1 //===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements whole program optimization of virtual calls in cases
10 // where we know (via !type metadata) that the list of callees is fixed. This
11 // includes the following:
12 // - Single implementation devirtualization: if a virtual call has a single
13 // possible callee, replace all calls with a direct call to that callee.
14 // - Virtual constant propagation: if the virtual function's return type is an
15 // integer <=64 bits and all possible callees are readnone, for each class and
16 // each list of constant arguments: evaluate the function, store the return
17 // value alongside the virtual table, and rewrite each virtual call as a load
18 // from the virtual table.
19 // - Uniform return value optimization: if the conditions for virtual constant
20 // propagation hold and each function returns the same constant value, replace
21 // each virtual call with that constant.
22 // - Unique return value optimization for i1 return values: if the conditions
23 // for virtual constant propagation hold and a single vtable's function
24 // returns 0, or a single vtable's function returns 1, replace each virtual
25 // call with a comparison of the vptr against that vtable's address.
27 // This pass is intended to be used during the regular and thin LTO pipelines:
29 // During regular LTO, the pass determines the best optimization for each
30 // virtual call and applies the resolutions directly to virtual calls that are
31 // eligible for virtual call optimization (i.e. calls that use either of the
32 // llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
34 // During hybrid Regular/ThinLTO, the pass operates in two phases:
35 // - Export phase: this is run during the thin link over a single merged module
36 // that contains all vtables with !type metadata that participate in the link.
37 // The pass computes a resolution for each virtual call and stores it in the
38 // type identifier summary.
39 // - Import phase: this is run during the thin backends over the individual
40 // modules. The pass applies the resolutions previously computed during the
41 // import phase to each eligible virtual call.
43 // During ThinLTO, the pass operates in two phases:
44 // - Export phase: this is run during the thin link over the index which
45 // contains a summary of all vtables with !type metadata that participate in
46 // the link. It computes a resolution for each virtual call and stores it in
47 // the type identifier summary. Only single implementation devirtualization
49 // - Import phase: (same as with hybrid case above).
51 //===----------------------------------------------------------------------===//
53 #include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/DenseMap.h"
56 #include "llvm/ADT/DenseMapInfo.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/MapVector.h"
59 #include "llvm/ADT/SmallVector.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/iterator_range.h"
62 #include "llvm/Analysis/AssumptionCache.h"
63 #include "llvm/Analysis/BasicAliasAnalysis.h"
64 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
65 #include "llvm/Analysis/TypeMetadataUtils.h"
66 #include "llvm/Bitcode/BitcodeReader.h"
67 #include "llvm/Bitcode/BitcodeWriter.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugLoc.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/IRBuilder.h"
77 #include "llvm/IR/InstrTypes.h"
78 #include "llvm/IR/Instruction.h"
79 #include "llvm/IR/Instructions.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/ModuleSummaryIndexYAML.h"
85 #include "llvm/InitializePasses.h"
86 #include "llvm/Pass.h"
87 #include "llvm/PassRegistry.h"
88 #include "llvm/Support/Casting.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Errc.h"
91 #include "llvm/Support/Error.h"
92 #include "llvm/Support/FileSystem.h"
93 #include "llvm/Support/GlobPattern.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Transforms/IPO.h"
96 #include "llvm/Transforms/IPO/FunctionAttrs.h"
97 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
98 #include "llvm/Transforms/Utils/Evaluator.h"
105 using namespace llvm
;
106 using namespace wholeprogramdevirt
;
108 #define DEBUG_TYPE "wholeprogramdevirt"
110 static cl::opt
<PassSummaryAction
> ClSummaryAction(
111 "wholeprogramdevirt-summary-action",
112 cl::desc("What to do with the summary when running this pass"),
113 cl::values(clEnumValN(PassSummaryAction::None
, "none", "Do nothing"),
114 clEnumValN(PassSummaryAction::Import
, "import",
115 "Import typeid resolutions from summary and globals"),
116 clEnumValN(PassSummaryAction::Export
, "export",
117 "Export typeid resolutions to summary and globals")),
120 static cl::opt
<std::string
> ClReadSummary(
121 "wholeprogramdevirt-read-summary",
123 "Read summary from given bitcode or YAML file before running pass"),
126 static cl::opt
<std::string
> ClWriteSummary(
127 "wholeprogramdevirt-write-summary",
128 cl::desc("Write summary to given bitcode or YAML file after running pass. "
129 "Output file format is deduced from extension: *.bc means writing "
130 "bitcode, otherwise YAML"),
133 static cl::opt
<unsigned>
134 ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden
,
135 cl::init(10), cl::ZeroOrMore
,
136 cl::desc("Maximum number of call targets per "
137 "call site to enable branch funnels"));
140 PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden
,
141 cl::init(false), cl::ZeroOrMore
,
142 cl::desc("Print index-based devirtualization messages"));
144 /// Provide a way to force enable whole program visibility in tests.
145 /// This is needed to support legacy tests that don't contain
146 /// !vcall_visibility metadata (the mere presense of type tests
147 /// previously implied hidden visibility).
149 WholeProgramVisibility("whole-program-visibility", cl::init(false),
150 cl::Hidden
, cl::ZeroOrMore
,
151 cl::desc("Enable whole program visibility"));
153 /// Provide a way to force disable whole program for debugging or workarounds,
154 /// when enabled via the linker.
155 static cl::opt
<bool> DisableWholeProgramVisibility(
156 "disable-whole-program-visibility", cl::init(false), cl::Hidden
,
158 cl::desc("Disable whole program visibility (overrides enabling options)"));
160 /// Provide way to prevent certain function from being devirtualized
161 static cl::list
<std::string
>
162 SkipFunctionNames("wholeprogramdevirt-skip",
163 cl::desc("Prevent function(s) from being devirtualized"),
164 cl::Hidden
, cl::ZeroOrMore
, cl::CommaSeparated
);
166 /// Mechanism to add runtime checking of devirtualization decisions, trapping on
167 /// any that are not correct. Useful for debugging undefined behavior leading to
168 /// failures with WPD.
170 CheckDevirt("wholeprogramdevirt-check", cl::init(false), cl::Hidden
,
172 cl::desc("Add code to trap on incorrect devirtualizations"));
176 std::vector
<GlobPattern
> Patterns
;
177 template <class T
> void init(const T
&StringList
) {
178 for (const auto &S
: StringList
)
179 if (Expected
<GlobPattern
> Pat
= GlobPattern::create(S
))
180 Patterns
.push_back(std::move(*Pat
));
182 bool match(StringRef S
) {
183 for (const GlobPattern
&P
: Patterns
)
191 // Find the minimum offset that we may store a value of size Size bits at. If
192 // IsAfter is set, look for an offset before the object, otherwise look for an
193 // offset after the object.
195 wholeprogramdevirt::findLowestOffset(ArrayRef
<VirtualCallTarget
> Targets
,
196 bool IsAfter
, uint64_t Size
) {
197 // Find a minimum offset taking into account only vtable sizes.
198 uint64_t MinByte
= 0;
199 for (const VirtualCallTarget
&Target
: Targets
) {
201 MinByte
= std::max(MinByte
, Target
.minAfterBytes());
203 MinByte
= std::max(MinByte
, Target
.minBeforeBytes());
206 // Build a vector of arrays of bytes covering, for each target, a slice of the
207 // used region (see AccumBitVector::BytesUsed in
208 // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
209 // this aligns the used regions to start at MinByte.
211 // In this example, A, B and C are vtables, # is a byte already allocated for
212 // a virtual function pointer, AAAA... (etc.) are the used regions for the
213 // vtables and Offset(X) is the value computed for the Offset variable below
219 // A: ################AAAAAAAA|AAAAAAAA
220 // B: ########BBBBBBBBBBBBBBBB|BBBB
221 // C: ########################|CCCCCCCCCCCCCCCC
224 // This code produces the slices of A, B and C that appear after the divider
226 std::vector
<ArrayRef
<uint8_t>> Used
;
227 for (const VirtualCallTarget
&Target
: Targets
) {
228 ArrayRef
<uint8_t> VTUsed
= IsAfter
? Target
.TM
->Bits
->After
.BytesUsed
229 : Target
.TM
->Bits
->Before
.BytesUsed
;
230 uint64_t Offset
= IsAfter
? MinByte
- Target
.minAfterBytes()
231 : MinByte
- Target
.minBeforeBytes();
233 // Disregard used regions that are smaller than Offset. These are
234 // effectively all-free regions that do not need to be checked.
235 if (VTUsed
.size() > Offset
)
236 Used
.push_back(VTUsed
.slice(Offset
));
240 // Find a free bit in each member of Used.
241 for (unsigned I
= 0;; ++I
) {
242 uint8_t BitsUsed
= 0;
243 for (auto &&B
: Used
)
246 if (BitsUsed
!= 0xff)
247 return (MinByte
+ I
) * 8 +
248 countTrailingZeros(uint8_t(~BitsUsed
), ZB_Undefined
);
251 // Find a free (Size/8) byte region in each member of Used.
252 // FIXME: see if alignment helps.
253 for (unsigned I
= 0;; ++I
) {
254 for (auto &&B
: Used
) {
256 while ((I
+ Byte
) < B
.size() && Byte
< (Size
/ 8)) {
262 return (MinByte
+ I
) * 8;
268 void wholeprogramdevirt::setBeforeReturnValues(
269 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocBefore
,
270 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
272 OffsetByte
= -(AllocBefore
/ 8 + 1);
274 OffsetByte
= -((AllocBefore
+ 7) / 8 + (BitWidth
+ 7) / 8);
275 OffsetBit
= AllocBefore
% 8;
277 for (VirtualCallTarget
&Target
: Targets
) {
279 Target
.setBeforeBit(AllocBefore
);
281 Target
.setBeforeBytes(AllocBefore
, (BitWidth
+ 7) / 8);
285 void wholeprogramdevirt::setAfterReturnValues(
286 MutableArrayRef
<VirtualCallTarget
> Targets
, uint64_t AllocAfter
,
287 unsigned BitWidth
, int64_t &OffsetByte
, uint64_t &OffsetBit
) {
289 OffsetByte
= AllocAfter
/ 8;
291 OffsetByte
= (AllocAfter
+ 7) / 8;
292 OffsetBit
= AllocAfter
% 8;
294 for (VirtualCallTarget
&Target
: Targets
) {
296 Target
.setAfterBit(AllocAfter
);
298 Target
.setAfterBytes(AllocAfter
, (BitWidth
+ 7) / 8);
302 VirtualCallTarget::VirtualCallTarget(Function
*Fn
, const TypeMemberInfo
*TM
)
304 IsBigEndian(Fn
->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
308 // A slot in a set of virtual tables. The TypeID identifies the set of virtual
309 // tables, and the ByteOffset is the offset in bytes from the address point to
310 // the virtual function pointer.
316 } // end anonymous namespace
320 template <> struct DenseMapInfo
<VTableSlot
> {
321 static VTableSlot
getEmptyKey() {
322 return {DenseMapInfo
<Metadata
*>::getEmptyKey(),
323 DenseMapInfo
<uint64_t>::getEmptyKey()};
325 static VTableSlot
getTombstoneKey() {
326 return {DenseMapInfo
<Metadata
*>::getTombstoneKey(),
327 DenseMapInfo
<uint64_t>::getTombstoneKey()};
329 static unsigned getHashValue(const VTableSlot
&I
) {
330 return DenseMapInfo
<Metadata
*>::getHashValue(I
.TypeID
) ^
331 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
333 static bool isEqual(const VTableSlot
&LHS
,
334 const VTableSlot
&RHS
) {
335 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
339 template <> struct DenseMapInfo
<VTableSlotSummary
> {
340 static VTableSlotSummary
getEmptyKey() {
341 return {DenseMapInfo
<StringRef
>::getEmptyKey(),
342 DenseMapInfo
<uint64_t>::getEmptyKey()};
344 static VTableSlotSummary
getTombstoneKey() {
345 return {DenseMapInfo
<StringRef
>::getTombstoneKey(),
346 DenseMapInfo
<uint64_t>::getTombstoneKey()};
348 static unsigned getHashValue(const VTableSlotSummary
&I
) {
349 return DenseMapInfo
<StringRef
>::getHashValue(I
.TypeID
) ^
350 DenseMapInfo
<uint64_t>::getHashValue(I
.ByteOffset
);
352 static bool isEqual(const VTableSlotSummary
&LHS
,
353 const VTableSlotSummary
&RHS
) {
354 return LHS
.TypeID
== RHS
.TypeID
&& LHS
.ByteOffset
== RHS
.ByteOffset
;
358 } // end namespace llvm
362 // A virtual call site. VTable is the loaded virtual table pointer, and CS is
363 // the indirect virtual call.
364 struct VirtualCallSite
{
365 Value
*VTable
= nullptr;
368 // If non-null, this field points to the associated unsafe use count stored in
369 // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
370 // of that field for details.
371 unsigned *NumUnsafeUses
= nullptr;
374 emitRemark(const StringRef OptName
, const StringRef TargetName
,
375 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
) {
376 Function
*F
= CB
.getCaller();
377 DebugLoc DLoc
= CB
.getDebugLoc();
378 BasicBlock
*Block
= CB
.getParent();
381 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, OptName
, DLoc
, Block
)
382 << NV("Optimization", OptName
)
383 << ": devirtualized a call to "
384 << NV("FunctionName", TargetName
));
387 void replaceAndErase(
388 const StringRef OptName
, const StringRef TargetName
, bool RemarksEnabled
,
389 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
392 emitRemark(OptName
, TargetName
, OREGetter
);
393 CB
.replaceAllUsesWith(New
);
394 if (auto *II
= dyn_cast
<InvokeInst
>(&CB
)) {
395 BranchInst::Create(II
->getNormalDest(), &CB
);
396 II
->getUnwindDest()->removePredecessor(II
->getParent());
398 CB
.eraseFromParent();
399 // This use is no longer unsafe.
405 // Call site information collected for a specific VTableSlot and possibly a list
406 // of constant integer arguments. The grouping by arguments is handled by the
407 // VTableSlotInfo class.
408 struct CallSiteInfo
{
409 /// The set of call sites for this slot. Used during regular LTO and the
410 /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
411 /// call sites that appear in the merged module itself); in each of these
412 /// cases we are directly operating on the call sites at the IR level.
413 std::vector
<VirtualCallSite
> CallSites
;
415 /// Whether all call sites represented by this CallSiteInfo, including those
416 /// in summaries, have been devirtualized. This starts off as true because a
417 /// default constructed CallSiteInfo represents no call sites.
418 bool AllCallSitesDevirted
= true;
420 // These fields are used during the export phase of ThinLTO and reflect
421 // information collected from function summaries.
423 /// Whether any function summary contains an llvm.assume(llvm.type.test) for
425 bool SummaryHasTypeTestAssumeUsers
= false;
427 /// CFI-specific: a vector containing the list of function summaries that use
428 /// the llvm.type.checked.load intrinsic and therefore will require
429 /// resolutions for llvm.type.test in order to implement CFI checks if
430 /// devirtualization was unsuccessful. If devirtualization was successful, the
431 /// pass will clear this vector by calling markDevirt(). If at the end of the
432 /// pass the vector is non-empty, we will need to add a use of llvm.type.test
433 /// to each of the function summaries in the vector.
434 std::vector
<FunctionSummary
*> SummaryTypeCheckedLoadUsers
;
435 std::vector
<FunctionSummary
*> SummaryTypeTestAssumeUsers
;
437 bool isExported() const {
438 return SummaryHasTypeTestAssumeUsers
||
439 !SummaryTypeCheckedLoadUsers
.empty();
442 void addSummaryTypeCheckedLoadUser(FunctionSummary
*FS
) {
443 SummaryTypeCheckedLoadUsers
.push_back(FS
);
444 AllCallSitesDevirted
= false;
447 void addSummaryTypeTestAssumeUser(FunctionSummary
*FS
) {
448 SummaryTypeTestAssumeUsers
.push_back(FS
);
449 SummaryHasTypeTestAssumeUsers
= true;
450 AllCallSitesDevirted
= false;
454 AllCallSitesDevirted
= true;
456 // As explained in the comment for SummaryTypeCheckedLoadUsers.
457 SummaryTypeCheckedLoadUsers
.clear();
461 // Call site information collected for a specific VTableSlot.
462 struct VTableSlotInfo
{
463 // The set of call sites which do not have all constant integer arguments
464 // (excluding "this").
467 // The set of call sites with all constant integer arguments (excluding
468 // "this"), grouped by argument list.
469 std::map
<std::vector
<uint64_t>, CallSiteInfo
> ConstCSInfo
;
471 void addCallSite(Value
*VTable
, CallBase
&CB
, unsigned *NumUnsafeUses
);
474 CallSiteInfo
&findCallSiteInfo(CallBase
&CB
);
477 CallSiteInfo
&VTableSlotInfo::findCallSiteInfo(CallBase
&CB
) {
478 std::vector
<uint64_t> Args
;
479 auto *CBType
= dyn_cast
<IntegerType
>(CB
.getType());
480 if (!CBType
|| CBType
->getBitWidth() > 64 || CB
.arg_empty())
482 for (auto &&Arg
: drop_begin(CB
.args())) {
483 auto *CI
= dyn_cast
<ConstantInt
>(Arg
);
484 if (!CI
|| CI
->getBitWidth() > 64)
486 Args
.push_back(CI
->getZExtValue());
488 return ConstCSInfo
[Args
];
491 void VTableSlotInfo::addCallSite(Value
*VTable
, CallBase
&CB
,
492 unsigned *NumUnsafeUses
) {
493 auto &CSI
= findCallSiteInfo(CB
);
494 CSI
.AllCallSitesDevirted
= false;
495 CSI
.CallSites
.push_back({VTable
, CB
, NumUnsafeUses
});
498 struct DevirtModule
{
500 function_ref
<AAResults
&(Function
&)> AARGetter
;
501 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
;
503 ModuleSummaryIndex
*ExportSummary
;
504 const ModuleSummaryIndex
*ImportSummary
;
507 PointerType
*Int8PtrTy
;
508 IntegerType
*Int32Ty
;
509 IntegerType
*Int64Ty
;
510 IntegerType
*IntPtrTy
;
511 /// Sizeless array type, used for imported vtables. This provides a signal
512 /// to analyzers that these imports may alias, as they do for example
513 /// when multiple unique return values occur in the same vtable.
514 ArrayType
*Int8Arr0Ty
;
517 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
;
519 MapVector
<VTableSlot
, VTableSlotInfo
> CallSlots
;
521 // Calls that have already been optimized. We may add a call to multiple
522 // VTableSlotInfos if vtable loads are coalesced and need to make sure not to
523 // optimize a call more than once.
524 SmallPtrSet
<CallBase
*, 8> OptimizedCalls
;
526 // This map keeps track of the number of "unsafe" uses of a loaded function
527 // pointer. The key is the associated llvm.type.test intrinsic call generated
528 // by this pass. An unsafe use is one that calls the loaded function pointer
529 // directly. Every time we eliminate an unsafe use (for example, by
530 // devirtualizing it or by applying virtual constant propagation), we
531 // decrement the value stored in this map. If a value reaches zero, we can
532 // eliminate the type check by RAUWing the associated llvm.type.test call with
534 std::map
<CallInst
*, unsigned> NumUnsafeUsesForTypeTest
;
535 PatternList FunctionsToSkip
;
537 DevirtModule(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
538 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
539 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
,
540 ModuleSummaryIndex
*ExportSummary
,
541 const ModuleSummaryIndex
*ImportSummary
)
542 : M(M
), AARGetter(AARGetter
), LookupDomTree(LookupDomTree
),
543 ExportSummary(ExportSummary
), ImportSummary(ImportSummary
),
544 Int8Ty(Type::getInt8Ty(M
.getContext())),
545 Int8PtrTy(Type::getInt8PtrTy(M
.getContext())),
546 Int32Ty(Type::getInt32Ty(M
.getContext())),
547 Int64Ty(Type::getInt64Ty(M
.getContext())),
548 IntPtrTy(M
.getDataLayout().getIntPtrType(M
.getContext(), 0)),
549 Int8Arr0Ty(ArrayType::get(Type::getInt8Ty(M
.getContext()), 0)),
550 RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter
) {
551 assert(!(ExportSummary
&& ImportSummary
));
552 FunctionsToSkip
.init(SkipFunctionNames
);
555 bool areRemarksEnabled();
558 scanTypeTestUsers(Function
*TypeTestFunc
,
559 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
560 void scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
);
562 void buildTypeIdentifierMap(
563 std::vector
<VTableBits
> &Bits
,
564 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
);
566 tryFindVirtualCallTargets(std::vector
<VirtualCallTarget
> &TargetsForSlot
,
567 const std::set
<TypeMemberInfo
> &TypeMemberInfos
,
568 uint64_t ByteOffset
);
570 void applySingleImplDevirt(VTableSlotInfo
&SlotInfo
, Constant
*TheFn
,
572 bool trySingleImplDevirt(ModuleSummaryIndex
*ExportSummary
,
573 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
574 VTableSlotInfo
&SlotInfo
,
575 WholeProgramDevirtResolution
*Res
);
577 void applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
, Constant
*JT
,
579 void tryICallBranchFunnel(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
580 VTableSlotInfo
&SlotInfo
,
581 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
583 bool tryEvaluateFunctionsWithArgs(
584 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
585 ArrayRef
<uint64_t> Args
);
587 void applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
589 bool tryUniformRetValOpt(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
590 CallSiteInfo
&CSInfo
,
591 WholeProgramDevirtResolution::ByArg
*Res
);
593 // Returns the global symbol name that is used to export information about the
594 // given vtable slot and list of arguments.
595 std::string
getGlobalName(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
598 bool shouldExportConstantsAsAbsoluteSymbols();
600 // This function is called during the export phase to create a symbol
601 // definition containing information about the given vtable slot and list of
603 void exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
605 void exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
, StringRef Name
,
606 uint32_t Const
, uint32_t &Storage
);
608 // This function is called during the import phase to create a reference to
609 // the symbol definition created during the export phase.
610 Constant
*importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
612 Constant
*importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
613 StringRef Name
, IntegerType
*IntTy
,
616 Constant
*getMemberAddr(const TypeMemberInfo
*M
);
618 void applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
, bool IsOne
,
619 Constant
*UniqueMemberAddr
);
620 bool tryUniqueRetValOpt(unsigned BitWidth
,
621 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
622 CallSiteInfo
&CSInfo
,
623 WholeProgramDevirtResolution::ByArg
*Res
,
624 VTableSlot Slot
, ArrayRef
<uint64_t> Args
);
626 void applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
627 Constant
*Byte
, Constant
*Bit
);
628 bool tryVirtualConstProp(MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
629 VTableSlotInfo
&SlotInfo
,
630 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
);
632 void rebuildGlobal(VTableBits
&B
);
634 // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
635 void importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
);
637 // If we were able to eliminate all unsafe uses for a type checked load,
638 // eliminate the associated type tests by replacing them with true.
639 void removeRedundantTypeTests();
643 // Lower the module using the action and summary passed as command line
644 // arguments. For testing purposes only.
646 runForTesting(Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
647 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
648 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
);
652 ModuleSummaryIndex
&ExportSummary
;
653 // The set in which to record GUIDs exported from their module by
654 // devirtualization, used by client to ensure they are not internalized.
655 std::set
<GlobalValue::GUID
> &ExportedGUIDs
;
656 // A map in which to record the information necessary to locate the WPD
657 // resolution for local targets in case they are exported by cross module
659 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
;
661 MapVector
<VTableSlotSummary
, VTableSlotInfo
> CallSlots
;
663 PatternList FunctionsToSkip
;
666 ModuleSummaryIndex
&ExportSummary
,
667 std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
668 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
)
669 : ExportSummary(ExportSummary
), ExportedGUIDs(ExportedGUIDs
),
670 LocalWPDTargetsMap(LocalWPDTargetsMap
) {
671 FunctionsToSkip
.init(SkipFunctionNames
);
674 bool tryFindVirtualCallTargets(std::vector
<ValueInfo
> &TargetsForSlot
,
675 const TypeIdCompatibleVtableInfo TIdInfo
,
676 uint64_t ByteOffset
);
678 bool trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
679 VTableSlotSummary
&SlotSummary
,
680 VTableSlotInfo
&SlotInfo
,
681 WholeProgramDevirtResolution
*Res
,
682 std::set
<ValueInfo
> &DevirtTargets
);
687 struct WholeProgramDevirt
: public ModulePass
{
690 bool UseCommandLine
= false;
692 ModuleSummaryIndex
*ExportSummary
= nullptr;
693 const ModuleSummaryIndex
*ImportSummary
= nullptr;
695 WholeProgramDevirt() : ModulePass(ID
), UseCommandLine(true) {
696 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
699 WholeProgramDevirt(ModuleSummaryIndex
*ExportSummary
,
700 const ModuleSummaryIndex
*ImportSummary
)
701 : ModulePass(ID
), ExportSummary(ExportSummary
),
702 ImportSummary(ImportSummary
) {
703 initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
706 bool runOnModule(Module
&M
) override
{
710 // In the new pass manager, we can request the optimization
711 // remark emitter pass on a per-function-basis, which the
712 // OREGetter will do for us.
713 // In the old pass manager, this is harder, so we just build
714 // an optimization remark emitter on the fly, when we need it.
715 std::unique_ptr
<OptimizationRemarkEmitter
> ORE
;
716 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
717 ORE
= std::make_unique
<OptimizationRemarkEmitter
>(F
);
721 auto LookupDomTree
= [this](Function
&F
) -> DominatorTree
& {
722 return this->getAnalysis
<DominatorTreeWrapperPass
>(F
).getDomTree();
726 return DevirtModule::runForTesting(M
, LegacyAARGetter(*this), OREGetter
,
729 return DevirtModule(M
, LegacyAARGetter(*this), OREGetter
, LookupDomTree
,
730 ExportSummary
, ImportSummary
)
734 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
735 AU
.addRequired
<AssumptionCacheTracker
>();
736 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
737 AU
.addRequired
<DominatorTreeWrapperPass
>();
741 } // end anonymous namespace
743 INITIALIZE_PASS_BEGIN(WholeProgramDevirt
, "wholeprogramdevirt",
744 "Whole program devirtualization", false, false)
745 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
746 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
747 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
748 INITIALIZE_PASS_END(WholeProgramDevirt
, "wholeprogramdevirt",
749 "Whole program devirtualization", false, false)
750 char WholeProgramDevirt::ID
= 0;
753 llvm::createWholeProgramDevirtPass(ModuleSummaryIndex
*ExportSummary
,
754 const ModuleSummaryIndex
*ImportSummary
) {
755 return new WholeProgramDevirt(ExportSummary
, ImportSummary
);
758 PreservedAnalyses
WholeProgramDevirtPass::run(Module
&M
,
759 ModuleAnalysisManager
&AM
) {
760 auto &FAM
= AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
761 auto AARGetter
= [&](Function
&F
) -> AAResults
& {
762 return FAM
.getResult
<AAManager
>(F
);
764 auto OREGetter
= [&](Function
*F
) -> OptimizationRemarkEmitter
& {
765 return FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(*F
);
767 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
768 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
770 if (UseCommandLine
) {
771 if (DevirtModule::runForTesting(M
, AARGetter
, OREGetter
, LookupDomTree
))
772 return PreservedAnalyses::all();
773 return PreservedAnalyses::none();
775 if (!DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
, ExportSummary
,
778 return PreservedAnalyses::all();
779 return PreservedAnalyses::none();
782 // Enable whole program visibility if enabled by client (e.g. linker) or
783 // internal option, and not force disabled.
784 static bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO
) {
785 return (WholeProgramVisibilityEnabledInLTO
|| WholeProgramVisibility
) &&
786 !DisableWholeProgramVisibility
;
791 /// If whole program visibility asserted, then upgrade all public vcall
792 /// visibility metadata on vtable definitions to linkage unit visibility in
793 /// Module IR (for regular or hybrid LTO).
794 void updateVCallVisibilityInModule(
795 Module
&M
, bool WholeProgramVisibilityEnabledInLTO
,
796 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
) {
797 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
799 for (GlobalVariable
&GV
: M
.globals())
800 // Add linkage unit visibility to any variable with type metadata, which are
801 // the vtable definitions. We won't have an existing vcall_visibility
802 // metadata on vtable definitions with public visibility.
803 if (GV
.hasMetadata(LLVMContext::MD_type
) &&
804 GV
.getVCallVisibility() == GlobalObject::VCallVisibilityPublic
&&
805 // Don't upgrade the visibility for symbols exported to the dynamic
806 // linker, as we have no information on their eventual use.
807 !DynamicExportSymbols
.count(GV
.getGUID()))
808 GV
.setVCallVisibilityMetadata(GlobalObject::VCallVisibilityLinkageUnit
);
811 /// If whole program visibility asserted, then upgrade all public vcall
812 /// visibility metadata on vtable definition summaries to linkage unit
813 /// visibility in Module summary index (for ThinLTO).
814 void updateVCallVisibilityInIndex(
815 ModuleSummaryIndex
&Index
, bool WholeProgramVisibilityEnabledInLTO
,
816 const DenseSet
<GlobalValue::GUID
> &DynamicExportSymbols
) {
817 if (!hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO
))
819 for (auto &P
: Index
) {
820 for (auto &S
: P
.second
.SummaryList
) {
821 auto *GVar
= dyn_cast
<GlobalVarSummary
>(S
.get());
823 GVar
->getVCallVisibility() != GlobalObject::VCallVisibilityPublic
||
824 // Don't upgrade the visibility for symbols exported to the dynamic
825 // linker, as we have no information on their eventual use.
826 DynamicExportSymbols
.count(P
.first
))
828 GVar
->setVCallVisibility(GlobalObject::VCallVisibilityLinkageUnit
);
833 void runWholeProgramDevirtOnIndex(
834 ModuleSummaryIndex
&Summary
, std::set
<GlobalValue::GUID
> &ExportedGUIDs
,
835 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
836 DevirtIndex(Summary
, ExportedGUIDs
, LocalWPDTargetsMap
).run();
839 void updateIndexWPDForExports(
840 ModuleSummaryIndex
&Summary
,
841 function_ref
<bool(StringRef
, ValueInfo
)> isExported
,
842 std::map
<ValueInfo
, std::vector
<VTableSlotSummary
>> &LocalWPDTargetsMap
) {
843 for (auto &T
: LocalWPDTargetsMap
) {
845 // This was enforced earlier during trySingleImplDevirt.
846 assert(VI
.getSummaryList().size() == 1 &&
847 "Devirt of local target has more than one copy");
848 auto &S
= VI
.getSummaryList()[0];
849 if (!isExported(S
->modulePath(), VI
))
852 // It's been exported by a cross module import.
853 for (auto &SlotSummary
: T
.second
) {
854 auto *TIdSum
= Summary
.getTypeIdSummary(SlotSummary
.TypeID
);
856 auto WPDRes
= TIdSum
->WPDRes
.find(SlotSummary
.ByteOffset
);
857 assert(WPDRes
!= TIdSum
->WPDRes
.end());
858 WPDRes
->second
.SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
859 WPDRes
->second
.SingleImplName
,
860 Summary
.getModuleHash(S
->modulePath()));
865 } // end namespace llvm
867 static Error
checkCombinedSummaryForTesting(ModuleSummaryIndex
*Summary
) {
868 // Check that summary index contains regular LTO module when performing
869 // export to prevent occasional use of index from pure ThinLTO compilation
870 // (-fno-split-lto-module). This kind of summary index is passed to
871 // DevirtIndex::run, not to DevirtModule::run used by opt/runForTesting.
872 const auto &ModPaths
= Summary
->modulePaths();
873 if (ClSummaryAction
!= PassSummaryAction::Import
&&
874 ModPaths
.find(ModuleSummaryIndex::getRegularLTOModuleName()) ==
876 return createStringError(
877 errc::invalid_argument
,
878 "combined summary should contain Regular LTO module");
879 return ErrorSuccess();
882 bool DevirtModule::runForTesting(
883 Module
&M
, function_ref
<AAResults
&(Function
&)> AARGetter
,
884 function_ref
<OptimizationRemarkEmitter
&(Function
*)> OREGetter
,
885 function_ref
<DominatorTree
&(Function
&)> LookupDomTree
) {
886 std::unique_ptr
<ModuleSummaryIndex
> Summary
=
887 std::make_unique
<ModuleSummaryIndex
>(/*HaveGVs=*/false);
889 // Handle the command-line summary arguments. This code is for testing
890 // purposes only, so we handle errors directly.
891 if (!ClReadSummary
.empty()) {
892 ExitOnError
ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary
+
894 auto ReadSummaryFile
=
895 ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary
)));
896 if (Expected
<std::unique_ptr
<ModuleSummaryIndex
>> SummaryOrErr
=
897 getModuleSummaryIndex(*ReadSummaryFile
)) {
898 Summary
= std::move(*SummaryOrErr
);
899 ExitOnErr(checkCombinedSummaryForTesting(Summary
.get()));
901 // Try YAML if we've failed with bitcode.
902 consumeError(SummaryOrErr
.takeError());
903 yaml::Input
In(ReadSummaryFile
->getBuffer());
905 ExitOnErr(errorCodeToError(In
.error()));
910 DevirtModule(M
, AARGetter
, OREGetter
, LookupDomTree
,
911 ClSummaryAction
== PassSummaryAction::Export
? Summary
.get()
913 ClSummaryAction
== PassSummaryAction::Import
? Summary
.get()
917 if (!ClWriteSummary
.empty()) {
918 ExitOnError
ExitOnErr(
919 "-wholeprogramdevirt-write-summary: " + ClWriteSummary
+ ": ");
921 if (StringRef(ClWriteSummary
).endswith(".bc")) {
922 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_None
);
923 ExitOnErr(errorCodeToError(EC
));
924 WriteIndexToFile(*Summary
, OS
);
926 raw_fd_ostream
OS(ClWriteSummary
, EC
, sys::fs::OF_TextWithCRLF
);
927 ExitOnErr(errorCodeToError(EC
));
928 yaml::Output
Out(OS
);
936 void DevirtModule::buildTypeIdentifierMap(
937 std::vector
<VTableBits
> &Bits
,
938 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
939 DenseMap
<GlobalVariable
*, VTableBits
*> GVToBits
;
940 Bits
.reserve(M
.getGlobalList().size());
941 SmallVector
<MDNode
*, 2> Types
;
942 for (GlobalVariable
&GV
: M
.globals()) {
944 GV
.getMetadata(LLVMContext::MD_type
, Types
);
945 if (GV
.isDeclaration() || Types
.empty())
948 VTableBits
*&BitsPtr
= GVToBits
[&GV
];
951 Bits
.back().GV
= &GV
;
952 Bits
.back().ObjectSize
=
953 M
.getDataLayout().getTypeAllocSize(GV
.getInitializer()->getType());
954 BitsPtr
= &Bits
.back();
957 for (MDNode
*Type
: Types
) {
958 auto TypeID
= Type
->getOperand(1).get();
962 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
965 TypeIdMap
[TypeID
].insert({BitsPtr
, Offset
});
970 bool DevirtModule::tryFindVirtualCallTargets(
971 std::vector
<VirtualCallTarget
> &TargetsForSlot
,
972 const std::set
<TypeMemberInfo
> &TypeMemberInfos
, uint64_t ByteOffset
) {
973 for (const TypeMemberInfo
&TM
: TypeMemberInfos
) {
974 if (!TM
.Bits
->GV
->isConstant())
977 // We cannot perform whole program devirtualization analysis on a vtable
978 // with public LTO visibility.
979 if (TM
.Bits
->GV
->getVCallVisibility() ==
980 GlobalObject::VCallVisibilityPublic
)
983 Constant
*Ptr
= getPointerAtOffset(TM
.Bits
->GV
->getInitializer(),
984 TM
.Offset
+ ByteOffset
, M
);
988 auto Fn
= dyn_cast
<Function
>(Ptr
->stripPointerCasts());
992 if (FunctionsToSkip
.match(Fn
->getName()))
995 // We can disregard __cxa_pure_virtual as a possible call target, as
996 // calls to pure virtuals are UB.
997 if (Fn
->getName() == "__cxa_pure_virtual")
1000 TargetsForSlot
.push_back({Fn
, &TM
});
1003 // Give up if we couldn't find any targets.
1004 return !TargetsForSlot
.empty();
1007 bool DevirtIndex::tryFindVirtualCallTargets(
1008 std::vector
<ValueInfo
> &TargetsForSlot
, const TypeIdCompatibleVtableInfo TIdInfo
,
1009 uint64_t ByteOffset
) {
1010 for (const TypeIdOffsetVtableInfo
&P
: TIdInfo
) {
1011 // Find a representative copy of the vtable initializer.
1012 // We can have multiple available_externally, linkonce_odr and weak_odr
1013 // vtable initializers. We can also have multiple external vtable
1014 // initializers in the case of comdats, which we cannot check here.
1015 // The linker should give an error in this case.
1017 // Also, handle the case of same-named local Vtables with the same path
1018 // and therefore the same GUID. This can happen if there isn't enough
1019 // distinguishing path when compiling the source file. In that case we
1020 // conservatively return false early.
1021 const GlobalVarSummary
*VS
= nullptr;
1022 bool LocalFound
= false;
1023 for (auto &S
: P
.VTableVI
.getSummaryList()) {
1024 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1029 auto *CurVS
= cast
<GlobalVarSummary
>(S
->getBaseObject());
1030 if (!CurVS
->vTableFuncs().empty() ||
1031 // Previously clang did not attach the necessary type metadata to
1032 // available_externally vtables, in which case there would not
1033 // be any vtable functions listed in the summary and we need
1034 // to treat this case conservatively (in case the bitcode is old).
1035 // However, we will also not have any vtable functions in the
1036 // case of a pure virtual base class. In that case we do want
1037 // to set VS to avoid treating it conservatively.
1038 !GlobalValue::isAvailableExternallyLinkage(S
->linkage())) {
1040 // We cannot perform whole program devirtualization analysis on a vtable
1041 // with public LTO visibility.
1042 if (VS
->getVCallVisibility() == GlobalObject::VCallVisibilityPublic
)
1046 // There will be no VS if all copies are available_externally having no
1047 // type metadata. In that case we can't safely perform WPD.
1052 for (auto VTP
: VS
->vTableFuncs()) {
1053 if (VTP
.VTableOffset
!= P
.AddressPointOffset
+ ByteOffset
)
1056 TargetsForSlot
.push_back(VTP
.FuncVI
);
1060 // Give up if we couldn't find any targets.
1061 return !TargetsForSlot
.empty();
1064 void DevirtModule::applySingleImplDevirt(VTableSlotInfo
&SlotInfo
,
1065 Constant
*TheFn
, bool &IsExported
) {
1066 // Don't devirtualize function if we're told to skip it
1067 // in -wholeprogramdevirt-skip.
1068 if (FunctionsToSkip
.match(TheFn
->stripPointerCasts()->getName()))
1070 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1071 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1072 if (!OptimizedCalls
.insert(&VCallSite
.CB
).second
)
1076 VCallSite
.emitRemark("single-impl",
1077 TheFn
->stripPointerCasts()->getName(), OREGetter
);
1078 auto &CB
= VCallSite
.CB
;
1079 assert(!CB
.getCalledFunction() && "devirtualizing direct call?");
1080 IRBuilder
<> Builder(&CB
);
1082 Builder
.CreateBitCast(TheFn
, CB
.getCalledOperand()->getType());
1084 // If checking is enabled, add support to compare the virtual function
1085 // pointer to the devirtualized target. In case of a mismatch, perform a
1088 auto *Cond
= Builder
.CreateICmpNE(CB
.getCalledOperand(), Callee
);
1089 Instruction
*ThenTerm
=
1090 SplitBlockAndInsertIfThen(Cond
, &CB
, /*Unreachable=*/false);
1091 Builder
.SetInsertPoint(ThenTerm
);
1092 Function
*TrapFn
= Intrinsic::getDeclaration(&M
, Intrinsic::debugtrap
);
1093 auto *CallTrap
= Builder
.CreateCall(TrapFn
);
1094 CallTrap
->setDebugLoc(CB
.getDebugLoc());
1098 CB
.setCalledOperand(Callee
);
1100 // This use is no longer unsafe.
1101 if (VCallSite
.NumUnsafeUses
)
1102 --*VCallSite
.NumUnsafeUses
;
1104 if (CSInfo
.isExported())
1106 CSInfo
.markDevirt();
1108 Apply(SlotInfo
.CSInfo
);
1109 for (auto &P
: SlotInfo
.ConstCSInfo
)
1113 static bool AddCalls(VTableSlotInfo
&SlotInfo
, const ValueInfo
&Callee
) {
1114 // We can't add calls if we haven't seen a definition
1115 if (Callee
.getSummaryList().empty())
1118 // Insert calls into the summary index so that the devirtualized targets
1119 // are eligible for import.
1120 // FIXME: Annotate type tests with hotness. For now, mark these as hot
1121 // to better ensure we have the opportunity to inline them.
1122 bool IsExported
= false;
1123 auto &S
= Callee
.getSummaryList()[0];
1124 CalleeInfo
CI(CalleeInfo::HotnessType::Hot
, /* RelBF = */ 0);
1125 auto AddCalls
= [&](CallSiteInfo
&CSInfo
) {
1126 for (auto *FS
: CSInfo
.SummaryTypeCheckedLoadUsers
) {
1127 FS
->addCall({Callee
, CI
});
1128 IsExported
|= S
->modulePath() != FS
->modulePath();
1130 for (auto *FS
: CSInfo
.SummaryTypeTestAssumeUsers
) {
1131 FS
->addCall({Callee
, CI
});
1132 IsExported
|= S
->modulePath() != FS
->modulePath();
1135 AddCalls(SlotInfo
.CSInfo
);
1136 for (auto &P
: SlotInfo
.ConstCSInfo
)
1141 bool DevirtModule::trySingleImplDevirt(
1142 ModuleSummaryIndex
*ExportSummary
,
1143 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1144 WholeProgramDevirtResolution
*Res
) {
1145 // See if the program contains a single implementation of this virtual
1147 Function
*TheFn
= TargetsForSlot
[0].Fn
;
1148 for (auto &&Target
: TargetsForSlot
)
1149 if (TheFn
!= Target
.Fn
)
1152 // If so, update each call site to call that implementation directly.
1154 TargetsForSlot
[0].WasDevirt
= true;
1156 bool IsExported
= false;
1157 applySingleImplDevirt(SlotInfo
, TheFn
, IsExported
);
1161 // If the only implementation has local linkage, we must promote to external
1162 // to make it visible to thin LTO objects. We can only get here during the
1163 // ThinLTO export phase.
1164 if (TheFn
->hasLocalLinkage()) {
1165 std::string NewName
= (TheFn
->getName() + ".llvm.merged").str();
1167 // Since we are renaming the function, any comdats with the same name must
1168 // also be renamed. This is required when targeting COFF, as the comdat name
1169 // must match one of the names of the symbols in the comdat.
1170 if (Comdat
*C
= TheFn
->getComdat()) {
1171 if (C
->getName() == TheFn
->getName()) {
1172 Comdat
*NewC
= M
.getOrInsertComdat(NewName
);
1173 NewC
->setSelectionKind(C
->getSelectionKind());
1174 for (GlobalObject
&GO
: M
.global_objects())
1175 if (GO
.getComdat() == C
)
1180 TheFn
->setLinkage(GlobalValue::ExternalLinkage
);
1181 TheFn
->setVisibility(GlobalValue::HiddenVisibility
);
1182 TheFn
->setName(NewName
);
1184 if (ValueInfo TheFnVI
= ExportSummary
->getValueInfo(TheFn
->getGUID()))
1185 // Any needed promotion of 'TheFn' has already been done during
1186 // LTO unit split, so we can ignore return value of AddCalls.
1187 AddCalls(SlotInfo
, TheFnVI
);
1189 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1190 Res
->SingleImplName
= std::string(TheFn
->getName());
1195 bool DevirtIndex::trySingleImplDevirt(MutableArrayRef
<ValueInfo
> TargetsForSlot
,
1196 VTableSlotSummary
&SlotSummary
,
1197 VTableSlotInfo
&SlotInfo
,
1198 WholeProgramDevirtResolution
*Res
,
1199 std::set
<ValueInfo
> &DevirtTargets
) {
1200 // See if the program contains a single implementation of this virtual
1202 auto TheFn
= TargetsForSlot
[0];
1203 for (auto &&Target
: TargetsForSlot
)
1204 if (TheFn
!= Target
)
1207 // Don't devirtualize if we don't have target definition.
1208 auto Size
= TheFn
.getSummaryList().size();
1212 // Don't devirtualize function if we're told to skip it
1213 // in -wholeprogramdevirt-skip.
1214 if (FunctionsToSkip
.match(TheFn
.name()))
1217 // If the summary list contains multiple summaries where at least one is
1218 // a local, give up, as we won't know which (possibly promoted) name to use.
1219 for (auto &S
: TheFn
.getSummaryList())
1220 if (GlobalValue::isLocalLinkage(S
->linkage()) && Size
> 1)
1223 // Collect functions devirtualized at least for one call site for stats.
1224 if (PrintSummaryDevirt
)
1225 DevirtTargets
.insert(TheFn
);
1227 auto &S
= TheFn
.getSummaryList()[0];
1228 bool IsExported
= AddCalls(SlotInfo
, TheFn
);
1230 ExportedGUIDs
.insert(TheFn
.getGUID());
1232 // Record in summary for use in devirtualization during the ThinLTO import
1234 Res
->TheKind
= WholeProgramDevirtResolution::SingleImpl
;
1235 if (GlobalValue::isLocalLinkage(S
->linkage())) {
1237 // If target is a local function and we are exporting it by
1238 // devirtualizing a call in another module, we need to record the
1240 Res
->SingleImplName
= ModuleSummaryIndex::getGlobalNameForLocal(
1241 TheFn
.name(), ExportSummary
.getModuleHash(S
->modulePath()));
1243 LocalWPDTargetsMap
[TheFn
].push_back(SlotSummary
);
1244 Res
->SingleImplName
= std::string(TheFn
.name());
1247 Res
->SingleImplName
= std::string(TheFn
.name());
1249 // Name will be empty if this thin link driven off of serialized combined
1250 // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1251 // legacy LTO API anyway.
1252 assert(!Res
->SingleImplName
.empty());
1257 void DevirtModule::tryICallBranchFunnel(
1258 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1259 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1260 Triple
T(M
.getTargetTriple());
1261 if (T
.getArch() != Triple::x86_64
)
1264 if (TargetsForSlot
.size() > ClThreshold
)
1267 bool HasNonDevirt
= !SlotInfo
.CSInfo
.AllCallSitesDevirted
;
1269 for (auto &P
: SlotInfo
.ConstCSInfo
)
1270 if (!P
.second
.AllCallSitesDevirted
) {
1271 HasNonDevirt
= true;
1279 FunctionType::get(Type::getVoidTy(M
.getContext()), {Int8PtrTy
}, true);
1281 if (isa
<MDString
>(Slot
.TypeID
)) {
1282 JT
= Function::Create(FT
, Function::ExternalLinkage
,
1283 M
.getDataLayout().getProgramAddressSpace(),
1284 getGlobalName(Slot
, {}, "branch_funnel"), &M
);
1285 JT
->setVisibility(GlobalValue::HiddenVisibility
);
1287 JT
= Function::Create(FT
, Function::InternalLinkage
,
1288 M
.getDataLayout().getProgramAddressSpace(),
1289 "branch_funnel", &M
);
1291 JT
->addParamAttr(0, Attribute::Nest
);
1293 std::vector
<Value
*> JTArgs
;
1294 JTArgs
.push_back(JT
->arg_begin());
1295 for (auto &T
: TargetsForSlot
) {
1296 JTArgs
.push_back(getMemberAddr(T
.TM
));
1297 JTArgs
.push_back(T
.Fn
);
1300 BasicBlock
*BB
= BasicBlock::Create(M
.getContext(), "", JT
, nullptr);
1302 Intrinsic::getDeclaration(&M
, llvm::Intrinsic::icall_branch_funnel
, {});
1304 auto *CI
= CallInst::Create(Intr
, JTArgs
, "", BB
);
1305 CI
->setTailCallKind(CallInst::TCK_MustTail
);
1306 ReturnInst::Create(M
.getContext(), nullptr, BB
);
1308 bool IsExported
= false;
1309 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
1311 Res
->TheKind
= WholeProgramDevirtResolution::BranchFunnel
;
1314 void DevirtModule::applyICallBranchFunnel(VTableSlotInfo
&SlotInfo
,
1315 Constant
*JT
, bool &IsExported
) {
1316 auto Apply
= [&](CallSiteInfo
&CSInfo
) {
1317 if (CSInfo
.isExported())
1319 if (CSInfo
.AllCallSitesDevirted
)
1321 for (auto &&VCallSite
: CSInfo
.CallSites
) {
1322 CallBase
&CB
= VCallSite
.CB
;
1324 // Jump tables are only profitable if the retpoline mitigation is enabled.
1325 Attribute FSAttr
= CB
.getCaller()->getFnAttribute("target-features");
1326 if (!FSAttr
.isValid() ||
1327 !FSAttr
.getValueAsString().contains("+retpoline"))
1331 VCallSite
.emitRemark("branch-funnel",
1332 JT
->stripPointerCasts()->getName(), OREGetter
);
1334 // Pass the address of the vtable in the nest register, which is r10 on
1336 std::vector
<Type
*> NewArgs
;
1337 NewArgs
.push_back(Int8PtrTy
);
1338 append_range(NewArgs
, CB
.getFunctionType()->params());
1339 FunctionType
*NewFT
=
1340 FunctionType::get(CB
.getFunctionType()->getReturnType(), NewArgs
,
1341 CB
.getFunctionType()->isVarArg());
1342 PointerType
*NewFTPtr
= PointerType::getUnqual(NewFT
);
1344 IRBuilder
<> IRB(&CB
);
1345 std::vector
<Value
*> Args
;
1346 Args
.push_back(IRB
.CreateBitCast(VCallSite
.VTable
, Int8PtrTy
));
1347 llvm::append_range(Args
, CB
.args());
1349 CallBase
*NewCS
= nullptr;
1350 if (isa
<CallInst
>(CB
))
1351 NewCS
= IRB
.CreateCall(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
), Args
);
1353 NewCS
= IRB
.CreateInvoke(NewFT
, IRB
.CreateBitCast(JT
, NewFTPtr
),
1354 cast
<InvokeInst
>(CB
).getNormalDest(),
1355 cast
<InvokeInst
>(CB
).getUnwindDest(), Args
);
1356 NewCS
->setCallingConv(CB
.getCallingConv());
1358 AttributeList Attrs
= CB
.getAttributes();
1359 std::vector
<AttributeSet
> NewArgAttrs
;
1360 NewArgAttrs
.push_back(AttributeSet::get(
1361 M
.getContext(), ArrayRef
<Attribute
>{Attribute::get(
1362 M
.getContext(), Attribute::Nest
)}));
1363 for (unsigned I
= 0; I
+ 2 < Attrs
.getNumAttrSets(); ++I
)
1364 NewArgAttrs
.push_back(Attrs
.getParamAttrs(I
));
1365 NewCS
->setAttributes(
1366 AttributeList::get(M
.getContext(), Attrs
.getFnAttrs(),
1367 Attrs
.getRetAttrs(), NewArgAttrs
));
1369 CB
.replaceAllUsesWith(NewCS
);
1370 CB
.eraseFromParent();
1372 // This use is no longer unsafe.
1373 if (VCallSite
.NumUnsafeUses
)
1374 --*VCallSite
.NumUnsafeUses
;
1376 // Don't mark as devirtualized because there may be callers compiled without
1377 // retpoline mitigation, which would mean that they are lowered to
1378 // llvm.type.test and therefore require an llvm.type.test resolution for the
1381 Apply(SlotInfo
.CSInfo
);
1382 for (auto &P
: SlotInfo
.ConstCSInfo
)
1386 bool DevirtModule::tryEvaluateFunctionsWithArgs(
1387 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1388 ArrayRef
<uint64_t> Args
) {
1389 // Evaluate each function and store the result in each target's RetVal
1391 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1392 if (Target
.Fn
->arg_size() != Args
.size() + 1)
1395 Evaluator
Eval(M
.getDataLayout(), nullptr);
1396 SmallVector
<Constant
*, 2> EvalArgs
;
1398 Constant::getNullValue(Target
.Fn
->getFunctionType()->getParamType(0)));
1399 for (unsigned I
= 0; I
!= Args
.size(); ++I
) {
1400 auto *ArgTy
= dyn_cast
<IntegerType
>(
1401 Target
.Fn
->getFunctionType()->getParamType(I
+ 1));
1404 EvalArgs
.push_back(ConstantInt::get(ArgTy
, Args
[I
]));
1408 if (!Eval
.EvaluateFunction(Target
.Fn
, RetVal
, EvalArgs
) ||
1409 !isa
<ConstantInt
>(RetVal
))
1411 Target
.RetVal
= cast
<ConstantInt
>(RetVal
)->getZExtValue();
1416 void DevirtModule::applyUniformRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1417 uint64_t TheRetVal
) {
1418 for (auto Call
: CSInfo
.CallSites
) {
1419 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1421 Call
.replaceAndErase(
1422 "uniform-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1423 ConstantInt::get(cast
<IntegerType
>(Call
.CB
.getType()), TheRetVal
));
1425 CSInfo
.markDevirt();
1428 bool DevirtModule::tryUniformRetValOpt(
1429 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, CallSiteInfo
&CSInfo
,
1430 WholeProgramDevirtResolution::ByArg
*Res
) {
1431 // Uniform return value optimization. If all functions return the same
1432 // constant, replace all calls with that constant.
1433 uint64_t TheRetVal
= TargetsForSlot
[0].RetVal
;
1434 for (const VirtualCallTarget
&Target
: TargetsForSlot
)
1435 if (Target
.RetVal
!= TheRetVal
)
1438 if (CSInfo
.isExported()) {
1439 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniformRetVal
;
1440 Res
->Info
= TheRetVal
;
1443 applyUniformRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), TheRetVal
);
1445 for (auto &&Target
: TargetsForSlot
)
1446 Target
.WasDevirt
= true;
1450 std::string
DevirtModule::getGlobalName(VTableSlot Slot
,
1451 ArrayRef
<uint64_t> Args
,
1453 std::string FullName
= "__typeid_";
1454 raw_string_ostream
OS(FullName
);
1455 OS
<< cast
<MDString
>(Slot
.TypeID
)->getString() << '_' << Slot
.ByteOffset
;
1456 for (uint64_t Arg
: Args
)
1462 bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1463 Triple
T(M
.getTargetTriple());
1464 return T
.isX86() && T
.getObjectFormat() == Triple::ELF
;
1467 void DevirtModule::exportGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1468 StringRef Name
, Constant
*C
) {
1469 GlobalAlias
*GA
= GlobalAlias::create(Int8Ty
, 0, GlobalValue::ExternalLinkage
,
1470 getGlobalName(Slot
, Args
, Name
), C
, &M
);
1471 GA
->setVisibility(GlobalValue::HiddenVisibility
);
1474 void DevirtModule::exportConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1475 StringRef Name
, uint32_t Const
,
1476 uint32_t &Storage
) {
1477 if (shouldExportConstantsAsAbsoluteSymbols()) {
1480 ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty
, Const
), Int8PtrTy
));
1487 Constant
*DevirtModule::importGlobal(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1490 M
.getOrInsertGlobal(getGlobalName(Slot
, Args
, Name
), Int8Arr0Ty
);
1491 auto *GV
= dyn_cast
<GlobalVariable
>(C
);
1493 GV
->setVisibility(GlobalValue::HiddenVisibility
);
1497 Constant
*DevirtModule::importConstant(VTableSlot Slot
, ArrayRef
<uint64_t> Args
,
1498 StringRef Name
, IntegerType
*IntTy
,
1500 if (!shouldExportConstantsAsAbsoluteSymbols())
1501 return ConstantInt::get(IntTy
, Storage
);
1503 Constant
*C
= importGlobal(Slot
, Args
, Name
);
1504 auto *GV
= cast
<GlobalVariable
>(C
->stripPointerCasts());
1505 C
= ConstantExpr::getPtrToInt(C
, IntTy
);
1507 // We only need to set metadata if the global is newly created, in which
1508 // case it would not have hidden visibility.
1509 if (GV
->hasMetadata(LLVMContext::MD_absolute_symbol
))
1512 auto SetAbsRange
= [&](uint64_t Min
, uint64_t Max
) {
1513 auto *MinC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Min
));
1514 auto *MaxC
= ConstantAsMetadata::get(ConstantInt::get(IntPtrTy
, Max
));
1515 GV
->setMetadata(LLVMContext::MD_absolute_symbol
,
1516 MDNode::get(M
.getContext(), {MinC
, MaxC
}));
1518 unsigned AbsWidth
= IntTy
->getBitWidth();
1519 if (AbsWidth
== IntPtrTy
->getBitWidth())
1520 SetAbsRange(~0ull, ~0ull); // Full set.
1522 SetAbsRange(0, 1ull << AbsWidth
);
1526 void DevirtModule::applyUniqueRetValOpt(CallSiteInfo
&CSInfo
, StringRef FnName
,
1528 Constant
*UniqueMemberAddr
) {
1529 for (auto &&Call
: CSInfo
.CallSites
) {
1530 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1532 IRBuilder
<> B(&Call
.CB
);
1534 B
.CreateICmp(IsOne
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
, Call
.VTable
,
1535 B
.CreateBitCast(UniqueMemberAddr
, Call
.VTable
->getType()));
1536 Cmp
= B
.CreateZExt(Cmp
, Call
.CB
.getType());
1537 Call
.replaceAndErase("unique-ret-val", FnName
, RemarksEnabled
, OREGetter
,
1540 CSInfo
.markDevirt();
1543 Constant
*DevirtModule::getMemberAddr(const TypeMemberInfo
*M
) {
1544 Constant
*C
= ConstantExpr::getBitCast(M
->Bits
->GV
, Int8PtrTy
);
1545 return ConstantExpr::getGetElementPtr(Int8Ty
, C
,
1546 ConstantInt::get(Int64Ty
, M
->Offset
));
1549 bool DevirtModule::tryUniqueRetValOpt(
1550 unsigned BitWidth
, MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
,
1551 CallSiteInfo
&CSInfo
, WholeProgramDevirtResolution::ByArg
*Res
,
1552 VTableSlot Slot
, ArrayRef
<uint64_t> Args
) {
1553 // IsOne controls whether we look for a 0 or a 1.
1554 auto tryUniqueRetValOptFor
= [&](bool IsOne
) {
1555 const TypeMemberInfo
*UniqueMember
= nullptr;
1556 for (const VirtualCallTarget
&Target
: TargetsForSlot
) {
1557 if (Target
.RetVal
== (IsOne
? 1 : 0)) {
1560 UniqueMember
= Target
.TM
;
1564 // We should have found a unique member or bailed out by now. We already
1565 // checked for a uniform return value in tryUniformRetValOpt.
1566 assert(UniqueMember
);
1568 Constant
*UniqueMemberAddr
= getMemberAddr(UniqueMember
);
1569 if (CSInfo
.isExported()) {
1570 Res
->TheKind
= WholeProgramDevirtResolution::ByArg::UniqueRetVal
;
1573 exportGlobal(Slot
, Args
, "unique_member", UniqueMemberAddr
);
1576 // Replace each call with the comparison.
1577 applyUniqueRetValOpt(CSInfo
, TargetsForSlot
[0].Fn
->getName(), IsOne
,
1580 // Update devirtualization statistics for targets.
1582 for (auto &&Target
: TargetsForSlot
)
1583 Target
.WasDevirt
= true;
1588 if (BitWidth
== 1) {
1589 if (tryUniqueRetValOptFor(true))
1591 if (tryUniqueRetValOptFor(false))
1597 void DevirtModule::applyVirtualConstProp(CallSiteInfo
&CSInfo
, StringRef FnName
,
1598 Constant
*Byte
, Constant
*Bit
) {
1599 for (auto Call
: CSInfo
.CallSites
) {
1600 if (!OptimizedCalls
.insert(&Call
.CB
).second
)
1602 auto *RetType
= cast
<IntegerType
>(Call
.CB
.getType());
1603 IRBuilder
<> B(&Call
.CB
);
1605 B
.CreateGEP(Int8Ty
, B
.CreateBitCast(Call
.VTable
, Int8PtrTy
), Byte
);
1606 if (RetType
->getBitWidth() == 1) {
1607 Value
*Bits
= B
.CreateLoad(Int8Ty
, Addr
);
1608 Value
*BitsAndBit
= B
.CreateAnd(Bits
, Bit
);
1609 auto IsBitSet
= B
.CreateICmpNE(BitsAndBit
, ConstantInt::get(Int8Ty
, 0));
1610 Call
.replaceAndErase("virtual-const-prop-1-bit", FnName
, RemarksEnabled
,
1611 OREGetter
, IsBitSet
);
1613 Value
*ValAddr
= B
.CreateBitCast(Addr
, RetType
->getPointerTo());
1614 Value
*Val
= B
.CreateLoad(RetType
, ValAddr
);
1615 Call
.replaceAndErase("virtual-const-prop", FnName
, RemarksEnabled
,
1619 CSInfo
.markDevirt();
1622 bool DevirtModule::tryVirtualConstProp(
1623 MutableArrayRef
<VirtualCallTarget
> TargetsForSlot
, VTableSlotInfo
&SlotInfo
,
1624 WholeProgramDevirtResolution
*Res
, VTableSlot Slot
) {
1625 // This only works if the function returns an integer.
1626 auto RetType
= dyn_cast
<IntegerType
>(TargetsForSlot
[0].Fn
->getReturnType());
1629 unsigned BitWidth
= RetType
->getBitWidth();
1633 // Make sure that each function is defined, does not access memory, takes at
1634 // least one argument, does not use its first argument (which we assume is
1635 // 'this'), and has the same return type.
1637 // Note that we test whether this copy of the function is readnone, rather
1638 // than testing function attributes, which must hold for any copy of the
1639 // function, even a less optimized version substituted at link time. This is
1640 // sound because the virtual constant propagation optimizations effectively
1641 // inline all implementations of the virtual function into each call site,
1642 // rather than using function attributes to perform local optimization.
1643 for (VirtualCallTarget
&Target
: TargetsForSlot
) {
1644 if (Target
.Fn
->isDeclaration() ||
1645 computeFunctionBodyMemoryAccess(*Target
.Fn
, AARGetter(*Target
.Fn
)) !=
1647 Target
.Fn
->arg_empty() || !Target
.Fn
->arg_begin()->use_empty() ||
1648 Target
.Fn
->getReturnType() != RetType
)
1652 for (auto &&CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1653 if (!tryEvaluateFunctionsWithArgs(TargetsForSlot
, CSByConstantArg
.first
))
1656 WholeProgramDevirtResolution::ByArg
*ResByArg
= nullptr;
1658 ResByArg
= &Res
->ResByArg
[CSByConstantArg
.first
];
1660 if (tryUniformRetValOpt(TargetsForSlot
, CSByConstantArg
.second
, ResByArg
))
1663 if (tryUniqueRetValOpt(BitWidth
, TargetsForSlot
, CSByConstantArg
.second
,
1664 ResByArg
, Slot
, CSByConstantArg
.first
))
1667 // Find an allocation offset in bits in all vtables associated with the
1669 uint64_t AllocBefore
=
1670 findLowestOffset(TargetsForSlot
, /*IsAfter=*/false, BitWidth
);
1671 uint64_t AllocAfter
=
1672 findLowestOffset(TargetsForSlot
, /*IsAfter=*/true, BitWidth
);
1674 // Calculate the total amount of padding needed to store a value at both
1675 // ends of the object.
1676 uint64_t TotalPaddingBefore
= 0, TotalPaddingAfter
= 0;
1677 for (auto &&Target
: TargetsForSlot
) {
1678 TotalPaddingBefore
+= std::max
<int64_t>(
1679 (AllocBefore
+ 7) / 8 - Target
.allocatedBeforeBytes() - 1, 0);
1680 TotalPaddingAfter
+= std::max
<int64_t>(
1681 (AllocAfter
+ 7) / 8 - Target
.allocatedAfterBytes() - 1, 0);
1684 // If the amount of padding is too large, give up.
1685 // FIXME: do something smarter here.
1686 if (std::min(TotalPaddingBefore
, TotalPaddingAfter
) > 128)
1689 // Calculate the offset to the value as a (possibly negative) byte offset
1690 // and (if applicable) a bit offset, and store the values in the targets.
1693 if (TotalPaddingBefore
<= TotalPaddingAfter
)
1694 setBeforeReturnValues(TargetsForSlot
, AllocBefore
, BitWidth
, OffsetByte
,
1697 setAfterReturnValues(TargetsForSlot
, AllocAfter
, BitWidth
, OffsetByte
,
1701 for (auto &&Target
: TargetsForSlot
)
1702 Target
.WasDevirt
= true;
1705 if (CSByConstantArg
.second
.isExported()) {
1706 ResByArg
->TheKind
= WholeProgramDevirtResolution::ByArg::VirtualConstProp
;
1707 exportConstant(Slot
, CSByConstantArg
.first
, "byte", OffsetByte
,
1709 exportConstant(Slot
, CSByConstantArg
.first
, "bit", 1ULL << OffsetBit
,
1713 // Rewrite each call to a load from OffsetByte/OffsetBit.
1714 Constant
*ByteConst
= ConstantInt::get(Int32Ty
, OffsetByte
);
1715 Constant
*BitConst
= ConstantInt::get(Int8Ty
, 1ULL << OffsetBit
);
1716 applyVirtualConstProp(CSByConstantArg
.second
,
1717 TargetsForSlot
[0].Fn
->getName(), ByteConst
, BitConst
);
1722 void DevirtModule::rebuildGlobal(VTableBits
&B
) {
1723 if (B
.Before
.Bytes
.empty() && B
.After
.Bytes
.empty())
1726 // Align the before byte array to the global's minimum alignment so that we
1727 // don't break any alignment requirements on the global.
1728 Align Alignment
= M
.getDataLayout().getValueOrABITypeAlignment(
1729 B
.GV
->getAlign(), B
.GV
->getValueType());
1730 B
.Before
.Bytes
.resize(alignTo(B
.Before
.Bytes
.size(), Alignment
));
1732 // Before was stored in reverse order; flip it now.
1733 for (size_t I
= 0, Size
= B
.Before
.Bytes
.size(); I
!= Size
/ 2; ++I
)
1734 std::swap(B
.Before
.Bytes
[I
], B
.Before
.Bytes
[Size
- 1 - I
]);
1736 // Build an anonymous global containing the before bytes, followed by the
1737 // original initializer, followed by the after bytes.
1738 auto NewInit
= ConstantStruct::getAnon(
1739 {ConstantDataArray::get(M
.getContext(), B
.Before
.Bytes
),
1740 B
.GV
->getInitializer(),
1741 ConstantDataArray::get(M
.getContext(), B
.After
.Bytes
)});
1743 new GlobalVariable(M
, NewInit
->getType(), B
.GV
->isConstant(),
1744 GlobalVariable::PrivateLinkage
, NewInit
, "", B
.GV
);
1745 NewGV
->setSection(B
.GV
->getSection());
1746 NewGV
->setComdat(B
.GV
->getComdat());
1747 NewGV
->setAlignment(MaybeAlign(B
.GV
->getAlignment()));
1749 // Copy the original vtable's metadata to the anonymous global, adjusting
1750 // offsets as required.
1751 NewGV
->copyMetadata(B
.GV
, B
.Before
.Bytes
.size());
1753 // Build an alias named after the original global, pointing at the second
1754 // element (the original initializer).
1755 auto Alias
= GlobalAlias::create(
1756 B
.GV
->getInitializer()->getType(), 0, B
.GV
->getLinkage(), "",
1757 ConstantExpr::getGetElementPtr(
1758 NewInit
->getType(), NewGV
,
1759 ArrayRef
<Constant
*>{ConstantInt::get(Int32Ty
, 0),
1760 ConstantInt::get(Int32Ty
, 1)}),
1762 Alias
->setVisibility(B
.GV
->getVisibility());
1763 Alias
->takeName(B
.GV
);
1765 B
.GV
->replaceAllUsesWith(Alias
);
1766 B
.GV
->eraseFromParent();
1769 bool DevirtModule::areRemarksEnabled() {
1770 const auto &FL
= M
.getFunctionList();
1771 for (const Function
&Fn
: FL
) {
1772 const auto &BBL
= Fn
.getBasicBlockList();
1775 auto DI
= OptimizationRemark(DEBUG_TYPE
, "", DebugLoc(), &BBL
.front());
1776 return DI
.isEnabled();
1781 void DevirtModule::scanTypeTestUsers(
1782 Function
*TypeTestFunc
,
1783 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> &TypeIdMap
) {
1784 // Find all virtual calls via a virtual table pointer %p under an assumption
1785 // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1786 // points to a member of the type identifier %md. Group calls by (type ID,
1787 // offset) pair (effectively the identity of the virtual function) and store
1789 for (auto I
= TypeTestFunc
->use_begin(), E
= TypeTestFunc
->use_end();
1791 auto CI
= dyn_cast
<CallInst
>(I
->getUser());
1796 // Search for virtual calls based on %p and add them to DevirtCalls.
1797 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1798 SmallVector
<CallInst
*, 1> Assumes
;
1799 auto &DT
= LookupDomTree(*CI
->getFunction());
1800 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
1803 cast
<MetadataAsValue
>(CI
->getArgOperand(1))->getMetadata();
1804 // If we found any, add them to CallSlots.
1805 if (!Assumes
.empty()) {
1806 Value
*Ptr
= CI
->getArgOperand(0)->stripPointerCasts();
1807 for (DevirtCallSite Call
: DevirtCalls
)
1808 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
, nullptr);
1811 auto RemoveTypeTestAssumes
= [&]() {
1812 // We no longer need the assumes or the type test.
1813 for (auto Assume
: Assumes
)
1814 Assume
->eraseFromParent();
1815 // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1816 // may use the vtable argument later.
1817 if (CI
->use_empty())
1818 CI
->eraseFromParent();
1821 // At this point we could remove all type test assume sequences, as they
1822 // were originally inserted for WPD. However, we can keep these in the
1823 // code stream for later analysis (e.g. to help drive more efficient ICP
1824 // sequences). They will eventually be removed by a second LowerTypeTests
1825 // invocation that cleans them up. In order to do this correctly, the first
1826 // LowerTypeTests invocation needs to know that they have "Unknown" type
1827 // test resolution, so that they aren't treated as Unsat and lowered to
1828 // False, which will break any uses on assumes. Below we remove any type
1829 // test assumes that will not be treated as Unknown by LTT.
1831 // The type test assumes will be treated by LTT as Unsat if the type id is
1832 // not used on a global (in which case it has no entry in the TypeIdMap).
1833 if (!TypeIdMap
.count(TypeId
))
1834 RemoveTypeTestAssumes();
1836 // For ThinLTO importing, we need to remove the type test assumes if this is
1837 // an MDString type id without a corresponding TypeIdSummary. Any
1838 // non-MDString type ids are ignored and treated as Unknown by LTT, so their
1839 // type test assumes can be kept. If the MDString type id is missing a
1840 // TypeIdSummary (e.g. because there was no use on a vcall, preventing the
1841 // exporting phase of WPD from analyzing it), then it would be treated as
1842 // Unsat by LTT and we need to remove its type test assumes here. If not
1843 // used on a vcall we don't need them for later optimization use in any
1845 else if (ImportSummary
&& isa
<MDString
>(TypeId
)) {
1846 const TypeIdSummary
*TidSummary
=
1847 ImportSummary
->getTypeIdSummary(cast
<MDString
>(TypeId
)->getString());
1849 RemoveTypeTestAssumes();
1851 // If one was created it should not be Unsat, because if we reached here
1852 // the type id was used on a global.
1853 assert(TidSummary
->TTRes
.TheKind
!= TypeTestResolution::Unsat
);
1858 void DevirtModule::scanTypeCheckedLoadUsers(Function
*TypeCheckedLoadFunc
) {
1859 Function
*TypeTestFunc
= Intrinsic::getDeclaration(&M
, Intrinsic::type_test
);
1861 for (auto I
= TypeCheckedLoadFunc
->use_begin(),
1862 E
= TypeCheckedLoadFunc
->use_end();
1864 auto CI
= dyn_cast
<CallInst
>(I
->getUser());
1869 Value
*Ptr
= CI
->getArgOperand(0);
1870 Value
*Offset
= CI
->getArgOperand(1);
1871 Value
*TypeIdValue
= CI
->getArgOperand(2);
1872 Metadata
*TypeId
= cast
<MetadataAsValue
>(TypeIdValue
)->getMetadata();
1874 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
1875 SmallVector
<Instruction
*, 1> LoadedPtrs
;
1876 SmallVector
<Instruction
*, 1> Preds
;
1877 bool HasNonCallUses
= false;
1878 auto &DT
= LookupDomTree(*CI
->getFunction());
1879 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls
, LoadedPtrs
, Preds
,
1880 HasNonCallUses
, CI
, DT
);
1882 // Start by generating "pessimistic" code that explicitly loads the function
1883 // pointer from the vtable and performs the type check. If possible, we will
1884 // eliminate the load and the type check later.
1886 // If possible, only generate the load at the point where it is used.
1887 // This helps avoid unnecessary spills.
1889 (LoadedPtrs
.size() == 1 && !HasNonCallUses
) ? LoadedPtrs
[0] : CI
);
1890 Value
*GEP
= LoadB
.CreateGEP(Int8Ty
, Ptr
, Offset
);
1891 Value
*GEPPtr
= LoadB
.CreateBitCast(GEP
, PointerType::getUnqual(Int8PtrTy
));
1892 Value
*LoadedValue
= LoadB
.CreateLoad(Int8PtrTy
, GEPPtr
);
1894 for (Instruction
*LoadedPtr
: LoadedPtrs
) {
1895 LoadedPtr
->replaceAllUsesWith(LoadedValue
);
1896 LoadedPtr
->eraseFromParent();
1899 // Likewise for the type test.
1900 IRBuilder
<> CallB((Preds
.size() == 1 && !HasNonCallUses
) ? Preds
[0] : CI
);
1901 CallInst
*TypeTestCall
= CallB
.CreateCall(TypeTestFunc
, {Ptr
, TypeIdValue
});
1903 for (Instruction
*Pred
: Preds
) {
1904 Pred
->replaceAllUsesWith(TypeTestCall
);
1905 Pred
->eraseFromParent();
1908 // We have already erased any extractvalue instructions that refer to the
1909 // intrinsic call, but the intrinsic may have other non-extractvalue uses
1910 // (although this is unlikely). In that case, explicitly build a pair and
1912 if (!CI
->use_empty()) {
1913 Value
*Pair
= UndefValue::get(CI
->getType());
1915 Pair
= B
.CreateInsertValue(Pair
, LoadedValue
, {0});
1916 Pair
= B
.CreateInsertValue(Pair
, TypeTestCall
, {1});
1917 CI
->replaceAllUsesWith(Pair
);
1920 // The number of unsafe uses is initially the number of uses.
1921 auto &NumUnsafeUses
= NumUnsafeUsesForTypeTest
[TypeTestCall
];
1922 NumUnsafeUses
= DevirtCalls
.size();
1924 // If the function pointer has a non-call user, we cannot eliminate the type
1925 // check, as one of those users may eventually call the pointer. Increment
1926 // the unsafe use count to make sure it cannot reach zero.
1929 for (DevirtCallSite Call
: DevirtCalls
) {
1930 CallSlots
[{TypeId
, Call
.Offset
}].addCallSite(Ptr
, Call
.CB
,
1934 CI
->eraseFromParent();
1938 void DevirtModule::importResolution(VTableSlot Slot
, VTableSlotInfo
&SlotInfo
) {
1939 auto *TypeId
= dyn_cast
<MDString
>(Slot
.TypeID
);
1942 const TypeIdSummary
*TidSummary
=
1943 ImportSummary
->getTypeIdSummary(TypeId
->getString());
1946 auto ResI
= TidSummary
->WPDRes
.find(Slot
.ByteOffset
);
1947 if (ResI
== TidSummary
->WPDRes
.end())
1949 const WholeProgramDevirtResolution
&Res
= ResI
->second
;
1951 if (Res
.TheKind
== WholeProgramDevirtResolution::SingleImpl
) {
1952 assert(!Res
.SingleImplName
.empty());
1953 // The type of the function in the declaration is irrelevant because every
1954 // call site will cast it to the correct type.
1955 Constant
*SingleImpl
=
1956 cast
<Constant
>(M
.getOrInsertFunction(Res
.SingleImplName
,
1957 Type::getVoidTy(M
.getContext()))
1960 // This is the import phase so we should not be exporting anything.
1961 bool IsExported
= false;
1962 applySingleImplDevirt(SlotInfo
, SingleImpl
, IsExported
);
1963 assert(!IsExported
);
1966 for (auto &CSByConstantArg
: SlotInfo
.ConstCSInfo
) {
1967 auto I
= Res
.ResByArg
.find(CSByConstantArg
.first
);
1968 if (I
== Res
.ResByArg
.end())
1970 auto &ResByArg
= I
->second
;
1971 // FIXME: We should figure out what to do about the "function name" argument
1972 // to the apply* functions, as the function names are unavailable during the
1973 // importing phase. For now we just pass the empty string. This does not
1974 // impact correctness because the function names are just used for remarks.
1975 switch (ResByArg
.TheKind
) {
1976 case WholeProgramDevirtResolution::ByArg::UniformRetVal
:
1977 applyUniformRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
);
1979 case WholeProgramDevirtResolution::ByArg::UniqueRetVal
: {
1980 Constant
*UniqueMemberAddr
=
1981 importGlobal(Slot
, CSByConstantArg
.first
, "unique_member");
1982 applyUniqueRetValOpt(CSByConstantArg
.second
, "", ResByArg
.Info
,
1986 case WholeProgramDevirtResolution::ByArg::VirtualConstProp
: {
1987 Constant
*Byte
= importConstant(Slot
, CSByConstantArg
.first
, "byte",
1988 Int32Ty
, ResByArg
.Byte
);
1989 Constant
*Bit
= importConstant(Slot
, CSByConstantArg
.first
, "bit", Int8Ty
,
1991 applyVirtualConstProp(CSByConstantArg
.second
, "", Byte
, Bit
);
1999 if (Res
.TheKind
== WholeProgramDevirtResolution::BranchFunnel
) {
2000 // The type of the function is irrelevant, because it's bitcast at calls
2002 Constant
*JT
= cast
<Constant
>(
2003 M
.getOrInsertFunction(getGlobalName(Slot
, {}, "branch_funnel"),
2004 Type::getVoidTy(M
.getContext()))
2006 bool IsExported
= false;
2007 applyICallBranchFunnel(SlotInfo
, JT
, IsExported
);
2008 assert(!IsExported
);
2012 void DevirtModule::removeRedundantTypeTests() {
2013 auto True
= ConstantInt::getTrue(M
.getContext());
2014 for (auto &&U
: NumUnsafeUsesForTypeTest
) {
2015 if (U
.second
== 0) {
2016 U
.first
->replaceAllUsesWith(True
);
2017 U
.first
->eraseFromParent();
2022 bool DevirtModule::run() {
2023 // If only some of the modules were split, we cannot correctly perform
2024 // this transformation. We already checked for the presense of type tests
2025 // with partially split modules during the thin link, and would have emitted
2026 // an error if any were found, so here we can simply return.
2027 if ((ExportSummary
&& ExportSummary
->partiallySplitLTOUnits()) ||
2028 (ImportSummary
&& ImportSummary
->partiallySplitLTOUnits()))
2031 Function
*TypeTestFunc
=
2032 M
.getFunction(Intrinsic::getName(Intrinsic::type_test
));
2033 Function
*TypeCheckedLoadFunc
=
2034 M
.getFunction(Intrinsic::getName(Intrinsic::type_checked_load
));
2035 Function
*AssumeFunc
= M
.getFunction(Intrinsic::getName(Intrinsic::assume
));
2037 // Normally if there are no users of the devirtualization intrinsics in the
2038 // module, this pass has nothing to do. But if we are exporting, we also need
2039 // to handle any users that appear only in the function summaries.
2040 if (!ExportSummary
&&
2041 (!TypeTestFunc
|| TypeTestFunc
->use_empty() || !AssumeFunc
||
2042 AssumeFunc
->use_empty()) &&
2043 (!TypeCheckedLoadFunc
|| TypeCheckedLoadFunc
->use_empty()))
2046 // Rebuild type metadata into a map for easy lookup.
2047 std::vector
<VTableBits
> Bits
;
2048 DenseMap
<Metadata
*, std::set
<TypeMemberInfo
>> TypeIdMap
;
2049 buildTypeIdentifierMap(Bits
, TypeIdMap
);
2051 if (TypeTestFunc
&& AssumeFunc
)
2052 scanTypeTestUsers(TypeTestFunc
, TypeIdMap
);
2054 if (TypeCheckedLoadFunc
)
2055 scanTypeCheckedLoadUsers(TypeCheckedLoadFunc
);
2057 if (ImportSummary
) {
2058 for (auto &S
: CallSlots
)
2059 importResolution(S
.first
, S
.second
);
2061 removeRedundantTypeTests();
2063 // We have lowered or deleted the type instrinsics, so we will no
2064 // longer have enough information to reason about the liveness of virtual
2065 // function pointers in GlobalDCE.
2066 for (GlobalVariable
&GV
: M
.globals())
2067 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2069 // The rest of the code is only necessary when exporting or during regular
2070 // LTO, so we are done.
2074 if (TypeIdMap
.empty())
2077 // Collect information from summary about which calls to try to devirtualize.
2078 if (ExportSummary
) {
2079 DenseMap
<GlobalValue::GUID
, TinyPtrVector
<Metadata
*>> MetadataByGUID
;
2080 for (auto &P
: TypeIdMap
) {
2081 if (auto *TypeId
= dyn_cast
<MDString
>(P
.first
))
2082 MetadataByGUID
[GlobalValue::getGUID(TypeId
->getString())].push_back(
2086 for (auto &P
: *ExportSummary
) {
2087 for (auto &S
: P
.second
.SummaryList
) {
2088 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2091 // FIXME: Only add live functions.
2092 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2093 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2094 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2097 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2098 for (Metadata
*MD
: MetadataByGUID
[VF
.GUID
]) {
2099 CallSlots
[{MD
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2102 for (const FunctionSummary::ConstVCall
&VC
:
2103 FS
->type_test_assume_const_vcalls()) {
2104 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2105 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2106 .ConstCSInfo
[VC
.Args
]
2107 .addSummaryTypeTestAssumeUser(FS
);
2110 for (const FunctionSummary::ConstVCall
&VC
:
2111 FS
->type_checked_load_const_vcalls()) {
2112 for (Metadata
*MD
: MetadataByGUID
[VC
.VFunc
.GUID
]) {
2113 CallSlots
[{MD
, VC
.VFunc
.Offset
}]
2114 .ConstCSInfo
[VC
.Args
]
2115 .addSummaryTypeCheckedLoadUser(FS
);
2122 // For each (type, offset) pair:
2123 bool DidVirtualConstProp
= false;
2124 std::map
<std::string
, Function
*> DevirtTargets
;
2125 for (auto &S
: CallSlots
) {
2126 // Search each of the members of the type identifier for the virtual
2127 // function implementation at offset S.first.ByteOffset, and add to
2129 std::vector
<VirtualCallTarget
> TargetsForSlot
;
2130 WholeProgramDevirtResolution
*Res
= nullptr;
2131 const std::set
<TypeMemberInfo
> &TypeMemberInfos
= TypeIdMap
[S
.first
.TypeID
];
2132 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
) &&
2133 TypeMemberInfos
.size())
2134 // For any type id used on a global's type metadata, create the type id
2135 // summary resolution regardless of whether we can devirtualize, so that
2136 // lower type tests knows the type id is not Unsat. If it was not used on
2137 // a global's type metadata, the TypeIdMap entry set will be empty, and
2138 // we don't want to create an entry (with the default Unknown type
2139 // resolution), which can prevent detection of the Unsat.
2140 Res
= &ExportSummary
2141 ->getOrInsertTypeIdSummary(
2142 cast
<MDString
>(S
.first
.TypeID
)->getString())
2143 .WPDRes
[S
.first
.ByteOffset
];
2144 if (tryFindVirtualCallTargets(TargetsForSlot
, TypeMemberInfos
,
2145 S
.first
.ByteOffset
)) {
2147 if (!trySingleImplDevirt(ExportSummary
, TargetsForSlot
, S
.second
, Res
)) {
2148 DidVirtualConstProp
|=
2149 tryVirtualConstProp(TargetsForSlot
, S
.second
, Res
, S
.first
);
2151 tryICallBranchFunnel(TargetsForSlot
, S
.second
, Res
, S
.first
);
2154 // Collect functions devirtualized at least for one call site for stats.
2156 for (const auto &T
: TargetsForSlot
)
2158 DevirtTargets
[std::string(T
.Fn
->getName())] = T
.Fn
;
2161 // CFI-specific: if we are exporting and any llvm.type.checked.load
2162 // intrinsics were *not* devirtualized, we need to add the resulting
2163 // llvm.type.test intrinsics to the function summaries so that the
2164 // LowerTypeTests pass will export them.
2165 if (ExportSummary
&& isa
<MDString
>(S
.first
.TypeID
)) {
2167 GlobalValue::getGUID(cast
<MDString
>(S
.first
.TypeID
)->getString());
2168 for (auto FS
: S
.second
.CSInfo
.SummaryTypeCheckedLoadUsers
)
2169 FS
->addTypeTest(GUID
);
2170 for (auto &CCS
: S
.second
.ConstCSInfo
)
2171 for (auto FS
: CCS
.second
.SummaryTypeCheckedLoadUsers
)
2172 FS
->addTypeTest(GUID
);
2176 if (RemarksEnabled
) {
2177 // Generate remarks for each devirtualized function.
2178 for (const auto &DT
: DevirtTargets
) {
2179 Function
*F
= DT
.second
;
2181 using namespace ore
;
2182 OREGetter(F
).emit(OptimizationRemark(DEBUG_TYPE
, "Devirtualized", F
)
2184 << NV("FunctionName", DT
.first
));
2188 removeRedundantTypeTests();
2190 // Rebuild each global we touched as part of virtual constant propagation to
2191 // include the before and after bytes.
2192 if (DidVirtualConstProp
)
2193 for (VTableBits
&B
: Bits
)
2196 // We have lowered or deleted the type instrinsics, so we will no
2197 // longer have enough information to reason about the liveness of virtual
2198 // function pointers in GlobalDCE.
2199 for (GlobalVariable
&GV
: M
.globals())
2200 GV
.eraseMetadata(LLVMContext::MD_vcall_visibility
);
2205 void DevirtIndex::run() {
2206 if (ExportSummary
.typeIdCompatibleVtableMap().empty())
2209 DenseMap
<GlobalValue::GUID
, std::vector
<StringRef
>> NameByGUID
;
2210 for (auto &P
: ExportSummary
.typeIdCompatibleVtableMap()) {
2211 NameByGUID
[GlobalValue::getGUID(P
.first
)].push_back(P
.first
);
2214 // Collect information from summary about which calls to try to devirtualize.
2215 for (auto &P
: ExportSummary
) {
2216 for (auto &S
: P
.second
.SummaryList
) {
2217 auto *FS
= dyn_cast
<FunctionSummary
>(S
.get());
2220 // FIXME: Only add live functions.
2221 for (FunctionSummary::VFuncId VF
: FS
->type_test_assume_vcalls()) {
2222 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2223 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeTestAssumeUser(FS
);
2226 for (FunctionSummary::VFuncId VF
: FS
->type_checked_load_vcalls()) {
2227 for (StringRef Name
: NameByGUID
[VF
.GUID
]) {
2228 CallSlots
[{Name
, VF
.Offset
}].CSInfo
.addSummaryTypeCheckedLoadUser(FS
);
2231 for (const FunctionSummary::ConstVCall
&VC
:
2232 FS
->type_test_assume_const_vcalls()) {
2233 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2234 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2235 .ConstCSInfo
[VC
.Args
]
2236 .addSummaryTypeTestAssumeUser(FS
);
2239 for (const FunctionSummary::ConstVCall
&VC
:
2240 FS
->type_checked_load_const_vcalls()) {
2241 for (StringRef Name
: NameByGUID
[VC
.VFunc
.GUID
]) {
2242 CallSlots
[{Name
, VC
.VFunc
.Offset
}]
2243 .ConstCSInfo
[VC
.Args
]
2244 .addSummaryTypeCheckedLoadUser(FS
);
2250 std::set
<ValueInfo
> DevirtTargets
;
2251 // For each (type, offset) pair:
2252 for (auto &S
: CallSlots
) {
2253 // Search each of the members of the type identifier for the virtual
2254 // function implementation at offset S.first.ByteOffset, and add to
2256 std::vector
<ValueInfo
> TargetsForSlot
;
2257 auto TidSummary
= ExportSummary
.getTypeIdCompatibleVtableSummary(S
.first
.TypeID
);
2259 // Create the type id summary resolution regardlness of whether we can
2260 // devirtualize, so that lower type tests knows the type id is used on
2261 // a global and not Unsat.
2262 WholeProgramDevirtResolution
*Res
=
2263 &ExportSummary
.getOrInsertTypeIdSummary(S
.first
.TypeID
)
2264 .WPDRes
[S
.first
.ByteOffset
];
2265 if (tryFindVirtualCallTargets(TargetsForSlot
, *TidSummary
,
2266 S
.first
.ByteOffset
)) {
2268 if (!trySingleImplDevirt(TargetsForSlot
, S
.first
, S
.second
, Res
,
2274 // Optionally have the thin link print message for each devirtualized
2276 if (PrintSummaryDevirt
)
2277 for (const auto &DT
: DevirtTargets
)
2278 errs() << "Devirtualized call to " << DT
<< "\n";