".llvm.merged").str();
1167 // Since we are renaming the function, any comdats with the same name must
1168 // also be renamed. This is required when targeting COFF, as the comdat name
1169 // must match one of the names of the symbols in the comdat.
1170 if (Comdat *C = TheFn->getComdat()) {
1171 if (C->getName() == TheFn->getName()) {
1172 Comdat *NewC = M.getOrInsertComdat(NewName);
1173 NewC->setSelectionKind(C->getSelectionKind());
1174 for (GlobalObject &GO : M.global_objects())
1175 if (GO.getComdat() == C)
1176 GO.setComdat(NewC);
1180 TheFn->setLinkage(GlobalValue::ExternalLinkage);
1181 TheFn->setVisibility(GlobalValue::HiddenVisibility);
1182 TheFn->setName(NewName);
1184 if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
1185 // Any needed promotion of 'TheFn' has already been done during
1186 // LTO unit split, so we can ignore return value of AddCalls.
1187 AddCalls(SlotInfo, TheFnVI);
1189 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1190 Res->SingleImplName = std::string(TheFn->getName());
1192 return true;
1195 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
1196 VTableSlotSummary &SlotSummary,
1197 VTableSlotInfo &SlotInfo,
1198 WholeProgramDevirtResolution *Res,
1199 std::set<ValueInfo> &DevirtTargets) {
1200 // See if the program contains a single implementation of this virtual
1201 // function.
1202 auto TheFn = TargetsForSlot[0];
1203 for (auto &&Target : TargetsForSlot)
1204 if (TheFn != Target)
1205 return false;
1207 // Don't devirtualize if we don't have target definition.
1208 auto Size = TheFn.getSummaryList().size();
1209 if (!Size)
1210 return false;
1212 // Don't devirtualize function if we're told to skip it
1213 // in -wholeprogramdevirt-skip.
1214 if (FunctionsToSkip.match(TheFn.name()))
1215 return false;
1217 // If the summary list contains multiple summaries where at least one is
1218 // a local, give up, as we won't know which (possibly promoted) name to use.
1219 for (auto &S : TheFn.getSummaryList())
1220 if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1221 return false;
1223 // Collect functions devirtualized at least for one call site for stats.
1224 if (PrintSummaryDevirt)
1225 DevirtTargets.insert(TheFn);
1227 auto &S = TheFn.getSummaryList()[0];
1228 bool IsExported = AddCalls(SlotInfo, TheFn);
1229 if (IsExported)
1230 ExportedGUIDs.insert(TheFn.getGUID());
1232 // Record in summary for use in devirtualization during the ThinLTO import
1233 // step.
1234 Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1235 if (GlobalValue::isLocalLinkage(S->linkage())) {
1236 if (IsExported)
1237 // If target is a local function and we are exporting it by
1238 // devirtualizing a call in another module, we need to record the
1239 // promoted name.
1240 Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1241 TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1242 else {
1243 LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1244 Res->SingleImplName = std::string(TheFn.name());
1246 } else
1247 Res->SingleImplName = std::string(TheFn.name());
1249 // Name will be empty if this thin link driven off of serialized combined
1250 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1251 // legacy LTO API anyway.
1252 assert(!Res->SingleImplName.empty());
1254 return true;
1257 void DevirtModule::tryICallBranchFunnel(
1258 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1259 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1260 Triple T(M.getTargetTriple());
1261 if (T.getArch() != Triple::x86_64)
1262 return;
1264 if (TargetsForSlot.size() > ClThreshold)
1265 return;
1267 bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1268 if (!HasNonDevirt)
1269 for (auto &P : SlotInfo.ConstCSInfo)
1270 if (!P.second.AllCallSitesDevirted) {
1271 HasNonDevirt = true;
1272 break;
1275 if (!HasNonDevirt)
1276 return;
1278 FunctionType *FT =
1279 FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1280 Function *JT;
1281 if (isa<MDString>(Slot.TypeID)) {
1282 JT = Function::Create(FT, Function::ExternalLinkage,
1283 M.getDataLayout().getProgramAddressSpace(),
1284 getGlobalName(Slot, {}, "branch_funnel"), &M);
1285 JT->setVisibility(GlobalValue::HiddenVisibility);
1286 } else {
1287 JT = Function::Create(FT, Function::InternalLinkage,
1288 M.getDataLayout().getProgramAddressSpace(),
1289 "branch_funnel", &M);
1291 JT->addParamAttr(0, Attribute::Nest);
1293 std::vector<Value *> JTArgs;
1294 JTArgs.push_back(JT->arg_begin());
1295 for (auto &T : TargetsForSlot) {
1296 JTArgs.push_back(getMemberAddr(T.TM));
1297 JTArgs.push_back(T.Fn);
1300 BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1301 Function *Intr =
1302 Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1304 auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1305 CI->setTailCallKind(CallInst::TCK_MustTail);
1306 ReturnInst::Create(M.getContext(), nullptr, BB);
1308 bool IsExported = false;
1309 applyICallBranchFunnel(SlotInfo, JT, IsExported);
1310 if (IsExported)
1311 Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1314 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1315 Constant *JT, bool &IsExported) {
1316 auto Apply = [&](CallSiteInfo &CSInfo) {
1317 if (CSInfo.isExported())
1318 IsExported = true;
1319 if (CSInfo.AllCallSitesDevirted)
1320 return;
1321 for (auto &&VCallSite : CSInfo.CallSites) {
1322 CallBase &CB = VCallSite.CB;
1324 // Jump tables are only profitable if the retpoline mitigation is enabled.
1325 Attribute FSAttr = CB.getCaller()->getFnAttribute("target-features");
1326 if (!FSAttr.isValid() ||
1327 !FSAttr.getValueAsString().contains("+retpoline"))
1328 continue;
1330 if (RemarksEnabled)
1331 VCallSite.emitRemark("branch-funnel",
1332 JT->stripPointerCasts()->getName(), OREGetter);
1334 // Pass the address of the vtable in the nest register, which is r10 on
1335 // x86_64.
1336 std::vector<Type *> NewArgs;
1337 NewArgs.push_back(Int8PtrTy);
1338 append_range(NewArgs, CB.getFunctionType()->params());
1339 FunctionType *NewFT =
1340 FunctionType::get(CB.getFunctionType()->getReturnType(), NewArgs,
1341 CB.getFunctionType()->isVarArg());
1342 PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1344 IRBuilder<> IRB(&CB);
1345 std::vector<Value *> Args;
1346 Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1347 llvm::append_range(Args, CB.args());
1349 CallBase *NewCS = nullptr;
1350 if (isa<CallInst>(CB))
1351 NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1352 else
1353 NewCS = IRB.CreateInvoke(NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1354 cast<InvokeInst>(CB).getNormalDest(),
1355 cast<InvokeInst>(CB).getUnwindDest(), Args);
1356 NewCS->setCallingConv(CB.getCallingConv());
1358 AttributeList Attrs = CB.getAttributes();
1359 std::vector<AttributeSet> NewArgAttrs;
1360 NewArgAttrs.push_back(AttributeSet::get(
1361 M.getContext(), ArrayRef<Attribute>{Attribute::get(
1362 M.getContext(), Attribute::Nest)}));
1363 for (unsigned I = 0; I + 2 < Attrs.getNumAttrSets(); ++I)
1364 NewArgAttrs.push_back(Attrs.getParamAttrs(I));
1365 NewCS->setAttributes(
1366 AttributeList::get(M.getContext(), Attrs.getFnAttrs(),
1367 Attrs.getRetAttrs(), NewArgAttrs));
1369 CB.replaceAllUsesWith(NewCS);
1370 CB.eraseFromParent();
1372 // This use is no longer unsafe.
1373 if (VCallSite.NumUnsafeUses)
1374 --*VCallSite.NumUnsafeUses;
1376 // Don't mark as devirtualized because there may be callers compiled without
1377 // retpoline mitigation, which would mean that they are lowered to
1378 // llvm.type.test and therefore require an llvm.type.test resolution for the
1379 // type identifier.
1381 Apply(SlotInfo.CSInfo);
1382 for (auto &P : SlotInfo.ConstCSInfo)
1383 Apply(P.second);
1386 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1387 MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1388 ArrayRef<uint64_t> Args) {
1389 // Evaluate each function and store the result in each target's RetVal
1390 // field.
1391 for (VirtualCallTarget &Target : TargetsForSlot) {
1392 if (Target.Fn->arg_size() != Args.size() + 1)
1393 return false;
1395 Evaluator Eval(M.getDataLayout(), nullptr);
1396 SmallVector<Constant *, 2> EvalArgs;
1397 EvalArgs.push_back(
1398 Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1399 for (unsigned I = 0; I != Args.size(); ++I) {
1400 auto *ArgTy = dyn_cast<IntegerType>(
1401 Target.Fn->getFunctionType()->getParamType(I + 1));
1402 if (!ArgTy)
1403 return false;
1404 EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1407 Constant *RetVal;
1408 if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1409 !isa<ConstantInt>(RetVal))
1410 return false;
1411 Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1413 return true;
1416 void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1417 uint64_t TheRetVal) {
1418 for (auto Call : CSInfo.CallSites) {
1419 if (!OptimizedCalls.insert(&Call.CB).second)
1420 continue;
1421 Call.replaceAndErase(
1422 "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1423 ConstantInt::get(cast<IntegerType>(Call.CB.getType()), TheRetVal));
1425 CSInfo.markDevirt();
1428 bool DevirtModule::tryUniformRetValOpt(
1429 MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1430 WholeProgramDevirtResolution::ByArg *Res) {
1431 // Uniform return value optimization. If all functions return the same
1432 // constant, replace all calls with that constant.
1433 uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1434 for (const VirtualCallTarget &Target : TargetsForSlot)
1435 if (Target.RetVal != TheRetVal)
1436 return false;
1438 if (CSInfo.isExported()) {
1439 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1440 Res->Info = TheRetVal;
1443 applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1444 if (RemarksEnabled)
1445 for (auto &&Target : TargetsForSlot)
1446 Target.WasDevirt = true;
1447 return true;
1450 std::string DevirtModule::getGlobalName(VTableSlot Slot,
1451 ArrayRef<uint64_t> Args,
1452 StringRef Name) {
1453 std::string FullName = "__typeid_";
1454 raw_string_ostream OS(FullName);
1455 OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1456 for (uint64_t Arg : Args)
1457 OS << '_' << Arg;
1458 OS << '_' << Name;
1459 return OS.str();
1462 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1463 Triple T(M.getTargetTriple());
1464 return T.isX86() && T.getObjectFormat() == Triple::ELF;
1467 void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1468 StringRef Name, Constant *C) {
1469 GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1470 getGlobalName(Slot, Args, Name), C, &M);
1471 GA->setVisibility(GlobalValue::HiddenVisibility);
1474 void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1475 StringRef Name, uint32_t Const,
1476 uint32_t &Storage) {
1477 if (shouldExportConstantsAsAbsoluteSymbols()) {
1478 exportGlobal(
1479 Slot, Args, Name,
1480 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1481 return;
1484 Storage = Const;
1487 Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1488 StringRef Name) {
1489 Constant *C =
1490 M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Arr0Ty);
1491 auto *GV = dyn_cast<GlobalVariable>(C);
1492 if (GV)
1493 GV->setVisibility(GlobalValue::HiddenVisibility);
1494 return C;
1497 Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1498 StringRef Name, IntegerType *IntTy,
1499 uint32_t Storage) {
1500 if (!shouldExportConstantsAsAbsoluteSymbols())
1501 return ConstantInt::get(IntTy, Storage);
1503 Constant *C = importGlobal(Slot, Args, Name);
1504 auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1505 C = ConstantExpr::getPtrToInt(C, IntTy);
1507 // We only need to set metadata if the global is newly created, in which
1508 // case it would not have hidden visibility.
1509 if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1510 return C;
1512 auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1513 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1514 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1515 GV->setMetadata(LLVMContext::MD_absolute_symbol,
1516 MDNode::get(M.getContext(), {MinC, MaxC}));
1518 unsigned AbsWidth = IntTy->getBitWidth();
1519 if (AbsWidth == IntPtrTy->getBitWidth())
1520 SetAbsRange(~0ull, ~0ull); // Full set.
1521 else
1522 SetAbsRange(0, 1ull << AbsWidth);
1523 return C;
1526 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1527 bool IsOne,
1528 Constant *UniqueMemberAddr) {
1529 for (auto &&Call : CSInfo.CallSites) {
1530 if (!OptimizedCalls.insert(&Call.CB).second)
1531 continue;
1532 IRBuilder<> B(&Call.CB);
1533 Value *Cmp =
1534 B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE, Call.VTable,
1535 B.CreateBitCast(UniqueMemberAddr, Call.VTable->getType()));
1536 Cmp = B.CreateZExt(Cmp, Call.CB.getType());
1537 Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1538 Cmp);
1540 CSInfo.markDevirt();
1543 Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1544 Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1545 return ConstantExpr::getGetElementPtr(Int8Ty, C,
1546 ConstantInt::get(Int64Ty, M->Offset));
1549 bool DevirtModule::tryUniqueRetValOpt(
1550 unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1551 CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1552 VTableSlot Slot, ArrayRef<uint64_t> Args) {
1553 // IsOne controls whether we look for a 0 or a 1.
1554 auto tryUniqueRetValOptFor = [&](bool IsOne) {
1555 const TypeMemberInfo *UniqueMember = nullptr;
1556 for (const VirtualCallTarget &Target : TargetsForSlot) {
1557 if (Target.RetVal == (IsOne ? 1 : 0)) {
1558 if (UniqueMember)
1559 return false;
1560 UniqueMember = Target.TM;
1564 // We should have found a unique member or bailed out by now. We already
1565 // checked for a uniform return value in tryUniformRetValOpt.
1566 assert(UniqueMember);
1568 Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1569 if (CSInfo.isExported()) {
1570 Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1571 Res->Info = IsOne;
1573 exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1576 // Replace each call with the comparison.
1577 applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1578 UniqueMemberAddr);
1580 // Update devirtualization statistics for targets.
1581 if (RemarksEnabled)
1582 for (auto &&Target : TargetsForSlot)
1583 Target.WasDevirt = true;
1585 return true;
1588 if (BitWidth == 1) {
1589 if (tryUniqueRetValOptFor(true))
1590 return true;
1591 if (tryUniqueRetValOptFor(false))
1592 return true;
1594 return false;
1597 void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1598 Constant *Byte, Constant *Bit) {
1599 for (auto Call : CSInfo.CallSites) {
1600 if (!OptimizedCalls.insert(&Call.CB).second)
1601 continue;
1602 auto *RetType = cast<IntegerType>(Call.CB.getType());
1603 IRBuilder<> B(&Call.CB);
1604 Value *Addr =
1605 B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1606 if (RetType->getBitWidth() == 1) {
1607 Value *Bits = B.CreateLoad(Int8Ty, Addr);
1608 Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1609 auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1610 Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1611 OREGetter, IsBitSet);
1612 } else {
1613 Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1614 Value *Val = B.CreateLoad(RetType, ValAddr);
1615 Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1616 OREGetter, Val);
1619 CSInfo.markDevirt();
1622 bool DevirtModule::tryVirtualConstProp(
1623 MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1624 WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1625 // This only works if the function returns an integer.
1626 auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1627 if (!RetType)
1628 return false;
1629 unsigned BitWidth = RetType->getBitWidth();
1630 if (BitWidth > 64)
1631 return false;
1633 // Make sure that each function is defined, does not access memory, takes at
1634 // least one argument, does not use its first argument (which we assume is
1635 // 'this'), and has the same return type.
1637 // Note that we test whether this copy of the function is readnone, rather
1638 // than testing function attributes, which must hold for any copy of the
1639 // function, even a less optimized version substituted at link time. This is
1640 // sound because the virtual constant propagation optimizations effectively
1641 // inline all implementations of the virtual function into each call site,
1642 // rather than using function attributes to perform local optimization.
1643 for (VirtualCallTarget &Target : TargetsForSlot) {
1644 if (Target.Fn->isDeclaration() ||
1645 computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1646 MAK_ReadNone ||
1647 Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1648 Target.Fn->getReturnType() != RetType)
1649 return false;
1652 for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1653 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1654 continue;
1656 WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1657 if (Res)
1658 ResByArg = &Res->ResByArg[CSByConstantArg.first];
1660 if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1661 continue;
1663 if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1664 ResByArg, Slot, CSByConstantArg.first))
1665 continue;
1667 // Find an allocation offset in bits in all vtables associated with the
1668 // type.
1669 uint64_t AllocBefore =
1670 findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1671 uint64_t AllocAfter =
1672 findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1674 // Calculate the total amount of padding needed to store a value at both
1675 // ends of the object.
1676 uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1677 for (auto &&Target : TargetsForSlot) {
1678 TotalPaddingBefore += std::max<int64_t>(
1679 (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1680 TotalPaddingAfter += std::max<int64_t>(
1681 (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1684 // If the amount of padding is too large, give up.
1685 // FIXME: do something smarter here.
1686 if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1687 continue;
1689 // Calculate the offset to the value as a (possibly negative) byte offset
1690 // and (if applicable) a bit offset, and store the values in the targets.
1691 int64_t OffsetByte;
1692 uint64_t OffsetBit;
1693 if (TotalPaddingBefore <= TotalPaddingAfter)
1694 setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1695 OffsetBit);
1696 else
1697 setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1698 OffsetBit);
1700 if (RemarksEnabled)
1701 for (auto &&Target : TargetsForSlot)
1702 Target.WasDevirt = true;
1705 if (CSByConstantArg.second.isExported()) {
1706 ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1707 exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1708 ResByArg->Byte);
1709 exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1710 ResByArg->Bit);
1713 // Rewrite each call to a load from OffsetByte/OffsetBit.
1714 Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1715 Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1716 applyVirtualConstProp(CSByConstantArg.second,
1717 TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1719 return true;
1722 void DevirtModule::rebuildGlobal(VTableBits &B) {
1723 if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1724 return;
1726 // Align the before byte array to the global's minimum alignment so that we
1727 // don't break any alignment requirements on the global.
1728 Align Alignment = M.getDataLayout().getValueOrABITypeAlignment(
1729 B.GV->getAlign(), B.GV->getValueType());
1730 B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1732 // Before was stored in reverse order; flip it now.
1733 for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1734 std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1736 // Build an anonymous global containing the before bytes, followed by the
1737 // original initializer, followed by the after bytes.
1738 auto NewInit = ConstantStruct::getAnon(
1739 {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1740 B.GV->getInitializer(),
1741 ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1742 auto NewGV =
1743 new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1744 GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1745 NewGV->setSection(B.GV->getSection());
1746 NewGV->setComdat(B.GV->getComdat());
1747 NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1749 // Copy the original vtable's metadata to the anonymous global, adjusting
1750 // offsets as required.
1751 NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1753 // Build an alias named after the original global, pointing at the second
1754 // element (the original initializer).
1755 auto Alias = GlobalAlias::create(
1756 B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1757 ConstantExpr::getGetElementPtr(
1758 NewInit->getType(), NewGV,
1759 ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1760 ConstantInt::get(Int32Ty, 1)}),
1761 &M);
1762 Alias->setVisibility(B.GV->getVisibility());
1763 Alias->takeName(B.GV);
1765 B.GV->replaceAllUsesWith(Alias);
1766 B.GV->eraseFromParent();
1769 bool DevirtModule::areRemarksEnabled() {
1770 const auto &FL = M.getFunctionList();
1771 for (const Function &Fn : FL) {
1772 const auto &BBL = Fn.getBasicBlockList();
1773 if (BBL.empty())
1774 continue;
1775 auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1776 return DI.isEnabled();
1778 return false;
1781 void DevirtModule::scanTypeTestUsers(
1782 Function *TypeTestFunc,
1783 DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
1784 // Find all virtual calls via a virtual table pointer %p under an assumption
1785 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1786 // points to a member of the type identifier %md. Group calls by (type ID,
1787 // offset) pair (effectively the identity of the virtual function) and store
1788 // to CallSlots.
1789 for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1790 I != E;) {
1791 auto CI = dyn_cast<CallInst>(I->getUser());
1792 ++I;
1793 if (!CI)
1794 continue;
1796 // Search for virtual calls based on %p and add them to DevirtCalls.
1797 SmallVector<DevirtCallSite, 1> DevirtCalls;
1798 SmallVector<CallInst *, 1> Assumes;
1799 auto &DT = LookupDomTree(*CI->getFunction());
1800 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1802 Metadata *TypeId =
1803 cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1804 // If we found any, add them to CallSlots.
1805 if (!Assumes.empty()) {
1806 Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1807 for (DevirtCallSite Call : DevirtCalls)
1808 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB, nullptr);
1811 auto RemoveTypeTestAssumes = [&]() {
1812 // We no longer need the assumes or the type test.
1813 for (auto Assume : Assumes)
1814 Assume->eraseFromParent();
1815 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1816 // may use the vtable argument later.
1817 if (CI->use_empty())
1818 CI->eraseFromParent();
1821 // At this point we could remove all type test assume sequences, as they
1822 // were originally inserted for WPD. However, we can keep these in the
1823 // code stream for later analysis (e.g. to help drive more efficient ICP
1824 // sequences). They will eventually be removed by a second LowerTypeTests
1825 // invocation that cleans them up. In order to do this correctly, the first
1826 // LowerTypeTests invocation needs to know that they have "Unknown" type
1827 // test resolution, so that they aren't treated as Unsat and lowered to
1828 // False, which will break any uses on assumes. Below we remove any type
1829 // test assumes that will not be treated as Unknown by LTT.
1831 // The type test assumes will be treated by LTT as Unsat if the type id is
1832 // not used on a global (in which case it has no entry in the TypeIdMap).
1833 if (!TypeIdMap.count(TypeId))
1834 RemoveTypeTestAssumes();
1836 // For ThinLTO importing, we need to remove the type test assumes if this is
1837 // an MDString type id without a corresponding TypeIdSummary. Any
1838 // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1839 // type test assumes can be kept. If the MDString type id is missing a
1840 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1841 // exporting phase of WPD from analyzing it), then it would be treated as
1842 // Unsat by LTT and we need to remove its type test assumes here. If not
1843 // used on a vcall we don't need them for later optimization use in any
1844 // case.
1845 else if (ImportSummary && isa<MDString>(TypeId)) {
1846 const TypeIdSummary *TidSummary =
1847 ImportSummary->getTypeIdSummary(cast<MDString>(TypeId)->getString());
1848 if (!TidSummary)
1849 RemoveTypeTestAssumes();
1850 else
1851 // If one was created it should not be Unsat, because if we reached here
1852 // the type id was used on a global.
1853 assert(TidSummary->TTRes.TheKind != TypeTestResolution::Unsat);
1858 void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1859 Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1861 for (auto I = TypeCheckedLoadFunc->use_begin(),
1862 E = TypeCheckedLoadFunc->use_end();
1863 I != E;) {
1864 auto CI = dyn_cast<CallInst>(I->getUser());
1865 ++I;
1866 if (!CI)
1867 continue;
1869 Value *Ptr = CI->getArgOperand(0);
1870 Value *Offset = CI->getArgOperand(1);
1871 Value *TypeIdValue = CI->getArgOperand(2);
1872 Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1874 SmallVector<DevirtCallSite, 1> DevirtCalls;
1875 SmallVector<Instruction *, 1> LoadedPtrs;
1876 SmallVector<Instruction *, 1> Preds;
1877 bool HasNonCallUses = false;
1878 auto &DT = LookupDomTree(*CI->getFunction());
1879 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1880 HasNonCallUses, CI, DT);
1882 // Start by generating "pessimistic" code that explicitly loads the function
1883 // pointer from the vtable and performs the type check. If possible, we will
1884 // eliminate the load and the type check later.
1886 // If possible, only generate the load at the point where it is used.
1887 // This helps avoid unnecessary spills.
1888 IRBuilder<> LoadB(
1889 (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1890 Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1891 Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1892 Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1894 for (Instruction *LoadedPtr : LoadedPtrs) {
1895 LoadedPtr->replaceAllUsesWith(LoadedValue);
1896 LoadedPtr->eraseFromParent();
1899 // Likewise for the type test.
1900 IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1901 CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1903 for (Instruction *Pred : Preds) {
1904 Pred->replaceAllUsesWith(TypeTestCall);
1905 Pred->eraseFromParent();
1908 // We have already erased any extractvalue instructions that refer to the
1909 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1910 // (although this is unlikely). In that case, explicitly build a pair and
1911 // RAUW it.
1912 if (!CI->use_empty()) {
1913 Value *Pair = UndefValue::get(CI->getType());
1914 IRBuilder<> B(CI);
1915 Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1916 Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1917 CI->replaceAllUsesWith(Pair);
1920 // The number of unsafe uses is initially the number of uses.
1921 auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1922 NumUnsafeUses = DevirtCalls.size();
1924 // If the function pointer has a non-call user, we cannot eliminate the type
1925 // check, as one of those users may eventually call the pointer. Increment
1926 // the unsafe use count to make sure it cannot reach zero.
1927 if (HasNonCallUses)
1928 ++NumUnsafeUses;
1929 for (DevirtCallSite Call : DevirtCalls) {
1930 CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CB,
1931 &NumUnsafeUses);
1934 CI->eraseFromParent();
1938 void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1939 auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1940 if (!TypeId)
1941 return;
1942 const TypeIdSummary *TidSummary =
1943 ImportSummary->getTypeIdSummary(TypeId->getString());
1944 if (!TidSummary)
1945 return;
1946 auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1947 if (ResI == TidSummary->WPDRes.end())
1948 return;
1949 const WholeProgramDevirtResolution &Res = ResI->second;
1951 if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1952 assert(!Res.SingleImplName.empty());
1953 // The type of the function in the declaration is irrelevant because every
1954 // call site will cast it to the correct type.
1955 Constant *SingleImpl =
1956 cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1957 Type::getVoidTy(M.getContext()))
1958 .getCallee());
1960 // This is the import phase so we should not be exporting anything.
1961 bool IsExported = false;
1962 applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1963 assert(!IsExported);
1966 for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1967 auto I = Res.ResByArg.find(CSByConstantArg.first);
1968 if (I == Res.ResByArg.end())
1969 continue;
1970 auto &ResByArg = I->second;
1971 // FIXME: We should figure out what to do about the "function name" argument
1972 // to the apply* functions, as the function names are unavailable during the
1973 // importing phase. For now we just pass the empty string. This does not
1974 // impact correctness because the function names are just used for remarks.
1975 switch (ResByArg.TheKind) {
1976 case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1977 applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1978 break;
1979 case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1980 Constant *UniqueMemberAddr =
1981 importGlobal(Slot, CSByConstantArg.first, "unique_member");
1982 applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1983 UniqueMemberAddr);
1984 break;
1986 case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1987 Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1988 Int32Ty, ResByArg.Byte);
1989 Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1990 ResByArg.Bit);
1991 applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1992 break;
1994 default:
1995 break;
1999 if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
2000 // The type of the function is irrelevant, because it's bitcast at calls
2001 // anyhow.
2002 Constant *JT = cast<Constant>(
2003 M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
2004 Type::getVoidTy(M.getContext()))
2005 .getCallee());
2006 bool IsExported = false;
2007 applyICallBranchFunnel(SlotInfo, JT, IsExported);
2008 assert(!IsExported);
2012 void DevirtModule::removeRedundantTypeTests() {
2013 auto True = ConstantInt::getTrue(M.getContext());
2014 for (auto &&U : NumUnsafeUsesForTypeTest) {
2015 if (U.second == 0) {
2016 U.first->replaceAllUsesWith(True);
2017 U.first->eraseFromParent();
2022 bool DevirtModule::run() {
2023 // If only some of the modules were split, we cannot correctly perform
2024 // this transformation. We already checked for the presense of type tests
2025 // with partially split modules during the thin link, and would have emitted
2026 // an error if any were found, so here we can simply return.
2027 if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
2028 (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
2029 return false;
2031 Function *TypeTestFunc =
2032 M.getFunction(Intrinsic::getName(Intrinsic::type_test));
2033 Function *TypeCheckedLoadFunc =
2034 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
2035 Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
2037 // Normally if there are no users of the devirtualization intrinsics in the
2038 // module, this pass has nothing to do. But if we are exporting, we also need
2039 // to handle any users that appear only in the function summaries.
2040 if (!ExportSummary &&
2041 (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
2042 AssumeFunc->use_empty()) &&
2043 (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
2044 return false;
2046 // Rebuild type metadata into a map for easy lookup.
2047 std::vector<VTableBits> Bits;
2048 DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
2049 buildTypeIdentifierMap(Bits, TypeIdMap);
2051 if (TypeTestFunc && AssumeFunc)
2052 scanTypeTestUsers(TypeTestFunc, TypeIdMap);
2054 if (TypeCheckedLoadFunc)
2055 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
2057 if (ImportSummary) {
2058 for (auto &S : CallSlots)
2059 importResolution(S.first, S.second);
2061 removeRedundantTypeTests();
2063 // We have lowered or deleted the type instrinsics, so we will no
2064 // longer have enough information to reason about the liveness of virtual
2065 // function pointers in GlobalDCE.
2066 for (GlobalVariable &GV : M.globals())
2067 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2069 // The rest of the code is only necessary when exporting or during regular
2070 // LTO, so we are done.
2071 return true;
2074 if (TypeIdMap.empty())
2075 return true;
2077 // Collect information from summary about which calls to try to devirtualize.
2078 if (ExportSummary) {
2079 DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
2080 for (auto &P : TypeIdMap) {
2081 if (auto *TypeId = dyn_cast<MDString>(P.first))
2082 MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
2083 TypeId);
2086 for (auto &P : *ExportSummary) {
2087 for (auto &S : P.second.SummaryList) {
2088 auto *FS = dyn_cast<FunctionSummary>(S.get());
2089 if (!FS)
2090 continue;
2091 // FIXME: Only add live functions.
2092 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2093 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2094 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2097 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2098 for (Metadata *MD : MetadataByGUID[VF.GUID]) {
2099 CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2102 for (const FunctionSummary::ConstVCall &VC :
2103 FS->type_test_assume_const_vcalls()) {
2104 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2105 CallSlots[{MD, VC.VFunc.Offset}]
2106 .ConstCSInfo[VC.Args]
2107 .addSummaryTypeTestAssumeUser(FS);
2110 for (const FunctionSummary::ConstVCall &VC :
2111 FS->type_checked_load_const_vcalls()) {
2112 for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
2113 CallSlots[{MD, VC.VFunc.Offset}]
2114 .ConstCSInfo[VC.Args]
2115 .addSummaryTypeCheckedLoadUser(FS);
2122 // For each (type, offset) pair:
2123 bool DidVirtualConstProp = false;
2124 std::map<std::string, Function*> DevirtTargets;
2125 for (auto &S : CallSlots) {
2126 // Search each of the members of the type identifier for the virtual
2127 // function implementation at offset S.first.ByteOffset, and add to
2128 // TargetsForSlot.
2129 std::vector<VirtualCallTarget> TargetsForSlot;
2130 WholeProgramDevirtResolution *Res = nullptr;
2131 const std::set<TypeMemberInfo> &TypeMemberInfos = TypeIdMap[S.first.TypeID];
2132 if (ExportSummary && isa<MDString>(S.first.TypeID) &&
2133 TypeMemberInfos.size())
2134 // For any type id used on a global's type metadata, create the type id
2135 // summary resolution regardless of whether we can devirtualize, so that
2136 // lower type tests knows the type id is not Unsat. If it was not used on
2137 // a global's type metadata, the TypeIdMap entry set will be empty, and
2138 // we don't want to create an entry (with the default Unknown type
2139 // resolution), which can prevent detection of the Unsat.
2140 Res = &ExportSummary
2141 ->getOrInsertTypeIdSummary(
2142 cast<MDString>(S.first.TypeID)->getString())
2143 .WPDRes[S.first.ByteOffset];
2144 if (tryFindVirtualCallTargets(TargetsForSlot, TypeMemberInfos,
2145 S.first.ByteOffset)) {
2147 if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
2148 DidVirtualConstProp |=
2149 tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
2151 tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
2154 // Collect functions devirtualized at least for one call site for stats.
2155 if (RemarksEnabled)
2156 for (const auto &T : TargetsForSlot)
2157 if (T.WasDevirt)
2158 DevirtTargets[std::string(T.Fn->getName())] = T.Fn;
2161 // CFI-specific: if we are exporting and any llvm.type.checked.load
2162 // intrinsics were *not* devirtualized, we need to add the resulting
2163 // llvm.type.test intrinsics to the function summaries so that the
2164 // LowerTypeTests pass will export them.
2165 if (ExportSummary && isa<MDString>(S.first.TypeID)) {
2166 auto GUID =
2167 GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
2168 for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
2169 FS->addTypeTest(GUID);
2170 for (auto &CCS : S.second.ConstCSInfo)
2171 for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
2172 FS->addTypeTest(GUID);
2176 if (RemarksEnabled) {
2177 // Generate remarks for each devirtualized function.
2178 for (const auto &DT : DevirtTargets) {
2179 Function *F = DT.second;
2181 using namespace ore;
2182 OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
2183 << "devirtualized "
2184 << NV("FunctionName", DT.first));
2188 removeRedundantTypeTests();
2190 // Rebuild each global we touched as part of virtual constant propagation to
2191 // include the before and after bytes.
2192 if (DidVirtualConstProp)
2193 for (VTableBits &B : Bits)
2194 rebuildGlobal(B);
2196 // We have lowered or deleted the type instrinsics, so we will no
2197 // longer have enough information to reason about the liveness of virtual
2198 // function pointers in GlobalDCE.
2199 for (GlobalVariable &GV : M.globals())
2200 GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
2202 return true;
2205 void DevirtIndex::run() {
2206 if (ExportSummary.typeIdCompatibleVtableMap().empty())
2207 return;
2209 DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
2210 for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
2211 NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
2214 // Collect information from summary about which calls to try to devirtualize.
2215 for (auto &P : ExportSummary) {
2216 for (auto &S : P.second.SummaryList) {
2217 auto *FS = dyn_cast<FunctionSummary>(S.get());
2218 if (!FS)
2219 continue;
2220 // FIXME: Only add live functions.
2221 for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
2222 for (StringRef Name : NameByGUID[VF.GUID]) {
2223 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
2226 for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
2227 for (StringRef Name : NameByGUID[VF.GUID]) {
2228 CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
2231 for (const FunctionSummary::ConstVCall &VC :
2232 FS->type_test_assume_const_vcalls()) {
2233 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2234 CallSlots[{Name, VC.VFunc.Offset}]
2235 .ConstCSInfo[VC.Args]
2236 .addSummaryTypeTestAssumeUser(FS);
2239 for (const FunctionSummary::ConstVCall &VC :
2240 FS->type_checked_load_const_vcalls()) {
2241 for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
2242 CallSlots[{Name, VC.VFunc.Offset}]
2243 .ConstCSInfo[VC.Args]
2244 .addSummaryTypeCheckedLoadUser(FS);
2250 std::set<ValueInfo> DevirtTargets;
2251 // For each (type, offset) pair:
2252 for (auto &S : CallSlots) {
2253 // Search each of the members of the type identifier for the virtual
2254 // function implementation at offset S.first.ByteOffset, and add to
2255 // TargetsForSlot.
2256 std::vector<ValueInfo> TargetsForSlot;
2257 auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
2258 assert(TidSummary);
2259 // Create the type id summary resolution regardlness of whether we can
2260 // devirtualize, so that lower type tests knows the type id is used on
2261 // a global and not Unsat.
2262 WholeProgramDevirtResolution *Res =
2263 &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2264 .WPDRes[S.first.ByteOffset];
2265 if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
2266 S.first.ByteOffset)) {
2268 if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2269 DevirtTargets))
2270 continue;
2274 // Optionally have the thin link print message for each devirtualized
2275 // function.
2276 if (PrintSummaryDevirt)
2277 for (const auto &DT : DevirtTargets)
2278 errs() << "Devirtualized call to " << DT << "\n";