1 //===- InstCombineCompares.cpp --------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitICmp and visitFCmp functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
30 using namespace PatternMatch
;
32 #define DEBUG_TYPE "instcombine"
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel
, "Number of select opts");
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
40 static bool addWithOverflow(APInt
&Result
, const APInt
&In1
,
41 const APInt
&In2
, bool IsSigned
= false) {
44 Result
= In1
.sadd_ov(In2
, Overflow
);
46 Result
= In1
.uadd_ov(In2
, Overflow
);
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
53 static bool subWithOverflow(APInt
&Result
, const APInt
&In1
,
54 const APInt
&In2
, bool IsSigned
= false) {
57 Result
= In1
.ssub_ov(In2
, Overflow
);
59 Result
= In1
.usub_ov(In2
, Overflow
);
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
66 static bool hasBranchUse(ICmpInst
&I
) {
67 for (auto *U
: I
.users())
68 if (isa
<BranchInst
>(U
))
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
77 static bool isSignTest(ICmpInst::Predicate
&Pred
, const APInt
&C
) {
78 if (!ICmpInst::isSigned(Pred
))
82 return ICmpInst::isRelational(Pred
);
85 if (Pred
== ICmpInst::ICMP_SLT
) {
86 Pred
= ICmpInst::ICMP_SLE
;
89 } else if (C
.isAllOnesValue()) {
90 if (Pred
== ICmpInst::ICMP_SGT
) {
91 Pred
= ICmpInst::ICMP_SGE
;
99 /// This is called when we see this pattern:
100 /// cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
,
109 GlobalVariable
*GV
, CmpInst
&ICI
,
110 ConstantInt
*AndCst
) {
111 Constant
*Init
= GV
->getInitializer();
112 if (!isa
<ConstantArray
>(Init
) && !isa
<ConstantDataArray
>(Init
))
115 uint64_t ArrayElementCount
= Init
->getType()->getArrayNumElements();
116 // Don't blow up on huge arrays.
117 if (ArrayElementCount
> MaxArraySizeForCombine
)
120 // There are many forms of this optimization we can handle, for now, just do
121 // the simple index into a single-dimensional array.
123 // Require: GEP GV, 0, i {{, constant indices}}
124 if (GEP
->getNumOperands() < 3 ||
125 !isa
<ConstantInt
>(GEP
->getOperand(1)) ||
126 !cast
<ConstantInt
>(GEP
->getOperand(1))->isZero() ||
127 isa
<Constant
>(GEP
->getOperand(2)))
130 // Check that indices after the variable are constants and in-range for the
131 // type they index. Collect the indices. This is typically for arrays of
133 SmallVector
<unsigned, 4> LaterIndices
;
135 Type
*EltTy
= Init
->getType()->getArrayElementType();
136 for (unsigned i
= 3, e
= GEP
->getNumOperands(); i
!= e
; ++i
) {
137 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
138 if (!Idx
) return nullptr; // Variable index.
140 uint64_t IdxVal
= Idx
->getZExtValue();
141 if ((unsigned)IdxVal
!= IdxVal
) return nullptr; // Too large array index.
143 if (StructType
*STy
= dyn_cast
<StructType
>(EltTy
))
144 EltTy
= STy
->getElementType(IdxVal
);
145 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(EltTy
)) {
146 if (IdxVal
>= ATy
->getNumElements()) return nullptr;
147 EltTy
= ATy
->getElementType();
149 return nullptr; // Unknown type.
152 LaterIndices
.push_back(IdxVal
);
155 enum { Overdefined
= -3, Undefined
= -2 };
157 // Variables for our state machines.
159 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161 // and 87 is the second (and last) index. FirstTrueElement is -2 when
162 // undefined, otherwise set to the first true element. SecondTrueElement is
163 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164 int FirstTrueElement
= Undefined
, SecondTrueElement
= Undefined
;
166 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167 // form "i != 47 & i != 87". Same state transitions as for true elements.
168 int FirstFalseElement
= Undefined
, SecondFalseElement
= Undefined
;
170 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171 /// define a state machine that triggers for ranges of values that the index
172 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
173 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174 /// index in the range (inclusive). We use -2 for undefined here because we
175 /// use relative comparisons and don't want 0-1 to match -1.
176 int TrueRangeEnd
= Undefined
, FalseRangeEnd
= Undefined
;
178 // MagicBitvector - This is a magic bitvector where we set a bit if the
179 // comparison is true for element 'i'. If there are 64 elements or less in
180 // the array, this will fully represent all the comparison results.
181 uint64_t MagicBitvector
= 0;
183 // Scan the array and see if one of our patterns matches.
184 Constant
*CompareRHS
= cast
<Constant
>(ICI
.getOperand(1));
185 for (unsigned i
= 0, e
= ArrayElementCount
; i
!= e
; ++i
) {
186 Constant
*Elt
= Init
->getAggregateElement(i
);
187 if (!Elt
) return nullptr;
189 // If this is indexing an array of structures, get the structure element.
190 if (!LaterIndices
.empty())
191 Elt
= ConstantExpr::getExtractValue(Elt
, LaterIndices
);
193 // If the element is masked, handle it.
194 if (AndCst
) Elt
= ConstantExpr::getAnd(Elt
, AndCst
);
196 // Find out if the comparison would be true or false for the i'th element.
197 Constant
*C
= ConstantFoldCompareInstOperands(ICI
.getPredicate(), Elt
,
198 CompareRHS
, DL
, &TLI
);
199 // If the result is undef for this element, ignore it.
200 if (isa
<UndefValue
>(C
)) {
201 // Extend range state machines to cover this element in case there is an
202 // undef in the middle of the range.
203 if (TrueRangeEnd
== (int)i
-1)
205 if (FalseRangeEnd
== (int)i
-1)
210 // If we can't compute the result for any of the elements, we have to give
211 // up evaluating the entire conditional.
212 if (!isa
<ConstantInt
>(C
)) return nullptr;
214 // Otherwise, we know if the comparison is true or false for this element,
215 // update our state machines.
216 bool IsTrueForElt
= !cast
<ConstantInt
>(C
)->isZero();
218 // State machine for single/double/range index comparison.
220 // Update the TrueElement state machine.
221 if (FirstTrueElement
== Undefined
)
222 FirstTrueElement
= TrueRangeEnd
= i
; // First true element.
224 // Update double-compare state machine.
225 if (SecondTrueElement
== Undefined
)
226 SecondTrueElement
= i
;
228 SecondTrueElement
= Overdefined
;
230 // Update range state machine.
231 if (TrueRangeEnd
== (int)i
-1)
234 TrueRangeEnd
= Overdefined
;
237 // Update the FalseElement state machine.
238 if (FirstFalseElement
== Undefined
)
239 FirstFalseElement
= FalseRangeEnd
= i
; // First false element.
241 // Update double-compare state machine.
242 if (SecondFalseElement
== Undefined
)
243 SecondFalseElement
= i
;
245 SecondFalseElement
= Overdefined
;
247 // Update range state machine.
248 if (FalseRangeEnd
== (int)i
-1)
251 FalseRangeEnd
= Overdefined
;
255 // If this element is in range, update our magic bitvector.
256 if (i
< 64 && IsTrueForElt
)
257 MagicBitvector
|= 1ULL << i
;
259 // If all of our states become overdefined, bail out early. Since the
260 // predicate is expensive, only check it every 8 elements. This is only
261 // really useful for really huge arrays.
262 if ((i
& 8) == 0 && i
>= 64 && SecondTrueElement
== Overdefined
&&
263 SecondFalseElement
== Overdefined
&& TrueRangeEnd
== Overdefined
&&
264 FalseRangeEnd
== Overdefined
)
268 // Now that we've scanned the entire array, emit our new comparison(s). We
269 // order the state machines in complexity of the generated code.
270 Value
*Idx
= GEP
->getOperand(2);
272 // If the index is larger than the pointer size of the target, truncate the
273 // index down like the GEP would do implicitly. We don't have to do this for
274 // an inbounds GEP because the index can't be out of range.
275 if (!GEP
->isInBounds()) {
276 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getType());
277 unsigned PtrSize
= IntPtrTy
->getIntegerBitWidth();
278 if (Idx
->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize
)
279 Idx
= Builder
.CreateTrunc(Idx
, IntPtrTy
);
282 // If inbounds keyword is not present, Idx * ElementSize can overflow.
283 // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
284 // Then, there are two possible values for Idx to match offset 0:
285 // 0x00..00, 0x80..00.
286 // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
287 // comparison is false if Idx was 0x80..00.
288 // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
289 unsigned ElementSize
=
290 DL
.getTypeAllocSize(Init
->getType()->getArrayElementType());
291 auto MaskIdx
= [&](Value
* Idx
){
292 if (!GEP
->isInBounds() && countTrailingZeros(ElementSize
) != 0) {
293 Value
*Mask
= ConstantInt::get(Idx
->getType(), -1);
294 Mask
= Builder
.CreateLShr(Mask
, countTrailingZeros(ElementSize
));
295 Idx
= Builder
.CreateAnd(Idx
, Mask
);
300 // If the comparison is only true for one or two elements, emit direct
302 if (SecondTrueElement
!= Overdefined
) {
304 // None true -> false.
305 if (FirstTrueElement
== Undefined
)
306 return replaceInstUsesWith(ICI
, Builder
.getFalse());
308 Value
*FirstTrueIdx
= ConstantInt::get(Idx
->getType(), FirstTrueElement
);
310 // True for one element -> 'i == 47'.
311 if (SecondTrueElement
== Undefined
)
312 return new ICmpInst(ICmpInst::ICMP_EQ
, Idx
, FirstTrueIdx
);
314 // True for two elements -> 'i == 47 | i == 72'.
315 Value
*C1
= Builder
.CreateICmpEQ(Idx
, FirstTrueIdx
);
316 Value
*SecondTrueIdx
= ConstantInt::get(Idx
->getType(), SecondTrueElement
);
317 Value
*C2
= Builder
.CreateICmpEQ(Idx
, SecondTrueIdx
);
318 return BinaryOperator::CreateOr(C1
, C2
);
321 // If the comparison is only false for one or two elements, emit direct
323 if (SecondFalseElement
!= Overdefined
) {
325 // None false -> true.
326 if (FirstFalseElement
== Undefined
)
327 return replaceInstUsesWith(ICI
, Builder
.getTrue());
329 Value
*FirstFalseIdx
= ConstantInt::get(Idx
->getType(), FirstFalseElement
);
331 // False for one element -> 'i != 47'.
332 if (SecondFalseElement
== Undefined
)
333 return new ICmpInst(ICmpInst::ICMP_NE
, Idx
, FirstFalseIdx
);
335 // False for two elements -> 'i != 47 & i != 72'.
336 Value
*C1
= Builder
.CreateICmpNE(Idx
, FirstFalseIdx
);
337 Value
*SecondFalseIdx
= ConstantInt::get(Idx
->getType(),SecondFalseElement
);
338 Value
*C2
= Builder
.CreateICmpNE(Idx
, SecondFalseIdx
);
339 return BinaryOperator::CreateAnd(C1
, C2
);
342 // If the comparison can be replaced with a range comparison for the elements
343 // where it is true, emit the range check.
344 if (TrueRangeEnd
!= Overdefined
) {
345 assert(TrueRangeEnd
!= FirstTrueElement
&& "Should emit single compare");
348 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
349 if (FirstTrueElement
) {
350 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstTrueElement
);
351 Idx
= Builder
.CreateAdd(Idx
, Offs
);
354 Value
*End
= ConstantInt::get(Idx
->getType(),
355 TrueRangeEnd
-FirstTrueElement
+1);
356 return new ICmpInst(ICmpInst::ICMP_ULT
, Idx
, End
);
359 // False range check.
360 if (FalseRangeEnd
!= Overdefined
) {
361 assert(FalseRangeEnd
!= FirstFalseElement
&& "Should emit single compare");
363 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
364 if (FirstFalseElement
) {
365 Value
*Offs
= ConstantInt::get(Idx
->getType(), -FirstFalseElement
);
366 Idx
= Builder
.CreateAdd(Idx
, Offs
);
369 Value
*End
= ConstantInt::get(Idx
->getType(),
370 FalseRangeEnd
-FirstFalseElement
);
371 return new ICmpInst(ICmpInst::ICMP_UGT
, Idx
, End
);
374 // If a magic bitvector captures the entire comparison state
375 // of this load, replace it with computation that does:
376 // ((magic_cst >> i) & 1) != 0
380 // Look for an appropriate type:
381 // - The type of Idx if the magic fits
382 // - The smallest fitting legal type
383 if (ArrayElementCount
<= Idx
->getType()->getIntegerBitWidth())
386 Ty
= DL
.getSmallestLegalIntType(Init
->getContext(), ArrayElementCount
);
390 Value
*V
= Builder
.CreateIntCast(Idx
, Ty
, false);
391 V
= Builder
.CreateLShr(ConstantInt::get(Ty
, MagicBitvector
), V
);
392 V
= Builder
.CreateAnd(ConstantInt::get(Ty
, 1), V
);
393 return new ICmpInst(ICmpInst::ICMP_NE
, V
, ConstantInt::get(Ty
, 0));
400 /// Return a value that can be used to compare the *offset* implied by a GEP to
401 /// zero. For example, if we have &A[i], we want to return 'i' for
402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
403 /// are involved. The above expression would also be legal to codegen as
404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
405 /// This latter form is less amenable to optimization though, and we are allowed
406 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
408 /// If we can't emit an optimized form for this expression, this returns null.
410 static Value
*evaluateGEPOffsetExpression(User
*GEP
, InstCombinerImpl
&IC
,
411 const DataLayout
&DL
) {
412 gep_type_iterator GTI
= gep_type_begin(GEP
);
414 // Check to see if this gep only has a single variable index. If so, and if
415 // any constant indices are a multiple of its scale, then we can compute this
416 // in terms of the scale of the variable index. For example, if the GEP
417 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
418 // because the expression will cross zero at the same point.
419 unsigned i
, e
= GEP
->getNumOperands();
421 for (i
= 1; i
!= e
; ++i
, ++GTI
) {
422 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
))) {
423 // Compute the aggregate offset of constant indices.
424 if (CI
->isZero()) continue;
426 // Handle a struct index, which adds its field offset to the pointer.
427 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
428 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
430 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
431 Offset
+= Size
*CI
->getSExtValue();
434 // Found our variable index.
439 // If there are no variable indices, we must have a constant offset, just
440 // evaluate it the general way.
441 if (i
== e
) return nullptr;
443 Value
*VariableIdx
= GEP
->getOperand(i
);
444 // Determine the scale factor of the variable element. For example, this is
445 // 4 if the variable index is into an array of i32.
446 uint64_t VariableScale
= DL
.getTypeAllocSize(GTI
.getIndexedType());
448 // Verify that there are no other variable indices. If so, emit the hard way.
449 for (++i
, ++GTI
; i
!= e
; ++i
, ++GTI
) {
450 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
451 if (!CI
) return nullptr;
453 // Compute the aggregate offset of constant indices.
454 if (CI
->isZero()) continue;
456 // Handle a struct index, which adds its field offset to the pointer.
457 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
458 Offset
+= DL
.getStructLayout(STy
)->getElementOffset(CI
->getZExtValue());
460 uint64_t Size
= DL
.getTypeAllocSize(GTI
.getIndexedType());
461 Offset
+= Size
*CI
->getSExtValue();
465 // Okay, we know we have a single variable index, which must be a
466 // pointer/array/vector index. If there is no offset, life is simple, return
468 Type
*IntPtrTy
= DL
.getIntPtrType(GEP
->getOperand(0)->getType());
469 unsigned IntPtrWidth
= IntPtrTy
->getIntegerBitWidth();
471 // Cast to intptrty in case a truncation occurs. If an extension is needed,
472 // we don't need to bother extending: the extension won't affect where the
473 // computation crosses zero.
474 if (VariableIdx
->getType()->getPrimitiveSizeInBits().getFixedSize() >
476 VariableIdx
= IC
.Builder
.CreateTrunc(VariableIdx
, IntPtrTy
);
481 // Otherwise, there is an index. The computation we will do will be modulo
483 Offset
= SignExtend64(Offset
, IntPtrWidth
);
484 VariableScale
= SignExtend64(VariableScale
, IntPtrWidth
);
486 // To do this transformation, any constant index must be a multiple of the
487 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
488 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
489 // multiple of the variable scale.
490 int64_t NewOffs
= Offset
/ (int64_t)VariableScale
;
491 if (Offset
!= NewOffs
*(int64_t)VariableScale
)
494 // Okay, we can do this evaluation. Start by converting the index to intptr.
495 if (VariableIdx
->getType() != IntPtrTy
)
496 VariableIdx
= IC
.Builder
.CreateIntCast(VariableIdx
, IntPtrTy
,
498 Constant
*OffsetVal
= ConstantInt::get(IntPtrTy
, NewOffs
);
499 return IC
.Builder
.CreateAdd(VariableIdx
, OffsetVal
, "offset");
502 /// Returns true if we can rewrite Start as a GEP with pointer Base
503 /// and some integer offset. The nodes that need to be re-written
504 /// for this transformation will be added to Explored.
505 static bool canRewriteGEPAsOffset(Value
*Start
, Value
*Base
,
506 const DataLayout
&DL
,
507 SetVector
<Value
*> &Explored
) {
508 SmallVector
<Value
*, 16> WorkList(1, Start
);
509 Explored
.insert(Base
);
511 // The following traversal gives us an order which can be used
512 // when doing the final transformation. Since in the final
513 // transformation we create the PHI replacement instructions first,
514 // we don't have to get them in any particular order.
516 // However, for other instructions we will have to traverse the
517 // operands of an instruction first, which means that we have to
518 // do a post-order traversal.
519 while (!WorkList
.empty()) {
520 SetVector
<PHINode
*> PHIs
;
522 while (!WorkList
.empty()) {
523 if (Explored
.size() >= 100)
526 Value
*V
= WorkList
.back();
528 if (Explored
.contains(V
)) {
533 if (!isa
<IntToPtrInst
>(V
) && !isa
<PtrToIntInst
>(V
) &&
534 !isa
<GetElementPtrInst
>(V
) && !isa
<PHINode
>(V
))
535 // We've found some value that we can't explore which is different from
536 // the base. Therefore we can't do this transformation.
539 if (isa
<IntToPtrInst
>(V
) || isa
<PtrToIntInst
>(V
)) {
540 auto *CI
= cast
<CastInst
>(V
);
541 if (!CI
->isNoopCast(DL
))
544 if (Explored
.count(CI
->getOperand(0)) == 0)
545 WorkList
.push_back(CI
->getOperand(0));
548 if (auto *GEP
= dyn_cast
<GEPOperator
>(V
)) {
549 // We're limiting the GEP to having one index. This will preserve
550 // the original pointer type. We could handle more cases in the
552 if (GEP
->getNumIndices() != 1 || !GEP
->isInBounds() ||
553 GEP
->getType() != Start
->getType())
556 if (Explored
.count(GEP
->getOperand(0)) == 0)
557 WorkList
.push_back(GEP
->getOperand(0));
560 if (WorkList
.back() == V
) {
562 // We've finished visiting this node, mark it as such.
566 if (auto *PN
= dyn_cast
<PHINode
>(V
)) {
567 // We cannot transform PHIs on unsplittable basic blocks.
568 if (isa
<CatchSwitchInst
>(PN
->getParent()->getTerminator()))
575 // Explore the PHI nodes further.
576 for (auto *PN
: PHIs
)
577 for (Value
*Op
: PN
->incoming_values())
578 if (Explored
.count(Op
) == 0)
579 WorkList
.push_back(Op
);
582 // Make sure that we can do this. Since we can't insert GEPs in a basic
583 // block before a PHI node, we can't easily do this transformation if
584 // we have PHI node users of transformed instructions.
585 for (Value
*Val
: Explored
) {
586 for (Value
*Use
: Val
->uses()) {
588 auto *PHI
= dyn_cast
<PHINode
>(Use
);
589 auto *Inst
= dyn_cast
<Instruction
>(Val
);
591 if (Inst
== Base
|| Inst
== PHI
|| !Inst
|| !PHI
||
592 Explored
.count(PHI
) == 0)
595 if (PHI
->getParent() == Inst
->getParent())
602 // Sets the appropriate insert point on Builder where we can add
603 // a replacement Instruction for V (if that is possible).
604 static void setInsertionPoint(IRBuilder
<> &Builder
, Value
*V
,
605 bool Before
= true) {
606 if (auto *PHI
= dyn_cast
<PHINode
>(V
)) {
607 Builder
.SetInsertPoint(&*PHI
->getParent()->getFirstInsertionPt());
610 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
612 I
= &*std::next(I
->getIterator());
613 Builder
.SetInsertPoint(I
);
616 if (auto *A
= dyn_cast
<Argument
>(V
)) {
617 // Set the insertion point in the entry block.
618 BasicBlock
&Entry
= A
->getParent()->getEntryBlock();
619 Builder
.SetInsertPoint(&*Entry
.getFirstInsertionPt());
622 // Otherwise, this is a constant and we don't need to set a new
624 assert(isa
<Constant
>(V
) && "Setting insertion point for unknown value!");
627 /// Returns a re-written value of Start as an indexed GEP using Base as a
629 static Value
*rewriteGEPAsOffset(Value
*Start
, Value
*Base
,
630 const DataLayout
&DL
,
631 SetVector
<Value
*> &Explored
) {
632 // Perform all the substitutions. This is a bit tricky because we can
633 // have cycles in our use-def chains.
634 // 1. Create the PHI nodes without any incoming values.
635 // 2. Create all the other values.
636 // 3. Add the edges for the PHI nodes.
637 // 4. Emit GEPs to get the original pointers.
638 // 5. Remove the original instructions.
639 Type
*IndexType
= IntegerType::get(
640 Base
->getContext(), DL
.getIndexTypeSizeInBits(Start
->getType()));
642 DenseMap
<Value
*, Value
*> NewInsts
;
643 NewInsts
[Base
] = ConstantInt::getNullValue(IndexType
);
645 // Create the new PHI nodes, without adding any incoming values.
646 for (Value
*Val
: Explored
) {
649 // Create empty phi nodes. This avoids cyclic dependencies when creating
650 // the remaining instructions.
651 if (auto *PHI
= dyn_cast
<PHINode
>(Val
))
652 NewInsts
[PHI
] = PHINode::Create(IndexType
, PHI
->getNumIncomingValues(),
653 PHI
->getName() + ".idx", PHI
);
655 IRBuilder
<> Builder(Base
->getContext());
657 // Create all the other instructions.
658 for (Value
*Val
: Explored
) {
660 if (NewInsts
.find(Val
) != NewInsts
.end())
663 if (auto *CI
= dyn_cast
<CastInst
>(Val
)) {
664 // Don't get rid of the intermediate variable here; the store can grow
665 // the map which will invalidate the reference to the input value.
666 Value
*V
= NewInsts
[CI
->getOperand(0)];
670 if (auto *GEP
= dyn_cast
<GEPOperator
>(Val
)) {
671 Value
*Index
= NewInsts
[GEP
->getOperand(1)] ? NewInsts
[GEP
->getOperand(1)]
672 : GEP
->getOperand(1);
673 setInsertionPoint(Builder
, GEP
);
674 // Indices might need to be sign extended. GEPs will magically do
675 // this, but we need to do it ourselves here.
676 if (Index
->getType()->getScalarSizeInBits() !=
677 NewInsts
[GEP
->getOperand(0)]->getType()->getScalarSizeInBits()) {
678 Index
= Builder
.CreateSExtOrTrunc(
679 Index
, NewInsts
[GEP
->getOperand(0)]->getType(),
680 GEP
->getOperand(0)->getName() + ".sext");
683 auto *Op
= NewInsts
[GEP
->getOperand(0)];
684 if (isa
<ConstantInt
>(Op
) && cast
<ConstantInt
>(Op
)->isZero())
685 NewInsts
[GEP
] = Index
;
687 NewInsts
[GEP
] = Builder
.CreateNSWAdd(
688 Op
, Index
, GEP
->getOperand(0)->getName() + ".add");
691 if (isa
<PHINode
>(Val
))
694 llvm_unreachable("Unexpected instruction type");
697 // Add the incoming values to the PHI nodes.
698 for (Value
*Val
: Explored
) {
701 // All the instructions have been created, we can now add edges to the
703 if (auto *PHI
= dyn_cast
<PHINode
>(Val
)) {
704 PHINode
*NewPhi
= static_cast<PHINode
*>(NewInsts
[PHI
]);
705 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
< E
; ++I
) {
706 Value
*NewIncoming
= PHI
->getIncomingValue(I
);
708 if (NewInsts
.find(NewIncoming
) != NewInsts
.end())
709 NewIncoming
= NewInsts
[NewIncoming
];
711 NewPhi
->addIncoming(NewIncoming
, PHI
->getIncomingBlock(I
));
716 for (Value
*Val
: Explored
) {
720 // Depending on the type, for external users we have to emit
721 // a GEP or a GEP + ptrtoint.
722 setInsertionPoint(Builder
, Val
, false);
724 // If required, create an inttoptr instruction for Base.
725 Value
*NewBase
= Base
;
726 if (!Base
->getType()->isPointerTy())
727 NewBase
= Builder
.CreateBitOrPointerCast(Base
, Start
->getType(),
728 Start
->getName() + "to.ptr");
730 Value
*GEP
= Builder
.CreateInBoundsGEP(
731 Start
->getType()->getPointerElementType(), NewBase
,
732 makeArrayRef(NewInsts
[Val
]), Val
->getName() + ".ptr");
734 if (!Val
->getType()->isPointerTy()) {
735 Value
*Cast
= Builder
.CreatePointerCast(GEP
, Val
->getType(),
736 Val
->getName() + ".conv");
739 Val
->replaceAllUsesWith(GEP
);
742 return NewInsts
[Start
];
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair
<Value
*, Value
*>
749 getAsConstantIndexedAddress(Value
*V
, const DataLayout
&DL
) {
750 Type
*IndexType
= IntegerType::get(V
->getContext(),
751 DL
.getIndexTypeSizeInBits(V
->getType()));
753 Constant
*Index
= ConstantInt::getNullValue(IndexType
);
755 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(V
)) {
756 // We accept only inbouds GEPs here to exclude the possibility of
758 if (!GEP
->isInBounds())
760 if (GEP
->hasAllConstantIndices() && GEP
->getNumIndices() == 1 &&
761 GEP
->getType() == V
->getType()) {
762 V
= GEP
->getOperand(0);
763 Constant
*GEPIndex
= static_cast<Constant
*>(GEP
->getOperand(1));
764 Index
= ConstantExpr::getAdd(
765 Index
, ConstantExpr::getSExtOrBitCast(GEPIndex
, IndexType
));
770 if (auto *CI
= dyn_cast
<IntToPtrInst
>(V
)) {
771 if (!CI
->isNoopCast(DL
))
773 V
= CI
->getOperand(0);
776 if (auto *CI
= dyn_cast
<PtrToIntInst
>(V
)) {
777 if (!CI
->isNoopCast(DL
))
779 V
= CI
->getOperand(0);
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
790 static Instruction
*transformToIndexedCompare(GEPOperator
*GEPLHS
, Value
*RHS
,
791 ICmpInst::Predicate Cond
,
792 const DataLayout
&DL
) {
793 // FIXME: Support vector of pointers.
794 if (GEPLHS
->getType()->isVectorTy())
797 if (!GEPLHS
->hasAllConstantIndices())
800 // Make sure the pointers have the same type.
801 if (GEPLHS
->getType() != RHS
->getType())
804 Value
*PtrBase
, *Index
;
805 std::tie(PtrBase
, Index
) = getAsConstantIndexedAddress(GEPLHS
, DL
);
807 // The set of nodes that will take part in this transformation.
808 SetVector
<Value
*> Nodes
;
810 if (!canRewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
))
813 // We know we can re-write this as
814 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
815 // Since we've only looked through inbouds GEPs we know that we
816 // can't have overflow on either side. We can therefore re-write
818 // OFFSET1 cmp OFFSET2
819 Value
*NewRHS
= rewriteGEPAsOffset(RHS
, PtrBase
, DL
, Nodes
);
821 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
822 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
823 // offset. Since Index is the offset of LHS to the base pointer, we will now
824 // compare the offsets instead of comparing the pointers.
825 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Index
, NewRHS
);
828 /// Fold comparisons between a GEP instruction and something else. At this point
829 /// we know that the GEP is on the LHS of the comparison.
830 Instruction
*InstCombinerImpl::foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
831 ICmpInst::Predicate Cond
,
833 // Don't transform signed compares of GEPs into index compares. Even if the
834 // GEP is inbounds, the final add of the base pointer can have signed overflow
835 // and would change the result of the icmp.
836 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
837 // the maximum signed value for the pointer type.
838 if (ICmpInst::isSigned(Cond
))
841 // Look through bitcasts and addrspacecasts. We do not however want to remove
843 if (!isa
<GetElementPtrInst
>(RHS
))
844 RHS
= RHS
->stripPointerCasts();
846 Value
*PtrBase
= GEPLHS
->getOperand(0);
847 // FIXME: Support vector pointer GEPs.
848 if (PtrBase
== RHS
&& GEPLHS
->isInBounds() &&
849 !GEPLHS
->getType()->isVectorTy()) {
850 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
851 // This transformation (ignoring the base and scales) is valid because we
852 // know pointers can't overflow since the gep is inbounds. See if we can
853 // output an optimized form.
854 Value
*Offset
= evaluateGEPOffsetExpression(GEPLHS
, *this, DL
);
856 // If not, synthesize the offset the hard way.
858 Offset
= EmitGEPOffset(GEPLHS
);
859 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), Offset
,
860 Constant::getNullValue(Offset
->getType()));
863 if (GEPLHS
->isInBounds() && ICmpInst::isEquality(Cond
) &&
864 isa
<Constant
>(RHS
) && cast
<Constant
>(RHS
)->isNullValue() &&
865 !NullPointerIsDefined(I
.getFunction(),
866 RHS
->getType()->getPointerAddressSpace())) {
867 // For most address spaces, an allocation can't be placed at null, but null
868 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
869 // the only valid inbounds address derived from null, is null itself.
870 // Thus, we have four cases to consider:
871 // 1) Base == nullptr, Offset == 0 -> inbounds, null
872 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
873 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
874 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
876 // (Note if we're indexing a type of size 0, that simply collapses into one
877 // of the buckets above.)
879 // In general, we're allowed to make values less poison (i.e. remove
880 // sources of full UB), so in this case, we just select between the two
881 // non-poison cases (1 and 4 above).
883 // For vectors, we apply the same reasoning on a per-lane basis.
884 auto *Base
= GEPLHS
->getPointerOperand();
885 if (GEPLHS
->getType()->isVectorTy() && Base
->getType()->isPointerTy()) {
886 auto EC
= cast
<VectorType
>(GEPLHS
->getType())->getElementCount();
887 Base
= Builder
.CreateVectorSplat(EC
, Base
);
889 return new ICmpInst(Cond
, Base
,
890 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
891 cast
<Constant
>(RHS
), Base
->getType()));
892 } else if (GEPOperator
*GEPRHS
= dyn_cast
<GEPOperator
>(RHS
)) {
893 // If the base pointers are different, but the indices are the same, just
894 // compare the base pointer.
895 if (PtrBase
!= GEPRHS
->getOperand(0)) {
896 bool IndicesTheSame
= GEPLHS
->getNumOperands()==GEPRHS
->getNumOperands();
897 IndicesTheSame
&= GEPLHS
->getOperand(0)->getType() ==
898 GEPRHS
->getOperand(0)->getType();
900 for (unsigned i
= 1, e
= GEPLHS
->getNumOperands(); i
!= e
; ++i
)
901 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
902 IndicesTheSame
= false;
906 // If all indices are the same, just compare the base pointers.
907 Type
*BaseType
= GEPLHS
->getOperand(0)->getType();
908 if (IndicesTheSame
&& CmpInst::makeCmpResultType(BaseType
) == I
.getType())
909 return new ICmpInst(Cond
, GEPLHS
->getOperand(0), GEPRHS
->getOperand(0));
911 // If we're comparing GEPs with two base pointers that only differ in type
912 // and both GEPs have only constant indices or just one use, then fold
913 // the compare with the adjusted indices.
914 // FIXME: Support vector of pointers.
915 if (GEPLHS
->isInBounds() && GEPRHS
->isInBounds() &&
916 (GEPLHS
->hasAllConstantIndices() || GEPLHS
->hasOneUse()) &&
917 (GEPRHS
->hasAllConstantIndices() || GEPRHS
->hasOneUse()) &&
918 PtrBase
->stripPointerCasts() ==
919 GEPRHS
->getOperand(0)->stripPointerCasts() &&
920 !GEPLHS
->getType()->isVectorTy()) {
921 Value
*LOffset
= EmitGEPOffset(GEPLHS
);
922 Value
*ROffset
= EmitGEPOffset(GEPRHS
);
924 // If we looked through an addrspacecast between different sized address
925 // spaces, the LHS and RHS pointers are different sized
926 // integers. Truncate to the smaller one.
927 Type
*LHSIndexTy
= LOffset
->getType();
928 Type
*RHSIndexTy
= ROffset
->getType();
929 if (LHSIndexTy
!= RHSIndexTy
) {
930 if (LHSIndexTy
->getPrimitiveSizeInBits().getFixedSize() <
931 RHSIndexTy
->getPrimitiveSizeInBits().getFixedSize()) {
932 ROffset
= Builder
.CreateTrunc(ROffset
, LHSIndexTy
);
934 LOffset
= Builder
.CreateTrunc(LOffset
, RHSIndexTy
);
937 Value
*Cmp
= Builder
.CreateICmp(ICmpInst::getSignedPredicate(Cond
),
939 return replaceInstUsesWith(I
, Cmp
);
942 // Otherwise, the base pointers are different and the indices are
943 // different. Try convert this to an indexed compare by looking through
945 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
948 // If one of the GEPs has all zero indices, recurse.
949 // FIXME: Handle vector of pointers.
950 if (!GEPLHS
->getType()->isVectorTy() && GEPLHS
->hasAllZeroIndices())
951 return foldGEPICmp(GEPRHS
, GEPLHS
->getOperand(0),
952 ICmpInst::getSwappedPredicate(Cond
), I
);
954 // If the other GEP has all zero indices, recurse.
955 // FIXME: Handle vector of pointers.
956 if (!GEPRHS
->getType()->isVectorTy() && GEPRHS
->hasAllZeroIndices())
957 return foldGEPICmp(GEPLHS
, GEPRHS
->getOperand(0), Cond
, I
);
959 bool GEPsInBounds
= GEPLHS
->isInBounds() && GEPRHS
->isInBounds();
960 if (GEPLHS
->getNumOperands() == GEPRHS
->getNumOperands()) {
961 // If the GEPs only differ by one index, compare it.
962 unsigned NumDifferences
= 0; // Keep track of # differences.
963 unsigned DiffOperand
= 0; // The operand that differs.
964 for (unsigned i
= 1, e
= GEPRHS
->getNumOperands(); i
!= e
; ++i
)
965 if (GEPLHS
->getOperand(i
) != GEPRHS
->getOperand(i
)) {
966 Type
*LHSType
= GEPLHS
->getOperand(i
)->getType();
967 Type
*RHSType
= GEPRHS
->getOperand(i
)->getType();
968 // FIXME: Better support for vector of pointers.
969 if (LHSType
->getPrimitiveSizeInBits() !=
970 RHSType
->getPrimitiveSizeInBits() ||
971 (GEPLHS
->getType()->isVectorTy() &&
972 (!LHSType
->isVectorTy() || !RHSType
->isVectorTy()))) {
973 // Irreconcilable differences.
978 if (NumDifferences
++) break;
982 if (NumDifferences
== 0) // SAME GEP?
983 return replaceInstUsesWith(I
, // No comparison is needed here.
984 ConstantInt::get(I
.getType(), ICmpInst::isTrueWhenEqual(Cond
)));
986 else if (NumDifferences
== 1 && GEPsInBounds
) {
987 Value
*LHSV
= GEPLHS
->getOperand(DiffOperand
);
988 Value
*RHSV
= GEPRHS
->getOperand(DiffOperand
);
989 // Make sure we do a signed comparison here.
990 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), LHSV
, RHSV
);
994 // Only lower this if the icmp is the only user of the GEP or if we expect
995 // the result to fold to a constant!
996 if (GEPsInBounds
&& (isa
<ConstantExpr
>(GEPLHS
) || GEPLHS
->hasOneUse()) &&
997 (isa
<ConstantExpr
>(GEPRHS
) || GEPRHS
->hasOneUse())) {
998 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
999 Value
*L
= EmitGEPOffset(GEPLHS
);
1000 Value
*R
= EmitGEPOffset(GEPRHS
);
1001 return new ICmpInst(ICmpInst::getSignedPredicate(Cond
), L
, R
);
1005 // Try convert this to an indexed compare by looking through PHIs/casts as a
1007 return transformToIndexedCompare(GEPLHS
, RHS
, Cond
, DL
);
1010 Instruction
*InstCombinerImpl::foldAllocaCmp(ICmpInst
&ICI
,
1011 const AllocaInst
*Alloca
,
1012 const Value
*Other
) {
1013 assert(ICI
.isEquality() && "Cannot fold non-equality comparison.");
1015 // It would be tempting to fold away comparisons between allocas and any
1016 // pointer not based on that alloca (e.g. an argument). However, even
1017 // though such pointers cannot alias, they can still compare equal.
1019 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1020 // doesn't escape we can argue that it's impossible to guess its value, and we
1021 // can therefore act as if any such guesses are wrong.
1023 // The code below checks that the alloca doesn't escape, and that it's only
1024 // used in a comparison once (the current instruction). The
1025 // single-comparison-use condition ensures that we're trivially folding all
1026 // comparisons against the alloca consistently, and avoids the risk of
1027 // erroneously folding a comparison of the pointer with itself.
1029 unsigned MaxIter
= 32; // Break cycles and bound to constant-time.
1031 SmallVector
<const Use
*, 32> Worklist
;
1032 for (const Use
&U
: Alloca
->uses()) {
1033 if (Worklist
.size() >= MaxIter
)
1035 Worklist
.push_back(&U
);
1038 unsigned NumCmps
= 0;
1039 while (!Worklist
.empty()) {
1040 assert(Worklist
.size() <= MaxIter
);
1041 const Use
*U
= Worklist
.pop_back_val();
1042 const Value
*V
= U
->getUser();
1045 if (isa
<BitCastInst
>(V
) || isa
<GetElementPtrInst
>(V
) || isa
<PHINode
>(V
) ||
1046 isa
<SelectInst
>(V
)) {
1048 } else if (isa
<LoadInst
>(V
)) {
1049 // Loading from the pointer doesn't escape it.
1051 } else if (const auto *SI
= dyn_cast
<StoreInst
>(V
)) {
1052 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1053 if (SI
->getValueOperand() == U
->get())
1056 } else if (isa
<ICmpInst
>(V
)) {
1058 return nullptr; // Found more than one cmp.
1060 } else if (const auto *Intrin
= dyn_cast
<IntrinsicInst
>(V
)) {
1061 switch (Intrin
->getIntrinsicID()) {
1062 // These intrinsics don't escape or compare the pointer. Memset is safe
1063 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1064 // we don't allow stores, so src cannot point to V.
1065 case Intrinsic::lifetime_start
: case Intrinsic::lifetime_end
:
1066 case Intrinsic::memcpy
: case Intrinsic::memmove
: case Intrinsic::memset
:
1074 for (const Use
&U
: V
->uses()) {
1075 if (Worklist
.size() >= MaxIter
)
1077 Worklist
.push_back(&U
);
1081 Type
*CmpTy
= CmpInst::makeCmpResultType(Other
->getType());
1082 return replaceInstUsesWith(
1084 ConstantInt::get(CmpTy
, !CmpInst::isTrueWhenEqual(ICI
.getPredicate())));
1087 /// Fold "icmp pred (X+C), X".
1088 Instruction
*InstCombinerImpl::foldICmpAddOpConst(Value
*X
, const APInt
&C
,
1089 ICmpInst::Predicate Pred
) {
1090 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1091 // so the values can never be equal. Similarly for all other "or equals"
1093 assert(!!C
&& "C should not be zero!");
1095 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1096 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1097 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1098 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
) {
1099 Constant
*R
= ConstantInt::get(X
->getType(),
1100 APInt::getMaxValue(C
.getBitWidth()) - C
);
1101 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, R
);
1104 // (X+1) >u X --> X <u (0-1) --> X != 255
1105 // (X+2) >u X --> X <u (0-2) --> X <u 254
1106 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1107 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
)
1108 return new ICmpInst(ICmpInst::ICMP_ULT
, X
,
1109 ConstantInt::get(X
->getType(), -C
));
1111 APInt SMax
= APInt::getSignedMaxValue(C
.getBitWidth());
1113 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1114 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1115 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1116 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1117 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1118 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1119 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
1120 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1121 ConstantInt::get(X
->getType(), SMax
- C
));
1123 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1124 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1125 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1126 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1127 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1128 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1130 assert(Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
);
1131 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1132 ConstantInt::get(X
->getType(), SMax
- (C
- 1)));
1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1136 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1138 Instruction
*InstCombinerImpl::foldICmpShrConstConst(ICmpInst
&I
, Value
*A
,
1141 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1143 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1144 if (I
.getPredicate() == I
.ICMP_NE
)
1145 Pred
= CmpInst::getInversePredicate(Pred
);
1146 return new ICmpInst(Pred
, LHS
, RHS
);
1149 // Don't bother doing any work for cases which InstSimplify handles.
1150 if (AP2
.isNullValue())
1153 bool IsAShr
= isa
<AShrOperator
>(I
.getOperand(0));
1155 if (AP2
.isAllOnesValue())
1157 if (AP2
.isNegative() != AP1
.isNegative())
1164 // 'A' must be large enough to shift out the highest set bit.
1165 return getICmp(I
.ICMP_UGT
, A
,
1166 ConstantInt::get(A
->getType(), AP2
.logBase2()));
1169 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1172 if (IsAShr
&& AP1
.isNegative())
1173 Shift
= AP1
.countLeadingOnes() - AP2
.countLeadingOnes();
1175 Shift
= AP1
.countLeadingZeros() - AP2
.countLeadingZeros();
1178 if (IsAShr
&& AP1
== AP2
.ashr(Shift
)) {
1179 // There are multiple solutions if we are comparing against -1 and the LHS
1180 // of the ashr is not a power of two.
1181 if (AP1
.isAllOnesValue() && !AP2
.isPowerOf2())
1182 return getICmp(I
.ICMP_UGE
, A
, ConstantInt::get(A
->getType(), Shift
));
1183 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1184 } else if (AP1
== AP2
.lshr(Shift
)) {
1185 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1189 // Shifting const2 will never be equal to const1.
1190 // FIXME: This should always be handled by InstSimplify?
1191 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1192 return replaceInstUsesWith(I
, TorF
);
1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1197 Instruction
*InstCombinerImpl::foldICmpShlConstConst(ICmpInst
&I
, Value
*A
,
1200 assert(I
.isEquality() && "Cannot fold icmp gt/lt");
1202 auto getICmp
= [&I
](CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
) {
1203 if (I
.getPredicate() == I
.ICMP_NE
)
1204 Pred
= CmpInst::getInversePredicate(Pred
);
1205 return new ICmpInst(Pred
, LHS
, RHS
);
1208 // Don't bother doing any work for cases which InstSimplify handles.
1209 if (AP2
.isNullValue())
1212 unsigned AP2TrailingZeros
= AP2
.countTrailingZeros();
1214 if (!AP1
&& AP2TrailingZeros
!= 0)
1217 ConstantInt::get(A
->getType(), AP2
.getBitWidth() - AP2TrailingZeros
));
1220 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::getNullValue(A
->getType()));
1222 // Get the distance between the lowest bits that are set.
1223 int Shift
= AP1
.countTrailingZeros() - AP2TrailingZeros
;
1225 if (Shift
> 0 && AP2
.shl(Shift
) == AP1
)
1226 return getICmp(I
.ICMP_EQ
, A
, ConstantInt::get(A
->getType(), Shift
));
1228 // Shifting const2 will never be equal to const1.
1229 // FIXME: This should always be handled by InstSimplify?
1230 auto *TorF
= ConstantInt::get(I
.getType(), I
.getPredicate() == I
.ICMP_NE
);
1231 return replaceInstUsesWith(I
, TorF
);
1234 /// The caller has matched a pattern of the form:
1235 /// I = icmp ugt (add (add A, B), CI2), CI1
1236 /// If this is of the form:
1238 /// if (sum+128 >u 255)
1239 /// Then replace it with llvm.sadd.with.overflow.i8.
1241 static Instruction
*processUGT_ADDCST_ADD(ICmpInst
&I
, Value
*A
, Value
*B
,
1242 ConstantInt
*CI2
, ConstantInt
*CI1
,
1243 InstCombinerImpl
&IC
) {
1244 // The transformation we're trying to do here is to transform this into an
1245 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1246 // with a narrower add, and discard the add-with-constant that is part of the
1247 // range check (if we can't eliminate it, this isn't profitable).
1249 // In order to eliminate the add-with-constant, the compare can be its only
1251 Instruction
*AddWithCst
= cast
<Instruction
>(I
.getOperand(0));
1252 if (!AddWithCst
->hasOneUse())
1255 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1256 if (!CI2
->getValue().isPowerOf2())
1258 unsigned NewWidth
= CI2
->getValue().countTrailingZeros();
1259 if (NewWidth
!= 7 && NewWidth
!= 15 && NewWidth
!= 31)
1262 // The width of the new add formed is 1 more than the bias.
1265 // Check to see that CI1 is an all-ones value with NewWidth bits.
1266 if (CI1
->getBitWidth() == NewWidth
||
1267 CI1
->getValue() != APInt::getLowBitsSet(CI1
->getBitWidth(), NewWidth
))
1270 // This is only really a signed overflow check if the inputs have been
1271 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1272 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1273 unsigned NeededSignBits
= CI1
->getBitWidth() - NewWidth
+ 1;
1274 if (IC
.ComputeNumSignBits(A
, 0, &I
) < NeededSignBits
||
1275 IC
.ComputeNumSignBits(B
, 0, &I
) < NeededSignBits
)
1278 // In order to replace the original add with a narrower
1279 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1280 // and truncates that discard the high bits of the add. Verify that this is
1282 Instruction
*OrigAdd
= cast
<Instruction
>(AddWithCst
->getOperand(0));
1283 for (User
*U
: OrigAdd
->users()) {
1284 if (U
== AddWithCst
)
1287 // Only accept truncates for now. We would really like a nice recursive
1288 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1289 // chain to see which bits of a value are actually demanded. If the
1290 // original add had another add which was then immediately truncated, we
1291 // could still do the transformation.
1292 TruncInst
*TI
= dyn_cast
<TruncInst
>(U
);
1293 if (!TI
|| TI
->getType()->getPrimitiveSizeInBits() > NewWidth
)
1297 // If the pattern matches, truncate the inputs to the narrower type and
1298 // use the sadd_with_overflow intrinsic to efficiently compute both the
1299 // result and the overflow bit.
1300 Type
*NewType
= IntegerType::get(OrigAdd
->getContext(), NewWidth
);
1301 Function
*F
= Intrinsic::getDeclaration(
1302 I
.getModule(), Intrinsic::sadd_with_overflow
, NewType
);
1304 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
1306 // Put the new code above the original add, in case there are any uses of the
1307 // add between the add and the compare.
1308 Builder
.SetInsertPoint(OrigAdd
);
1310 Value
*TruncA
= Builder
.CreateTrunc(A
, NewType
, A
->getName() + ".trunc");
1311 Value
*TruncB
= Builder
.CreateTrunc(B
, NewType
, B
->getName() + ".trunc");
1312 CallInst
*Call
= Builder
.CreateCall(F
, {TruncA
, TruncB
}, "sadd");
1313 Value
*Add
= Builder
.CreateExtractValue(Call
, 0, "sadd.result");
1314 Value
*ZExt
= Builder
.CreateZExt(Add
, OrigAdd
->getType());
1316 // The inner add was the result of the narrow add, zero extended to the
1317 // wider type. Replace it with the result computed by the intrinsic.
1318 IC
.replaceInstUsesWith(*OrigAdd
, ZExt
);
1319 IC
.eraseInstFromFunction(*OrigAdd
);
1321 // The original icmp gets replaced with the overflow value.
1322 return ExtractValueInst::Create(Call
, 1, "sadd.overflow");
1326 /// icmp eq/ne (urem/srem %x, %y), 0
1327 /// iff %y is a power-of-two, we can replace this with a bit test:
1328 /// icmp eq/ne (and %x, (add %y, -1)), 0
1329 Instruction
*InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
) {
1330 // This fold is only valid for equality predicates.
1331 if (!I
.isEquality())
1333 ICmpInst::Predicate Pred
;
1334 Value
*X
, *Y
, *Zero
;
1335 if (!match(&I
, m_ICmp(Pred
, m_OneUse(m_IRem(m_Value(X
), m_Value(Y
))),
1336 m_CombineAnd(m_Zero(), m_Value(Zero
)))))
1338 if (!isKnownToBeAPowerOfTwo(Y
, /*OrZero*/ true, 0, &I
))
1340 // This may increase instruction count, we don't enforce that Y is a constant.
1341 Value
*Mask
= Builder
.CreateAdd(Y
, Constant::getAllOnesValue(Y
->getType()));
1342 Value
*Masked
= Builder
.CreateAnd(X
, Mask
);
1343 return ICmpInst::Create(Instruction::ICmp
, Pred
, Masked
, Zero
);
1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1347 /// by one-less-than-bitwidth into a sign test on the original value.
1348 Instruction
*InstCombinerImpl::foldSignBitTest(ICmpInst
&I
) {
1350 ICmpInst::Predicate Pred
;
1351 if (!I
.isEquality() || !match(&I
, m_ICmp(Pred
, m_Instruction(Val
), m_Zero())))
1358 if (match(Val
, m_TruncOrSelf(m_Shr(m_Value(X
), m_Constant(C
))))) {
1360 unsigned XBitWidth
= XTy
->getScalarSizeInBits();
1361 if (!match(C
, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ
,
1362 APInt(XBitWidth
, XBitWidth
- 1))))
1364 } else if (isa
<BinaryOperator
>(Val
) &&
1365 (X
= reassociateShiftAmtsOfTwoSameDirectionShifts(
1366 cast
<BinaryOperator
>(Val
), SQ
.getWithInstruction(Val
),
1367 /*AnalyzeForSignBitExtraction=*/true))) {
1372 return ICmpInst::Create(Instruction::ICmp
,
1373 Pred
== ICmpInst::ICMP_EQ
? ICmpInst::ICMP_SGE
1374 : ICmpInst::ICMP_SLT
,
1375 X
, ConstantInt::getNullValue(XTy
));
1378 // Handle icmp pred X, 0
1379 Instruction
*InstCombinerImpl::foldICmpWithZero(ICmpInst
&Cmp
) {
1380 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1381 if (!match(Cmp
.getOperand(1), m_Zero()))
1384 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1385 if (Pred
== ICmpInst::ICMP_SGT
) {
1387 SelectPatternResult SPR
= matchSelectPattern(Cmp
.getOperand(0), A
, B
);
1388 if (SPR
.Flavor
== SPF_SMIN
) {
1389 if (isKnownPositive(A
, DL
, 0, &AC
, &Cmp
, &DT
))
1390 return new ICmpInst(Pred
, B
, Cmp
.getOperand(1));
1391 if (isKnownPositive(B
, DL
, 0, &AC
, &Cmp
, &DT
))
1392 return new ICmpInst(Pred
, A
, Cmp
.getOperand(1));
1396 if (Instruction
*New
= foldIRemByPowerOfTwoToBitTest(Cmp
))
1400 // icmp eq/ne (urem %x, %y), 0
1401 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1404 if (match(Cmp
.getOperand(0), m_URem(m_Value(X
), m_Value(Y
))) &&
1405 ICmpInst::isEquality(Pred
)) {
1406 KnownBits XKnown
= computeKnownBits(X
, 0, &Cmp
);
1407 KnownBits YKnown
= computeKnownBits(Y
, 0, &Cmp
);
1408 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
1409 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
1415 /// Fold icmp Pred X, C.
1416 /// TODO: This code structure does not make sense. The saturating add fold
1417 /// should be moved to some other helper and extended as noted below (it is also
1418 /// possible that code has been made unnecessary - do we canonicalize IR to
1419 /// overflow/saturating intrinsics or not?).
1420 Instruction
*InstCombinerImpl::foldICmpWithConstant(ICmpInst
&Cmp
) {
1421 // Match the following pattern, which is a common idiom when writing
1422 // overflow-safe integer arithmetic functions. The source performs an addition
1423 // in wider type and explicitly checks for overflow using comparisons against
1424 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1426 // TODO: This could probably be generalized to handle other overflow-safe
1427 // operations if we worked out the formulas to compute the appropriate magic
1431 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1432 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1433 Value
*Op0
= Cmp
.getOperand(0), *Op1
= Cmp
.getOperand(1);
1435 ConstantInt
*CI
, *CI2
; // I = icmp ugt (add (add A, B), CI2), CI
1436 if (Pred
== ICmpInst::ICMP_UGT
&& match(Op1
, m_ConstantInt(CI
)) &&
1437 match(Op0
, m_Add(m_Add(m_Value(A
), m_Value(B
)), m_ConstantInt(CI2
))))
1438 if (Instruction
*Res
= processUGT_ADDCST_ADD(Cmp
, A
, B
, CI2
, CI
, *this))
1441 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1442 Constant
*C
= dyn_cast
<Constant
>(Op1
);
1443 if (!C
|| C
->canTrap())
1446 if (auto *Phi
= dyn_cast
<PHINode
>(Op0
))
1447 if (all_of(Phi
->operands(), [](Value
*V
) { return isa
<Constant
>(V
); })) {
1448 Type
*Ty
= Cmp
.getType();
1449 Builder
.SetInsertPoint(Phi
);
1451 Builder
.CreatePHI(Ty
, Phi
->getNumOperands());
1452 for (BasicBlock
*Predecessor
: predecessors(Phi
->getParent())) {
1454 cast
<Constant
>(Phi
->getIncomingValueForBlock(Predecessor
));
1455 auto *BoolInput
= ConstantExpr::getCompare(Pred
, Input
, C
);
1456 NewPhi
->addIncoming(BoolInput
, Predecessor
);
1458 NewPhi
->takeName(&Cmp
);
1459 return replaceInstUsesWith(Cmp
, NewPhi
);
1465 /// Canonicalize icmp instructions based on dominating conditions.
1466 Instruction
*InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst
&Cmp
) {
1467 // This is a cheap/incomplete check for dominance - just match a single
1468 // predecessor with a conditional branch.
1469 BasicBlock
*CmpBB
= Cmp
.getParent();
1470 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1475 BasicBlock
*TrueBB
, *FalseBB
;
1476 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1479 assert((TrueBB
== CmpBB
|| FalseBB
== CmpBB
) &&
1480 "Predecessor block does not point to successor?");
1482 // The branch should get simplified. Don't bother simplifying this condition.
1483 if (TrueBB
== FalseBB
)
1486 // Try to simplify this compare to T/F based on the dominating condition.
1487 Optional
<bool> Imp
= isImpliedCondition(DomCond
, &Cmp
, DL
, TrueBB
== CmpBB
);
1489 return replaceInstUsesWith(Cmp
, ConstantInt::get(Cmp
.getType(), *Imp
));
1491 CmpInst::Predicate Pred
= Cmp
.getPredicate();
1492 Value
*X
= Cmp
.getOperand(0), *Y
= Cmp
.getOperand(1);
1493 ICmpInst::Predicate DomPred
;
1494 const APInt
*C
, *DomC
;
1495 if (match(DomCond
, m_ICmp(DomPred
, m_Specific(X
), m_APInt(DomC
))) &&
1496 match(Y
, m_APInt(C
))) {
1497 // We have 2 compares of a variable with constants. Calculate the constant
1498 // ranges of those compares to see if we can transform the 2nd compare:
1500 // DomCond = icmp DomPred X, DomC
1501 // br DomCond, CmpBB, FalseBB
1503 // Cmp = icmp Pred X, C
1504 ConstantRange CR
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
1505 ConstantRange DominatingCR
=
1506 (CmpBB
== TrueBB
) ? ConstantRange::makeExactICmpRegion(DomPred
, *DomC
)
1507 : ConstantRange::makeExactICmpRegion(
1508 CmpInst::getInversePredicate(DomPred
), *DomC
);
1509 ConstantRange Intersection
= DominatingCR
.intersectWith(CR
);
1510 ConstantRange Difference
= DominatingCR
.difference(CR
);
1511 if (Intersection
.isEmptySet())
1512 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
1513 if (Difference
.isEmptySet())
1514 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
1516 // Canonicalizing a sign bit comparison that gets used in a branch,
1517 // pessimizes codegen by generating branch on zero instruction instead
1518 // of a test and branch. So we avoid canonicalizing in such situations
1519 // because test and branch instruction has better branch displacement
1520 // than compare and branch instruction.
1522 bool IsSignBit
= isSignBitCheck(Pred
, *C
, UnusedBit
);
1523 if (Cmp
.isEquality() || (IsSignBit
&& hasBranchUse(Cmp
)))
1526 // Avoid an infinite loop with min/max canonicalization.
1527 // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1528 if (Cmp
.hasOneUse() &&
1529 match(Cmp
.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1532 if (const APInt
*EqC
= Intersection
.getSingleElement())
1533 return new ICmpInst(ICmpInst::ICMP_EQ
, X
, Builder
.getInt(*EqC
));
1534 if (const APInt
*NeC
= Difference
.getSingleElement())
1535 return new ICmpInst(ICmpInst::ICMP_NE
, X
, Builder
.getInt(*NeC
));
1541 /// Fold icmp (trunc X, Y), C.
1542 Instruction
*InstCombinerImpl::foldICmpTruncConstant(ICmpInst
&Cmp
,
1545 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1546 Value
*X
= Trunc
->getOperand(0);
1547 if (C
.isOneValue() && C
.getBitWidth() > 1) {
1548 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1550 if (Pred
== ICmpInst::ICMP_SLT
&& match(X
, m_Signum(m_Value(V
))))
1551 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1552 ConstantInt::get(V
->getType(), 1));
1555 unsigned DstBits
= Trunc
->getType()->getScalarSizeInBits(),
1556 SrcBits
= X
->getType()->getScalarSizeInBits();
1557 if (Cmp
.isEquality() && Trunc
->hasOneUse()) {
1558 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1559 // of the high bits truncated out of x are known.
1560 KnownBits Known
= computeKnownBits(X
, 0, &Cmp
);
1562 // If all the high bits are known, we can do this xform.
1563 if ((Known
.Zero
| Known
.One
).countLeadingOnes() >= SrcBits
- DstBits
) {
1564 // Pull in the high bits from known-ones set.
1565 APInt NewRHS
= C
.zext(SrcBits
);
1566 NewRHS
|= Known
.One
& APInt::getHighBitsSet(SrcBits
, SrcBits
- DstBits
);
1567 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), NewRHS
));
1571 // Look through truncated right-shift of the sign-bit for a sign-bit check:
1572 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0 --> ShOp < 0
1573 // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1575 const APInt
*ShAmtC
;
1577 if (isSignBitCheck(Pred
, C
, TrueIfSigned
) &&
1578 match(X
, m_Shr(m_Value(ShOp
), m_APInt(ShAmtC
))) &&
1579 DstBits
== SrcBits
- ShAmtC
->getZExtValue()) {
1581 ? new ICmpInst(ICmpInst::ICMP_SLT
, ShOp
,
1582 ConstantInt::getNullValue(X
->getType()))
1583 : new ICmpInst(ICmpInst::ICMP_SGT
, ShOp
,
1584 ConstantInt::getAllOnesValue(X
->getType()));
1590 /// Fold icmp (xor X, Y), C.
1591 Instruction
*InstCombinerImpl::foldICmpXorConstant(ICmpInst
&Cmp
,
1592 BinaryOperator
*Xor
,
1594 Value
*X
= Xor
->getOperand(0);
1595 Value
*Y
= Xor
->getOperand(1);
1597 if (!match(Y
, m_APInt(XorC
)))
1600 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1602 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1603 bool TrueIfSigned
= false;
1604 if (isSignBitCheck(Cmp
.getPredicate(), C
, TrueIfSigned
)) {
1606 // If the sign bit of the XorCst is not set, there is no change to
1607 // the operation, just stop using the Xor.
1608 if (!XorC
->isNegative())
1609 return replaceOperand(Cmp
, 0, X
);
1611 // Emit the opposite comparison.
1613 return new ICmpInst(ICmpInst::ICMP_SGT
, X
,
1614 ConstantInt::getAllOnesValue(X
->getType()));
1616 return new ICmpInst(ICmpInst::ICMP_SLT
, X
,
1617 ConstantInt::getNullValue(X
->getType()));
1620 if (Xor
->hasOneUse()) {
1621 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1622 if (!Cmp
.isEquality() && XorC
->isSignMask()) {
1623 Pred
= Cmp
.getFlippedSignednessPredicate();
1624 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1627 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1628 if (!Cmp
.isEquality() && XorC
->isMaxSignedValue()) {
1629 Pred
= Cmp
.getFlippedSignednessPredicate();
1630 Pred
= Cmp
.getSwappedPredicate(Pred
);
1631 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), C
^ *XorC
));
1635 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1636 if (Pred
== ICmpInst::ICMP_UGT
) {
1637 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1638 if (*XorC
== ~C
&& (C
+ 1).isPowerOf2())
1639 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
1640 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1641 if (*XorC
== C
&& (C
+ 1).isPowerOf2())
1642 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
1644 if (Pred
== ICmpInst::ICMP_ULT
) {
1645 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1646 if (*XorC
== -C
&& C
.isPowerOf2())
1647 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1648 ConstantInt::get(X
->getType(), ~C
));
1649 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1650 if (*XorC
== C
&& (-C
).isPowerOf2())
1651 return new ICmpInst(ICmpInst::ICMP_UGT
, X
,
1652 ConstantInt::get(X
->getType(), ~C
));
1657 /// Fold icmp (and (sh X, Y), C2), C1.
1658 Instruction
*InstCombinerImpl::foldICmpAndShift(ICmpInst
&Cmp
,
1659 BinaryOperator
*And
,
1662 BinaryOperator
*Shift
= dyn_cast
<BinaryOperator
>(And
->getOperand(0));
1663 if (!Shift
|| !Shift
->isShift())
1666 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1667 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1668 // code produced by the clang front-end, for bitfield access.
1669 // This seemingly simple opportunity to fold away a shift turns out to be
1670 // rather complicated. See PR17827 for details.
1671 unsigned ShiftOpcode
= Shift
->getOpcode();
1672 bool IsShl
= ShiftOpcode
== Instruction::Shl
;
1674 if (match(Shift
->getOperand(1), m_APInt(C3
))) {
1675 APInt NewAndCst
, NewCmpCst
;
1676 bool AnyCmpCstBitsShiftedOut
;
1677 if (ShiftOpcode
== Instruction::Shl
) {
1678 // For a left shift, we can fold if the comparison is not signed. We can
1679 // also fold a signed comparison if the mask value and comparison value
1680 // are not negative. These constraints may not be obvious, but we can
1681 // prove that they are correct using an SMT solver.
1682 if (Cmp
.isSigned() && (C2
.isNegative() || C1
.isNegative()))
1685 NewCmpCst
= C1
.lshr(*C3
);
1686 NewAndCst
= C2
.lshr(*C3
);
1687 AnyCmpCstBitsShiftedOut
= NewCmpCst
.shl(*C3
) != C1
;
1688 } else if (ShiftOpcode
== Instruction::LShr
) {
1689 // For a logical right shift, we can fold if the comparison is not signed.
1690 // We can also fold a signed comparison if the shifted mask value and the
1691 // shifted comparison value are not negative. These constraints may not be
1692 // obvious, but we can prove that they are correct using an SMT solver.
1693 NewCmpCst
= C1
.shl(*C3
);
1694 NewAndCst
= C2
.shl(*C3
);
1695 AnyCmpCstBitsShiftedOut
= NewCmpCst
.lshr(*C3
) != C1
;
1696 if (Cmp
.isSigned() && (NewAndCst
.isNegative() || NewCmpCst
.isNegative()))
1699 // For an arithmetic shift, check that both constants don't use (in a
1700 // signed sense) the top bits being shifted out.
1701 assert(ShiftOpcode
== Instruction::AShr
&& "Unknown shift opcode");
1702 NewCmpCst
= C1
.shl(*C3
);
1703 NewAndCst
= C2
.shl(*C3
);
1704 AnyCmpCstBitsShiftedOut
= NewCmpCst
.ashr(*C3
) != C1
;
1705 if (NewAndCst
.ashr(*C3
) != C2
)
1709 if (AnyCmpCstBitsShiftedOut
) {
1710 // If we shifted bits out, the fold is not going to work out. As a
1711 // special case, check to see if this means that the result is always
1712 // true or false now.
1713 if (Cmp
.getPredicate() == ICmpInst::ICMP_EQ
)
1714 return replaceInstUsesWith(Cmp
, ConstantInt::getFalse(Cmp
.getType()));
1715 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
)
1716 return replaceInstUsesWith(Cmp
, ConstantInt::getTrue(Cmp
.getType()));
1718 Value
*NewAnd
= Builder
.CreateAnd(
1719 Shift
->getOperand(0), ConstantInt::get(And
->getType(), NewAndCst
));
1720 return new ICmpInst(Cmp
.getPredicate(),
1721 NewAnd
, ConstantInt::get(And
->getType(), NewCmpCst
));
1725 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1726 // preferable because it allows the C2 << Y expression to be hoisted out of a
1727 // loop if Y is invariant and X is not.
1728 if (Shift
->hasOneUse() && C1
.isNullValue() && Cmp
.isEquality() &&
1729 !Shift
->isArithmeticShift() && !isa
<Constant
>(Shift
->getOperand(0))) {
1732 IsShl
? Builder
.CreateLShr(And
->getOperand(1), Shift
->getOperand(1))
1733 : Builder
.CreateShl(And
->getOperand(1), Shift
->getOperand(1));
1735 // Compute X & (C2 << Y).
1736 Value
*NewAnd
= Builder
.CreateAnd(Shift
->getOperand(0), NewShift
);
1737 return replaceOperand(Cmp
, 0, NewAnd
);
1743 /// Fold icmp (and X, C2), C1.
1744 Instruction
*InstCombinerImpl::foldICmpAndConstConst(ICmpInst
&Cmp
,
1745 BinaryOperator
*And
,
1747 bool isICMP_NE
= Cmp
.getPredicate() == ICmpInst::ICMP_NE
;
1749 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1750 // TODO: We canonicalize to the longer form for scalars because we have
1751 // better analysis/folds for icmp, and codegen may be better with icmp.
1752 if (isICMP_NE
&& Cmp
.getType()->isVectorTy() && C1
.isNullValue() &&
1753 match(And
->getOperand(1), m_One()))
1754 return new TruncInst(And
->getOperand(0), Cmp
.getType());
1758 if (!match(And
, m_And(m_Value(X
), m_APInt(C2
))))
1761 // Don't perform the following transforms if the AND has multiple uses
1762 if (!And
->hasOneUse())
1765 if (Cmp
.isEquality() && C1
.isNullValue()) {
1766 // Restrict this fold to single-use 'and' (PR10267).
1767 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1768 if (C2
->isSignMask()) {
1769 Constant
*Zero
= Constant::getNullValue(X
->getType());
1770 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_SGE
;
1771 return new ICmpInst(NewPred
, X
, Zero
);
1774 // Restrict this fold only for single-use 'and' (PR10267).
1775 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1776 if ((~(*C2
) + 1).isPowerOf2()) {
1778 ConstantExpr::getNeg(cast
<Constant
>(And
->getOperand(1)));
1779 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
1780 return new ICmpInst(NewPred
, X
, NegBOC
);
1784 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1785 // the input width without changing the value produced, eliminate the cast:
1787 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1789 // We can do this transformation if the constants do not have their sign bits
1790 // set or if it is an equality comparison. Extending a relational comparison
1791 // when we're checking the sign bit would not work.
1793 if (match(And
->getOperand(0), m_OneUse(m_Trunc(m_Value(W
)))) &&
1794 (Cmp
.isEquality() || (!C1
.isNegative() && !C2
->isNegative()))) {
1795 // TODO: Is this a good transform for vectors? Wider types may reduce
1796 // throughput. Should this transform be limited (even for scalars) by using
1797 // shouldChangeType()?
1798 if (!Cmp
.getType()->isVectorTy()) {
1799 Type
*WideType
= W
->getType();
1800 unsigned WideScalarBits
= WideType
->getScalarSizeInBits();
1801 Constant
*ZextC1
= ConstantInt::get(WideType
, C1
.zext(WideScalarBits
));
1802 Constant
*ZextC2
= ConstantInt::get(WideType
, C2
->zext(WideScalarBits
));
1803 Value
*NewAnd
= Builder
.CreateAnd(W
, ZextC2
, And
->getName());
1804 return new ICmpInst(Cmp
.getPredicate(), NewAnd
, ZextC1
);
1808 if (Instruction
*I
= foldICmpAndShift(Cmp
, And
, C1
, *C2
))
1811 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1812 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1814 // iff pred isn't signed
1815 if (!Cmp
.isSigned() && C1
.isNullValue() && And
->getOperand(0)->hasOneUse() &&
1816 match(And
->getOperand(1), m_One())) {
1817 Constant
*One
= cast
<Constant
>(And
->getOperand(1));
1818 Value
*Or
= And
->getOperand(0);
1819 Value
*A
, *B
, *LShr
;
1820 if (match(Or
, m_Or(m_Value(LShr
), m_Value(A
))) &&
1821 match(LShr
, m_LShr(m_Specific(A
), m_Value(B
)))) {
1822 unsigned UsesRemoved
= 0;
1823 if (And
->hasOneUse())
1825 if (Or
->hasOneUse())
1827 if (LShr
->hasOneUse())
1830 // Compute A & ((1 << B) | 1)
1831 Value
*NewOr
= nullptr;
1832 if (auto *C
= dyn_cast
<Constant
>(B
)) {
1833 if (UsesRemoved
>= 1)
1834 NewOr
= ConstantExpr::getOr(ConstantExpr::getNUWShl(One
, C
), One
);
1836 if (UsesRemoved
>= 3)
1837 NewOr
= Builder
.CreateOr(Builder
.CreateShl(One
, B
, LShr
->getName(),
1839 One
, Or
->getName());
1842 Value
*NewAnd
= Builder
.CreateAnd(A
, NewOr
, And
->getName());
1843 return replaceOperand(Cmp
, 0, NewAnd
);
1851 /// Fold icmp (and X, Y), C.
1852 Instruction
*InstCombinerImpl::foldICmpAndConstant(ICmpInst
&Cmp
,
1853 BinaryOperator
*And
,
1855 if (Instruction
*I
= foldICmpAndConstConst(Cmp
, And
, C
))
1858 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1860 if (isSignBitCheck(Pred
, C
, TrueIfNeg
)) {
1861 // ((X - 1) & ~X) < 0 --> X == 0
1862 // ((X - 1) & ~X) >= 0 --> X != 0
1864 if (match(And
->getOperand(0), m_Add(m_Value(X
), m_AllOnes())) &&
1865 match(And
->getOperand(1), m_Not(m_Specific(X
)))) {
1866 auto NewPred
= TrueIfNeg
? CmpInst::ICMP_EQ
: CmpInst::ICMP_NE
;
1867 return new ICmpInst(NewPred
, X
, ConstantInt::getNullValue(X
->getType()));
1871 // TODO: These all require that Y is constant too, so refactor with the above.
1873 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1874 Value
*X
= And
->getOperand(0);
1875 Value
*Y
= And
->getOperand(1);
1876 if (auto *LI
= dyn_cast
<LoadInst
>(X
))
1877 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LI
->getOperand(0)))
1878 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
1879 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
1880 !LI
->isVolatile() && isa
<ConstantInt
>(Y
)) {
1881 ConstantInt
*C2
= cast
<ConstantInt
>(Y
);
1882 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, Cmp
, C2
))
1886 if (!Cmp
.isEquality())
1889 // X & -C == -C -> X > u ~C
1890 // X & -C != -C -> X <= u ~C
1891 // iff C is a power of 2
1892 if (Cmp
.getOperand(1) == Y
&& (-C
).isPowerOf2()) {
1894 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGT
: CmpInst::ICMP_ULE
;
1895 return new ICmpInst(NewPred
, X
, SubOne(cast
<Constant
>(Cmp
.getOperand(1))));
1898 // (X & C2) == 0 -> (trunc X) >= 0
1899 // (X & C2) != 0 -> (trunc X) < 0
1900 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1902 if (And
->hasOneUse() && C
.isNullValue() && match(Y
, m_APInt(C2
))) {
1903 int32_t ExactLogBase2
= C2
->exactLogBase2();
1904 if (ExactLogBase2
!= -1 && DL
.isLegalInteger(ExactLogBase2
+ 1)) {
1905 Type
*NTy
= IntegerType::get(Cmp
.getContext(), ExactLogBase2
+ 1);
1906 if (auto *AndVTy
= dyn_cast
<VectorType
>(And
->getType()))
1907 NTy
= VectorType::get(NTy
, AndVTy
->getElementCount());
1908 Value
*Trunc
= Builder
.CreateTrunc(X
, NTy
);
1910 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_SGE
: CmpInst::ICMP_SLT
;
1911 return new ICmpInst(NewPred
, Trunc
, Constant::getNullValue(NTy
));
1918 /// Fold icmp (or X, Y), C.
1919 Instruction
*InstCombinerImpl::foldICmpOrConstant(ICmpInst
&Cmp
,
1922 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1923 if (C
.isOneValue()) {
1924 // icmp slt signum(V) 1 --> icmp slt V, 1
1926 if (Pred
== ICmpInst::ICMP_SLT
&& match(Or
, m_Signum(m_Value(V
))))
1927 return new ICmpInst(ICmpInst::ICMP_SLT
, V
,
1928 ConstantInt::get(V
->getType(), 1));
1931 Value
*OrOp0
= Or
->getOperand(0), *OrOp1
= Or
->getOperand(1);
1933 if (match(OrOp1
, m_APInt(MaskC
)) && Cmp
.isEquality()) {
1934 if (*MaskC
== C
&& (C
+ 1).isPowerOf2()) {
1935 // X | C == C --> X <=u C
1936 // X | C != C --> X >u C
1937 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1938 Pred
= (Pred
== CmpInst::ICMP_EQ
) ? CmpInst::ICMP_ULE
: CmpInst::ICMP_UGT
;
1939 return new ICmpInst(Pred
, OrOp0
, OrOp1
);
1942 // More general: canonicalize 'equality with set bits mask' to
1943 // 'equality with clear bits mask'.
1944 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1945 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1946 if (Or
->hasOneUse()) {
1947 Value
*And
= Builder
.CreateAnd(OrOp0
, ~(*MaskC
));
1948 Constant
*NewC
= ConstantInt::get(Or
->getType(), C
^ (*MaskC
));
1949 return new ICmpInst(Pred
, And
, NewC
);
1953 if (!Cmp
.isEquality() || !C
.isNullValue() || !Or
->hasOneUse())
1957 if (match(Or
, m_Or(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Value(Q
))))) {
1958 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1959 // -> and (icmp eq P, null), (icmp eq Q, null).
1961 Builder
.CreateICmp(Pred
, P
, ConstantInt::getNullValue(P
->getType()));
1963 Builder
.CreateICmp(Pred
, Q
, ConstantInt::getNullValue(Q
->getType()));
1964 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1965 return BinaryOperator::Create(BOpc
, CmpP
, CmpQ
);
1968 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1969 // a shorter form that has more potential to be folded even further.
1970 Value
*X1
, *X2
, *X3
, *X4
;
1971 if (match(OrOp0
, m_OneUse(m_Xor(m_Value(X1
), m_Value(X2
)))) &&
1972 match(OrOp1
, m_OneUse(m_Xor(m_Value(X3
), m_Value(X4
))))) {
1973 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1974 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1975 Value
*Cmp12
= Builder
.CreateICmp(Pred
, X1
, X2
);
1976 Value
*Cmp34
= Builder
.CreateICmp(Pred
, X3
, X4
);
1977 auto BOpc
= Pred
== CmpInst::ICMP_EQ
? Instruction::And
: Instruction::Or
;
1978 return BinaryOperator::Create(BOpc
, Cmp12
, Cmp34
);
1984 /// Fold icmp (mul X, Y), C.
1985 Instruction
*InstCombinerImpl::foldICmpMulConstant(ICmpInst
&Cmp
,
1986 BinaryOperator
*Mul
,
1989 if (!match(Mul
->getOperand(1), m_APInt(MulC
)))
1992 // If this is a test of the sign bit and the multiply is sign-preserving with
1993 // a constant operand, use the multiply LHS operand instead.
1994 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
1995 if (isSignTest(Pred
, C
) && Mul
->hasNoSignedWrap()) {
1996 if (MulC
->isNegative())
1997 Pred
= ICmpInst::getSwappedPredicate(Pred
);
1998 return new ICmpInst(Pred
, Mul
->getOperand(0),
1999 Constant::getNullValue(Mul
->getType()));
2002 // If the multiply does not wrap, try to divide the compare constant by the
2003 // multiplication factor.
2004 if (Cmp
.isEquality() && !MulC
->isNullValue()) {
2005 // (mul nsw X, MulC) == C --> X == C /s MulC
2006 if (Mul
->hasNoSignedWrap() && C
.srem(*MulC
).isNullValue()) {
2007 Constant
*NewC
= ConstantInt::get(Mul
->getType(), C
.sdiv(*MulC
));
2008 return new ICmpInst(Pred
, Mul
->getOperand(0), NewC
);
2010 // (mul nuw X, MulC) == C --> X == C /u MulC
2011 if (Mul
->hasNoUnsignedWrap() && C
.urem(*MulC
).isNullValue()) {
2012 Constant
*NewC
= ConstantInt::get(Mul
->getType(), C
.udiv(*MulC
));
2013 return new ICmpInst(Pred
, Mul
->getOperand(0), NewC
);
2020 /// Fold icmp (shl 1, Y), C.
2021 static Instruction
*foldICmpShlOne(ICmpInst
&Cmp
, Instruction
*Shl
,
2024 if (!match(Shl
, m_Shl(m_One(), m_Value(Y
))))
2027 Type
*ShiftType
= Shl
->getType();
2028 unsigned TypeBits
= C
.getBitWidth();
2029 bool CIsPowerOf2
= C
.isPowerOf2();
2030 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2031 if (Cmp
.isUnsigned()) {
2032 // (1 << Y) pred C -> Y pred Log2(C)
2034 // (1 << Y) < 30 -> Y <= 4
2035 // (1 << Y) <= 30 -> Y <= 4
2036 // (1 << Y) >= 30 -> Y > 4
2037 // (1 << Y) > 30 -> Y > 4
2038 if (Pred
== ICmpInst::ICMP_ULT
)
2039 Pred
= ICmpInst::ICMP_ULE
;
2040 else if (Pred
== ICmpInst::ICMP_UGE
)
2041 Pred
= ICmpInst::ICMP_UGT
;
2044 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2045 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
2046 unsigned CLog2
= C
.logBase2();
2047 if (CLog2
== TypeBits
- 1) {
2048 if (Pred
== ICmpInst::ICMP_UGE
)
2049 Pred
= ICmpInst::ICMP_EQ
;
2050 else if (Pred
== ICmpInst::ICMP_ULT
)
2051 Pred
= ICmpInst::ICMP_NE
;
2053 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, CLog2
));
2054 } else if (Cmp
.isSigned()) {
2055 Constant
*BitWidthMinusOne
= ConstantInt::get(ShiftType
, TypeBits
- 1);
2056 if (C
.isAllOnesValue()) {
2057 // (1 << Y) <= -1 -> Y == 31
2058 if (Pred
== ICmpInst::ICMP_SLE
)
2059 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2061 // (1 << Y) > -1 -> Y != 31
2062 if (Pred
== ICmpInst::ICMP_SGT
)
2063 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2065 // (1 << Y) < 0 -> Y == 31
2066 // (1 << Y) <= 0 -> Y == 31
2067 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
2068 return new ICmpInst(ICmpInst::ICMP_EQ
, Y
, BitWidthMinusOne
);
2070 // (1 << Y) >= 0 -> Y != 31
2071 // (1 << Y) > 0 -> Y != 31
2072 if (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SGE
)
2073 return new ICmpInst(ICmpInst::ICMP_NE
, Y
, BitWidthMinusOne
);
2075 } else if (Cmp
.isEquality() && CIsPowerOf2
) {
2076 return new ICmpInst(Pred
, Y
, ConstantInt::get(ShiftType
, C
.logBase2()));
2082 /// Fold icmp (shl X, Y), C.
2083 Instruction
*InstCombinerImpl::foldICmpShlConstant(ICmpInst
&Cmp
,
2084 BinaryOperator
*Shl
,
2086 const APInt
*ShiftVal
;
2087 if (Cmp
.isEquality() && match(Shl
->getOperand(0), m_APInt(ShiftVal
)))
2088 return foldICmpShlConstConst(Cmp
, Shl
->getOperand(1), C
, *ShiftVal
);
2090 const APInt
*ShiftAmt
;
2091 if (!match(Shl
->getOperand(1), m_APInt(ShiftAmt
)))
2092 return foldICmpShlOne(Cmp
, Shl
, C
);
2094 // Check that the shift amount is in range. If not, don't perform undefined
2095 // shifts. When the shift is visited, it will be simplified.
2096 unsigned TypeBits
= C
.getBitWidth();
2097 if (ShiftAmt
->uge(TypeBits
))
2100 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2101 Value
*X
= Shl
->getOperand(0);
2102 Type
*ShType
= Shl
->getType();
2104 // NSW guarantees that we are only shifting out sign bits from the high bits,
2105 // so we can ASHR the compare constant without needing a mask and eliminate
2107 if (Shl
->hasNoSignedWrap()) {
2108 if (Pred
== ICmpInst::ICMP_SGT
) {
2109 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2110 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2111 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2113 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2114 C
.ashr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2115 APInt ShiftedC
= C
.ashr(*ShiftAmt
);
2116 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2118 if (Pred
== ICmpInst::ICMP_SLT
) {
2119 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2120 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2121 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2122 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2123 assert(!C
.isMinSignedValue() && "Unexpected icmp slt");
2124 APInt ShiftedC
= (C
- 1).ashr(*ShiftAmt
) + 1;
2125 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2127 // If this is a signed comparison to 0 and the shift is sign preserving,
2128 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2129 // do that if we're sure to not continue on in this function.
2130 if (isSignTest(Pred
, C
))
2131 return new ICmpInst(Pred
, X
, Constant::getNullValue(ShType
));
2134 // NUW guarantees that we are only shifting out zero bits from the high bits,
2135 // so we can LSHR the compare constant without needing a mask and eliminate
2137 if (Shl
->hasNoUnsignedWrap()) {
2138 if (Pred
== ICmpInst::ICMP_UGT
) {
2139 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2140 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2141 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2143 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
) &&
2144 C
.lshr(*ShiftAmt
).shl(*ShiftAmt
) == C
) {
2145 APInt ShiftedC
= C
.lshr(*ShiftAmt
);
2146 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2148 if (Pred
== ICmpInst::ICMP_ULT
) {
2149 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2150 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2151 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2152 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2153 assert(C
.ugt(0) && "ult 0 should have been eliminated");
2154 APInt ShiftedC
= (C
- 1).lshr(*ShiftAmt
) + 1;
2155 return new ICmpInst(Pred
, X
, ConstantInt::get(ShType
, ShiftedC
));
2159 if (Cmp
.isEquality() && Shl
->hasOneUse()) {
2160 // Strength-reduce the shift into an 'and'.
2161 Constant
*Mask
= ConstantInt::get(
2163 APInt::getLowBitsSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue()));
2164 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2165 Constant
*LShrC
= ConstantInt::get(ShType
, C
.lshr(*ShiftAmt
));
2166 return new ICmpInst(Pred
, And
, LShrC
);
2169 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2170 bool TrueIfSigned
= false;
2171 if (Shl
->hasOneUse() && isSignBitCheck(Pred
, C
, TrueIfSigned
)) {
2172 // (X << 31) <s 0 --> (X & 1) != 0
2173 Constant
*Mask
= ConstantInt::get(
2175 APInt::getOneBitSet(TypeBits
, TypeBits
- ShiftAmt
->getZExtValue() - 1));
2176 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shl
->getName() + ".mask");
2177 return new ICmpInst(TrueIfSigned
? ICmpInst::ICMP_NE
: ICmpInst::ICMP_EQ
,
2178 And
, Constant::getNullValue(ShType
));
2181 // Simplify 'shl' inequality test into 'and' equality test.
2182 if (Cmp
.isUnsigned() && Shl
->hasOneUse()) {
2183 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2184 if ((C
+ 1).isPowerOf2() &&
2185 (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
)) {
2186 Value
*And
= Builder
.CreateAnd(X
, (~C
).lshr(ShiftAmt
->getZExtValue()));
2187 return new ICmpInst(Pred
== ICmpInst::ICMP_ULE
? ICmpInst::ICMP_EQ
2188 : ICmpInst::ICMP_NE
,
2189 And
, Constant::getNullValue(ShType
));
2191 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2192 if (C
.isPowerOf2() &&
2193 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
)) {
2195 Builder
.CreateAnd(X
, (~(C
- 1)).lshr(ShiftAmt
->getZExtValue()));
2196 return new ICmpInst(Pred
== ICmpInst::ICMP_ULT
? ICmpInst::ICMP_EQ
2197 : ICmpInst::ICMP_NE
,
2198 And
, Constant::getNullValue(ShType
));
2202 // Transform (icmp pred iM (shl iM %v, N), C)
2203 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2204 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2205 // This enables us to get rid of the shift in favor of a trunc that may be
2206 // free on the target. It has the additional benefit of comparing to a
2207 // smaller constant that may be more target-friendly.
2208 unsigned Amt
= ShiftAmt
->getLimitedValue(TypeBits
- 1);
2209 if (Shl
->hasOneUse() && Amt
!= 0 && C
.countTrailingZeros() >= Amt
&&
2210 DL
.isLegalInteger(TypeBits
- Amt
)) {
2211 Type
*TruncTy
= IntegerType::get(Cmp
.getContext(), TypeBits
- Amt
);
2212 if (auto *ShVTy
= dyn_cast
<VectorType
>(ShType
))
2213 TruncTy
= VectorType::get(TruncTy
, ShVTy
->getElementCount());
2215 ConstantInt::get(TruncTy
, C
.ashr(*ShiftAmt
).trunc(TypeBits
- Amt
));
2216 return new ICmpInst(Pred
, Builder
.CreateTrunc(X
, TruncTy
), NewC
);
2222 /// Fold icmp ({al}shr X, Y), C.
2223 Instruction
*InstCombinerImpl::foldICmpShrConstant(ICmpInst
&Cmp
,
2224 BinaryOperator
*Shr
,
2226 // An exact shr only shifts out zero bits, so:
2227 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2228 Value
*X
= Shr
->getOperand(0);
2229 CmpInst::Predicate Pred
= Cmp
.getPredicate();
2230 if (Cmp
.isEquality() && Shr
->isExact() && Shr
->hasOneUse() &&
2232 return new ICmpInst(Pred
, X
, Cmp
.getOperand(1));
2234 const APInt
*ShiftVal
;
2235 if (Cmp
.isEquality() && match(Shr
->getOperand(0), m_APInt(ShiftVal
)))
2236 return foldICmpShrConstConst(Cmp
, Shr
->getOperand(1), C
, *ShiftVal
);
2238 const APInt
*ShiftAmt
;
2239 if (!match(Shr
->getOperand(1), m_APInt(ShiftAmt
)))
2242 // Check that the shift amount is in range. If not, don't perform undefined
2243 // shifts. When the shift is visited it will be simplified.
2244 unsigned TypeBits
= C
.getBitWidth();
2245 unsigned ShAmtVal
= ShiftAmt
->getLimitedValue(TypeBits
);
2246 if (ShAmtVal
>= TypeBits
|| ShAmtVal
== 0)
2249 bool IsAShr
= Shr
->getOpcode() == Instruction::AShr
;
2250 bool IsExact
= Shr
->isExact();
2251 Type
*ShrTy
= Shr
->getType();
2252 // TODO: If we could guarantee that InstSimplify would handle all of the
2253 // constant-value-based preconditions in the folds below, then we could assert
2254 // those conditions rather than checking them. This is difficult because of
2255 // undef/poison (PR34838).
2257 if (Pred
== CmpInst::ICMP_SLT
|| (Pred
== CmpInst::ICMP_SGT
&& IsExact
)) {
2258 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2259 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2260 APInt ShiftedC
= C
.shl(ShAmtVal
);
2261 if (ShiftedC
.ashr(ShAmtVal
) == C
)
2262 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2264 if (Pred
== CmpInst::ICMP_SGT
) {
2265 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2266 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2267 if (!C
.isMaxSignedValue() && !(C
+ 1).shl(ShAmtVal
).isMinSignedValue() &&
2268 (ShiftedC
+ 1).ashr(ShAmtVal
) == (C
+ 1))
2269 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2272 // If the compare constant has significant bits above the lowest sign-bit,
2273 // then convert an unsigned cmp to a test of the sign-bit:
2274 // (ashr X, ShiftC) u> C --> X s< 0
2275 // (ashr X, ShiftC) u< C --> X s> -1
2276 if (C
.getBitWidth() > 2 && C
.getNumSignBits() <= ShAmtVal
) {
2277 if (Pred
== CmpInst::ICMP_UGT
) {
2278 return new ICmpInst(CmpInst::ICMP_SLT
, X
,
2279 ConstantInt::getNullValue(ShrTy
));
2281 if (Pred
== CmpInst::ICMP_ULT
) {
2282 return new ICmpInst(CmpInst::ICMP_SGT
, X
,
2283 ConstantInt::getAllOnesValue(ShrTy
));
2287 if (Pred
== CmpInst::ICMP_ULT
|| (Pred
== CmpInst::ICMP_UGT
&& IsExact
)) {
2288 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2289 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2290 APInt ShiftedC
= C
.shl(ShAmtVal
);
2291 if (ShiftedC
.lshr(ShAmtVal
) == C
)
2292 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2294 if (Pred
== CmpInst::ICMP_UGT
) {
2295 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2296 APInt ShiftedC
= (C
+ 1).shl(ShAmtVal
) - 1;
2297 if ((ShiftedC
+ 1).lshr(ShAmtVal
) == (C
+ 1))
2298 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, ShiftedC
));
2302 if (!Cmp
.isEquality())
2305 // Handle equality comparisons of shift-by-constant.
2307 // If the comparison constant changes with the shift, the comparison cannot
2308 // succeed (bits of the comparison constant cannot match the shifted value).
2309 // This should be known by InstSimplify and already be folded to true/false.
2310 assert(((IsAShr
&& C
.shl(ShAmtVal
).ashr(ShAmtVal
) == C
) ||
2311 (!IsAShr
&& C
.shl(ShAmtVal
).lshr(ShAmtVal
) == C
)) &&
2312 "Expected icmp+shr simplify did not occur.");
2314 // If the bits shifted out are known zero, compare the unshifted value:
2315 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2317 return new ICmpInst(Pred
, X
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2319 if (C
.isNullValue()) {
2321 if (Pred
== CmpInst::ICMP_EQ
)
2322 return new ICmpInst(CmpInst::ICMP_ULT
, X
,
2323 ConstantInt::get(ShrTy
, (C
+ 1).shl(ShAmtVal
)));
2325 return new ICmpInst(CmpInst::ICMP_UGT
, X
,
2326 ConstantInt::get(ShrTy
, (C
+ 1).shl(ShAmtVal
) - 1));
2329 if (Shr
->hasOneUse()) {
2330 // Canonicalize the shift into an 'and':
2331 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2332 APInt
Val(APInt::getHighBitsSet(TypeBits
, TypeBits
- ShAmtVal
));
2333 Constant
*Mask
= ConstantInt::get(ShrTy
, Val
);
2334 Value
*And
= Builder
.CreateAnd(X
, Mask
, Shr
->getName() + ".mask");
2335 return new ICmpInst(Pred
, And
, ConstantInt::get(ShrTy
, C
<< ShAmtVal
));
2341 Instruction
*InstCombinerImpl::foldICmpSRemConstant(ICmpInst
&Cmp
,
2342 BinaryOperator
*SRem
,
2344 // Match an 'is positive' or 'is negative' comparison of remainder by a
2345 // constant power-of-2 value:
2346 // (X % pow2C) sgt/slt 0
2347 const ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2348 if (Pred
!= ICmpInst::ICMP_SGT
&& Pred
!= ICmpInst::ICMP_SLT
)
2351 // TODO: The one-use check is standard because we do not typically want to
2352 // create longer instruction sequences, but this might be a special-case
2353 // because srem is not good for analysis or codegen.
2354 if (!SRem
->hasOneUse())
2357 const APInt
*DivisorC
;
2358 if (!C
.isNullValue() || !match(SRem
->getOperand(1), m_Power2(DivisorC
)))
2361 // Mask off the sign bit and the modulo bits (low-bits).
2362 Type
*Ty
= SRem
->getType();
2363 APInt SignMask
= APInt::getSignMask(Ty
->getScalarSizeInBits());
2364 Constant
*MaskC
= ConstantInt::get(Ty
, SignMask
| (*DivisorC
- 1));
2365 Value
*And
= Builder
.CreateAnd(SRem
->getOperand(0), MaskC
);
2367 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2368 // bit is set. Example:
2369 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2370 if (Pred
== ICmpInst::ICMP_SGT
)
2371 return new ICmpInst(ICmpInst::ICMP_SGT
, And
, ConstantInt::getNullValue(Ty
));
2373 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2374 // bit is set. Example:
2375 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2376 return new ICmpInst(ICmpInst::ICMP_UGT
, And
, ConstantInt::get(Ty
, SignMask
));
2379 /// Fold icmp (udiv X, Y), C.
2380 Instruction
*InstCombinerImpl::foldICmpUDivConstant(ICmpInst
&Cmp
,
2381 BinaryOperator
*UDiv
,
2384 if (!match(UDiv
->getOperand(0), m_APInt(C2
)))
2387 assert(*C2
!= 0 && "udiv 0, X should have been simplified already.");
2389 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2390 Value
*Y
= UDiv
->getOperand(1);
2391 if (Cmp
.getPredicate() == ICmpInst::ICMP_UGT
) {
2392 assert(!C
.isMaxValue() &&
2393 "icmp ugt X, UINT_MAX should have been simplified already.");
2394 return new ICmpInst(ICmpInst::ICMP_ULE
, Y
,
2395 ConstantInt::get(Y
->getType(), C2
->udiv(C
+ 1)));
2398 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2399 if (Cmp
.getPredicate() == ICmpInst::ICMP_ULT
) {
2400 assert(C
!= 0 && "icmp ult X, 0 should have been simplified already.");
2401 return new ICmpInst(ICmpInst::ICMP_UGT
, Y
,
2402 ConstantInt::get(Y
->getType(), C2
->udiv(C
)));
2408 /// Fold icmp ({su}div X, Y), C.
2409 Instruction
*InstCombinerImpl::foldICmpDivConstant(ICmpInst
&Cmp
,
2410 BinaryOperator
*Div
,
2412 // Fold: icmp pred ([us]div X, C2), C -> range test
2413 // Fold this div into the comparison, producing a range check.
2414 // Determine, based on the divide type, what the range is being
2415 // checked. If there is an overflow on the low or high side, remember
2416 // it, otherwise compute the range [low, hi) bounding the new value.
2417 // See: InsertRangeTest above for the kinds of replacements possible.
2419 if (!match(Div
->getOperand(1), m_APInt(C2
)))
2422 // FIXME: If the operand types don't match the type of the divide
2423 // then don't attempt this transform. The code below doesn't have the
2424 // logic to deal with a signed divide and an unsigned compare (and
2425 // vice versa). This is because (x /s C2) <s C produces different
2426 // results than (x /s C2) <u C or (x /u C2) <s C or even
2427 // (x /u C2) <u C. Simply casting the operands and result won't
2428 // work. :( The if statement below tests that condition and bails
2430 bool DivIsSigned
= Div
->getOpcode() == Instruction::SDiv
;
2431 if (!Cmp
.isEquality() && DivIsSigned
!= Cmp
.isSigned())
2434 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2435 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2436 // division-by-constant cases should be present, we can not assert that they
2437 // have happened before we reach this icmp instruction.
2438 if (C2
->isNullValue() || C2
->isOneValue() ||
2439 (DivIsSigned
&& C2
->isAllOnesValue()))
2442 // Compute Prod = C * C2. We are essentially solving an equation of
2443 // form X / C2 = C. We solve for X by multiplying C2 and C.
2444 // By solving for X, we can turn this into a range check instead of computing
2446 APInt Prod
= C
* *C2
;
2448 // Determine if the product overflows by seeing if the product is not equal to
2449 // the divide. Make sure we do the same kind of divide as in the LHS
2450 // instruction that we're folding.
2451 bool ProdOV
= (DivIsSigned
? Prod
.sdiv(*C2
) : Prod
.udiv(*C2
)) != C
;
2453 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2455 // If the division is known to be exact, then there is no remainder from the
2456 // divide, so the covered range size is unit, otherwise it is the divisor.
2457 APInt RangeSize
= Div
->isExact() ? APInt(C2
->getBitWidth(), 1) : *C2
;
2459 // Figure out the interval that is being checked. For example, a comparison
2460 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2461 // Compute this interval based on the constants involved and the signedness of
2462 // the compare/divide. This computes a half-open interval, keeping track of
2463 // whether either value in the interval overflows. After analysis each
2464 // overflow variable is set to 0 if it's corresponding bound variable is valid
2465 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2466 int LoOverflow
= 0, HiOverflow
= 0;
2467 APInt LoBound
, HiBound
;
2469 if (!DivIsSigned
) { // udiv
2470 // e.g. X/5 op 3 --> [15, 20)
2472 HiOverflow
= LoOverflow
= ProdOV
;
2474 // If this is not an exact divide, then many values in the range collapse
2475 // to the same result value.
2476 HiOverflow
= addWithOverflow(HiBound
, LoBound
, RangeSize
, false);
2478 } else if (C2
->isStrictlyPositive()) { // Divisor is > 0.
2479 if (C
.isNullValue()) { // (X / pos) op 0
2480 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2481 LoBound
= -(RangeSize
- 1);
2482 HiBound
= RangeSize
;
2483 } else if (C
.isStrictlyPositive()) { // (X / pos) op pos
2484 LoBound
= Prod
; // e.g. X/5 op 3 --> [15, 20)
2485 HiOverflow
= LoOverflow
= ProdOV
;
2487 HiOverflow
= addWithOverflow(HiBound
, Prod
, RangeSize
, true);
2488 } else { // (X / pos) op neg
2489 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2491 LoOverflow
= HiOverflow
= ProdOV
? -1 : 0;
2493 APInt DivNeg
= -RangeSize
;
2494 LoOverflow
= addWithOverflow(LoBound
, HiBound
, DivNeg
, true) ? -1 : 0;
2497 } else if (C2
->isNegative()) { // Divisor is < 0.
2500 if (C
.isNullValue()) { // (X / neg) op 0
2501 // e.g. X/-5 op 0 --> [-4, 5)
2502 LoBound
= RangeSize
+ 1;
2503 HiBound
= -RangeSize
;
2504 if (HiBound
== *C2
) { // -INTMIN = INTMIN
2505 HiOverflow
= 1; // [INTMIN+1, overflow)
2506 HiBound
= APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2508 } else if (C
.isStrictlyPositive()) { // (X / neg) op pos
2509 // e.g. X/-5 op 3 --> [-19, -14)
2511 HiOverflow
= LoOverflow
= ProdOV
? -1 : 0;
2513 LoOverflow
= addWithOverflow(LoBound
, HiBound
, RangeSize
, true) ? -1:0;
2514 } else { // (X / neg) op neg
2515 LoBound
= Prod
; // e.g. X/-5 op -3 --> [15, 20)
2516 LoOverflow
= HiOverflow
= ProdOV
;
2518 HiOverflow
= subWithOverflow(HiBound
, Prod
, RangeSize
, true);
2521 // Dividing by a negative swaps the condition. LT <-> GT
2522 Pred
= ICmpInst::getSwappedPredicate(Pred
);
2525 Value
*X
= Div
->getOperand(0);
2527 default: llvm_unreachable("Unhandled icmp opcode!");
2528 case ICmpInst::ICMP_EQ
:
2529 if (LoOverflow
&& HiOverflow
)
2530 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2532 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2533 ICmpInst::ICMP_UGE
, X
,
2534 ConstantInt::get(Div
->getType(), LoBound
));
2536 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2537 ICmpInst::ICMP_ULT
, X
,
2538 ConstantInt::get(Div
->getType(), HiBound
));
2539 return replaceInstUsesWith(
2540 Cmp
, insertRangeTest(X
, LoBound
, HiBound
, DivIsSigned
, true));
2541 case ICmpInst::ICMP_NE
:
2542 if (LoOverflow
&& HiOverflow
)
2543 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2545 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SLT
:
2546 ICmpInst::ICMP_ULT
, X
,
2547 ConstantInt::get(Div
->getType(), LoBound
));
2549 return new ICmpInst(DivIsSigned
? ICmpInst::ICMP_SGE
:
2550 ICmpInst::ICMP_UGE
, X
,
2551 ConstantInt::get(Div
->getType(), HiBound
));
2552 return replaceInstUsesWith(Cmp
,
2553 insertRangeTest(X
, LoBound
, HiBound
,
2554 DivIsSigned
, false));
2555 case ICmpInst::ICMP_ULT
:
2556 case ICmpInst::ICMP_SLT
:
2557 if (LoOverflow
== +1) // Low bound is greater than input range.
2558 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2559 if (LoOverflow
== -1) // Low bound is less than input range.
2560 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2561 return new ICmpInst(Pred
, X
, ConstantInt::get(Div
->getType(), LoBound
));
2562 case ICmpInst::ICMP_UGT
:
2563 case ICmpInst::ICMP_SGT
:
2564 if (HiOverflow
== +1) // High bound greater than input range.
2565 return replaceInstUsesWith(Cmp
, Builder
.getFalse());
2566 if (HiOverflow
== -1) // High bound less than input range.
2567 return replaceInstUsesWith(Cmp
, Builder
.getTrue());
2568 if (Pred
== ICmpInst::ICMP_UGT
)
2569 return new ICmpInst(ICmpInst::ICMP_UGE
, X
,
2570 ConstantInt::get(Div
->getType(), HiBound
));
2571 return new ICmpInst(ICmpInst::ICMP_SGE
, X
,
2572 ConstantInt::get(Div
->getType(), HiBound
));
2578 /// Fold icmp (sub X, Y), C.
2579 Instruction
*InstCombinerImpl::foldICmpSubConstant(ICmpInst
&Cmp
,
2580 BinaryOperator
*Sub
,
2582 Value
*X
= Sub
->getOperand(0), *Y
= Sub
->getOperand(1);
2583 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2587 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2588 if (match(X
, m_APInt(C2
)) && *C2
== C
&& Cmp
.isEquality())
2589 return new ICmpInst(Cmp
.getPredicate(), Y
,
2590 ConstantInt::get(Y
->getType(), 0));
2592 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2593 if (match(X
, m_APInt(C2
)) &&
2594 ((Cmp
.isUnsigned() && Sub
->hasNoUnsignedWrap()) ||
2595 (Cmp
.isSigned() && Sub
->hasNoSignedWrap())) &&
2596 !subWithOverflow(SubResult
, *C2
, C
, Cmp
.isSigned()))
2597 return new ICmpInst(Cmp
.getSwappedPredicate(), Y
,
2598 ConstantInt::get(Y
->getType(), SubResult
));
2600 // The following transforms are only worth it if the only user of the subtract
2602 if (!Sub
->hasOneUse())
2605 if (Sub
->hasNoSignedWrap()) {
2606 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2607 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isAllOnesValue())
2608 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
2610 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2611 if (Pred
== ICmpInst::ICMP_SGT
&& C
.isNullValue())
2612 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
2614 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2615 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isNullValue())
2616 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
2618 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2619 if (Pred
== ICmpInst::ICMP_SLT
&& C
.isOneValue())
2620 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
2623 if (!match(X
, m_APInt(C2
)))
2626 // C2 - Y <u C -> (Y | (C - 1)) == C2
2627 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2628 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() &&
2629 (*C2
& (C
- 1)) == (C
- 1))
2630 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateOr(Y
, C
- 1), X
);
2632 // C2 - Y >u C -> (Y | C) != C2
2633 // iff C2 & C == C and C + 1 is a power of 2
2634 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == C
)
2635 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateOr(Y
, C
), X
);
2640 /// Fold icmp (add X, Y), C.
2641 Instruction
*InstCombinerImpl::foldICmpAddConstant(ICmpInst
&Cmp
,
2642 BinaryOperator
*Add
,
2644 Value
*Y
= Add
->getOperand(1);
2646 if (Cmp
.isEquality() || !match(Y
, m_APInt(C2
)))
2649 // Fold icmp pred (add X, C2), C.
2650 Value
*X
= Add
->getOperand(0);
2651 Type
*Ty
= Add
->getType();
2652 const CmpInst::Predicate Pred
= Cmp
.getPredicate();
2654 // If the add does not wrap, we can always adjust the compare by subtracting
2655 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2656 // are canonicalized to SGT/SLT/UGT/ULT.
2657 if ((Add
->hasNoSignedWrap() &&
2658 (Pred
== ICmpInst::ICMP_SGT
|| Pred
== ICmpInst::ICMP_SLT
)) ||
2659 (Add
->hasNoUnsignedWrap() &&
2660 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULT
))) {
2663 Cmp
.isSigned() ? C
.ssub_ov(*C2
, Overflow
) : C
.usub_ov(*C2
, Overflow
);
2664 // If there is overflow, the result must be true or false.
2665 // TODO: Can we assert there is no overflow because InstSimplify always
2666 // handles those cases?
2668 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2669 return new ICmpInst(Pred
, X
, ConstantInt::get(Ty
, NewC
));
2672 auto CR
= ConstantRange::makeExactICmpRegion(Pred
, C
).subtract(*C2
);
2673 const APInt
&Upper
= CR
.getUpper();
2674 const APInt
&Lower
= CR
.getLower();
2675 if (Cmp
.isSigned()) {
2676 if (Lower
.isSignMask())
2677 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, Upper
));
2678 if (Upper
.isSignMask())
2679 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, ConstantInt::get(Ty
, Lower
));
2681 if (Lower
.isMinValue())
2682 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, Upper
));
2683 if (Upper
.isMinValue())
2684 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, ConstantInt::get(Ty
, Lower
));
2687 // This set of folds is intentionally placed after folds that use no-wrapping
2688 // flags because those folds are likely better for later analysis/codegen.
2689 const APInt SMax
= APInt::getSignedMaxValue(Ty
->getScalarSizeInBits());
2690 const APInt SMin
= APInt::getSignedMinValue(Ty
->getScalarSizeInBits());
2692 // Fold compare with offset to opposite sign compare if it eliminates offset:
2693 // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2694 if (Pred
== CmpInst::ICMP_UGT
&& C
== *C2
+ SMax
)
2695 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, ConstantInt::get(Ty
, -(*C2
)));
2697 // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2698 if (Pred
== CmpInst::ICMP_ULT
&& C
== *C2
+ SMin
)
2699 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, ConstantInt::get(Ty
, ~(*C2
)));
2701 // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2702 if (Pred
== CmpInst::ICMP_SGT
&& C
== *C2
- 1)
2703 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, ConstantInt::get(Ty
, SMax
- C
));
2705 // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2706 if (Pred
== CmpInst::ICMP_SLT
&& C
== *C2
)
2707 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, ConstantInt::get(Ty
, C
^ SMax
));
2709 if (!Add
->hasOneUse())
2712 // X+C <u C2 -> (X & -C2) == C
2713 // iff C & (C2-1) == 0
2714 // C2 is a power of 2
2715 if (Pred
== ICmpInst::ICMP_ULT
&& C
.isPowerOf2() && (*C2
& (C
- 1)) == 0)
2716 return new ICmpInst(ICmpInst::ICMP_EQ
, Builder
.CreateAnd(X
, -C
),
2717 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2719 // X+C >u C2 -> (X & ~C2) != C
2721 // C2+1 is a power of 2
2722 if (Pred
== ICmpInst::ICMP_UGT
&& (C
+ 1).isPowerOf2() && (*C2
& C
) == 0)
2723 return new ICmpInst(ICmpInst::ICMP_NE
, Builder
.CreateAnd(X
, ~C
),
2724 ConstantExpr::getNeg(cast
<Constant
>(Y
)));
2729 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
,
2730 Value
*&RHS
, ConstantInt
*&Less
,
2731 ConstantInt
*&Equal
,
2732 ConstantInt
*&Greater
) {
2733 // TODO: Generalize this to work with other comparison idioms or ensure
2734 // they get canonicalized into this form.
2736 // select i1 (a == b),
2738 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2739 // where Equal, Less and Greater are placeholders for any three constants.
2740 ICmpInst::Predicate PredA
;
2741 if (!match(SI
->getCondition(), m_ICmp(PredA
, m_Value(LHS
), m_Value(RHS
))) ||
2742 !ICmpInst::isEquality(PredA
))
2744 Value
*EqualVal
= SI
->getTrueValue();
2745 Value
*UnequalVal
= SI
->getFalseValue();
2746 // We still can get non-canonical predicate here, so canonicalize.
2747 if (PredA
== ICmpInst::ICMP_NE
)
2748 std::swap(EqualVal
, UnequalVal
);
2749 if (!match(EqualVal
, m_ConstantInt(Equal
)))
2751 ICmpInst::Predicate PredB
;
2753 if (!match(UnequalVal
, m_Select(m_ICmp(PredB
, m_Value(LHS2
), m_Value(RHS2
)),
2754 m_ConstantInt(Less
), m_ConstantInt(Greater
))))
2756 // We can get predicate mismatch here, so canonicalize if possible:
2757 // First, ensure that 'LHS' match.
2759 // x sgt y <--> y slt x
2760 std::swap(LHS2
, RHS2
);
2761 PredB
= ICmpInst::getSwappedPredicate(PredB
);
2765 // We also need to canonicalize 'RHS'.
2766 if (PredB
== ICmpInst::ICMP_SGT
&& isa
<Constant
>(RHS2
)) {
2767 // x sgt C-1 <--> x sge C <--> not(x slt C)
2768 auto FlippedStrictness
=
2769 InstCombiner::getFlippedStrictnessPredicateAndConstant(
2770 PredB
, cast
<Constant
>(RHS2
));
2771 if (!FlippedStrictness
)
2773 assert(FlippedStrictness
->first
== ICmpInst::ICMP_SGE
&& "Sanity check");
2774 RHS2
= FlippedStrictness
->second
;
2775 // And kind-of perform the result swap.
2776 std::swap(Less
, Greater
);
2777 PredB
= ICmpInst::ICMP_SLT
;
2779 return PredB
== ICmpInst::ICMP_SLT
&& RHS
== RHS2
;
2782 Instruction
*InstCombinerImpl::foldICmpSelectConstant(ICmpInst
&Cmp
,
2786 assert(C
&& "Cmp RHS should be a constant int!");
2787 // If we're testing a constant value against the result of a three way
2788 // comparison, the result can be expressed directly in terms of the
2789 // original values being compared. Note: We could possibly be more
2790 // aggressive here and remove the hasOneUse test. The original select is
2791 // really likely to simplify or sink when we remove a test of the result.
2792 Value
*OrigLHS
, *OrigRHS
;
2793 ConstantInt
*C1LessThan
, *C2Equal
, *C3GreaterThan
;
2794 if (Cmp
.hasOneUse() &&
2795 matchThreeWayIntCompare(Select
, OrigLHS
, OrigRHS
, C1LessThan
, C2Equal
,
2797 assert(C1LessThan
&& C2Equal
&& C3GreaterThan
);
2799 bool TrueWhenLessThan
=
2800 ConstantExpr::getCompare(Cmp
.getPredicate(), C1LessThan
, C
)
2802 bool TrueWhenEqual
=
2803 ConstantExpr::getCompare(Cmp
.getPredicate(), C2Equal
, C
)
2805 bool TrueWhenGreaterThan
=
2806 ConstantExpr::getCompare(Cmp
.getPredicate(), C3GreaterThan
, C
)
2809 // This generates the new instruction that will replace the original Cmp
2810 // Instruction. Instead of enumerating the various combinations when
2811 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2812 // false, we rely on chaining of ORs and future passes of InstCombine to
2813 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2815 // When none of the three constants satisfy the predicate for the RHS (C),
2816 // the entire original Cmp can be simplified to a false.
2817 Value
*Cond
= Builder
.getFalse();
2818 if (TrueWhenLessThan
)
2819 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SLT
,
2822 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_EQ
,
2824 if (TrueWhenGreaterThan
)
2825 Cond
= Builder
.CreateOr(Cond
, Builder
.CreateICmp(ICmpInst::ICMP_SGT
,
2828 return replaceInstUsesWith(Cmp
, Cond
);
2833 Instruction
*InstCombinerImpl::foldICmpBitCast(ICmpInst
&Cmp
) {
2834 auto *Bitcast
= dyn_cast
<BitCastInst
>(Cmp
.getOperand(0));
2838 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
2839 Value
*Op1
= Cmp
.getOperand(1);
2840 Value
*BCSrcOp
= Bitcast
->getOperand(0);
2842 // Make sure the bitcast doesn't change the number of vector elements.
2843 if (Bitcast
->getSrcTy()->getScalarSizeInBits() ==
2844 Bitcast
->getDestTy()->getScalarSizeInBits()) {
2845 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2847 if (match(BCSrcOp
, m_SIToFP(m_Value(X
)))) {
2848 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2849 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2850 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2851 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2852 if ((Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_SLT
||
2853 Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
) &&
2854 match(Op1
, m_Zero()))
2855 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2857 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2858 if (Pred
== ICmpInst::ICMP_SLT
&& match(Op1
, m_One()))
2859 return new ICmpInst(Pred
, X
, ConstantInt::get(X
->getType(), 1));
2861 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2862 if (Pred
== ICmpInst::ICMP_SGT
&& match(Op1
, m_AllOnes()))
2863 return new ICmpInst(Pred
, X
,
2864 ConstantInt::getAllOnesValue(X
->getType()));
2867 // Zero-equality checks are preserved through unsigned floating-point casts:
2868 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2869 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2870 if (match(BCSrcOp
, m_UIToFP(m_Value(X
))))
2871 if (Cmp
.isEquality() && match(Op1
, m_Zero()))
2872 return new ICmpInst(Pred
, X
, ConstantInt::getNullValue(X
->getType()));
2874 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2875 // the FP extend/truncate because that cast does not change the sign-bit.
2876 // This is true for all standard IEEE-754 types and the X86 80-bit type.
2877 // The sign-bit is always the most significant bit in those types.
2880 if (match(Op1
, m_APInt(C
)) && Bitcast
->hasOneUse() &&
2881 InstCombiner::isSignBitCheck(Pred
, *C
, TrueIfSigned
)) {
2882 if (match(BCSrcOp
, m_FPExt(m_Value(X
))) ||
2883 match(BCSrcOp
, m_FPTrunc(m_Value(X
)))) {
2884 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2885 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2886 Type
*XType
= X
->getType();
2888 // We can't currently handle Power style floating point operations here.
2889 if (!(XType
->isPPC_FP128Ty() || BCSrcOp
->getType()->isPPC_FP128Ty())) {
2891 Type
*NewType
= Builder
.getIntNTy(XType
->getScalarSizeInBits());
2892 if (auto *XVTy
= dyn_cast
<VectorType
>(XType
))
2893 NewType
= VectorType::get(NewType
, XVTy
->getElementCount());
2894 Value
*NewBitcast
= Builder
.CreateBitCast(X
, NewType
);
2896 return new ICmpInst(ICmpInst::ICMP_SLT
, NewBitcast
,
2897 ConstantInt::getNullValue(NewType
));
2899 return new ICmpInst(ICmpInst::ICMP_SGT
, NewBitcast
,
2900 ConstantInt::getAllOnesValue(NewType
));
2906 // Test to see if the operands of the icmp are casted versions of other
2907 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2908 if (Bitcast
->getType()->isPointerTy() &&
2909 (isa
<Constant
>(Op1
) || isa
<BitCastInst
>(Op1
))) {
2910 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2911 // so eliminate it as well.
2912 if (auto *BC2
= dyn_cast
<BitCastInst
>(Op1
))
2913 Op1
= BC2
->getOperand(0);
2915 Op1
= Builder
.CreateBitCast(Op1
, BCSrcOp
->getType());
2916 return new ICmpInst(Pred
, BCSrcOp
, Op1
);
2920 if (!match(Cmp
.getOperand(1), m_APInt(C
)) ||
2921 !Bitcast
->getType()->isIntegerTy() ||
2922 !Bitcast
->getSrcTy()->isIntOrIntVectorTy())
2925 // If this is checking if all elements of a vector compare are set or not,
2926 // invert the casted vector equality compare and test if all compare
2927 // elements are clear or not. Compare against zero is generally easier for
2928 // analysis and codegen.
2929 // icmp eq/ne (bitcast (not X) to iN), -1 --> icmp eq/ne (bitcast X to iN), 0
2930 // Example: are all elements equal? --> are zero elements not equal?
2931 // TODO: Try harder to reduce compare of 2 freely invertible operands?
2932 if (Cmp
.isEquality() && C
->isAllOnesValue() && Bitcast
->hasOneUse() &&
2933 isFreeToInvert(BCSrcOp
, BCSrcOp
->hasOneUse())) {
2934 Type
*ScalarTy
= Bitcast
->getType();
2935 Value
*Cast
= Builder
.CreateBitCast(Builder
.CreateNot(BCSrcOp
), ScalarTy
);
2936 return new ICmpInst(Pred
, Cast
, ConstantInt::getNullValue(ScalarTy
));
2939 // If this is checking if all elements of an extended vector are clear or not,
2940 // compare in a narrow type to eliminate the extend:
2941 // icmp eq/ne (bitcast (ext X) to iN), 0 --> icmp eq/ne (bitcast X to iM), 0
2943 if (Cmp
.isEquality() && C
->isNullValue() && Bitcast
->hasOneUse() &&
2944 match(BCSrcOp
, m_ZExtOrSExt(m_Value(X
)))) {
2945 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(X
->getType())) {
2946 Type
*NewType
= Builder
.getIntNTy(VecTy
->getPrimitiveSizeInBits());
2947 Value
*NewCast
= Builder
.CreateBitCast(X
, NewType
);
2948 return new ICmpInst(Pred
, NewCast
, ConstantInt::getNullValue(NewType
));
2952 // Folding: icmp <pred> iN X, C
2953 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2954 // and C is a splat of a K-bit pattern
2955 // and SC is a constant vector = <C', C', C', ..., C'>
2957 // %E = extractelement <M x iK> %vec, i32 C'
2958 // icmp <pred> iK %E, trunc(C)
2961 if (match(BCSrcOp
, m_Shuffle(m_Value(Vec
), m_Undef(), m_Mask(Mask
)))) {
2962 // Check whether every element of Mask is the same constant
2963 if (is_splat(Mask
)) {
2964 auto *VecTy
= cast
<VectorType
>(BCSrcOp
->getType());
2965 auto *EltTy
= cast
<IntegerType
>(VecTy
->getElementType());
2966 if (C
->isSplat(EltTy
->getBitWidth())) {
2967 // Fold the icmp based on the value of C
2968 // If C is M copies of an iK sized bit pattern,
2970 // => %E = extractelement <N x iK> %vec, i32 Elem
2971 // icmp <pred> iK %SplatVal, <pattern>
2972 Value
*Elem
= Builder
.getInt32(Mask
[0]);
2973 Value
*Extract
= Builder
.CreateExtractElement(Vec
, Elem
);
2974 Value
*NewC
= ConstantInt::get(EltTy
, C
->trunc(EltTy
->getBitWidth()));
2975 return new ICmpInst(Pred
, Extract
, NewC
);
2982 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2983 /// where X is some kind of instruction.
2984 Instruction
*InstCombinerImpl::foldICmpInstWithConstant(ICmpInst
&Cmp
) {
2986 if (!match(Cmp
.getOperand(1), m_APInt(C
)))
2989 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cmp
.getOperand(0))) {
2990 switch (BO
->getOpcode()) {
2991 case Instruction::Xor
:
2992 if (Instruction
*I
= foldICmpXorConstant(Cmp
, BO
, *C
))
2995 case Instruction::And
:
2996 if (Instruction
*I
= foldICmpAndConstant(Cmp
, BO
, *C
))
2999 case Instruction::Or
:
3000 if (Instruction
*I
= foldICmpOrConstant(Cmp
, BO
, *C
))
3003 case Instruction::Mul
:
3004 if (Instruction
*I
= foldICmpMulConstant(Cmp
, BO
, *C
))
3007 case Instruction::Shl
:
3008 if (Instruction
*I
= foldICmpShlConstant(Cmp
, BO
, *C
))
3011 case Instruction::LShr
:
3012 case Instruction::AShr
:
3013 if (Instruction
*I
= foldICmpShrConstant(Cmp
, BO
, *C
))
3016 case Instruction::SRem
:
3017 if (Instruction
*I
= foldICmpSRemConstant(Cmp
, BO
, *C
))
3020 case Instruction::UDiv
:
3021 if (Instruction
*I
= foldICmpUDivConstant(Cmp
, BO
, *C
))
3024 case Instruction::SDiv
:
3025 if (Instruction
*I
= foldICmpDivConstant(Cmp
, BO
, *C
))
3028 case Instruction::Sub
:
3029 if (Instruction
*I
= foldICmpSubConstant(Cmp
, BO
, *C
))
3032 case Instruction::Add
:
3033 if (Instruction
*I
= foldICmpAddConstant(Cmp
, BO
, *C
))
3039 // TODO: These folds could be refactored to be part of the above calls.
3040 if (Instruction
*I
= foldICmpBinOpEqualityWithConstant(Cmp
, BO
, *C
))
3044 // Match against CmpInst LHS being instructions other than binary operators.
3046 if (auto *SI
= dyn_cast
<SelectInst
>(Cmp
.getOperand(0))) {
3047 // For now, we only support constant integers while folding the
3048 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3049 // similar to the cases handled by binary ops above.
3050 if (ConstantInt
*ConstRHS
= dyn_cast
<ConstantInt
>(Cmp
.getOperand(1)))
3051 if (Instruction
*I
= foldICmpSelectConstant(Cmp
, SI
, ConstRHS
))
3055 if (auto *TI
= dyn_cast
<TruncInst
>(Cmp
.getOperand(0))) {
3056 if (Instruction
*I
= foldICmpTruncConstant(Cmp
, TI
, *C
))
3060 if (auto *II
= dyn_cast
<IntrinsicInst
>(Cmp
.getOperand(0)))
3061 if (Instruction
*I
= foldICmpIntrinsicWithConstant(Cmp
, II
, *C
))
3067 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3068 /// icmp eq/ne BO, C.
3069 Instruction
*InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3070 ICmpInst
&Cmp
, BinaryOperator
*BO
, const APInt
&C
) {
3071 // TODO: Some of these folds could work with arbitrary constants, but this
3072 // function is limited to scalar and vector splat constants.
3073 if (!Cmp
.isEquality())
3076 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3077 bool isICMP_NE
= Pred
== ICmpInst::ICMP_NE
;
3078 Constant
*RHS
= cast
<Constant
>(Cmp
.getOperand(1));
3079 Value
*BOp0
= BO
->getOperand(0), *BOp1
= BO
->getOperand(1);
3081 switch (BO
->getOpcode()) {
3082 case Instruction::SRem
:
3083 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3084 if (C
.isNullValue() && BO
->hasOneUse()) {
3086 if (match(BOp1
, m_APInt(BOC
)) && BOC
->sgt(1) && BOC
->isPowerOf2()) {
3087 Value
*NewRem
= Builder
.CreateURem(BOp0
, BOp1
, BO
->getName());
3088 return new ICmpInst(Pred
, NewRem
,
3089 Constant::getNullValue(BO
->getType()));
3093 case Instruction::Add
: {
3094 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3095 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
3096 if (BO
->hasOneUse())
3097 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getSub(RHS
, BOC
));
3098 } else if (C
.isNullValue()) {
3099 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3100 // efficiently invertible, or if the add has just this one use.
3101 if (Value
*NegVal
= dyn_castNegVal(BOp1
))
3102 return new ICmpInst(Pred
, BOp0
, NegVal
);
3103 if (Value
*NegVal
= dyn_castNegVal(BOp0
))
3104 return new ICmpInst(Pred
, NegVal
, BOp1
);
3105 if (BO
->hasOneUse()) {
3106 Value
*Neg
= Builder
.CreateNeg(BOp1
);
3108 return new ICmpInst(Pred
, BOp0
, Neg
);
3113 case Instruction::Xor
:
3114 if (BO
->hasOneUse()) {
3115 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp1
)) {
3116 // For the xor case, we can xor two constants together, eliminating
3117 // the explicit xor.
3118 return new ICmpInst(Pred
, BOp0
, ConstantExpr::getXor(RHS
, BOC
));
3119 } else if (C
.isNullValue()) {
3120 // Replace ((xor A, B) != 0) with (A != B)
3121 return new ICmpInst(Pred
, BOp0
, BOp1
);
3125 case Instruction::Sub
:
3126 if (BO
->hasOneUse()) {
3127 // Only check for constant LHS here, as constant RHS will be canonicalized
3128 // to add and use the fold above.
3129 if (Constant
*BOC
= dyn_cast
<Constant
>(BOp0
)) {
3130 // Replace ((sub BOC, B) != C) with (B != BOC-C).
3131 return new ICmpInst(Pred
, BOp1
, ConstantExpr::getSub(BOC
, RHS
));
3132 } else if (C
.isNullValue()) {
3133 // Replace ((sub A, B) != 0) with (A != B).
3134 return new ICmpInst(Pred
, BOp0
, BOp1
);
3138 case Instruction::Or
: {
3140 if (match(BOp1
, m_APInt(BOC
)) && BO
->hasOneUse() && RHS
->isAllOnesValue()) {
3141 // Comparing if all bits outside of a constant mask are set?
3142 // Replace (X | C) == -1 with (X & ~C) == ~C.
3143 // This removes the -1 constant.
3144 Constant
*NotBOC
= ConstantExpr::getNot(cast
<Constant
>(BOp1
));
3145 Value
*And
= Builder
.CreateAnd(BOp0
, NotBOC
);
3146 return new ICmpInst(Pred
, And
, NotBOC
);
3150 case Instruction::And
: {
3152 if (match(BOp1
, m_APInt(BOC
))) {
3153 // If we have ((X & C) == C), turn it into ((X & C) != 0).
3154 if (C
== *BOC
&& C
.isPowerOf2())
3155 return new ICmpInst(isICMP_NE
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
,
3156 BO
, Constant::getNullValue(RHS
->getType()));
3160 case Instruction::UDiv
:
3161 if (C
.isNullValue()) {
3162 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3163 auto NewPred
= isICMP_NE
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3164 return new ICmpInst(NewPred
, BOp1
, BOp0
);
3173 /// Fold an equality icmp with LLVM intrinsic and constant operand.
3174 Instruction
*InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3175 ICmpInst
&Cmp
, IntrinsicInst
*II
, const APInt
&C
) {
3176 Type
*Ty
= II
->getType();
3177 unsigned BitWidth
= C
.getBitWidth();
3178 switch (II
->getIntrinsicID()) {
3179 case Intrinsic::abs
:
3180 // abs(A) == 0 -> A == 0
3181 // abs(A) == INT_MIN -> A == INT_MIN
3182 if (C
.isNullValue() || C
.isMinSignedValue())
3183 return new ICmpInst(Cmp
.getPredicate(), II
->getArgOperand(0),
3184 ConstantInt::get(Ty
, C
));
3187 case Intrinsic::bswap
:
3188 // bswap(A) == C -> A == bswap(C)
3189 return new ICmpInst(Cmp
.getPredicate(), II
->getArgOperand(0),
3190 ConstantInt::get(Ty
, C
.byteSwap()));
3192 case Intrinsic::ctlz
:
3193 case Intrinsic::cttz
: {
3194 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3196 return new ICmpInst(Cmp
.getPredicate(), II
->getArgOperand(0),
3197 ConstantInt::getNullValue(Ty
));
3199 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3200 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3201 // Limit to one use to ensure we don't increase instruction count.
3202 unsigned Num
= C
.getLimitedValue(BitWidth
);
3203 if (Num
!= BitWidth
&& II
->hasOneUse()) {
3204 bool IsTrailing
= II
->getIntrinsicID() == Intrinsic::cttz
;
3205 APInt Mask1
= IsTrailing
? APInt::getLowBitsSet(BitWidth
, Num
+ 1)
3206 : APInt::getHighBitsSet(BitWidth
, Num
+ 1);
3207 APInt Mask2
= IsTrailing
3208 ? APInt::getOneBitSet(BitWidth
, Num
)
3209 : APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3210 return new ICmpInst(Cmp
.getPredicate(),
3211 Builder
.CreateAnd(II
->getArgOperand(0), Mask1
),
3212 ConstantInt::get(Ty
, Mask2
));
3217 case Intrinsic::ctpop
: {
3218 // popcount(A) == 0 -> A == 0 and likewise for !=
3219 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3220 bool IsZero
= C
.isNullValue();
3221 if (IsZero
|| C
== BitWidth
)
3222 return new ICmpInst(Cmp
.getPredicate(), II
->getArgOperand(0),
3223 IsZero
? Constant::getNullValue(Ty
) : Constant::getAllOnesValue(Ty
));
3228 case Intrinsic::uadd_sat
: {
3229 // uadd.sat(a, b) == 0 -> (a | b) == 0
3230 if (C
.isNullValue()) {
3231 Value
*Or
= Builder
.CreateOr(II
->getArgOperand(0), II
->getArgOperand(1));
3232 return new ICmpInst(Cmp
.getPredicate(), Or
, Constant::getNullValue(Ty
));
3237 case Intrinsic::usub_sat
: {
3238 // usub.sat(a, b) == 0 -> a <= b
3239 if (C
.isNullValue()) {
3240 ICmpInst::Predicate NewPred
= Cmp
.getPredicate() == ICmpInst::ICMP_EQ
3241 ? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_UGT
;
3242 return new ICmpInst(NewPred
, II
->getArgOperand(0), II
->getArgOperand(1));
3253 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3254 Instruction
*InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst
&Cmp
,
3257 if (Cmp
.isEquality())
3258 return foldICmpEqIntrinsicWithConstant(Cmp
, II
, C
);
3260 Type
*Ty
= II
->getType();
3261 unsigned BitWidth
= C
.getBitWidth();
3262 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
3263 switch (II
->getIntrinsicID()) {
3264 case Intrinsic::ctpop
: {
3265 // (ctpop X > BitWidth - 1) --> X == -1
3266 Value
*X
= II
->getArgOperand(0);
3267 if (C
== BitWidth
- 1 && Pred
== ICmpInst::ICMP_UGT
)
3268 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
, X
,
3269 ConstantInt::getAllOnesValue(Ty
));
3270 // (ctpop X < BitWidth) --> X != -1
3271 if (C
== BitWidth
&& Pred
== ICmpInst::ICMP_ULT
)
3272 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
, X
,
3273 ConstantInt::getAllOnesValue(Ty
));
3276 case Intrinsic::ctlz
: {
3277 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3278 if (Pred
== ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3279 unsigned Num
= C
.getLimitedValue();
3280 APInt Limit
= APInt::getOneBitSet(BitWidth
, BitWidth
- Num
- 1);
3281 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_ULT
,
3282 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3285 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3286 if (Pred
== ICmpInst::ICMP_ULT
&& C
.uge(1) && C
.ule(BitWidth
)) {
3287 unsigned Num
= C
.getLimitedValue();
3288 APInt Limit
= APInt::getLowBitsSet(BitWidth
, BitWidth
- Num
);
3289 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_UGT
,
3290 II
->getArgOperand(0), ConstantInt::get(Ty
, Limit
));
3294 case Intrinsic::cttz
: {
3295 // Limit to one use to ensure we don't increase instruction count.
3296 if (!II
->hasOneUse())
3299 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3300 if (Pred
== ICmpInst::ICMP_UGT
&& C
.ult(BitWidth
)) {
3301 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue() + 1);
3302 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_EQ
,
3303 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3304 ConstantInt::getNullValue(Ty
));
3307 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3308 if (Pred
== ICmpInst::ICMP_ULT
&& C
.uge(1) && C
.ule(BitWidth
)) {
3309 APInt Mask
= APInt::getLowBitsSet(BitWidth
, C
.getLimitedValue());
3310 return CmpInst::Create(Instruction::ICmp
, ICmpInst::ICMP_NE
,
3311 Builder
.CreateAnd(II
->getArgOperand(0), Mask
),
3312 ConstantInt::getNullValue(Ty
));
3323 /// Handle icmp with constant (but not simple integer constant) RHS.
3324 Instruction
*InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst
&I
) {
3325 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3326 Constant
*RHSC
= dyn_cast
<Constant
>(Op1
);
3327 Instruction
*LHSI
= dyn_cast
<Instruction
>(Op0
);
3331 switch (LHSI
->getOpcode()) {
3332 case Instruction::GetElementPtr
:
3333 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3334 if (RHSC
->isNullValue() &&
3335 cast
<GetElementPtrInst
>(LHSI
)->hasAllZeroIndices())
3336 return new ICmpInst(
3337 I
.getPredicate(), LHSI
->getOperand(0),
3338 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3340 case Instruction::PHI
:
3341 // Only fold icmp into the PHI if the phi and icmp are in the same
3342 // block. If in the same block, we're encouraging jump threading. If
3343 // not, we are just pessimizing the code by making an i1 phi.
3344 if (LHSI
->getParent() == I
.getParent())
3345 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
3348 case Instruction::Select
: {
3349 // If either operand of the select is a constant, we can fold the
3350 // comparison into the select arms, which will cause one to be
3351 // constant folded and the select turned into a bitwise or.
3352 Value
*Op1
= nullptr, *Op2
= nullptr;
3353 ConstantInt
*CI
= nullptr;
3355 auto SimplifyOp
= [&](Value
*V
) {
3356 Value
*Op
= nullptr;
3357 if (Constant
*C
= dyn_cast
<Constant
>(V
)) {
3358 Op
= ConstantExpr::getICmp(I
.getPredicate(), C
, RHSC
);
3359 } else if (RHSC
->isNullValue()) {
3360 // If null is being compared, check if it can be further simplified.
3361 Op
= SimplifyICmpInst(I
.getPredicate(), V
, RHSC
, SQ
);
3365 Op1
= SimplifyOp(LHSI
->getOperand(1));
3367 CI
= dyn_cast
<ConstantInt
>(Op1
);
3369 Op2
= SimplifyOp(LHSI
->getOperand(2));
3371 CI
= dyn_cast
<ConstantInt
>(Op2
);
3373 // We only want to perform this transformation if it will not lead to
3374 // additional code. This is true if either both sides of the select
3375 // fold to a constant (in which case the icmp is replaced with a select
3376 // which will usually simplify) or this is the only user of the
3377 // select (in which case we are trading a select+icmp for a simpler
3378 // select+icmp) or all uses of the select can be replaced based on
3379 // dominance information ("Global cases").
3380 bool Transform
= false;
3383 else if (Op1
|| Op2
) {
3385 if (LHSI
->hasOneUse())
3388 else if (CI
&& !CI
->isZero())
3389 // When Op1 is constant try replacing select with second operand.
3390 // Otherwise Op2 is constant and try replacing select with first
3393 replacedSelectWithOperand(cast
<SelectInst
>(LHSI
), &I
, Op1
? 2 : 1);
3397 Op1
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(1), RHSC
,
3400 Op2
= Builder
.CreateICmp(I
.getPredicate(), LHSI
->getOperand(2), RHSC
,
3402 return SelectInst::Create(LHSI
->getOperand(0), Op1
, Op2
);
3406 case Instruction::IntToPtr
:
3407 // icmp pred inttoptr(X), null -> icmp pred X, 0
3408 if (RHSC
->isNullValue() &&
3409 DL
.getIntPtrType(RHSC
->getType()) == LHSI
->getOperand(0)->getType())
3410 return new ICmpInst(
3411 I
.getPredicate(), LHSI
->getOperand(0),
3412 Constant::getNullValue(LHSI
->getOperand(0)->getType()));
3415 case Instruction::Load
:
3416 // Try to optimize things like "A[i] > 4" to index computations.
3417 if (GetElementPtrInst
*GEP
=
3418 dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0))) {
3419 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
3420 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
3421 !cast
<LoadInst
>(LHSI
)->isVolatile())
3422 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
3431 /// Some comparisons can be simplified.
3432 /// In this case, we are looking for comparisons that look like
3433 /// a check for a lossy truncation.
3435 /// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3436 /// Where Mask is some pattern that produces all-ones in low bits:
3438 /// ((-1 << y) >> y) <- non-canonical, has extra uses
3440 /// ((1 << y) + (-1)) <- non-canonical, has extra uses
3441 /// The Mask can be a constant, too.
3442 /// For some predicates, the operands are commutative.
3443 /// For others, x can only be on a specific side.
3444 static Value
*foldICmpWithLowBitMaskedVal(ICmpInst
&I
,
3445 InstCombiner::BuilderTy
&Builder
) {
3446 ICmpInst::Predicate SrcPred
;
3448 auto m_VariableMask
= m_CombineOr(
3449 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3450 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3451 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3452 m_LShr(m_Shl(m_AllOnes(), m_Value(Y
)), m_Deferred(Y
))));
3453 auto m_Mask
= m_CombineOr(m_VariableMask
, m_LowBitMask());
3454 if (!match(&I
, m_c_ICmp(SrcPred
,
3455 m_c_And(m_CombineAnd(m_Mask
, m_Value(M
)), m_Value(X
)),
3459 ICmpInst::Predicate DstPred
;
3461 case ICmpInst::Predicate::ICMP_EQ
:
3462 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3463 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3465 case ICmpInst::Predicate::ICMP_NE
:
3466 // x & (-1 >> y) != x -> x u> (-1 >> y)
3467 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3469 case ICmpInst::Predicate::ICMP_ULT
:
3470 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3471 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3472 DstPred
= ICmpInst::Predicate::ICMP_UGT
;
3474 case ICmpInst::Predicate::ICMP_UGE
:
3475 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3476 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3477 DstPred
= ICmpInst::Predicate::ICMP_ULE
;
3479 case ICmpInst::Predicate::ICMP_SLT
:
3480 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3481 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3482 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3484 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3486 DstPred
= ICmpInst::Predicate::ICMP_SGT
;
3488 case ICmpInst::Predicate::ICMP_SGE
:
3489 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3490 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3491 if (!match(M
, m_Constant())) // Can not do this fold with non-constant.
3493 if (!match(M
, m_NonNegative())) // Must not have any -1 vector elements.
3495 DstPred
= ICmpInst::Predicate::ICMP_SLE
;
3497 case ICmpInst::Predicate::ICMP_SGT
:
3498 case ICmpInst::Predicate::ICMP_SLE
:
3500 case ICmpInst::Predicate::ICMP_UGT
:
3501 case ICmpInst::Predicate::ICMP_ULE
:
3502 llvm_unreachable("Instsimplify took care of commut. variant");
3505 llvm_unreachable("All possible folds are handled.");
3508 // The mask value may be a vector constant that has undefined elements. But it
3509 // may not be safe to propagate those undefs into the new compare, so replace
3510 // those elements by copying an existing, defined, and safe scalar constant.
3511 Type
*OpTy
= M
->getType();
3512 auto *VecC
= dyn_cast
<Constant
>(M
);
3513 auto *OpVTy
= dyn_cast
<FixedVectorType
>(OpTy
);
3514 if (OpVTy
&& VecC
&& VecC
->containsUndefOrPoisonElement()) {
3515 Constant
*SafeReplacementConstant
= nullptr;
3516 for (unsigned i
= 0, e
= OpVTy
->getNumElements(); i
!= e
; ++i
) {
3517 if (!isa
<UndefValue
>(VecC
->getAggregateElement(i
))) {
3518 SafeReplacementConstant
= VecC
->getAggregateElement(i
);
3522 assert(SafeReplacementConstant
&& "Failed to find undef replacement");
3523 M
= Constant::replaceUndefsWith(VecC
, SafeReplacementConstant
);
3526 return Builder
.CreateICmp(DstPred
, X
, M
);
3529 /// Some comparisons can be simplified.
3530 /// In this case, we are looking for comparisons that look like
3531 /// a check for a lossy signed truncation.
3532 /// Folds: (MaskedBits is a constant.)
3533 /// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3535 /// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3536 /// Where KeptBits = bitwidth(%x) - MaskedBits
3538 foldICmpWithTruncSignExtendedVal(ICmpInst
&I
,
3539 InstCombiner::BuilderTy
&Builder
) {
3540 ICmpInst::Predicate SrcPred
;
3542 const APInt
*C0
, *C1
; // FIXME: non-splats, potentially with undef.
3543 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3544 if (!match(&I
, m_c_ICmp(SrcPred
,
3545 m_OneUse(m_AShr(m_Shl(m_Value(X
), m_APInt(C0
)),
3550 // Potential handling of non-splats: for each element:
3551 // * if both are undef, replace with constant 0.
3552 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3553 // * if both are not undef, and are different, bailout.
3554 // * else, only one is undef, then pick the non-undef one.
3556 // The shift amount must be equal.
3559 const APInt
&MaskedBits
= *C0
;
3560 assert(MaskedBits
!= 0 && "shift by zero should be folded away already.");
3562 ICmpInst::Predicate DstPred
;
3564 case ICmpInst::Predicate::ICMP_EQ
:
3565 // ((%x << MaskedBits) a>> MaskedBits) == %x
3567 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3568 DstPred
= ICmpInst::Predicate::ICMP_ULT
;
3570 case ICmpInst::Predicate::ICMP_NE
:
3571 // ((%x << MaskedBits) a>> MaskedBits) != %x
3573 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3574 DstPred
= ICmpInst::Predicate::ICMP_UGE
;
3576 // FIXME: are more folds possible?
3581 auto *XType
= X
->getType();
3582 const unsigned XBitWidth
= XType
->getScalarSizeInBits();
3583 const APInt BitWidth
= APInt(XBitWidth
, XBitWidth
);
3584 assert(BitWidth
.ugt(MaskedBits
) && "shifts should leave some bits untouched");
3586 // KeptBits = bitwidth(%x) - MaskedBits
3587 const APInt KeptBits
= BitWidth
- MaskedBits
;
3588 assert(KeptBits
.ugt(0) && KeptBits
.ult(BitWidth
) && "unreachable");
3589 // ICmpCst = (1 << KeptBits)
3590 const APInt ICmpCst
= APInt(XBitWidth
, 1).shl(KeptBits
);
3591 assert(ICmpCst
.isPowerOf2());
3592 // AddCst = (1 << (KeptBits-1))
3593 const APInt AddCst
= ICmpCst
.lshr(1);
3594 assert(AddCst
.ult(ICmpCst
) && AddCst
.isPowerOf2());
3596 // T0 = add %x, AddCst
3597 Value
*T0
= Builder
.CreateAdd(X
, ConstantInt::get(XType
, AddCst
));
3598 // T1 = T0 DstPred ICmpCst
3599 Value
*T1
= Builder
.CreateICmp(DstPred
, T0
, ConstantInt::get(XType
, ICmpCst
));
3605 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3606 // we should move shifts to the same hand of 'and', i.e. rewrite as
3607 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3608 // We are only interested in opposite logical shifts here.
3609 // One of the shifts can be truncated.
3610 // If we can, we want to end up creating 'lshr' shift.
3612 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst
&I
, const SimplifyQuery SQ
,
3613 InstCombiner::BuilderTy
&Builder
) {
3614 if (!I
.isEquality() || !match(I
.getOperand(1), m_Zero()) ||
3615 !I
.getOperand(0)->hasOneUse())
3618 auto m_AnyLogicalShift
= m_LogicalShift(m_Value(), m_Value());
3620 // Look for an 'and' of two logical shifts, one of which may be truncated.
3621 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3622 Instruction
*XShift
, *MaybeTruncation
, *YShift
;
3625 m_c_And(m_CombineAnd(m_AnyLogicalShift
, m_Instruction(XShift
)),
3626 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3627 m_AnyLogicalShift
, m_Instruction(YShift
))),
3628 m_Instruction(MaybeTruncation
)))))
3631 // We potentially looked past 'trunc', but only when matching YShift,
3632 // therefore YShift must have the widest type.
3633 Instruction
*WidestShift
= YShift
;
3634 // Therefore XShift must have the shallowest type.
3635 // Or they both have identical types if there was no truncation.
3636 Instruction
*NarrowestShift
= XShift
;
3638 Type
*WidestTy
= WidestShift
->getType();
3639 Type
*NarrowestTy
= NarrowestShift
->getType();
3640 assert(NarrowestTy
== I
.getOperand(0)->getType() &&
3641 "We did not look past any shifts while matching XShift though.");
3642 bool HadTrunc
= WidestTy
!= I
.getOperand(0)->getType();
3644 // If YShift is a 'lshr', swap the shifts around.
3645 if (match(YShift
, m_LShr(m_Value(), m_Value())))
3646 std::swap(XShift
, YShift
);
3648 // The shifts must be in opposite directions.
3649 auto XShiftOpcode
= XShift
->getOpcode();
3650 if (XShiftOpcode
== YShift
->getOpcode())
3651 return nullptr; // Do not care about same-direction shifts here.
3653 Value
*X
, *XShAmt
, *Y
, *YShAmt
;
3654 match(XShift
, m_BinOp(m_Value(X
), m_ZExtOrSelf(m_Value(XShAmt
))));
3655 match(YShift
, m_BinOp(m_Value(Y
), m_ZExtOrSelf(m_Value(YShAmt
))));
3657 // If one of the values being shifted is a constant, then we will end with
3658 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3659 // however, we will need to ensure that we won't increase instruction count.
3660 if (!isa
<Constant
>(X
) && !isa
<Constant
>(Y
)) {
3661 // At least one of the hands of the 'and' should be one-use shift.
3662 if (!match(I
.getOperand(0),
3663 m_c_And(m_OneUse(m_AnyLogicalShift
), m_Value())))
3666 // Due to the 'trunc', we will need to widen X. For that either the old
3667 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3668 if (!MaybeTruncation
->hasOneUse() &&
3669 !NarrowestShift
->getOperand(1)->hasOneUse())
3674 // We have two shift amounts from two different shifts. The types of those
3675 // shift amounts may not match. If that's the case let's bailout now.
3676 if (XShAmt
->getType() != YShAmt
->getType())
3679 // As input, we have the following pattern:
3680 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3681 // We want to rewrite that as:
3682 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3683 // While we know that originally (Q+K) would not overflow
3684 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
3685 // shift amounts. so it may now overflow in smaller bitwidth.
3686 // To ensure that does not happen, we need to ensure that the total maximal
3687 // shift amount is still representable in that smaller bit width.
3688 unsigned MaximalPossibleTotalShiftAmount
=
3689 (WidestTy
->getScalarSizeInBits() - 1) +
3690 (NarrowestTy
->getScalarSizeInBits() - 1);
3691 APInt MaximalRepresentableShiftAmount
=
3692 APInt::getAllOnesValue(XShAmt
->getType()->getScalarSizeInBits());
3693 if (MaximalRepresentableShiftAmount
.ult(MaximalPossibleTotalShiftAmount
))
3696 // Can we fold (XShAmt+YShAmt) ?
3697 auto *NewShAmt
= dyn_cast_or_null
<Constant
>(
3698 SimplifyAddInst(XShAmt
, YShAmt
, /*isNSW=*/false,
3699 /*isNUW=*/false, SQ
.getWithInstruction(&I
)));
3702 NewShAmt
= ConstantExpr::getZExtOrBitCast(NewShAmt
, WidestTy
);
3703 unsigned WidestBitWidth
= WidestTy
->getScalarSizeInBits();
3705 // Is the new shift amount smaller than the bit width?
3706 // FIXME: could also rely on ConstantRange.
3707 if (!match(NewShAmt
,
3708 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT
,
3709 APInt(WidestBitWidth
, WidestBitWidth
))))
3712 // An extra legality check is needed if we had trunc-of-lshr.
3713 if (HadTrunc
&& match(WidestShift
, m_LShr(m_Value(), m_Value()))) {
3714 auto CanFold
= [NewShAmt
, WidestBitWidth
, NarrowestShift
, SQ
,
3716 // It isn't obvious whether it's worth it to analyze non-constants here.
3717 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3718 // If *any* of these preconditions matches we can perform the fold.
3719 Constant
*NewShAmtSplat
= NewShAmt
->getType()->isVectorTy()
3720 ? NewShAmt
->getSplatValue()
3722 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3723 if (NewShAmtSplat
&&
3724 (NewShAmtSplat
->isNullValue() ||
3725 NewShAmtSplat
->getUniqueInteger() == WidestBitWidth
- 1))
3727 // We consider *min* leading zeros so a single outlier
3728 // blocks the transform as opposed to allowing it.
3729 if (auto *C
= dyn_cast
<Constant
>(NarrowestShift
->getOperand(0))) {
3730 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
3731 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
3732 // If the value being shifted has at most lowest bit set we can fold.
3733 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
3734 if (MaxActiveBits
<= 1)
3736 // Precondition: NewShAmt u<= countLeadingZeros(C)
3737 if (NewShAmtSplat
&& NewShAmtSplat
->getUniqueInteger().ule(MinLeadZero
))
3740 if (auto *C
= dyn_cast
<Constant
>(WidestShift
->getOperand(0))) {
3741 KnownBits Known
= computeKnownBits(C
, SQ
.DL
);
3742 unsigned MinLeadZero
= Known
.countMinLeadingZeros();
3743 // If the value being shifted has at most lowest bit set we can fold.
3744 unsigned MaxActiveBits
= Known
.getBitWidth() - MinLeadZero
;
3745 if (MaxActiveBits
<= 1)
3747 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3748 if (NewShAmtSplat
) {
3750 (WidestBitWidth
- 1) - NewShAmtSplat
->getUniqueInteger();
3751 if (AdjNewShAmt
.ule(MinLeadZero
))
3755 return false; // Can't tell if it's ok.
3761 // All good, we can do this fold.
3762 X
= Builder
.CreateZExt(X
, WidestTy
);
3763 Y
= Builder
.CreateZExt(Y
, WidestTy
);
3764 // The shift is the same that was for X.
3765 Value
*T0
= XShiftOpcode
== Instruction::BinaryOps::LShr
3766 ? Builder
.CreateLShr(X
, NewShAmt
)
3767 : Builder
.CreateShl(X
, NewShAmt
);
3768 Value
*T1
= Builder
.CreateAnd(T0
, Y
);
3769 return Builder
.CreateICmp(I
.getPredicate(), T1
,
3770 Constant::getNullValue(WidestTy
));
3775 /// ((x * y) u/ x) != y
3777 /// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3778 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3779 /// will mean that we are looking for the opposite answer.
3780 Value
*InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst
&I
) {
3781 ICmpInst::Predicate Pred
;
3785 // Look for: (-1 u/ x) u</u>= y
3786 if (!I
.isEquality() &&
3787 match(&I
, m_c_ICmp(Pred
, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X
))),
3791 // Are we checking that overflow does not happen, or does happen?
3793 case ICmpInst::Predicate::ICMP_ULT
:
3794 NeedNegation
= false;
3796 case ICmpInst::Predicate::ICMP_UGE
:
3797 NeedNegation
= true;
3800 return nullptr; // Wrong predicate.
3802 } else // Look for: ((x * y) u/ x) !=/== y
3803 if (I
.isEquality() &&
3804 match(&I
, m_c_ICmp(Pred
, m_Value(Y
),
3805 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y
),
3807 m_Instruction(Mul
)),
3808 m_Deferred(X
)))))) {
3809 NeedNegation
= Pred
== ICmpInst::Predicate::ICMP_EQ
;
3813 BuilderTy::InsertPointGuard
Guard(Builder
);
3814 // If the pattern included (x * y), we'll want to insert new instructions
3815 // right before that original multiplication so that we can replace it.
3816 bool MulHadOtherUses
= Mul
&& !Mul
->hasOneUse();
3817 if (MulHadOtherUses
)
3818 Builder
.SetInsertPoint(Mul
);
3820 Function
*F
= Intrinsic::getDeclaration(
3821 I
.getModule(), Intrinsic::umul_with_overflow
, X
->getType());
3822 CallInst
*Call
= Builder
.CreateCall(F
, {X
, Y
}, "umul");
3824 // If the multiplication was used elsewhere, to ensure that we don't leave
3825 // "duplicate" instructions, replace uses of that original multiplication
3826 // with the multiplication result from the with.overflow intrinsic.
3827 if (MulHadOtherUses
)
3828 replaceInstUsesWith(*Mul
, Builder
.CreateExtractValue(Call
, 0, "umul.val"));
3830 Value
*Res
= Builder
.CreateExtractValue(Call
, 1, "umul.ov");
3831 if (NeedNegation
) // This technically increases instruction count.
3832 Res
= Builder
.CreateNot(Res
, "umul.not.ov");
3834 // If we replaced the mul, erase it. Do this after all uses of Builder,
3835 // as the mul is used as insertion point.
3836 if (MulHadOtherUses
)
3837 eraseInstFromFunction(*Mul
);
3842 static Instruction
*foldICmpXNegX(ICmpInst
&I
) {
3843 CmpInst::Predicate Pred
;
3845 if (!match(&I
, m_c_ICmp(Pred
, m_NSWNeg(m_Value(X
)), m_Deferred(X
))))
3848 if (ICmpInst::isSigned(Pred
))
3849 Pred
= ICmpInst::getSwappedPredicate(Pred
);
3850 else if (ICmpInst::isUnsigned(Pred
))
3851 Pred
= ICmpInst::getSignedPredicate(Pred
);
3852 // else for equality-comparisons just keep the predicate.
3854 return ICmpInst::Create(Instruction::ICmp
, Pred
, X
,
3855 Constant::getNullValue(X
->getType()), I
.getName());
3858 /// Try to fold icmp (binop), X or icmp X, (binop).
3859 /// TODO: A large part of this logic is duplicated in InstSimplify's
3860 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3862 Instruction
*InstCombinerImpl::foldICmpBinOp(ICmpInst
&I
,
3863 const SimplifyQuery
&SQ
) {
3864 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
3865 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
3867 // Special logic for binary operators.
3868 BinaryOperator
*BO0
= dyn_cast
<BinaryOperator
>(Op0
);
3869 BinaryOperator
*BO1
= dyn_cast
<BinaryOperator
>(Op1
);
3873 if (Instruction
*NewICmp
= foldICmpXNegX(I
))
3876 const CmpInst::Predicate Pred
= I
.getPredicate();
3879 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3880 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3881 if (match(Op0
, m_OneUse(m_c_Add(m_Specific(Op1
), m_Value(X
)))) &&
3882 (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
3883 return new ICmpInst(Pred
, Builder
.CreateNot(Op1
), X
);
3884 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3885 if (match(Op1
, m_OneUse(m_c_Add(m_Specific(Op0
), m_Value(X
)))) &&
3886 (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
3887 return new ICmpInst(Pred
, X
, Builder
.CreateNot(Op0
));
3889 bool NoOp0WrapProblem
= false, NoOp1WrapProblem
= false;
3890 if (BO0
&& isa
<OverflowingBinaryOperator
>(BO0
))
3892 ICmpInst::isEquality(Pred
) ||
3893 (CmpInst::isUnsigned(Pred
) && BO0
->hasNoUnsignedWrap()) ||
3894 (CmpInst::isSigned(Pred
) && BO0
->hasNoSignedWrap());
3895 if (BO1
&& isa
<OverflowingBinaryOperator
>(BO1
))
3897 ICmpInst::isEquality(Pred
) ||
3898 (CmpInst::isUnsigned(Pred
) && BO1
->hasNoUnsignedWrap()) ||
3899 (CmpInst::isSigned(Pred
) && BO1
->hasNoSignedWrap());
3901 // Analyze the case when either Op0 or Op1 is an add instruction.
3902 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3903 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
3904 if (BO0
&& BO0
->getOpcode() == Instruction::Add
) {
3905 A
= BO0
->getOperand(0);
3906 B
= BO0
->getOperand(1);
3908 if (BO1
&& BO1
->getOpcode() == Instruction::Add
) {
3909 C
= BO1
->getOperand(0);
3910 D
= BO1
->getOperand(1);
3913 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3914 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3915 if ((A
== Op1
|| B
== Op1
) && NoOp0WrapProblem
)
3916 return new ICmpInst(Pred
, A
== Op1
? B
: A
,
3917 Constant::getNullValue(Op1
->getType()));
3919 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3920 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3921 if ((C
== Op0
|| D
== Op0
) && NoOp1WrapProblem
)
3922 return new ICmpInst(Pred
, Constant::getNullValue(Op0
->getType()),
3925 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3926 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && NoOp0WrapProblem
&&
3928 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3931 // C + B == C + D -> B == D
3934 } else if (A
== D
) {
3935 // D + B == C + D -> B == C
3938 } else if (B
== C
) {
3939 // A + C == C + D -> A == D
3944 // A + D == C + D -> A == C
3948 return new ICmpInst(Pred
, Y
, Z
);
3951 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3952 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&&
3953 match(B
, m_AllOnes()))
3954 return new ICmpInst(CmpInst::ICMP_SLE
, A
, Op1
);
3956 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3957 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&&
3958 match(B
, m_AllOnes()))
3959 return new ICmpInst(CmpInst::ICMP_SGT
, A
, Op1
);
3961 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3962 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&& match(B
, m_One()))
3963 return new ICmpInst(CmpInst::ICMP_SLT
, A
, Op1
);
3965 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3966 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&& match(B
, m_One()))
3967 return new ICmpInst(CmpInst::ICMP_SGE
, A
, Op1
);
3969 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3970 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGT
&&
3971 match(D
, m_AllOnes()))
3972 return new ICmpInst(CmpInst::ICMP_SGE
, Op0
, C
);
3974 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3975 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLE
&&
3976 match(D
, m_AllOnes()))
3977 return new ICmpInst(CmpInst::ICMP_SLT
, Op0
, C
);
3979 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3980 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SGE
&& match(D
, m_One()))
3981 return new ICmpInst(CmpInst::ICMP_SGT
, Op0
, C
);
3983 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3984 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_SLT
&& match(D
, m_One()))
3985 return new ICmpInst(CmpInst::ICMP_SLE
, Op0
, C
);
3987 // TODO: The subtraction-related identities shown below also hold, but
3988 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3989 // wouldn't happen even if they were implemented.
3991 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3992 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3993 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3994 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3996 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3997 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_ULE
&& match(B
, m_One()))
3998 return new ICmpInst(CmpInst::ICMP_ULT
, A
, Op1
);
4000 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
4001 if (A
&& NoOp0WrapProblem
&& Pred
== CmpInst::ICMP_UGT
&& match(B
, m_One()))
4002 return new ICmpInst(CmpInst::ICMP_UGE
, A
, Op1
);
4004 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
4005 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_UGE
&& match(D
, m_One()))
4006 return new ICmpInst(CmpInst::ICMP_UGT
, Op0
, C
);
4008 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
4009 if (C
&& NoOp1WrapProblem
&& Pred
== CmpInst::ICMP_ULT
&& match(D
, m_One()))
4010 return new ICmpInst(CmpInst::ICMP_ULE
, Op0
, C
);
4012 // if C1 has greater magnitude than C2:
4013 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
4014 // s.t. C3 = C1 - C2
4016 // if C2 has greater magnitude than C1:
4017 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
4018 // s.t. C3 = C2 - C1
4019 if (A
&& C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
&&
4020 (BO0
->hasOneUse() || BO1
->hasOneUse()) && !I
.isUnsigned())
4021 if (ConstantInt
*C1
= dyn_cast
<ConstantInt
>(B
))
4022 if (ConstantInt
*C2
= dyn_cast
<ConstantInt
>(D
)) {
4023 const APInt
&AP1
= C1
->getValue();
4024 const APInt
&AP2
= C2
->getValue();
4025 if (AP1
.isNegative() == AP2
.isNegative()) {
4026 APInt AP1Abs
= C1
->getValue().abs();
4027 APInt AP2Abs
= C2
->getValue().abs();
4028 if (AP1Abs
.uge(AP2Abs
)) {
4029 ConstantInt
*C3
= Builder
.getInt(AP1
- AP2
);
4030 bool HasNUW
= BO0
->hasNoUnsignedWrap() && C3
->getValue().ule(AP1
);
4031 bool HasNSW
= BO0
->hasNoSignedWrap();
4032 Value
*NewAdd
= Builder
.CreateAdd(A
, C3
, "", HasNUW
, HasNSW
);
4033 return new ICmpInst(Pred
, NewAdd
, C
);
4035 ConstantInt
*C3
= Builder
.getInt(AP2
- AP1
);
4036 bool HasNUW
= BO1
->hasNoUnsignedWrap() && C3
->getValue().ule(AP2
);
4037 bool HasNSW
= BO1
->hasNoSignedWrap();
4038 Value
*NewAdd
= Builder
.CreateAdd(C
, C3
, "", HasNUW
, HasNSW
);
4039 return new ICmpInst(Pred
, A
, NewAdd
);
4044 // Analyze the case when either Op0 or Op1 is a sub instruction.
4045 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4050 if (BO0
&& BO0
->getOpcode() == Instruction::Sub
) {
4051 A
= BO0
->getOperand(0);
4052 B
= BO0
->getOperand(1);
4054 if (BO1
&& BO1
->getOpcode() == Instruction::Sub
) {
4055 C
= BO1
->getOperand(0);
4056 D
= BO1
->getOperand(1);
4059 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4060 if (A
== Op1
&& NoOp0WrapProblem
)
4061 return new ICmpInst(Pred
, Constant::getNullValue(Op1
->getType()), B
);
4062 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4063 if (C
== Op0
&& NoOp1WrapProblem
)
4064 return new ICmpInst(Pred
, D
, Constant::getNullValue(Op0
->getType()));
4066 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4067 // (A - B) u>/u<= A --> B u>/u<= A
4068 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_ULE
))
4069 return new ICmpInst(Pred
, B
, A
);
4070 // C u</u>= (C - D) --> C u</u>= D
4071 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_UGE
))
4072 return new ICmpInst(Pred
, C
, D
);
4073 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
4074 if (A
== Op1
&& (Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_ULT
) &&
4075 isKnownNonZero(B
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
4076 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), B
, A
);
4077 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
4078 if (C
== Op0
&& (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_UGT
) &&
4079 isKnownNonZero(D
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
4080 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred
), C
, D
);
4082 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4083 if (B
&& D
&& B
== D
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
4084 return new ICmpInst(Pred
, A
, C
);
4086 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4087 if (A
&& C
&& A
== C
&& NoOp0WrapProblem
&& NoOp1WrapProblem
)
4088 return new ICmpInst(Pred
, D
, B
);
4090 // icmp (0-X) < cst --> x > -cst
4091 if (NoOp0WrapProblem
&& ICmpInst::isSigned(Pred
)) {
4093 if (match(BO0
, m_Neg(m_Value(X
))))
4094 if (Constant
*RHSC
= dyn_cast
<Constant
>(Op1
))
4095 if (RHSC
->isNotMinSignedValue())
4096 return new ICmpInst(I
.getSwappedPredicate(), X
,
4097 ConstantExpr::getNeg(RHSC
));
4101 // Try to remove shared constant multiplier from equality comparison:
4102 // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4105 if (match(Op0
, m_Mul(m_Value(X
), m_APInt(C
))) && *C
!= 0 &&
4106 match(Op1
, m_Mul(m_Value(Y
), m_SpecificInt(*C
))) && I
.isEquality())
4107 if (!C
->countTrailingZeros() ||
4108 (BO0
->hasNoSignedWrap() && BO1
->hasNoSignedWrap()) ||
4109 (BO0
->hasNoUnsignedWrap() && BO1
->hasNoUnsignedWrap()))
4110 return new ICmpInst(Pred
, X
, Y
);
4113 BinaryOperator
*SRem
= nullptr;
4114 // icmp (srem X, Y), Y
4115 if (BO0
&& BO0
->getOpcode() == Instruction::SRem
&& Op1
== BO0
->getOperand(1))
4117 // icmp Y, (srem X, Y)
4118 else if (BO1
&& BO1
->getOpcode() == Instruction::SRem
&&
4119 Op0
== BO1
->getOperand(1))
4122 // We don't check hasOneUse to avoid increasing register pressure because
4123 // the value we use is the same value this instruction was already using.
4124 switch (SRem
== BO0
? ICmpInst::getSwappedPredicate(Pred
) : Pred
) {
4127 case ICmpInst::ICMP_EQ
:
4128 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
4129 case ICmpInst::ICMP_NE
:
4130 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
4131 case ICmpInst::ICMP_SGT
:
4132 case ICmpInst::ICMP_SGE
:
4133 return new ICmpInst(ICmpInst::ICMP_SGT
, SRem
->getOperand(1),
4134 Constant::getAllOnesValue(SRem
->getType()));
4135 case ICmpInst::ICMP_SLT
:
4136 case ICmpInst::ICMP_SLE
:
4137 return new ICmpInst(ICmpInst::ICMP_SLT
, SRem
->getOperand(1),
4138 Constant::getNullValue(SRem
->getType()));
4142 if (BO0
&& BO1
&& BO0
->getOpcode() == BO1
->getOpcode() && BO0
->hasOneUse() &&
4143 BO1
->hasOneUse() && BO0
->getOperand(1) == BO1
->getOperand(1)) {
4144 switch (BO0
->getOpcode()) {
4147 case Instruction::Add
:
4148 case Instruction::Sub
:
4149 case Instruction::Xor
: {
4150 if (I
.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4151 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4154 if (match(BO0
->getOperand(1), m_APInt(C
))) {
4155 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4156 if (C
->isSignMask()) {
4157 ICmpInst::Predicate NewPred
= I
.getFlippedSignednessPredicate();
4158 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
4161 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4162 if (BO0
->getOpcode() == Instruction::Xor
&& C
->isMaxSignedValue()) {
4163 ICmpInst::Predicate NewPred
= I
.getFlippedSignednessPredicate();
4164 NewPred
= I
.getSwappedPredicate(NewPred
);
4165 return new ICmpInst(NewPred
, BO0
->getOperand(0), BO1
->getOperand(0));
4170 case Instruction::Mul
: {
4171 if (!I
.isEquality())
4175 if (match(BO0
->getOperand(1), m_APInt(C
)) && !C
->isNullValue() &&
4177 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4178 // Mask = -1 >> count-trailing-zeros(C).
4179 if (unsigned TZs
= C
->countTrailingZeros()) {
4180 Constant
*Mask
= ConstantInt::get(
4182 APInt::getLowBitsSet(C
->getBitWidth(), C
->getBitWidth() - TZs
));
4183 Value
*And1
= Builder
.CreateAnd(BO0
->getOperand(0), Mask
);
4184 Value
*And2
= Builder
.CreateAnd(BO1
->getOperand(0), Mask
);
4185 return new ICmpInst(Pred
, And1
, And2
);
4190 case Instruction::UDiv
:
4191 case Instruction::LShr
:
4192 if (I
.isSigned() || !BO0
->isExact() || !BO1
->isExact())
4194 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4196 case Instruction::SDiv
:
4197 if (!I
.isEquality() || !BO0
->isExact() || !BO1
->isExact())
4199 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4201 case Instruction::AShr
:
4202 if (!BO0
->isExact() || !BO1
->isExact())
4204 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4206 case Instruction::Shl
: {
4207 bool NUW
= BO0
->hasNoUnsignedWrap() && BO1
->hasNoUnsignedWrap();
4208 bool NSW
= BO0
->hasNoSignedWrap() && BO1
->hasNoSignedWrap();
4211 if (!NSW
&& I
.isSigned())
4213 return new ICmpInst(Pred
, BO0
->getOperand(0), BO1
->getOperand(0));
4219 // Transform A & (L - 1) `ult` L --> L != 0
4220 auto LSubOne
= m_Add(m_Specific(Op1
), m_AllOnes());
4221 auto BitwiseAnd
= m_c_And(m_Value(), LSubOne
);
4223 if (match(BO0
, BitwiseAnd
) && Pred
== ICmpInst::ICMP_ULT
) {
4224 auto *Zero
= Constant::getNullValue(BO0
->getType());
4225 return new ICmpInst(ICmpInst::ICMP_NE
, Op1
, Zero
);
4229 if (Value
*V
= foldUnsignedMultiplicationOverflowCheck(I
))
4230 return replaceInstUsesWith(I
, V
);
4232 if (Value
*V
= foldICmpWithLowBitMaskedVal(I
, Builder
))
4233 return replaceInstUsesWith(I
, V
);
4235 if (Value
*V
= foldICmpWithTruncSignExtendedVal(I
, Builder
))
4236 return replaceInstUsesWith(I
, V
);
4238 if (Value
*V
= foldShiftIntoShiftInAnotherHandOfAndInICmp(I
, SQ
, Builder
))
4239 return replaceInstUsesWith(I
, V
);
4244 /// Fold icmp Pred min|max(X, Y), X.
4245 static Instruction
*foldICmpWithMinMax(ICmpInst
&Cmp
) {
4246 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
4247 Value
*Op0
= Cmp
.getOperand(0);
4248 Value
*X
= Cmp
.getOperand(1);
4250 // Canonicalize minimum or maximum operand to LHS of the icmp.
4251 if (match(X
, m_c_SMin(m_Specific(Op0
), m_Value())) ||
4252 match(X
, m_c_SMax(m_Specific(Op0
), m_Value())) ||
4253 match(X
, m_c_UMin(m_Specific(Op0
), m_Value())) ||
4254 match(X
, m_c_UMax(m_Specific(Op0
), m_Value()))) {
4256 Pred
= Cmp
.getSwappedPredicate();
4260 if (match(Op0
, m_c_SMin(m_Specific(X
), m_Value(Y
)))) {
4261 // smin(X, Y) == X --> X s<= Y
4262 // smin(X, Y) s>= X --> X s<= Y
4263 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SGE
)
4264 return new ICmpInst(ICmpInst::ICMP_SLE
, X
, Y
);
4266 // smin(X, Y) != X --> X s> Y
4267 // smin(X, Y) s< X --> X s> Y
4268 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SLT
)
4269 return new ICmpInst(ICmpInst::ICMP_SGT
, X
, Y
);
4271 // These cases should be handled in InstSimplify:
4272 // smin(X, Y) s<= X --> true
4273 // smin(X, Y) s> X --> false
4277 if (match(Op0
, m_c_SMax(m_Specific(X
), m_Value(Y
)))) {
4278 // smax(X, Y) == X --> X s>= Y
4279 // smax(X, Y) s<= X --> X s>= Y
4280 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_SLE
)
4281 return new ICmpInst(ICmpInst::ICMP_SGE
, X
, Y
);
4283 // smax(X, Y) != X --> X s< Y
4284 // smax(X, Y) s> X --> X s< Y
4285 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_SGT
)
4286 return new ICmpInst(ICmpInst::ICMP_SLT
, X
, Y
);
4288 // These cases should be handled in InstSimplify:
4289 // smax(X, Y) s>= X --> true
4290 // smax(X, Y) s< X --> false
4294 if (match(Op0
, m_c_UMin(m_Specific(X
), m_Value(Y
)))) {
4295 // umin(X, Y) == X --> X u<= Y
4296 // umin(X, Y) u>= X --> X u<= Y
4297 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_UGE
)
4298 return new ICmpInst(ICmpInst::ICMP_ULE
, X
, Y
);
4300 // umin(X, Y) != X --> X u> Y
4301 // umin(X, Y) u< X --> X u> Y
4302 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_ULT
)
4303 return new ICmpInst(ICmpInst::ICMP_UGT
, X
, Y
);
4305 // These cases should be handled in InstSimplify:
4306 // umin(X, Y) u<= X --> true
4307 // umin(X, Y) u> X --> false
4311 if (match(Op0
, m_c_UMax(m_Specific(X
), m_Value(Y
)))) {
4312 // umax(X, Y) == X --> X u>= Y
4313 // umax(X, Y) u<= X --> X u>= Y
4314 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_ULE
)
4315 return new ICmpInst(ICmpInst::ICMP_UGE
, X
, Y
);
4317 // umax(X, Y) != X --> X u< Y
4318 // umax(X, Y) u> X --> X u< Y
4319 if (Pred
== CmpInst::ICMP_NE
|| Pred
== CmpInst::ICMP_UGT
)
4320 return new ICmpInst(ICmpInst::ICMP_ULT
, X
, Y
);
4322 // These cases should be handled in InstSimplify:
4323 // umax(X, Y) u>= X --> true
4324 // umax(X, Y) u< X --> false
4331 Instruction
*InstCombinerImpl::foldICmpEquality(ICmpInst
&I
) {
4332 if (!I
.isEquality())
4335 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
4336 const CmpInst::Predicate Pred
= I
.getPredicate();
4337 Value
*A
, *B
, *C
, *D
;
4338 if (match(Op0
, m_Xor(m_Value(A
), m_Value(B
)))) {
4339 if (A
== Op1
|| B
== Op1
) { // (A^B) == A -> B == 0
4340 Value
*OtherVal
= A
== Op1
? B
: A
;
4341 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
4344 if (match(Op1
, m_Xor(m_Value(C
), m_Value(D
)))) {
4345 // A^c1 == C^c2 --> A == C^(c1^c2)
4346 ConstantInt
*C1
, *C2
;
4347 if (match(B
, m_ConstantInt(C1
)) && match(D
, m_ConstantInt(C2
)) &&
4349 Constant
*NC
= Builder
.getInt(C1
->getValue() ^ C2
->getValue());
4350 Value
*Xor
= Builder
.CreateXor(C
, NC
);
4351 return new ICmpInst(Pred
, A
, Xor
);
4354 // A^B == A^D -> B == D
4356 return new ICmpInst(Pred
, B
, D
);
4358 return new ICmpInst(Pred
, B
, C
);
4360 return new ICmpInst(Pred
, A
, D
);
4362 return new ICmpInst(Pred
, A
, C
);
4366 if (match(Op1
, m_Xor(m_Value(A
), m_Value(B
))) && (A
== Op0
|| B
== Op0
)) {
4367 // A == (A^B) -> B == 0
4368 Value
*OtherVal
= A
== Op0
? B
: A
;
4369 return new ICmpInst(Pred
, OtherVal
, Constant::getNullValue(A
->getType()));
4372 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4373 if (match(Op0
, m_OneUse(m_And(m_Value(A
), m_Value(B
)))) &&
4374 match(Op1
, m_OneUse(m_And(m_Value(C
), m_Value(D
))))) {
4375 Value
*X
= nullptr, *Y
= nullptr, *Z
= nullptr;
4381 } else if (A
== D
) {
4385 } else if (B
== C
) {
4389 } else if (B
== D
) {
4395 if (X
) { // Build (X^Y) & Z
4396 Op1
= Builder
.CreateXor(X
, Y
);
4397 Op1
= Builder
.CreateAnd(Op1
, Z
);
4398 return new ICmpInst(Pred
, Op1
, Constant::getNullValue(Op1
->getType()));
4402 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4403 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4405 if ((Op0
->hasOneUse() && match(Op0
, m_ZExt(m_Value(A
))) &&
4406 match(Op1
, m_And(m_Value(B
), m_ConstantInt(Cst1
)))) ||
4407 (Op1
->hasOneUse() && match(Op0
, m_And(m_Value(B
), m_ConstantInt(Cst1
))) &&
4408 match(Op1
, m_ZExt(m_Value(A
))))) {
4409 APInt Pow2
= Cst1
->getValue() + 1;
4410 if (Pow2
.isPowerOf2() && isa
<IntegerType
>(A
->getType()) &&
4411 Pow2
.logBase2() == cast
<IntegerType
>(A
->getType())->getBitWidth())
4412 return new ICmpInst(Pred
, A
, Builder
.CreateTrunc(B
, A
->getType()));
4415 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4416 // For lshr and ashr pairs.
4417 if ((match(Op0
, m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4418 match(Op1
, m_OneUse(m_LShr(m_Value(B
), m_Specific(Cst1
))))) ||
4419 (match(Op0
, m_OneUse(m_AShr(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4420 match(Op1
, m_OneUse(m_AShr(m_Value(B
), m_Specific(Cst1
)))))) {
4421 unsigned TypeBits
= Cst1
->getBitWidth();
4422 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4423 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4424 ICmpInst::Predicate NewPred
=
4425 Pred
== ICmpInst::ICMP_NE
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_ULT
;
4426 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4427 APInt CmpVal
= APInt::getOneBitSet(TypeBits
, ShAmt
);
4428 return new ICmpInst(NewPred
, Xor
, Builder
.getInt(CmpVal
));
4432 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4433 if (match(Op0
, m_OneUse(m_Shl(m_Value(A
), m_ConstantInt(Cst1
)))) &&
4434 match(Op1
, m_OneUse(m_Shl(m_Value(B
), m_Specific(Cst1
))))) {
4435 unsigned TypeBits
= Cst1
->getBitWidth();
4436 unsigned ShAmt
= (unsigned)Cst1
->getLimitedValue(TypeBits
);
4437 if (ShAmt
< TypeBits
&& ShAmt
!= 0) {
4438 Value
*Xor
= Builder
.CreateXor(A
, B
, I
.getName() + ".unshifted");
4439 APInt AndVal
= APInt::getLowBitsSet(TypeBits
, TypeBits
- ShAmt
);
4440 Value
*And
= Builder
.CreateAnd(Xor
, Builder
.getInt(AndVal
),
4441 I
.getName() + ".mask");
4442 return new ICmpInst(Pred
, And
, Constant::getNullValue(Cst1
->getType()));
4446 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4447 // "icmp (and X, mask), cst"
4449 if (Op0
->hasOneUse() &&
4450 match(Op0
, m_Trunc(m_OneUse(m_LShr(m_Value(A
), m_ConstantInt(ShAmt
))))) &&
4451 match(Op1
, m_ConstantInt(Cst1
)) &&
4452 // Only do this when A has multiple uses. This is most important to do
4453 // when it exposes other optimizations.
4455 unsigned ASize
= cast
<IntegerType
>(A
->getType())->getPrimitiveSizeInBits();
4457 if (ShAmt
< ASize
) {
4459 APInt::getLowBitsSet(ASize
, Op0
->getType()->getPrimitiveSizeInBits());
4462 APInt CmpV
= Cst1
->getValue().zext(ASize
);
4465 Value
*Mask
= Builder
.CreateAnd(A
, Builder
.getInt(MaskV
));
4466 return new ICmpInst(Pred
, Mask
, Builder
.getInt(CmpV
));
4470 // If both operands are byte-swapped or bit-reversed, just compare the
4472 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4473 // and handle more intrinsics.
4474 if ((match(Op0
, m_BSwap(m_Value(A
))) && match(Op1
, m_BSwap(m_Value(B
)))) ||
4475 (match(Op0
, m_BitReverse(m_Value(A
))) &&
4476 match(Op1
, m_BitReverse(m_Value(B
)))))
4477 return new ICmpInst(Pred
, A
, B
);
4479 // Canonicalize checking for a power-of-2-or-zero value:
4480 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4481 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4482 if (!match(Op0
, m_OneUse(m_c_And(m_Add(m_Value(A
), m_AllOnes()),
4484 !match(Op1
, m_ZeroInt()))
4487 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4488 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4489 if (match(Op0
, m_OneUse(m_c_And(m_Neg(m_Specific(Op1
)), m_Specific(Op1
)))))
4492 m_OneUse(m_c_And(m_Neg(m_Specific(Op0
)), m_Specific(Op0
)))))
4496 Type
*Ty
= A
->getType();
4497 CallInst
*CtPop
= Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, A
);
4498 return Pred
== ICmpInst::ICMP_EQ
4499 ? new ICmpInst(ICmpInst::ICMP_ULT
, CtPop
, ConstantInt::get(Ty
, 2))
4500 : new ICmpInst(ICmpInst::ICMP_UGT
, CtPop
, ConstantInt::get(Ty
, 1));
4506 static Instruction
*foldICmpWithZextOrSext(ICmpInst
&ICmp
,
4507 InstCombiner::BuilderTy
&Builder
) {
4508 assert(isa
<CastInst
>(ICmp
.getOperand(0)) && "Expected cast for operand 0");
4509 auto *CastOp0
= cast
<CastInst
>(ICmp
.getOperand(0));
4511 if (!match(CastOp0
, m_ZExtOrSExt(m_Value(X
))))
4514 bool IsSignedExt
= CastOp0
->getOpcode() == Instruction::SExt
;
4515 bool IsSignedCmp
= ICmp
.isSigned();
4516 if (auto *CastOp1
= dyn_cast
<CastInst
>(ICmp
.getOperand(1))) {
4517 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4518 // and the other is a zext), then we can't handle this.
4519 // TODO: This is too strict. We can handle some predicates (equality?).
4520 if (CastOp0
->getOpcode() != CastOp1
->getOpcode())
4523 // Not an extension from the same type?
4524 Value
*Y
= CastOp1
->getOperand(0);
4525 Type
*XTy
= X
->getType(), *YTy
= Y
->getType();
4527 // One of the casts must have one use because we are creating a new cast.
4528 if (!CastOp0
->hasOneUse() && !CastOp1
->hasOneUse())
4530 // Extend the narrower operand to the type of the wider operand.
4531 if (XTy
->getScalarSizeInBits() < YTy
->getScalarSizeInBits())
4532 X
= Builder
.CreateCast(CastOp0
->getOpcode(), X
, YTy
);
4533 else if (YTy
->getScalarSizeInBits() < XTy
->getScalarSizeInBits())
4534 Y
= Builder
.CreateCast(CastOp0
->getOpcode(), Y
, XTy
);
4539 // (zext X) == (zext Y) --> X == Y
4540 // (sext X) == (sext Y) --> X == Y
4541 if (ICmp
.isEquality())
4542 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4544 // A signed comparison of sign extended values simplifies into a
4545 // signed comparison.
4546 if (IsSignedCmp
&& IsSignedExt
)
4547 return new ICmpInst(ICmp
.getPredicate(), X
, Y
);
4549 // The other three cases all fold into an unsigned comparison.
4550 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Y
);
4553 // Below here, we are only folding a compare with constant.
4554 auto *C
= dyn_cast
<Constant
>(ICmp
.getOperand(1));
4558 // Compute the constant that would happen if we truncated to SrcTy then
4559 // re-extended to DestTy.
4560 Type
*SrcTy
= CastOp0
->getSrcTy();
4561 Type
*DestTy
= CastOp0
->getDestTy();
4562 Constant
*Res1
= ConstantExpr::getTrunc(C
, SrcTy
);
4563 Constant
*Res2
= ConstantExpr::getCast(CastOp0
->getOpcode(), Res1
, DestTy
);
4565 // If the re-extended constant didn't change...
4567 if (ICmp
.isEquality())
4568 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4570 // A signed comparison of sign extended values simplifies into a
4571 // signed comparison.
4572 if (IsSignedExt
&& IsSignedCmp
)
4573 return new ICmpInst(ICmp
.getPredicate(), X
, Res1
);
4575 // The other three cases all fold into an unsigned comparison.
4576 return new ICmpInst(ICmp
.getUnsignedPredicate(), X
, Res1
);
4579 // The re-extended constant changed, partly changed (in the case of a vector),
4580 // or could not be determined to be equal (in the case of a constant
4581 // expression), so the constant cannot be represented in the shorter type.
4582 // All the cases that fold to true or false will have already been handled
4583 // by SimplifyICmpInst, so only deal with the tricky case.
4584 if (IsSignedCmp
|| !IsSignedExt
|| !isa
<ConstantInt
>(C
))
4587 // Is source op positive?
4588 // icmp ult (sext X), C --> icmp sgt X, -1
4589 if (ICmp
.getPredicate() == ICmpInst::ICMP_ULT
)
4590 return new ICmpInst(CmpInst::ICMP_SGT
, X
, Constant::getAllOnesValue(SrcTy
));
4592 // Is source op negative?
4593 // icmp ugt (sext X), C --> icmp slt X, 0
4594 assert(ICmp
.getPredicate() == ICmpInst::ICMP_UGT
&& "ICmp should be folded!");
4595 return new ICmpInst(CmpInst::ICMP_SLT
, X
, Constant::getNullValue(SrcTy
));
4598 /// Handle icmp (cast x), (cast or constant).
4599 Instruction
*InstCombinerImpl::foldICmpWithCastOp(ICmpInst
&ICmp
) {
4600 // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4601 // icmp compares only pointer's value.
4602 // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4603 Value
*SimplifiedOp0
= simplifyIntToPtrRoundTripCast(ICmp
.getOperand(0));
4604 Value
*SimplifiedOp1
= simplifyIntToPtrRoundTripCast(ICmp
.getOperand(1));
4605 if (SimplifiedOp0
|| SimplifiedOp1
)
4606 return new ICmpInst(ICmp
.getPredicate(),
4607 SimplifiedOp0
? SimplifiedOp0
: ICmp
.getOperand(0),
4608 SimplifiedOp1
? SimplifiedOp1
: ICmp
.getOperand(1));
4610 auto *CastOp0
= dyn_cast
<CastInst
>(ICmp
.getOperand(0));
4613 if (!isa
<Constant
>(ICmp
.getOperand(1)) && !isa
<CastInst
>(ICmp
.getOperand(1)))
4616 Value
*Op0Src
= CastOp0
->getOperand(0);
4617 Type
*SrcTy
= CastOp0
->getSrcTy();
4618 Type
*DestTy
= CastOp0
->getDestTy();
4620 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4621 // integer type is the same size as the pointer type.
4622 auto CompatibleSizes
= [&](Type
*SrcTy
, Type
*DestTy
) {
4623 if (isa
<VectorType
>(SrcTy
)) {
4624 SrcTy
= cast
<VectorType
>(SrcTy
)->getElementType();
4625 DestTy
= cast
<VectorType
>(DestTy
)->getElementType();
4627 return DL
.getPointerTypeSizeInBits(SrcTy
) == DestTy
->getIntegerBitWidth();
4629 if (CastOp0
->getOpcode() == Instruction::PtrToInt
&&
4630 CompatibleSizes(SrcTy
, DestTy
)) {
4631 Value
*NewOp1
= nullptr;
4632 if (auto *PtrToIntOp1
= dyn_cast
<PtrToIntOperator
>(ICmp
.getOperand(1))) {
4633 Value
*PtrSrc
= PtrToIntOp1
->getOperand(0);
4634 if (PtrSrc
->getType()->getPointerAddressSpace() ==
4635 Op0Src
->getType()->getPointerAddressSpace()) {
4636 NewOp1
= PtrToIntOp1
->getOperand(0);
4637 // If the pointer types don't match, insert a bitcast.
4638 if (Op0Src
->getType() != NewOp1
->getType())
4639 NewOp1
= Builder
.CreateBitCast(NewOp1
, Op0Src
->getType());
4641 } else if (auto *RHSC
= dyn_cast
<Constant
>(ICmp
.getOperand(1))) {
4642 NewOp1
= ConstantExpr::getIntToPtr(RHSC
, SrcTy
);
4646 return new ICmpInst(ICmp
.getPredicate(), Op0Src
, NewOp1
);
4649 return foldICmpWithZextOrSext(ICmp
, Builder
);
4652 static bool isNeutralValue(Instruction::BinaryOps BinaryOp
, Value
*RHS
) {
4655 llvm_unreachable("Unsupported binary op");
4656 case Instruction::Add
:
4657 case Instruction::Sub
:
4658 return match(RHS
, m_Zero());
4659 case Instruction::Mul
:
4660 return match(RHS
, m_One());
4665 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp
,
4666 bool IsSigned
, Value
*LHS
, Value
*RHS
,
4667 Instruction
*CxtI
) const {
4670 llvm_unreachable("Unsupported binary op");
4671 case Instruction::Add
:
4673 return computeOverflowForSignedAdd(LHS
, RHS
, CxtI
);
4675 return computeOverflowForUnsignedAdd(LHS
, RHS
, CxtI
);
4676 case Instruction::Sub
:
4678 return computeOverflowForSignedSub(LHS
, RHS
, CxtI
);
4680 return computeOverflowForUnsignedSub(LHS
, RHS
, CxtI
);
4681 case Instruction::Mul
:
4683 return computeOverflowForSignedMul(LHS
, RHS
, CxtI
);
4685 return computeOverflowForUnsignedMul(LHS
, RHS
, CxtI
);
4689 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp
,
4690 bool IsSigned
, Value
*LHS
,
4691 Value
*RHS
, Instruction
&OrigI
,
4693 Constant
*&Overflow
) {
4694 if (OrigI
.isCommutative() && isa
<Constant
>(LHS
) && !isa
<Constant
>(RHS
))
4695 std::swap(LHS
, RHS
);
4697 // If the overflow check was an add followed by a compare, the insertion point
4698 // may be pointing to the compare. We want to insert the new instructions
4699 // before the add in case there are uses of the add between the add and the
4701 Builder
.SetInsertPoint(&OrigI
);
4703 Type
*OverflowTy
= Type::getInt1Ty(LHS
->getContext());
4704 if (auto *LHSTy
= dyn_cast
<VectorType
>(LHS
->getType()))
4705 OverflowTy
= VectorType::get(OverflowTy
, LHSTy
->getElementCount());
4707 if (isNeutralValue(BinaryOp
, RHS
)) {
4709 Overflow
= ConstantInt::getFalse(OverflowTy
);
4713 switch (computeOverflow(BinaryOp
, IsSigned
, LHS
, RHS
, &OrigI
)) {
4714 case OverflowResult::MayOverflow
:
4716 case OverflowResult::AlwaysOverflowsLow
:
4717 case OverflowResult::AlwaysOverflowsHigh
:
4718 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4719 Result
->takeName(&OrigI
);
4720 Overflow
= ConstantInt::getTrue(OverflowTy
);
4722 case OverflowResult::NeverOverflows
:
4723 Result
= Builder
.CreateBinOp(BinaryOp
, LHS
, RHS
);
4724 Result
->takeName(&OrigI
);
4725 Overflow
= ConstantInt::getFalse(OverflowTy
);
4726 if (auto *Inst
= dyn_cast
<Instruction
>(Result
)) {
4728 Inst
->setHasNoSignedWrap();
4730 Inst
->setHasNoUnsignedWrap();
4735 llvm_unreachable("Unexpected overflow result");
4738 /// Recognize and process idiom involving test for multiplication
4741 /// The caller has matched a pattern of the form:
4742 /// I = cmp u (mul(zext A, zext B), V
4743 /// The function checks if this is a test for overflow and if so replaces
4744 /// multiplication with call to 'mul.with.overflow' intrinsic.
4746 /// \param I Compare instruction.
4747 /// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4748 /// the compare instruction. Must be of integer type.
4749 /// \param OtherVal The other argument of compare instruction.
4750 /// \returns Instruction which must replace the compare instruction, NULL if no
4751 /// replacement required.
4752 static Instruction
*processUMulZExtIdiom(ICmpInst
&I
, Value
*MulVal
,
4754 InstCombinerImpl
&IC
) {
4755 // Don't bother doing this transformation for pointers, don't do it for
4757 if (!isa
<IntegerType
>(MulVal
->getType()))
4760 assert(I
.getOperand(0) == MulVal
|| I
.getOperand(1) == MulVal
);
4761 assert(I
.getOperand(0) == OtherVal
|| I
.getOperand(1) == OtherVal
);
4762 auto *MulInstr
= dyn_cast
<Instruction
>(MulVal
);
4765 assert(MulInstr
->getOpcode() == Instruction::Mul
);
4767 auto *LHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(0)),
4768 *RHS
= cast
<ZExtOperator
>(MulInstr
->getOperand(1));
4769 assert(LHS
->getOpcode() == Instruction::ZExt
);
4770 assert(RHS
->getOpcode() == Instruction::ZExt
);
4771 Value
*A
= LHS
->getOperand(0), *B
= RHS
->getOperand(0);
4773 // Calculate type and width of the result produced by mul.with.overflow.
4774 Type
*TyA
= A
->getType(), *TyB
= B
->getType();
4775 unsigned WidthA
= TyA
->getPrimitiveSizeInBits(),
4776 WidthB
= TyB
->getPrimitiveSizeInBits();
4779 if (WidthB
> WidthA
) {
4787 // In order to replace the original mul with a narrower mul.with.overflow,
4788 // all uses must ignore upper bits of the product. The number of used low
4789 // bits must be not greater than the width of mul.with.overflow.
4790 if (MulVal
->hasNUsesOrMore(2))
4791 for (User
*U
: MulVal
->users()) {
4794 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4795 // Check if truncation ignores bits above MulWidth.
4796 unsigned TruncWidth
= TI
->getType()->getPrimitiveSizeInBits();
4797 if (TruncWidth
> MulWidth
)
4799 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4800 // Check if AND ignores bits above MulWidth.
4801 if (BO
->getOpcode() != Instruction::And
)
4803 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
4804 const APInt
&CVal
= CI
->getValue();
4805 if (CVal
.getBitWidth() - CVal
.countLeadingZeros() > MulWidth
)
4808 // In this case we could have the operand of the binary operation
4809 // being defined in another block, and performing the replacement
4810 // could break the dominance relation.
4814 // Other uses prohibit this transformation.
4819 // Recognize patterns
4820 switch (I
.getPredicate()) {
4821 case ICmpInst::ICMP_EQ
:
4822 case ICmpInst::ICMP_NE
:
4823 // Recognize pattern:
4824 // mulval = mul(zext A, zext B)
4825 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4828 if (match(OtherVal
, m_And(m_Value(ValToMask
), m_ConstantInt(CI
)))) {
4829 if (ValToMask
!= MulVal
)
4831 const APInt
&CVal
= CI
->getValue() + 1;
4832 if (CVal
.isPowerOf2()) {
4833 unsigned MaskWidth
= CVal
.logBase2();
4834 if (MaskWidth
== MulWidth
)
4835 break; // Recognized
4840 case ICmpInst::ICMP_UGT
:
4841 // Recognize pattern:
4842 // mulval = mul(zext A, zext B)
4843 // cmp ugt mulval, max
4844 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4845 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4846 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4847 if (MaxVal
.eq(CI
->getValue()))
4848 break; // Recognized
4852 case ICmpInst::ICMP_UGE
:
4853 // Recognize pattern:
4854 // mulval = mul(zext A, zext B)
4855 // cmp uge mulval, max+1
4856 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4857 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4858 if (MaxVal
.eq(CI
->getValue()))
4859 break; // Recognized
4863 case ICmpInst::ICMP_ULE
:
4864 // Recognize pattern:
4865 // mulval = mul(zext A, zext B)
4866 // cmp ule mulval, max
4867 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4868 APInt MaxVal
= APInt::getMaxValue(MulWidth
);
4869 MaxVal
= MaxVal
.zext(CI
->getBitWidth());
4870 if (MaxVal
.eq(CI
->getValue()))
4871 break; // Recognized
4875 case ICmpInst::ICMP_ULT
:
4876 // Recognize pattern:
4877 // mulval = mul(zext A, zext B)
4878 // cmp ule mulval, max + 1
4879 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(OtherVal
)) {
4880 APInt MaxVal
= APInt::getOneBitSet(CI
->getBitWidth(), MulWidth
);
4881 if (MaxVal
.eq(CI
->getValue()))
4882 break; // Recognized
4890 InstCombiner::BuilderTy
&Builder
= IC
.Builder
;
4891 Builder
.SetInsertPoint(MulInstr
);
4893 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4894 Value
*MulA
= A
, *MulB
= B
;
4895 if (WidthA
< MulWidth
)
4896 MulA
= Builder
.CreateZExt(A
, MulType
);
4897 if (WidthB
< MulWidth
)
4898 MulB
= Builder
.CreateZExt(B
, MulType
);
4899 Function
*F
= Intrinsic::getDeclaration(
4900 I
.getModule(), Intrinsic::umul_with_overflow
, MulType
);
4901 CallInst
*Call
= Builder
.CreateCall(F
, {MulA
, MulB
}, "umul");
4902 IC
.addToWorklist(MulInstr
);
4904 // If there are uses of mul result other than the comparison, we know that
4905 // they are truncation or binary AND. Change them to use result of
4906 // mul.with.overflow and adjust properly mask/size.
4907 if (MulVal
->hasNUsesOrMore(2)) {
4908 Value
*Mul
= Builder
.CreateExtractValue(Call
, 0, "umul.value");
4909 for (User
*U
: make_early_inc_range(MulVal
->users())) {
4910 if (U
== &I
|| U
== OtherVal
)
4912 if (TruncInst
*TI
= dyn_cast
<TruncInst
>(U
)) {
4913 if (TI
->getType()->getPrimitiveSizeInBits() == MulWidth
)
4914 IC
.replaceInstUsesWith(*TI
, Mul
);
4916 TI
->setOperand(0, Mul
);
4917 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
)) {
4918 assert(BO
->getOpcode() == Instruction::And
);
4919 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4920 ConstantInt
*CI
= cast
<ConstantInt
>(BO
->getOperand(1));
4921 APInt ShortMask
= CI
->getValue().trunc(MulWidth
);
4922 Value
*ShortAnd
= Builder
.CreateAnd(Mul
, ShortMask
);
4923 Value
*Zext
= Builder
.CreateZExt(ShortAnd
, BO
->getType());
4924 IC
.replaceInstUsesWith(*BO
, Zext
);
4926 llvm_unreachable("Unexpected Binary operation");
4928 IC
.addToWorklist(cast
<Instruction
>(U
));
4931 if (isa
<Instruction
>(OtherVal
))
4932 IC
.addToWorklist(cast
<Instruction
>(OtherVal
));
4934 // The original icmp gets replaced with the overflow value, maybe inverted
4935 // depending on predicate.
4936 bool Inverse
= false;
4937 switch (I
.getPredicate()) {
4938 case ICmpInst::ICMP_NE
:
4940 case ICmpInst::ICMP_EQ
:
4943 case ICmpInst::ICMP_UGT
:
4944 case ICmpInst::ICMP_UGE
:
4945 if (I
.getOperand(0) == MulVal
)
4949 case ICmpInst::ICMP_ULT
:
4950 case ICmpInst::ICMP_ULE
:
4951 if (I
.getOperand(1) == MulVal
)
4956 llvm_unreachable("Unexpected predicate");
4959 Value
*Res
= Builder
.CreateExtractValue(Call
, 1);
4960 return BinaryOperator::CreateNot(Res
);
4963 return ExtractValueInst::Create(Call
, 1);
4966 /// When performing a comparison against a constant, it is possible that not all
4967 /// the bits in the LHS are demanded. This helper method computes the mask that
4969 static APInt
getDemandedBitsLHSMask(ICmpInst
&I
, unsigned BitWidth
) {
4971 if (!match(I
.getOperand(1), m_APInt(RHS
)))
4972 return APInt::getAllOnesValue(BitWidth
);
4974 // If this is a normal comparison, it demands all bits. If it is a sign bit
4975 // comparison, it only demands the sign bit.
4977 if (InstCombiner::isSignBitCheck(I
.getPredicate(), *RHS
, UnusedBit
))
4978 return APInt::getSignMask(BitWidth
);
4980 switch (I
.getPredicate()) {
4981 // For a UGT comparison, we don't care about any bits that
4982 // correspond to the trailing ones of the comparand. The value of these
4983 // bits doesn't impact the outcome of the comparison, because any value
4984 // greater than the RHS must differ in a bit higher than these due to carry.
4985 case ICmpInst::ICMP_UGT
:
4986 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingOnes());
4988 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4989 // Any value less than the RHS must differ in a higher bit because of carries.
4990 case ICmpInst::ICMP_ULT
:
4991 return APInt::getBitsSetFrom(BitWidth
, RHS
->countTrailingZeros());
4994 return APInt::getAllOnesValue(BitWidth
);
4998 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4999 /// should be swapped.
5000 /// The decision is based on how many times these two operands are reused
5001 /// as subtract operands and their positions in those instructions.
5002 /// The rationale is that several architectures use the same instruction for
5003 /// both subtract and cmp. Thus, it is better if the order of those operands
5005 /// \return true if Op0 and Op1 should be swapped.
5006 static bool swapMayExposeCSEOpportunities(const Value
*Op0
, const Value
*Op1
) {
5007 // Filter out pointer values as those cannot appear directly in subtract.
5008 // FIXME: we may want to go through inttoptrs or bitcasts.
5009 if (Op0
->getType()->isPointerTy())
5011 // If a subtract already has the same operands as a compare, swapping would be
5012 // bad. If a subtract has the same operands as a compare but in reverse order,
5013 // then swapping is good.
5015 for (const User
*U
: Op0
->users()) {
5016 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
5018 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
5021 return GoodToSwap
> 0;
5024 /// Check that one use is in the same block as the definition and all
5025 /// other uses are in blocks dominated by a given block.
5027 /// \param DI Definition
5029 /// \param DB Block that must dominate all uses of \p DI outside
5030 /// the parent block
5031 /// \return true when \p UI is the only use of \p DI in the parent block
5032 /// and all other uses of \p DI are in blocks dominated by \p DB.
5034 bool InstCombinerImpl::dominatesAllUses(const Instruction
*DI
,
5035 const Instruction
*UI
,
5036 const BasicBlock
*DB
) const {
5037 assert(DI
&& UI
&& "Instruction not defined\n");
5038 // Ignore incomplete definitions.
5039 if (!DI
->getParent())
5041 // DI and UI must be in the same block.
5042 if (DI
->getParent() != UI
->getParent())
5044 // Protect from self-referencing blocks.
5045 if (DI
->getParent() == DB
)
5047 for (const User
*U
: DI
->users()) {
5048 auto *Usr
= cast
<Instruction
>(U
);
5049 if (Usr
!= UI
&& !DT
.dominates(DB
, Usr
->getParent()))
5055 /// Return true when the instruction sequence within a block is select-cmp-br.
5056 static bool isChainSelectCmpBranch(const SelectInst
*SI
) {
5057 const BasicBlock
*BB
= SI
->getParent();
5060 auto *BI
= dyn_cast_or_null
<BranchInst
>(BB
->getTerminator());
5061 if (!BI
|| BI
->getNumSuccessors() != 2)
5063 auto *IC
= dyn_cast
<ICmpInst
>(BI
->getCondition());
5064 if (!IC
|| (IC
->getOperand(0) != SI
&& IC
->getOperand(1) != SI
))
5069 /// True when a select result is replaced by one of its operands
5070 /// in select-icmp sequence. This will eventually result in the elimination
5073 /// \param SI Select instruction
5074 /// \param Icmp Compare instruction
5075 /// \param SIOpd Operand that replaces the select
5078 /// - The replacement is global and requires dominator information
5079 /// - The caller is responsible for the actual replacement
5084 /// %4 = select i1 %3, %C* %0, %C* null
5085 /// %5 = icmp eq %C* %4, null
5086 /// br i1 %5, label %9, label %7
5088 /// ; <label>:7 ; preds = %entry
5089 /// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5092 /// can be transformed to
5094 /// %5 = icmp eq %C* %0, null
5095 /// %6 = select i1 %3, i1 %5, i1 true
5096 /// br i1 %6, label %9, label %7
5098 /// ; <label>:7 ; preds = %entry
5099 /// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
5101 /// Similar when the first operand of the select is a constant or/and
5102 /// the compare is for not equal rather than equal.
5104 /// NOTE: The function is only called when the select and compare constants
5105 /// are equal, the optimization can work only for EQ predicates. This is not a
5106 /// major restriction since a NE compare should be 'normalized' to an equal
5107 /// compare, which usually happens in the combiner and test case
5108 /// select-cmp-br.ll checks for it.
5109 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst
*SI
,
5110 const ICmpInst
*Icmp
,
5111 const unsigned SIOpd
) {
5112 assert((SIOpd
== 1 || SIOpd
== 2) && "Invalid select operand!");
5113 if (isChainSelectCmpBranch(SI
) && Icmp
->getPredicate() == ICmpInst::ICMP_EQ
) {
5114 BasicBlock
*Succ
= SI
->getParent()->getTerminator()->getSuccessor(1);
5115 // The check for the single predecessor is not the best that can be
5116 // done. But it protects efficiently against cases like when SI's
5117 // home block has two successors, Succ and Succ1, and Succ1 predecessor
5118 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5119 // replaced can be reached on either path. So the uniqueness check
5120 // guarantees that the path all uses of SI (outside SI's parent) are on
5121 // is disjoint from all other paths out of SI. But that information
5122 // is more expensive to compute, and the trade-off here is in favor
5123 // of compile-time. It should also be noticed that we check for a single
5124 // predecessor and not only uniqueness. This to handle the situation when
5125 // Succ and Succ1 points to the same basic block.
5126 if (Succ
->getSinglePredecessor() && dominatesAllUses(SI
, Icmp
, Succ
)) {
5128 SI
->replaceUsesOutsideBlock(SI
->getOperand(SIOpd
), SI
->getParent());
5135 /// Try to fold the comparison based on range information we can get by checking
5136 /// whether bits are known to be zero or one in the inputs.
5137 Instruction
*InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst
&I
) {
5138 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5139 Type
*Ty
= Op0
->getType();
5140 ICmpInst::Predicate Pred
= I
.getPredicate();
5142 // Get scalar or pointer size.
5143 unsigned BitWidth
= Ty
->isIntOrIntVectorTy()
5144 ? Ty
->getScalarSizeInBits()
5145 : DL
.getPointerTypeSizeInBits(Ty
->getScalarType());
5150 KnownBits
Op0Known(BitWidth
);
5151 KnownBits
Op1Known(BitWidth
);
5153 if (SimplifyDemandedBits(&I
, 0,
5154 getDemandedBitsLHSMask(I
, BitWidth
),
5158 if (SimplifyDemandedBits(&I
, 1, APInt::getAllOnesValue(BitWidth
),
5162 // Given the known and unknown bits, compute a range that the LHS could be
5163 // in. Compute the Min, Max and RHS values based on the known bits. For the
5164 // EQ and NE we use unsigned values.
5165 APInt
Op0Min(BitWidth
, 0), Op0Max(BitWidth
, 0);
5166 APInt
Op1Min(BitWidth
, 0), Op1Max(BitWidth
, 0);
5168 Op0Min
= Op0Known
.getSignedMinValue();
5169 Op0Max
= Op0Known
.getSignedMaxValue();
5170 Op1Min
= Op1Known
.getSignedMinValue();
5171 Op1Max
= Op1Known
.getSignedMaxValue();
5173 Op0Min
= Op0Known
.getMinValue();
5174 Op0Max
= Op0Known
.getMaxValue();
5175 Op1Min
= Op1Known
.getMinValue();
5176 Op1Max
= Op1Known
.getMaxValue();
5179 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5180 // out that the LHS or RHS is a constant. Constant fold this now, so that
5181 // code below can assume that Min != Max.
5182 if (!isa
<Constant
>(Op0
) && Op0Min
== Op0Max
)
5183 return new ICmpInst(Pred
, ConstantExpr::getIntegerValue(Ty
, Op0Min
), Op1
);
5184 if (!isa
<Constant
>(Op1
) && Op1Min
== Op1Max
)
5185 return new ICmpInst(Pred
, Op0
, ConstantExpr::getIntegerValue(Ty
, Op1Min
));
5187 // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5188 // min/max canonical compare with some other compare. That could lead to
5189 // conflict with select canonicalization and infinite looping.
5190 // FIXME: This constraint may go away if min/max intrinsics are canonical.
5191 auto isMinMaxCmp
= [&](Instruction
&Cmp
) {
5192 if (!Cmp
.hasOneUse())
5195 SelectPatternFlavor SPF
= matchSelectPattern(Cmp
.user_back(), A
, B
).Flavor
;
5196 if (!SelectPatternResult::isMinOrMax(SPF
))
5198 return match(Op0
, m_MaxOrMin(m_Value(), m_Value())) ||
5199 match(Op1
, m_MaxOrMin(m_Value(), m_Value()));
5201 if (!isMinMaxCmp(I
)) {
5205 case ICmpInst::ICMP_ULT
: {
5206 if (Op1Min
== Op0Max
) // A <u B -> A != B if max(A) == min(B)
5207 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5209 if (match(Op1
, m_APInt(CmpC
))) {
5210 // A <u C -> A == C-1 if min(A)+1 == C
5211 if (*CmpC
== Op0Min
+ 1)
5212 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5213 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
5214 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5215 // exceeds the log2 of C.
5216 if (Op0Known
.countMinTrailingZeros() >= CmpC
->ceilLogBase2())
5217 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5218 Constant::getNullValue(Op1
->getType()));
5222 case ICmpInst::ICMP_UGT
: {
5223 if (Op1Max
== Op0Min
) // A >u B -> A != B if min(A) == max(B)
5224 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5226 if (match(Op1
, m_APInt(CmpC
))) {
5227 // A >u C -> A == C+1 if max(a)-1 == C
5228 if (*CmpC
== Op0Max
- 1)
5229 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5230 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
5231 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5232 // exceeds the log2 of C.
5233 if (Op0Known
.countMinTrailingZeros() >= CmpC
->getActiveBits())
5234 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
,
5235 Constant::getNullValue(Op1
->getType()));
5239 case ICmpInst::ICMP_SLT
: {
5240 if (Op1Min
== Op0Max
) // A <s B -> A != B if max(A) == min(B)
5241 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5243 if (match(Op1
, m_APInt(CmpC
))) {
5244 if (*CmpC
== Op0Min
+ 1) // A <s C -> A == C-1 if min(A)+1 == C
5245 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5246 ConstantInt::get(Op1
->getType(), *CmpC
- 1));
5250 case ICmpInst::ICMP_SGT
: {
5251 if (Op1Max
== Op0Min
) // A >s B -> A != B if min(A) == max(B)
5252 return new ICmpInst(ICmpInst::ICMP_NE
, Op0
, Op1
);
5254 if (match(Op1
, m_APInt(CmpC
))) {
5255 if (*CmpC
== Op0Max
- 1) // A >s C -> A == C+1 if max(A)-1 == C
5256 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
,
5257 ConstantInt::get(Op1
->getType(), *CmpC
+ 1));
5264 // Based on the range information we know about the LHS, see if we can
5265 // simplify this comparison. For example, (x&4) < 8 is always true.
5268 llvm_unreachable("Unknown icmp opcode!");
5269 case ICmpInst::ICMP_EQ
:
5270 case ICmpInst::ICMP_NE
: {
5271 if (Op0Max
.ult(Op1Min
) || Op0Min
.ugt(Op1Max
))
5272 return replaceInstUsesWith(
5273 I
, ConstantInt::getBool(I
.getType(), Pred
== CmpInst::ICMP_NE
));
5275 // If all bits are known zero except for one, then we know at most one bit
5276 // is set. If the comparison is against zero, then this is a check to see if
5277 // *that* bit is set.
5278 APInt Op0KnownZeroInverted
= ~Op0Known
.Zero
;
5279 if (Op1Known
.isZero()) {
5280 // If the LHS is an AND with the same constant, look through it.
5281 Value
*LHS
= nullptr;
5283 if (!match(Op0
, m_And(m_Value(LHS
), m_APInt(LHSC
))) ||
5284 *LHSC
!= Op0KnownZeroInverted
)
5288 if (match(LHS
, m_Shl(m_One(), m_Value(X
)))) {
5289 APInt ValToCheck
= Op0KnownZeroInverted
;
5290 Type
*XTy
= X
->getType();
5291 if (ValToCheck
.isPowerOf2()) {
5292 // ((1 << X) & 8) == 0 -> X != 3
5293 // ((1 << X) & 8) != 0 -> X == 3
5294 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
5295 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
5296 return new ICmpInst(NewPred
, X
, CmpC
);
5297 } else if ((++ValToCheck
).isPowerOf2()) {
5298 // ((1 << X) & 7) == 0 -> X >= 3
5299 // ((1 << X) & 7) != 0 -> X < 3
5300 auto *CmpC
= ConstantInt::get(XTy
, ValToCheck
.countTrailingZeros());
5302 Pred
== CmpInst::ICMP_EQ
? CmpInst::ICMP_UGE
: CmpInst::ICMP_ULT
;
5303 return new ICmpInst(NewPred
, X
, CmpC
);
5307 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5309 if (Op0KnownZeroInverted
.isOneValue() &&
5310 match(LHS
, m_LShr(m_Power2(CI
), m_Value(X
)))) {
5311 // ((8 >>u X) & 1) == 0 -> X != 3
5312 // ((8 >>u X) & 1) != 0 -> X == 3
5313 unsigned CmpVal
= CI
->countTrailingZeros();
5314 auto NewPred
= ICmpInst::getInversePredicate(Pred
);
5315 return new ICmpInst(NewPred
, X
, ConstantInt::get(X
->getType(), CmpVal
));
5320 case ICmpInst::ICMP_ULT
: {
5321 if (Op0Max
.ult(Op1Min
)) // A <u B -> true if max(A) < min(B)
5322 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5323 if (Op0Min
.uge(Op1Max
)) // A <u B -> false if min(A) >= max(B)
5324 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5327 case ICmpInst::ICMP_UGT
: {
5328 if (Op0Min
.ugt(Op1Max
)) // A >u B -> true if min(A) > max(B)
5329 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5330 if (Op0Max
.ule(Op1Min
)) // A >u B -> false if max(A) <= max(B)
5331 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5334 case ICmpInst::ICMP_SLT
: {
5335 if (Op0Max
.slt(Op1Min
)) // A <s B -> true if max(A) < min(C)
5336 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5337 if (Op0Min
.sge(Op1Max
)) // A <s B -> false if min(A) >= max(C)
5338 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5341 case ICmpInst::ICMP_SGT
: {
5342 if (Op0Min
.sgt(Op1Max
)) // A >s B -> true if min(A) > max(B)
5343 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5344 if (Op0Max
.sle(Op1Min
)) // A >s B -> false if max(A) <= min(B)
5345 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5348 case ICmpInst::ICMP_SGE
:
5349 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SGE with ConstantInt not folded!");
5350 if (Op0Min
.sge(Op1Max
)) // A >=s B -> true if min(A) >= max(B)
5351 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5352 if (Op0Max
.slt(Op1Min
)) // A >=s B -> false if max(A) < min(B)
5353 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5354 if (Op1Min
== Op0Max
) // A >=s B -> A == B if max(A) == min(B)
5355 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5357 case ICmpInst::ICMP_SLE
:
5358 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_SLE with ConstantInt not folded!");
5359 if (Op0Max
.sle(Op1Min
)) // A <=s B -> true if max(A) <= min(B)
5360 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5361 if (Op0Min
.sgt(Op1Max
)) // A <=s B -> false if min(A) > max(B)
5362 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5363 if (Op1Max
== Op0Min
) // A <=s B -> A == B if min(A) == max(B)
5364 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5366 case ICmpInst::ICMP_UGE
:
5367 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_UGE with ConstantInt not folded!");
5368 if (Op0Min
.uge(Op1Max
)) // A >=u B -> true if min(A) >= max(B)
5369 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5370 if (Op0Max
.ult(Op1Min
)) // A >=u B -> false if max(A) < min(B)
5371 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5372 if (Op1Min
== Op0Max
) // A >=u B -> A == B if max(A) == min(B)
5373 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5375 case ICmpInst::ICMP_ULE
:
5376 assert(!isa
<ConstantInt
>(Op1
) && "ICMP_ULE with ConstantInt not folded!");
5377 if (Op0Max
.ule(Op1Min
)) // A <=u B -> true if max(A) <= min(B)
5378 return replaceInstUsesWith(I
, ConstantInt::getTrue(I
.getType()));
5379 if (Op0Min
.ugt(Op1Max
)) // A <=u B -> false if min(A) > max(B)
5380 return replaceInstUsesWith(I
, ConstantInt::getFalse(I
.getType()));
5381 if (Op1Max
== Op0Min
) // A <=u B -> A == B if min(A) == max(B)
5382 return new ICmpInst(ICmpInst::ICMP_EQ
, Op0
, Op1
);
5386 // Turn a signed comparison into an unsigned one if both operands are known to
5387 // have the same sign.
5389 ((Op0Known
.Zero
.isNegative() && Op1Known
.Zero
.isNegative()) ||
5390 (Op0Known
.One
.isNegative() && Op1Known
.One
.isNegative())))
5391 return new ICmpInst(I
.getUnsignedPredicate(), Op0
, Op1
);
5396 llvm::Optional
<std::pair
<CmpInst::Predicate
, Constant
*>>
5397 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred
,
5399 assert(ICmpInst::isRelational(Pred
) && ICmpInst::isIntPredicate(Pred
) &&
5400 "Only for relational integer predicates.");
5402 Type
*Type
= C
->getType();
5403 bool IsSigned
= ICmpInst::isSigned(Pred
);
5405 CmpInst::Predicate UnsignedPred
= ICmpInst::getUnsignedPredicate(Pred
);
5406 bool WillIncrement
=
5407 UnsignedPred
== ICmpInst::ICMP_ULE
|| UnsignedPred
== ICmpInst::ICMP_UGT
;
5409 // Check if the constant operand can be safely incremented/decremented
5410 // without overflowing/underflowing.
5411 auto ConstantIsOk
= [WillIncrement
, IsSigned
](ConstantInt
*C
) {
5412 return WillIncrement
? !C
->isMaxValue(IsSigned
) : !C
->isMinValue(IsSigned
);
5415 Constant
*SafeReplacementConstant
= nullptr;
5416 if (auto *CI
= dyn_cast
<ConstantInt
>(C
)) {
5417 // Bail out if the constant can't be safely incremented/decremented.
5418 if (!ConstantIsOk(CI
))
5420 } else if (auto *FVTy
= dyn_cast
<FixedVectorType
>(Type
)) {
5421 unsigned NumElts
= FVTy
->getNumElements();
5422 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5423 Constant
*Elt
= C
->getAggregateElement(i
);
5427 if (isa
<UndefValue
>(Elt
))
5430 // Bail out if we can't determine if this constant is min/max or if we
5431 // know that this constant is min/max.
5432 auto *CI
= dyn_cast
<ConstantInt
>(Elt
);
5433 if (!CI
|| !ConstantIsOk(CI
))
5436 if (!SafeReplacementConstant
)
5437 SafeReplacementConstant
= CI
;
5444 // It may not be safe to change a compare predicate in the presence of
5445 // undefined elements, so replace those elements with the first safe constant
5447 // TODO: in case of poison, it is safe; let's replace undefs only.
5448 if (C
->containsUndefOrPoisonElement()) {
5449 assert(SafeReplacementConstant
&& "Replacement constant not set");
5450 C
= Constant::replaceUndefsWith(C
, SafeReplacementConstant
);
5453 CmpInst::Predicate NewPred
= CmpInst::getFlippedStrictnessPredicate(Pred
);
5455 // Increment or decrement the constant.
5456 Constant
*OneOrNegOne
= ConstantInt::get(Type
, WillIncrement
? 1 : -1, true);
5457 Constant
*NewC
= ConstantExpr::getAdd(C
, OneOrNegOne
);
5459 return std::make_pair(NewPred
, NewC
);
5462 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5463 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5464 /// allows them to be folded in visitICmpInst.
5465 static ICmpInst
*canonicalizeCmpWithConstant(ICmpInst
&I
) {
5466 ICmpInst::Predicate Pred
= I
.getPredicate();
5467 if (ICmpInst::isEquality(Pred
) || !ICmpInst::isIntPredicate(Pred
) ||
5468 InstCombiner::isCanonicalPredicate(Pred
))
5471 Value
*Op0
= I
.getOperand(0);
5472 Value
*Op1
= I
.getOperand(1);
5473 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
5477 auto FlippedStrictness
=
5478 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred
, Op1C
);
5479 if (!FlippedStrictness
)
5482 return new ICmpInst(FlippedStrictness
->first
, Op0
, FlippedStrictness
->second
);
5485 /// If we have a comparison with a non-canonical predicate, if we can update
5486 /// all the users, invert the predicate and adjust all the users.
5487 CmpInst
*InstCombinerImpl::canonicalizeICmpPredicate(CmpInst
&I
) {
5488 // Is the predicate already canonical?
5489 CmpInst::Predicate Pred
= I
.getPredicate();
5490 if (InstCombiner::isCanonicalPredicate(Pred
))
5493 // Can all users be adjusted to predicate inversion?
5494 if (!InstCombiner::canFreelyInvertAllUsersOf(&I
, /*IgnoredUser=*/nullptr))
5497 // Ok, we can canonicalize comparison!
5498 // Let's first invert the comparison's predicate.
5499 I
.setPredicate(CmpInst::getInversePredicate(Pred
));
5500 I
.setName(I
.getName() + ".not");
5502 // And, adapt users.
5503 freelyInvertAllUsersOf(&I
);
5508 /// Integer compare with boolean values can always be turned into bitwise ops.
5509 static Instruction
*canonicalizeICmpBool(ICmpInst
&I
,
5510 InstCombiner::BuilderTy
&Builder
) {
5511 Value
*A
= I
.getOperand(0), *B
= I
.getOperand(1);
5512 assert(A
->getType()->isIntOrIntVectorTy(1) && "Bools only");
5514 // A boolean compared to true/false can be simplified to Op0/true/false in
5515 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5516 // Cases not handled by InstSimplify are always 'not' of Op0.
5517 if (match(B
, m_Zero())) {
5518 switch (I
.getPredicate()) {
5519 case CmpInst::ICMP_EQ
: // A == 0 -> !A
5520 case CmpInst::ICMP_ULE
: // A <=u 0 -> !A
5521 case CmpInst::ICMP_SGE
: // A >=s 0 -> !A
5522 return BinaryOperator::CreateNot(A
);
5524 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5526 } else if (match(B
, m_One())) {
5527 switch (I
.getPredicate()) {
5528 case CmpInst::ICMP_NE
: // A != 1 -> !A
5529 case CmpInst::ICMP_ULT
: // A <u 1 -> !A
5530 case CmpInst::ICMP_SGT
: // A >s -1 -> !A
5531 return BinaryOperator::CreateNot(A
);
5533 llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5537 switch (I
.getPredicate()) {
5539 llvm_unreachable("Invalid icmp instruction!");
5540 case ICmpInst::ICMP_EQ
:
5541 // icmp eq i1 A, B -> ~(A ^ B)
5542 return BinaryOperator::CreateNot(Builder
.CreateXor(A
, B
));
5544 case ICmpInst::ICMP_NE
:
5545 // icmp ne i1 A, B -> A ^ B
5546 return BinaryOperator::CreateXor(A
, B
);
5548 case ICmpInst::ICMP_UGT
:
5549 // icmp ugt -> icmp ult
5552 case ICmpInst::ICMP_ULT
:
5553 // icmp ult i1 A, B -> ~A & B
5554 return BinaryOperator::CreateAnd(Builder
.CreateNot(A
), B
);
5556 case ICmpInst::ICMP_SGT
:
5557 // icmp sgt -> icmp slt
5560 case ICmpInst::ICMP_SLT
:
5561 // icmp slt i1 A, B -> A & ~B
5562 return BinaryOperator::CreateAnd(Builder
.CreateNot(B
), A
);
5564 case ICmpInst::ICMP_UGE
:
5565 // icmp uge -> icmp ule
5568 case ICmpInst::ICMP_ULE
:
5569 // icmp ule i1 A, B -> ~A | B
5570 return BinaryOperator::CreateOr(Builder
.CreateNot(A
), B
);
5572 case ICmpInst::ICMP_SGE
:
5573 // icmp sge -> icmp sle
5576 case ICmpInst::ICMP_SLE
:
5577 // icmp sle i1 A, B -> A | ~B
5578 return BinaryOperator::CreateOr(Builder
.CreateNot(B
), A
);
5582 // Transform pattern like:
5583 // (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5584 // (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5588 static Instruction
*foldICmpWithHighBitMask(ICmpInst
&Cmp
,
5589 InstCombiner::BuilderTy
&Builder
) {
5590 ICmpInst::Predicate Pred
, NewPred
;
5593 m_c_ICmp(Pred
, m_OneUse(m_Shl(m_One(), m_Value(Y
))), m_Value(X
)))) {
5595 case ICmpInst::ICMP_ULE
:
5596 NewPred
= ICmpInst::ICMP_NE
;
5598 case ICmpInst::ICMP_UGT
:
5599 NewPred
= ICmpInst::ICMP_EQ
;
5604 } else if (match(&Cmp
, m_c_ICmp(Pred
,
5605 m_OneUse(m_CombineOr(
5606 m_Not(m_Shl(m_AllOnes(), m_Value(Y
))),
5607 m_Add(m_Shl(m_One(), m_Value(Y
)),
5610 // The variant with 'add' is not canonical, (the variant with 'not' is)
5611 // we only get it because it has extra uses, and can't be canonicalized,
5614 case ICmpInst::ICMP_ULT
:
5615 NewPred
= ICmpInst::ICMP_NE
;
5617 case ICmpInst::ICMP_UGE
:
5618 NewPred
= ICmpInst::ICMP_EQ
;
5626 Value
*NewX
= Builder
.CreateLShr(X
, Y
, X
->getName() + ".highbits");
5627 Constant
*Zero
= Constant::getNullValue(NewX
->getType());
5628 return CmpInst::Create(Instruction::ICmp
, NewPred
, NewX
, Zero
);
5631 static Instruction
*foldVectorCmp(CmpInst
&Cmp
,
5632 InstCombiner::BuilderTy
&Builder
) {
5633 const CmpInst::Predicate Pred
= Cmp
.getPredicate();
5634 Value
*LHS
= Cmp
.getOperand(0), *RHS
= Cmp
.getOperand(1);
5637 if (!match(LHS
, m_Shuffle(m_Value(V1
), m_Undef(), m_Mask(M
))))
5640 // If both arguments of the cmp are shuffles that use the same mask and
5641 // shuffle within a single vector, move the shuffle after the cmp:
5642 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5643 Type
*V1Ty
= V1
->getType();
5644 if (match(RHS
, m_Shuffle(m_Value(V2
), m_Undef(), m_SpecificMask(M
))) &&
5645 V1Ty
== V2
->getType() && (LHS
->hasOneUse() || RHS
->hasOneUse())) {
5646 Value
*NewCmp
= Builder
.CreateCmp(Pred
, V1
, V2
);
5647 return new ShuffleVectorInst(NewCmp
, UndefValue::get(NewCmp
->getType()), M
);
5650 // Try to canonicalize compare with splatted operand and splat constant.
5651 // TODO: We could generalize this for more than splats. See/use the code in
5652 // InstCombiner::foldVectorBinop().
5654 if (!LHS
->hasOneUse() || !match(RHS
, m_Constant(C
)))
5657 // Length-changing splats are ok, so adjust the constants as needed:
5658 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5659 Constant
*ScalarC
= C
->getSplatValue(/* AllowUndefs */ true);
5661 if (ScalarC
&& match(M
, m_SplatOrUndefMask(MaskSplatIndex
))) {
5662 // We allow undefs in matching, but this transform removes those for safety.
5663 // Demanded elements analysis should be able to recover some/all of that.
5664 C
= ConstantVector::getSplat(cast
<VectorType
>(V1Ty
)->getElementCount(),
5666 SmallVector
<int, 8> NewM(M
.size(), MaskSplatIndex
);
5667 Value
*NewCmp
= Builder
.CreateCmp(Pred
, V1
, C
);
5668 return new ShuffleVectorInst(NewCmp
, UndefValue::get(NewCmp
->getType()),
5675 // extract(uadd.with.overflow(A, B), 0) ult A
5676 // -> extract(uadd.with.overflow(A, B), 1)
5677 static Instruction
*foldICmpOfUAddOv(ICmpInst
&I
) {
5678 CmpInst::Predicate Pred
= I
.getPredicate();
5679 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5683 auto UAddOvResultPat
= m_ExtractValue
<0>(
5684 m_Intrinsic
<Intrinsic::uadd_with_overflow
>(m_Value(A
), m_Value(B
)));
5685 if (match(Op0
, UAddOvResultPat
) &&
5686 ((Pred
== ICmpInst::ICMP_ULT
&& (Op1
== A
|| Op1
== B
)) ||
5687 (Pred
== ICmpInst::ICMP_EQ
&& match(Op1
, m_ZeroInt()) &&
5688 (match(A
, m_One()) || match(B
, m_One()))) ||
5689 (Pred
== ICmpInst::ICMP_NE
&& match(Op1
, m_AllOnes()) &&
5690 (match(A
, m_AllOnes()) || match(B
, m_AllOnes())))))
5691 // extract(uadd.with.overflow(A, B), 0) < A
5692 // extract(uadd.with.overflow(A, 1), 0) == 0
5693 // extract(uadd.with.overflow(A, -1), 0) != -1
5694 UAddOv
= cast
<ExtractValueInst
>(Op0
)->getAggregateOperand();
5695 else if (match(Op1
, UAddOvResultPat
) &&
5696 Pred
== ICmpInst::ICMP_UGT
&& (Op0
== A
|| Op0
== B
))
5697 // A > extract(uadd.with.overflow(A, B), 0)
5698 UAddOv
= cast
<ExtractValueInst
>(Op1
)->getAggregateOperand();
5702 return ExtractValueInst::Create(UAddOv
, 1);
5705 Instruction
*InstCombinerImpl::visitICmpInst(ICmpInst
&I
) {
5706 bool Changed
= false;
5707 const SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
5708 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
5709 unsigned Op0Cplxity
= getComplexity(Op0
);
5710 unsigned Op1Cplxity
= getComplexity(Op1
);
5712 /// Orders the operands of the compare so that they are listed from most
5713 /// complex to least complex. This puts constants before unary operators,
5714 /// before binary operators.
5715 if (Op0Cplxity
< Op1Cplxity
||
5716 (Op0Cplxity
== Op1Cplxity
&& swapMayExposeCSEOpportunities(Op0
, Op1
))) {
5718 std::swap(Op0
, Op1
);
5722 if (Value
*V
= SimplifyICmpInst(I
.getPredicate(), Op0
, Op1
, Q
))
5723 return replaceInstUsesWith(I
, V
);
5725 // Comparing -val or val with non-zero is the same as just comparing val
5726 // ie, abs(val) != 0 -> val != 0
5727 if (I
.getPredicate() == ICmpInst::ICMP_NE
&& match(Op1
, m_Zero())) {
5728 Value
*Cond
, *SelectTrue
, *SelectFalse
;
5729 if (match(Op0
, m_Select(m_Value(Cond
), m_Value(SelectTrue
),
5730 m_Value(SelectFalse
)))) {
5731 if (Value
*V
= dyn_castNegVal(SelectTrue
)) {
5732 if (V
== SelectFalse
)
5733 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5735 else if (Value
*V
= dyn_castNegVal(SelectFalse
)) {
5736 if (V
== SelectTrue
)
5737 return CmpInst::Create(Instruction::ICmp
, I
.getPredicate(), V
, Op1
);
5742 if (Op0
->getType()->isIntOrIntVectorTy(1))
5743 if (Instruction
*Res
= canonicalizeICmpBool(I
, Builder
))
5746 if (Instruction
*Res
= canonicalizeCmpWithConstant(I
))
5749 if (Instruction
*Res
= canonicalizeICmpPredicate(I
))
5752 if (Instruction
*Res
= foldICmpWithConstant(I
))
5755 if (Instruction
*Res
= foldICmpWithDominatingICmp(I
))
5758 if (Instruction
*Res
= foldICmpUsingKnownBits(I
))
5761 // Test if the ICmpInst instruction is used exclusively by a select as
5762 // part of a minimum or maximum operation. If so, refrain from doing
5763 // any other folding. This helps out other analyses which understand
5764 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5765 // and CodeGen. And in this case, at least one of the comparison
5766 // operands has at least one user besides the compare (the select),
5767 // which would often largely negate the benefit of folding anyway.
5769 // Do the same for the other patterns recognized by matchSelectPattern.
5771 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
5773 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
5774 if (SPR
.Flavor
!= SPF_UNKNOWN
)
5778 // Do this after checking for min/max to prevent infinite looping.
5779 if (Instruction
*Res
= foldICmpWithZero(I
))
5782 // FIXME: We only do this after checking for min/max to prevent infinite
5783 // looping caused by a reverse canonicalization of these patterns for min/max.
5784 // FIXME: The organization of folds is a mess. These would naturally go into
5785 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5786 // down here after the min/max restriction.
5787 ICmpInst::Predicate Pred
= I
.getPredicate();
5789 if (match(Op1
, m_APInt(C
))) {
5790 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5791 if (Pred
== ICmpInst::ICMP_UGT
&& C
->isMaxSignedValue()) {
5792 Constant
*Zero
= Constant::getNullValue(Op0
->getType());
5793 return new ICmpInst(ICmpInst::ICMP_SLT
, Op0
, Zero
);
5796 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5797 if (Pred
== ICmpInst::ICMP_ULT
&& C
->isMinSignedValue()) {
5798 Constant
*AllOnes
= Constant::getAllOnesValue(Op0
->getType());
5799 return new ICmpInst(ICmpInst::ICMP_SGT
, Op0
, AllOnes
);
5803 // The folds in here may rely on wrapping flags and special constants, so
5804 // they can break up min/max idioms in some cases but not seemingly similar
5806 // FIXME: It may be possible to enhance select folding to make this
5807 // unnecessary. It may also be moot if we canonicalize to min/max
5809 if (Instruction
*Res
= foldICmpBinOp(I
, Q
))
5812 if (Instruction
*Res
= foldICmpInstWithConstant(I
))
5815 // Try to match comparison as a sign bit test. Intentionally do this after
5816 // foldICmpInstWithConstant() to potentially let other folds to happen first.
5817 if (Instruction
*New
= foldSignBitTest(I
))
5820 if (Instruction
*Res
= foldICmpInstWithConstantNotInt(I
))
5823 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5824 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op0
))
5825 if (Instruction
*NI
= foldGEPICmp(GEP
, Op1
, I
.getPredicate(), I
))
5827 if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Op1
))
5828 if (Instruction
*NI
= foldGEPICmp(GEP
, Op0
,
5829 ICmpInst::getSwappedPredicate(I
.getPredicate()), I
))
5832 // Try to optimize equality comparisons against alloca-based pointers.
5833 if (Op0
->getType()->isPointerTy() && I
.isEquality()) {
5834 assert(Op1
->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5835 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Op0
)))
5836 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op1
))
5838 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Op1
)))
5839 if (Instruction
*New
= foldAllocaCmp(I
, Alloca
, Op0
))
5843 if (Instruction
*Res
= foldICmpBitCast(I
))
5846 // TODO: Hoist this above the min/max bailout.
5847 if (Instruction
*R
= foldICmpWithCastOp(I
))
5850 if (Instruction
*Res
= foldICmpWithMinMax(I
))
5855 // Transform (A & ~B) == 0 --> (A & B) != 0
5856 // and (A & ~B) != 0 --> (A & B) == 0
5857 // if A is a power of 2.
5858 if (match(Op0
, m_And(m_Value(A
), m_Not(m_Value(B
)))) &&
5859 match(Op1
, m_Zero()) &&
5860 isKnownToBeAPowerOfTwo(A
, false, 0, &I
) && I
.isEquality())
5861 return new ICmpInst(I
.getInversePredicate(), Builder
.CreateAnd(A
, B
),
5864 // ~X < ~Y --> Y < X
5865 // ~X < C --> X > ~C
5866 if (match(Op0
, m_Not(m_Value(A
)))) {
5867 if (match(Op1
, m_Not(m_Value(B
))))
5868 return new ICmpInst(I
.getPredicate(), B
, A
);
5871 if (match(Op1
, m_APInt(C
)))
5872 return new ICmpInst(I
.getSwappedPredicate(), A
,
5873 ConstantInt::get(Op1
->getType(), ~(*C
)));
5876 Instruction
*AddI
= nullptr;
5877 if (match(&I
, m_UAddWithOverflow(m_Value(A
), m_Value(B
),
5878 m_Instruction(AddI
))) &&
5879 isa
<IntegerType
>(A
->getType())) {
5882 // m_UAddWithOverflow can match patterns that do not include an explicit
5883 // "add" instruction, so check the opcode of the matched op.
5884 if (AddI
->getOpcode() == Instruction::Add
&&
5885 OptimizeOverflowCheck(Instruction::Add
, /*Signed*/ false, A
, B
, *AddI
,
5886 Result
, Overflow
)) {
5887 replaceInstUsesWith(*AddI
, Result
);
5888 eraseInstFromFunction(*AddI
);
5889 return replaceInstUsesWith(I
, Overflow
);
5893 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5894 if (match(Op0
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5895 if (Instruction
*R
= processUMulZExtIdiom(I
, Op0
, Op1
, *this))
5898 if (match(Op1
, m_Mul(m_ZExt(m_Value(A
)), m_ZExt(m_Value(B
))))) {
5899 if (Instruction
*R
= processUMulZExtIdiom(I
, Op1
, Op0
, *this))
5904 if (Instruction
*Res
= foldICmpEquality(I
))
5907 if (Instruction
*Res
= foldICmpOfUAddOv(I
))
5910 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5911 // an i1 which indicates whether or not we successfully did the swap.
5913 // Replace comparisons between the old value and the expected value with the
5914 // indicator that 'cmpxchg' returns.
5916 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5917 // spuriously fail. In those cases, the old value may equal the expected
5918 // value but it is possible for the swap to not occur.
5919 if (I
.getPredicate() == ICmpInst::ICMP_EQ
)
5920 if (auto *EVI
= dyn_cast
<ExtractValueInst
>(Op0
))
5921 if (auto *ACXI
= dyn_cast
<AtomicCmpXchgInst
>(EVI
->getAggregateOperand()))
5922 if (EVI
->getIndices()[0] == 0 && ACXI
->getCompareOperand() == Op1
&&
5924 return ExtractValueInst::Create(ACXI
, 1);
5930 if (match(Op0
, m_Add(m_Value(X
), m_APInt(C
))) && Op1
== X
)
5931 return foldICmpAddOpConst(X
, *C
, I
.getPredicate());
5934 if (match(Op1
, m_Add(m_Value(X
), m_APInt(C
))) && Op0
== X
)
5935 return foldICmpAddOpConst(X
, *C
, I
.getSwappedPredicate());
5938 if (Instruction
*Res
= foldICmpWithHighBitMask(I
, Builder
))
5941 if (I
.getType()->isVectorTy())
5942 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
5945 return Changed
? &I
: nullptr;
5948 /// Fold fcmp ([us]itofp x, cst) if possible.
5949 Instruction
*InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst
&I
,
5952 if (!isa
<ConstantFP
>(RHSC
)) return nullptr;
5953 const APFloat
&RHS
= cast
<ConstantFP
>(RHSC
)->getValueAPF();
5955 // Get the width of the mantissa. We don't want to hack on conversions that
5956 // might lose information from the integer, e.g. "i64 -> float"
5957 int MantissaWidth
= LHSI
->getType()->getFPMantissaWidth();
5958 if (MantissaWidth
== -1) return nullptr; // Unknown.
5960 IntegerType
*IntTy
= cast
<IntegerType
>(LHSI
->getOperand(0)->getType());
5962 bool LHSUnsigned
= isa
<UIToFPInst
>(LHSI
);
5964 if (I
.isEquality()) {
5965 FCmpInst::Predicate P
= I
.getPredicate();
5966 bool IsExact
= false;
5967 APSInt
RHSCvt(IntTy
->getBitWidth(), LHSUnsigned
);
5968 RHS
.convertToInteger(RHSCvt
, APFloat::rmNearestTiesToEven
, &IsExact
);
5970 // If the floating point constant isn't an integer value, we know if we will
5971 // ever compare equal / not equal to it.
5973 // TODO: Can never be -0.0 and other non-representable values
5974 APFloat
RHSRoundInt(RHS
);
5975 RHSRoundInt
.roundToIntegral(APFloat::rmNearestTiesToEven
);
5976 if (RHS
!= RHSRoundInt
) {
5977 if (P
== FCmpInst::FCMP_OEQ
|| P
== FCmpInst::FCMP_UEQ
)
5978 return replaceInstUsesWith(I
, Builder
.getFalse());
5980 assert(P
== FCmpInst::FCMP_ONE
|| P
== FCmpInst::FCMP_UNE
);
5981 return replaceInstUsesWith(I
, Builder
.getTrue());
5985 // TODO: If the constant is exactly representable, is it always OK to do
5986 // equality compares as integer?
5989 // Check to see that the input is converted from an integer type that is small
5990 // enough that preserves all bits. TODO: check here for "known" sign bits.
5991 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5992 unsigned InputSize
= IntTy
->getScalarSizeInBits();
5994 // Following test does NOT adjust InputSize downwards for signed inputs,
5995 // because the most negative value still requires all the mantissa bits
5996 // to distinguish it from one less than that value.
5997 if ((int)InputSize
> MantissaWidth
) {
5998 // Conversion would lose accuracy. Check if loss can impact comparison.
5999 int Exp
= ilogb(RHS
);
6000 if (Exp
== APFloat::IEK_Inf
) {
6001 int MaxExponent
= ilogb(APFloat::getLargest(RHS
.getSemantics()));
6002 if (MaxExponent
< (int)InputSize
- !LHSUnsigned
)
6003 // Conversion could create infinity.
6006 // Note that if RHS is zero or NaN, then Exp is negative
6007 // and first condition is trivially false.
6008 if (MantissaWidth
<= Exp
&& Exp
<= (int)InputSize
- !LHSUnsigned
)
6009 // Conversion could affect comparison.
6014 // Otherwise, we can potentially simplify the comparison. We know that it
6015 // will always come through as an integer value and we know the constant is
6016 // not a NAN (it would have been previously simplified).
6017 assert(!RHS
.isNaN() && "NaN comparison not already folded!");
6019 ICmpInst::Predicate Pred
;
6020 switch (I
.getPredicate()) {
6021 default: llvm_unreachable("Unexpected predicate!");
6022 case FCmpInst::FCMP_UEQ
:
6023 case FCmpInst::FCMP_OEQ
:
6024 Pred
= ICmpInst::ICMP_EQ
;
6026 case FCmpInst::FCMP_UGT
:
6027 case FCmpInst::FCMP_OGT
:
6028 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGT
: ICmpInst::ICMP_SGT
;
6030 case FCmpInst::FCMP_UGE
:
6031 case FCmpInst::FCMP_OGE
:
6032 Pred
= LHSUnsigned
? ICmpInst::ICMP_UGE
: ICmpInst::ICMP_SGE
;
6034 case FCmpInst::FCMP_ULT
:
6035 case FCmpInst::FCMP_OLT
:
6036 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULT
: ICmpInst::ICMP_SLT
;
6038 case FCmpInst::FCMP_ULE
:
6039 case FCmpInst::FCMP_OLE
:
6040 Pred
= LHSUnsigned
? ICmpInst::ICMP_ULE
: ICmpInst::ICMP_SLE
;
6042 case FCmpInst::FCMP_UNE
:
6043 case FCmpInst::FCMP_ONE
:
6044 Pred
= ICmpInst::ICMP_NE
;
6046 case FCmpInst::FCMP_ORD
:
6047 return replaceInstUsesWith(I
, Builder
.getTrue());
6048 case FCmpInst::FCMP_UNO
:
6049 return replaceInstUsesWith(I
, Builder
.getFalse());
6052 // Now we know that the APFloat is a normal number, zero or inf.
6054 // See if the FP constant is too large for the integer. For example,
6055 // comparing an i8 to 300.0.
6056 unsigned IntWidth
= IntTy
->getScalarSizeInBits();
6059 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
6060 // and large values.
6061 APFloat
SMax(RHS
.getSemantics());
6062 SMax
.convertFromAPInt(APInt::getSignedMaxValue(IntWidth
), true,
6063 APFloat::rmNearestTiesToEven
);
6064 if (SMax
< RHS
) { // smax < 13123.0
6065 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SLT
||
6066 Pred
== ICmpInst::ICMP_SLE
)
6067 return replaceInstUsesWith(I
, Builder
.getTrue());
6068 return replaceInstUsesWith(I
, Builder
.getFalse());
6071 // If the RHS value is > UnsignedMax, fold the comparison. This handles
6072 // +INF and large values.
6073 APFloat
UMax(RHS
.getSemantics());
6074 UMax
.convertFromAPInt(APInt::getMaxValue(IntWidth
), false,
6075 APFloat::rmNearestTiesToEven
);
6076 if (UMax
< RHS
) { // umax < 13123.0
6077 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_ULT
||
6078 Pred
== ICmpInst::ICMP_ULE
)
6079 return replaceInstUsesWith(I
, Builder
.getTrue());
6080 return replaceInstUsesWith(I
, Builder
.getFalse());
6085 // See if the RHS value is < SignedMin.
6086 APFloat
SMin(RHS
.getSemantics());
6087 SMin
.convertFromAPInt(APInt::getSignedMinValue(IntWidth
), true,
6088 APFloat::rmNearestTiesToEven
);
6089 if (SMin
> RHS
) { // smin > 12312.0
6090 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_SGT
||
6091 Pred
== ICmpInst::ICMP_SGE
)
6092 return replaceInstUsesWith(I
, Builder
.getTrue());
6093 return replaceInstUsesWith(I
, Builder
.getFalse());
6096 // See if the RHS value is < UnsignedMin.
6097 APFloat
UMin(RHS
.getSemantics());
6098 UMin
.convertFromAPInt(APInt::getMinValue(IntWidth
), false,
6099 APFloat::rmNearestTiesToEven
);
6100 if (UMin
> RHS
) { // umin > 12312.0
6101 if (Pred
== ICmpInst::ICMP_NE
|| Pred
== ICmpInst::ICMP_UGT
||
6102 Pred
== ICmpInst::ICMP_UGE
)
6103 return replaceInstUsesWith(I
, Builder
.getTrue());
6104 return replaceInstUsesWith(I
, Builder
.getFalse());
6108 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6109 // [0, UMAX], but it may still be fractional. See if it is fractional by
6110 // casting the FP value to the integer value and back, checking for equality.
6111 // Don't do this for zero, because -0.0 is not fractional.
6112 Constant
*RHSInt
= LHSUnsigned
6113 ? ConstantExpr::getFPToUI(RHSC
, IntTy
)
6114 : ConstantExpr::getFPToSI(RHSC
, IntTy
);
6115 if (!RHS
.isZero()) {
6116 bool Equal
= LHSUnsigned
6117 ? ConstantExpr::getUIToFP(RHSInt
, RHSC
->getType()) == RHSC
6118 : ConstantExpr::getSIToFP(RHSInt
, RHSC
->getType()) == RHSC
;
6120 // If we had a comparison against a fractional value, we have to adjust
6121 // the compare predicate and sometimes the value. RHSC is rounded towards
6122 // zero at this point.
6124 default: llvm_unreachable("Unexpected integer comparison!");
6125 case ICmpInst::ICMP_NE
: // (float)int != 4.4 --> true
6126 return replaceInstUsesWith(I
, Builder
.getTrue());
6127 case ICmpInst::ICMP_EQ
: // (float)int == 4.4 --> false
6128 return replaceInstUsesWith(I
, Builder
.getFalse());
6129 case ICmpInst::ICMP_ULE
:
6130 // (float)int <= 4.4 --> int <= 4
6131 // (float)int <= -4.4 --> false
6132 if (RHS
.isNegative())
6133 return replaceInstUsesWith(I
, Builder
.getFalse());
6135 case ICmpInst::ICMP_SLE
:
6136 // (float)int <= 4.4 --> int <= 4
6137 // (float)int <= -4.4 --> int < -4
6138 if (RHS
.isNegative())
6139 Pred
= ICmpInst::ICMP_SLT
;
6141 case ICmpInst::ICMP_ULT
:
6142 // (float)int < -4.4 --> false
6143 // (float)int < 4.4 --> int <= 4
6144 if (RHS
.isNegative())
6145 return replaceInstUsesWith(I
, Builder
.getFalse());
6146 Pred
= ICmpInst::ICMP_ULE
;
6148 case ICmpInst::ICMP_SLT
:
6149 // (float)int < -4.4 --> int < -4
6150 // (float)int < 4.4 --> int <= 4
6151 if (!RHS
.isNegative())
6152 Pred
= ICmpInst::ICMP_SLE
;
6154 case ICmpInst::ICMP_UGT
:
6155 // (float)int > 4.4 --> int > 4
6156 // (float)int > -4.4 --> true
6157 if (RHS
.isNegative())
6158 return replaceInstUsesWith(I
, Builder
.getTrue());
6160 case ICmpInst::ICMP_SGT
:
6161 // (float)int > 4.4 --> int > 4
6162 // (float)int > -4.4 --> int >= -4
6163 if (RHS
.isNegative())
6164 Pred
= ICmpInst::ICMP_SGE
;
6166 case ICmpInst::ICMP_UGE
:
6167 // (float)int >= -4.4 --> true
6168 // (float)int >= 4.4 --> int > 4
6169 if (RHS
.isNegative())
6170 return replaceInstUsesWith(I
, Builder
.getTrue());
6171 Pred
= ICmpInst::ICMP_UGT
;
6173 case ICmpInst::ICMP_SGE
:
6174 // (float)int >= -4.4 --> int >= -4
6175 // (float)int >= 4.4 --> int > 4
6176 if (!RHS
.isNegative())
6177 Pred
= ICmpInst::ICMP_SGT
;
6183 // Lower this FP comparison into an appropriate integer version of the
6185 return new ICmpInst(Pred
, LHSI
->getOperand(0), RHSInt
);
6188 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6189 static Instruction
*foldFCmpReciprocalAndZero(FCmpInst
&I
, Instruction
*LHSI
,
6191 // When C is not 0.0 and infinities are not allowed:
6192 // (C / X) < 0.0 is a sign-bit test of X
6193 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6194 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6197 // Multiply (C / X) < 0.0 by X * X / C.
6198 // - X is non zero, if it is the flag 'ninf' is violated.
6199 // - C defines the sign of X * X * C. Thus it also defines whether to swap
6200 // the predicate. C is also non zero by definition.
6202 // Thus X * X / C is non zero and the transformation is valid. [qed]
6204 FCmpInst::Predicate Pred
= I
.getPredicate();
6206 // Check that predicates are valid.
6207 if ((Pred
!= FCmpInst::FCMP_OGT
) && (Pred
!= FCmpInst::FCMP_OLT
) &&
6208 (Pred
!= FCmpInst::FCMP_OGE
) && (Pred
!= FCmpInst::FCMP_OLE
))
6211 // Check that RHS operand is zero.
6212 if (!match(RHSC
, m_AnyZeroFP()))
6215 // Check fastmath flags ('ninf').
6216 if (!LHSI
->hasNoInfs() || !I
.hasNoInfs())
6219 // Check the properties of the dividend. It must not be zero to avoid a
6220 // division by zero (see Proof).
6222 if (!match(LHSI
->getOperand(0), m_APFloat(C
)))
6228 // Get swapped predicate if necessary.
6229 if (C
->isNegative())
6230 Pred
= I
.getSwappedPredicate();
6232 return new FCmpInst(Pred
, LHSI
->getOperand(1), RHSC
, "", &I
);
6235 /// Optimize fabs(X) compared with zero.
6236 static Instruction
*foldFabsWithFcmpZero(FCmpInst
&I
, InstCombinerImpl
&IC
) {
6238 if (!match(I
.getOperand(0), m_FAbs(m_Value(X
))) ||
6239 !match(I
.getOperand(1), m_PosZeroFP()))
6242 auto replacePredAndOp0
= [&IC
](FCmpInst
*I
, FCmpInst::Predicate P
, Value
*X
) {
6244 return IC
.replaceOperand(*I
, 0, X
);
6247 switch (I
.getPredicate()) {
6248 case FCmpInst::FCMP_UGE
:
6249 case FCmpInst::FCMP_OLT
:
6250 // fabs(X) >= 0.0 --> true
6251 // fabs(X) < 0.0 --> false
6252 llvm_unreachable("fcmp should have simplified");
6254 case FCmpInst::FCMP_OGT
:
6255 // fabs(X) > 0.0 --> X != 0.0
6256 return replacePredAndOp0(&I
, FCmpInst::FCMP_ONE
, X
);
6258 case FCmpInst::FCMP_UGT
:
6259 // fabs(X) u> 0.0 --> X u!= 0.0
6260 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNE
, X
);
6262 case FCmpInst::FCMP_OLE
:
6263 // fabs(X) <= 0.0 --> X == 0.0
6264 return replacePredAndOp0(&I
, FCmpInst::FCMP_OEQ
, X
);
6266 case FCmpInst::FCMP_ULE
:
6267 // fabs(X) u<= 0.0 --> X u== 0.0
6268 return replacePredAndOp0(&I
, FCmpInst::FCMP_UEQ
, X
);
6270 case FCmpInst::FCMP_OGE
:
6271 // fabs(X) >= 0.0 --> !isnan(X)
6272 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
6273 return replacePredAndOp0(&I
, FCmpInst::FCMP_ORD
, X
);
6275 case FCmpInst::FCMP_ULT
:
6276 // fabs(X) u< 0.0 --> isnan(X)
6277 assert(!I
.hasNoNaNs() && "fcmp should have simplified");
6278 return replacePredAndOp0(&I
, FCmpInst::FCMP_UNO
, X
);
6280 case FCmpInst::FCMP_OEQ
:
6281 case FCmpInst::FCMP_UEQ
:
6282 case FCmpInst::FCMP_ONE
:
6283 case FCmpInst::FCMP_UNE
:
6284 case FCmpInst::FCMP_ORD
:
6285 case FCmpInst::FCMP_UNO
:
6286 // Look through the fabs() because it doesn't change anything but the sign.
6287 // fabs(X) == 0.0 --> X == 0.0,
6288 // fabs(X) != 0.0 --> X != 0.0
6289 // isnan(fabs(X)) --> isnan(X)
6290 // !isnan(fabs(X) --> !isnan(X)
6291 return replacePredAndOp0(&I
, I
.getPredicate(), X
);
6298 Instruction
*InstCombinerImpl::visitFCmpInst(FCmpInst
&I
) {
6299 bool Changed
= false;
6301 /// Orders the operands of the compare so that they are listed from most
6302 /// complex to least complex. This puts constants before unary operators,
6303 /// before binary operators.
6304 if (getComplexity(I
.getOperand(0)) < getComplexity(I
.getOperand(1))) {
6309 const CmpInst::Predicate Pred
= I
.getPredicate();
6310 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
6311 if (Value
*V
= SimplifyFCmpInst(Pred
, Op0
, Op1
, I
.getFastMathFlags(),
6312 SQ
.getWithInstruction(&I
)))
6313 return replaceInstUsesWith(I
, V
);
6315 // Simplify 'fcmp pred X, X'
6316 Type
*OpType
= Op0
->getType();
6317 assert(OpType
== Op1
->getType() && "fcmp with different-typed operands?");
6321 case FCmpInst::FCMP_UNO
: // True if unordered: isnan(X) | isnan(Y)
6322 case FCmpInst::FCMP_ULT
: // True if unordered or less than
6323 case FCmpInst::FCMP_UGT
: // True if unordered or greater than
6324 case FCmpInst::FCMP_UNE
: // True if unordered or not equal
6325 // Canonicalize these to be 'fcmp uno %X, 0.0'.
6326 I
.setPredicate(FCmpInst::FCMP_UNO
);
6327 I
.setOperand(1, Constant::getNullValue(OpType
));
6330 case FCmpInst::FCMP_ORD
: // True if ordered (no nans)
6331 case FCmpInst::FCMP_OEQ
: // True if ordered and equal
6332 case FCmpInst::FCMP_OGE
: // True if ordered and greater than or equal
6333 case FCmpInst::FCMP_OLE
: // True if ordered and less than or equal
6334 // Canonicalize these to be 'fcmp ord %X, 0.0'.
6335 I
.setPredicate(FCmpInst::FCMP_ORD
);
6336 I
.setOperand(1, Constant::getNullValue(OpType
));
6341 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6342 // then canonicalize the operand to 0.0.
6343 if (Pred
== CmpInst::FCMP_ORD
|| Pred
== CmpInst::FCMP_UNO
) {
6344 if (!match(Op0
, m_PosZeroFP()) && isKnownNeverNaN(Op0
, &TLI
))
6345 return replaceOperand(I
, 0, ConstantFP::getNullValue(OpType
));
6347 if (!match(Op1
, m_PosZeroFP()) && isKnownNeverNaN(Op1
, &TLI
))
6348 return replaceOperand(I
, 1, ConstantFP::getNullValue(OpType
));
6351 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6353 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
6354 return new FCmpInst(I
.getSwappedPredicate(), X
, Y
, "", &I
);
6356 // Test if the FCmpInst instruction is used exclusively by a select as
6357 // part of a minimum or maximum operation. If so, refrain from doing
6358 // any other folding. This helps out other analyses which understand
6359 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6360 // and CodeGen. And in this case, at least one of the comparison
6361 // operands has at least one user besides the compare (the select),
6362 // which would often largely negate the benefit of folding anyway.
6364 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.user_back())) {
6366 SelectPatternResult SPR
= matchSelectPattern(SI
, A
, B
);
6367 if (SPR
.Flavor
!= SPF_UNKNOWN
)
6371 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6372 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6373 if (match(Op1
, m_AnyZeroFP()) && !match(Op1
, m_PosZeroFP()))
6374 return replaceOperand(I
, 1, ConstantFP::getNullValue(OpType
));
6376 // Handle fcmp with instruction LHS and constant RHS.
6379 if (match(Op0
, m_Instruction(LHSI
)) && match(Op1
, m_Constant(RHSC
))) {
6380 switch (LHSI
->getOpcode()) {
6381 case Instruction::PHI
:
6382 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6383 // block. If in the same block, we're encouraging jump threading. If
6384 // not, we are just pessimizing the code by making an i1 phi.
6385 if (LHSI
->getParent() == I
.getParent())
6386 if (Instruction
*NV
= foldOpIntoPhi(I
, cast
<PHINode
>(LHSI
)))
6389 case Instruction::SIToFP
:
6390 case Instruction::UIToFP
:
6391 if (Instruction
*NV
= foldFCmpIntToFPConst(I
, LHSI
, RHSC
))
6394 case Instruction::FDiv
:
6395 if (Instruction
*NV
= foldFCmpReciprocalAndZero(I
, LHSI
, RHSC
))
6398 case Instruction::Load
:
6399 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(LHSI
->getOperand(0)))
6400 if (auto *GV
= dyn_cast
<GlobalVariable
>(GEP
->getOperand(0)))
6401 if (GV
->isConstant() && GV
->hasDefinitiveInitializer() &&
6402 !cast
<LoadInst
>(LHSI
)->isVolatile())
6403 if (Instruction
*Res
= foldCmpLoadFromIndexedGlobal(GEP
, GV
, I
))
6409 if (Instruction
*R
= foldFabsWithFcmpZero(I
, *this))
6412 if (match(Op0
, m_FNeg(m_Value(X
)))) {
6413 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6415 if (match(Op1
, m_Constant(C
))) {
6416 Constant
*NegC
= ConstantExpr::getFNeg(C
);
6417 return new FCmpInst(I
.getSwappedPredicate(), X
, NegC
, "", &I
);
6421 if (match(Op0
, m_FPExt(m_Value(X
)))) {
6422 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6423 if (match(Op1
, m_FPExt(m_Value(Y
))) && X
->getType() == Y
->getType())
6424 return new FCmpInst(Pred
, X
, Y
, "", &I
);
6426 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6428 if (match(Op1
, m_APFloat(C
))) {
6429 const fltSemantics
&FPSem
=
6430 X
->getType()->getScalarType()->getFltSemantics();
6432 APFloat TruncC
= *C
;
6433 TruncC
.convert(FPSem
, APFloat::rmNearestTiesToEven
, &Lossy
);
6435 // Avoid lossy conversions and denormals.
6436 // Zero is a special case that's OK to convert.
6437 APFloat Fabs
= TruncC
;
6440 (!(Fabs
< APFloat::getSmallestNormalized(FPSem
)) || Fabs
.isZero())) {
6441 Constant
*NewC
= ConstantFP::get(X
->getType(), TruncC
);
6442 return new FCmpInst(Pred
, X
, NewC
, "", &I
);
6447 // Convert a sign-bit test of an FP value into a cast and integer compare.
6448 // TODO: Simplify if the copysign constant is 0.0 or NaN.
6449 // TODO: Handle non-zero compare constants.
6450 // TODO: Handle other predicates.
6452 if (match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::copysign
>(m_APFloat(C
),
6454 match(Op1
, m_AnyZeroFP()) && !C
->isZero() && !C
->isNaN()) {
6455 Type
*IntType
= Builder
.getIntNTy(X
->getType()->getScalarSizeInBits());
6456 if (auto *VecTy
= dyn_cast
<VectorType
>(OpType
))
6457 IntType
= VectorType::get(IntType
, VecTy
->getElementCount());
6459 // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6460 if (Pred
== FCmpInst::FCMP_OLT
) {
6461 Value
*IntX
= Builder
.CreateBitCast(X
, IntType
);
6462 return new ICmpInst(ICmpInst::ICMP_SLT
, IntX
,
6463 ConstantInt::getNullValue(IntType
));
6467 if (I
.getType()->isVectorTy())
6468 if (Instruction
*Res
= foldVectorCmp(I
, Builder
))
6471 return Changed
? &I
: nullptr;