1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
11 /// This file provides internal interfaces used to implement the InstCombine.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/TargetFolder.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/KnownBits.h"
28 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
29 #include "llvm/Transforms/InstCombine/InstCombiner.h"
30 #include "llvm/Transforms/Utils/Local.h"
33 #define DEBUG_TYPE "instcombine"
35 using namespace llvm::PatternMatch
;
37 // As a default, let's assume that we want to be aggressive,
38 // and attempt to traverse with no limits in attempt to sink negation.
39 static constexpr unsigned NegatorDefaultMaxDepth
= ~0U;
41 // Let's guesstimate that most often we will end up visiting/producing
42 // fairly small number of new instructions.
43 static constexpr unsigned NegatorMaxNodesSSO
= 16;
49 class AssumptionCache
;
50 class BlockFrequencyInfo
;
56 class OptimizationRemarkEmitter
;
57 class ProfileSummaryInfo
;
58 class TargetLibraryInfo
;
61 class LLVM_LIBRARY_VISIBILITY InstCombinerImpl final
62 : public InstCombiner
,
63 public InstVisitor
<InstCombinerImpl
, Instruction
*> {
65 InstCombinerImpl(InstCombineWorklist
&Worklist
, BuilderTy
&Builder
,
66 bool MinimizeSize
, AAResults
*AA
, AssumptionCache
&AC
,
67 TargetLibraryInfo
&TLI
, TargetTransformInfo
&TTI
,
68 DominatorTree
&DT
, OptimizationRemarkEmitter
&ORE
,
69 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
70 const DataLayout
&DL
, LoopInfo
*LI
)
71 : InstCombiner(Worklist
, Builder
, MinimizeSize
, AA
, AC
, TLI
, TTI
, DT
, ORE
,
74 virtual ~InstCombinerImpl() {}
76 /// Run the combiner over the entire worklist until it is empty.
78 /// \returns true if the IR is changed.
81 // Visitation implementation - Implement instruction combining for different
82 // instruction types. The semantics are as follows:
84 // null - No change was made
85 // I - Change was made, I is still valid, I may be dead though
86 // otherwise - Change was made, replace I with returned instruction
88 Instruction
*visitFNeg(UnaryOperator
&I
);
89 Instruction
*visitAdd(BinaryOperator
&I
);
90 Instruction
*visitFAdd(BinaryOperator
&I
);
91 Value
*OptimizePointerDifference(
92 Value
*LHS
, Value
*RHS
, Type
*Ty
, bool isNUW
);
93 Instruction
*visitSub(BinaryOperator
&I
);
94 Instruction
*visitFSub(BinaryOperator
&I
);
95 Instruction
*visitMul(BinaryOperator
&I
);
96 Instruction
*visitFMul(BinaryOperator
&I
);
97 Instruction
*visitURem(BinaryOperator
&I
);
98 Instruction
*visitSRem(BinaryOperator
&I
);
99 Instruction
*visitFRem(BinaryOperator
&I
);
100 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator
&I
);
101 Instruction
*commonIRemTransforms(BinaryOperator
&I
);
102 Instruction
*commonIDivTransforms(BinaryOperator
&I
);
103 Instruction
*visitUDiv(BinaryOperator
&I
);
104 Instruction
*visitSDiv(BinaryOperator
&I
);
105 Instruction
*visitFDiv(BinaryOperator
&I
);
106 Value
*simplifyRangeCheck(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
, bool Inverted
);
107 Instruction
*visitAnd(BinaryOperator
&I
);
108 Instruction
*visitOr(BinaryOperator
&I
);
109 bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator
&I
);
110 Instruction
*visitXor(BinaryOperator
&I
);
111 Instruction
*visitShl(BinaryOperator
&I
);
112 Value
*reassociateShiftAmtsOfTwoSameDirectionShifts(
113 BinaryOperator
*Sh0
, const SimplifyQuery
&SQ
,
114 bool AnalyzeForSignBitExtraction
= false);
115 Instruction
*canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
117 Instruction
*foldVariableSignZeroExtensionOfVariableHighBitExtract(
118 BinaryOperator
&OldAShr
);
119 Instruction
*visitAShr(BinaryOperator
&I
);
120 Instruction
*visitLShr(BinaryOperator
&I
);
121 Instruction
*commonShiftTransforms(BinaryOperator
&I
);
122 Instruction
*visitFCmpInst(FCmpInst
&I
);
123 CmpInst
*canonicalizeICmpPredicate(CmpInst
&I
);
124 Instruction
*visitICmpInst(ICmpInst
&I
);
125 Instruction
*FoldShiftByConstant(Value
*Op0
, Constant
*Op1
,
127 Instruction
*commonCastTransforms(CastInst
&CI
);
128 Instruction
*commonPointerCastTransforms(CastInst
&CI
);
129 Instruction
*visitTrunc(TruncInst
&CI
);
130 Instruction
*visitZExt(ZExtInst
&CI
);
131 Instruction
*visitSExt(SExtInst
&CI
);
132 Instruction
*visitFPTrunc(FPTruncInst
&CI
);
133 Instruction
*visitFPExt(CastInst
&CI
);
134 Instruction
*visitFPToUI(FPToUIInst
&FI
);
135 Instruction
*visitFPToSI(FPToSIInst
&FI
);
136 Instruction
*visitUIToFP(CastInst
&CI
);
137 Instruction
*visitSIToFP(CastInst
&CI
);
138 Instruction
*visitPtrToInt(PtrToIntInst
&CI
);
139 Instruction
*visitIntToPtr(IntToPtrInst
&CI
);
140 Instruction
*visitBitCast(BitCastInst
&CI
);
141 Instruction
*visitAddrSpaceCast(AddrSpaceCastInst
&CI
);
142 Instruction
*foldItoFPtoI(CastInst
&FI
);
143 Instruction
*visitSelectInst(SelectInst
&SI
);
144 Instruction
*visitCallInst(CallInst
&CI
);
145 Instruction
*visitInvokeInst(InvokeInst
&II
);
146 Instruction
*visitCallBrInst(CallBrInst
&CBI
);
148 Instruction
*SliceUpIllegalIntegerPHI(PHINode
&PN
);
149 Instruction
*visitPHINode(PHINode
&PN
);
150 Instruction
*visitGetElementPtrInst(GetElementPtrInst
&GEP
);
151 Instruction
*visitAllocaInst(AllocaInst
&AI
);
152 Instruction
*visitAllocSite(Instruction
&FI
);
153 Instruction
*visitFree(CallInst
&FI
);
154 Instruction
*visitLoadInst(LoadInst
&LI
);
155 Instruction
*visitStoreInst(StoreInst
&SI
);
156 Instruction
*visitAtomicRMWInst(AtomicRMWInst
&SI
);
157 Instruction
*visitUnconditionalBranchInst(BranchInst
&BI
);
158 Instruction
*visitBranchInst(BranchInst
&BI
);
159 Instruction
*visitFenceInst(FenceInst
&FI
);
160 Instruction
*visitSwitchInst(SwitchInst
&SI
);
161 Instruction
*visitReturnInst(ReturnInst
&RI
);
162 Instruction
*visitUnreachableInst(UnreachableInst
&I
);
164 foldAggregateConstructionIntoAggregateReuse(InsertValueInst
&OrigIVI
);
165 Instruction
*visitInsertValueInst(InsertValueInst
&IV
);
166 Instruction
*visitInsertElementInst(InsertElementInst
&IE
);
167 Instruction
*visitExtractElementInst(ExtractElementInst
&EI
);
168 Instruction
*visitShuffleVectorInst(ShuffleVectorInst
&SVI
);
169 Instruction
*visitExtractValueInst(ExtractValueInst
&EV
);
170 Instruction
*visitLandingPadInst(LandingPadInst
&LI
);
171 Instruction
*visitVAEndInst(VAEndInst
&I
);
172 Value
*pushFreezeToPreventPoisonFromPropagating(FreezeInst
&FI
);
173 bool freezeDominatedUses(FreezeInst
&FI
);
174 Instruction
*visitFreeze(FreezeInst
&I
);
176 /// Specify what to return for unhandled instructions.
177 Instruction
*visitInstruction(Instruction
&I
) { return nullptr; }
179 /// True when DB dominates all uses of DI except UI.
180 /// UI must be in the same block as DI.
181 /// The routine checks that the DI parent and DB are different.
182 bool dominatesAllUses(const Instruction
*DI
, const Instruction
*UI
,
183 const BasicBlock
*DB
) const;
185 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
186 bool replacedSelectWithOperand(SelectInst
*SI
, const ICmpInst
*Icmp
,
187 const unsigned SIOpd
);
189 LoadInst
*combineLoadToNewType(LoadInst
&LI
, Type
*NewTy
,
190 const Twine
&Suffix
= "");
193 void annotateAnyAllocSite(CallBase
&Call
, const TargetLibraryInfo
*TLI
);
194 bool shouldChangeType(unsigned FromBitWidth
, unsigned ToBitWidth
) const;
195 bool shouldChangeType(Type
*From
, Type
*To
) const;
196 Value
*dyn_castNegVal(Value
*V
) const;
197 Type
*FindElementAtOffset(PointerType
*PtrTy
, int64_t Offset
,
198 SmallVectorImpl
<Value
*> &NewIndices
);
200 /// Classify whether a cast is worth optimizing.
202 /// This is a helper to decide whether the simplification of
203 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
205 /// \param CI The cast we are interested in.
207 /// \return true if this cast actually results in any code being generated and
208 /// if it cannot already be eliminated by some other transformation.
209 bool shouldOptimizeCast(CastInst
*CI
);
211 /// Try to optimize a sequence of instructions checking if an operation
212 /// on LHS and RHS overflows.
214 /// If this overflow check is done via one of the overflow check intrinsics,
215 /// then CtxI has to be the call instruction calling that intrinsic. If this
216 /// overflow check is done by arithmetic followed by a compare, then CtxI has
217 /// to be the arithmetic instruction.
219 /// If a simplification is possible, stores the simplified result of the
220 /// operation in OperationResult and result of the overflow check in
221 /// OverflowResult, and return true. If no simplification is possible,
223 bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp
, bool IsSigned
,
224 Value
*LHS
, Value
*RHS
,
225 Instruction
&CtxI
, Value
*&OperationResult
,
226 Constant
*&OverflowResult
);
228 Instruction
*visitCallBase(CallBase
&Call
);
229 Instruction
*tryOptimizeCall(CallInst
*CI
);
230 bool transformConstExprCastCall(CallBase
&Call
);
231 Instruction
*transformCallThroughTrampoline(CallBase
&Call
,
232 IntrinsicInst
&Tramp
);
234 Value
*simplifyMaskedLoad(IntrinsicInst
&II
);
235 Instruction
*simplifyMaskedStore(IntrinsicInst
&II
);
236 Instruction
*simplifyMaskedGather(IntrinsicInst
&II
);
237 Instruction
*simplifyMaskedScatter(IntrinsicInst
&II
);
239 /// Transform (zext icmp) to bitwise / integer operations in order to
242 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
243 /// \parem CI The zext of the (zext icmp) pair we are interested in.
244 /// \param DoTransform Pass false to just test whether the given (zext icmp)
245 /// would be transformed. Pass true to actually perform the transformation.
247 /// \return null if the transformation cannot be performed. If the
248 /// transformation can be performed the new instruction that replaces the
249 /// (zext icmp) pair will be returned (if \p DoTransform is false the
250 /// unmodified \p ICI will be returned in this case).
251 Instruction
*transformZExtICmp(ICmpInst
*ICI
, ZExtInst
&CI
,
252 bool DoTransform
= true);
254 Instruction
*transformSExtICmp(ICmpInst
*ICI
, Instruction
&CI
);
256 bool willNotOverflowSignedAdd(const Value
*LHS
, const Value
*RHS
,
257 const Instruction
&CxtI
) const {
258 return computeOverflowForSignedAdd(LHS
, RHS
, &CxtI
) ==
259 OverflowResult::NeverOverflows
;
262 bool willNotOverflowUnsignedAdd(const Value
*LHS
, const Value
*RHS
,
263 const Instruction
&CxtI
) const {
264 return computeOverflowForUnsignedAdd(LHS
, RHS
, &CxtI
) ==
265 OverflowResult::NeverOverflows
;
268 bool willNotOverflowAdd(const Value
*LHS
, const Value
*RHS
,
269 const Instruction
&CxtI
, bool IsSigned
) const {
270 return IsSigned
? willNotOverflowSignedAdd(LHS
, RHS
, CxtI
)
271 : willNotOverflowUnsignedAdd(LHS
, RHS
, CxtI
);
274 bool willNotOverflowSignedSub(const Value
*LHS
, const Value
*RHS
,
275 const Instruction
&CxtI
) const {
276 return computeOverflowForSignedSub(LHS
, RHS
, &CxtI
) ==
277 OverflowResult::NeverOverflows
;
280 bool willNotOverflowUnsignedSub(const Value
*LHS
, const Value
*RHS
,
281 const Instruction
&CxtI
) const {
282 return computeOverflowForUnsignedSub(LHS
, RHS
, &CxtI
) ==
283 OverflowResult::NeverOverflows
;
286 bool willNotOverflowSub(const Value
*LHS
, const Value
*RHS
,
287 const Instruction
&CxtI
, bool IsSigned
) const {
288 return IsSigned
? willNotOverflowSignedSub(LHS
, RHS
, CxtI
)
289 : willNotOverflowUnsignedSub(LHS
, RHS
, CxtI
);
292 bool willNotOverflowSignedMul(const Value
*LHS
, const Value
*RHS
,
293 const Instruction
&CxtI
) const {
294 return computeOverflowForSignedMul(LHS
, RHS
, &CxtI
) ==
295 OverflowResult::NeverOverflows
;
298 bool willNotOverflowUnsignedMul(const Value
*LHS
, const Value
*RHS
,
299 const Instruction
&CxtI
) const {
300 return computeOverflowForUnsignedMul(LHS
, RHS
, &CxtI
) ==
301 OverflowResult::NeverOverflows
;
304 bool willNotOverflowMul(const Value
*LHS
, const Value
*RHS
,
305 const Instruction
&CxtI
, bool IsSigned
) const {
306 return IsSigned
? willNotOverflowSignedMul(LHS
, RHS
, CxtI
)
307 : willNotOverflowUnsignedMul(LHS
, RHS
, CxtI
);
310 bool willNotOverflow(BinaryOperator::BinaryOps Opcode
, const Value
*LHS
,
311 const Value
*RHS
, const Instruction
&CxtI
,
312 bool IsSigned
) const {
314 case Instruction::Add
: return willNotOverflowAdd(LHS
, RHS
, CxtI
, IsSigned
);
315 case Instruction::Sub
: return willNotOverflowSub(LHS
, RHS
, CxtI
, IsSigned
);
316 case Instruction::Mul
: return willNotOverflowMul(LHS
, RHS
, CxtI
, IsSigned
);
317 default: llvm_unreachable("Unexpected opcode for overflow query");
321 Value
*EmitGEPOffset(User
*GEP
);
322 Instruction
*scalarizePHI(ExtractElementInst
&EI
, PHINode
*PN
);
323 Instruction
*foldCastedBitwiseLogic(BinaryOperator
&I
);
324 Instruction
*narrowBinOp(TruncInst
&Trunc
);
325 Instruction
*narrowMaskedBinOp(BinaryOperator
&And
);
326 Instruction
*narrowMathIfNoOverflow(BinaryOperator
&I
);
327 Instruction
*narrowFunnelShift(TruncInst
&Trunc
);
328 Instruction
*optimizeBitCastFromPhi(CastInst
&CI
, PHINode
*PN
);
329 Instruction
*matchSAddSubSat(Instruction
&MinMax1
);
331 void freelyInvertAllUsersOf(Value
*V
);
333 /// Determine if a pair of casts can be replaced by a single cast.
335 /// \param CI1 The first of a pair of casts.
336 /// \param CI2 The second of a pair of casts.
338 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
339 /// Instruction::CastOps value for a cast that can replace the pair, casting
340 /// CI1->getSrcTy() to CI2->getDstTy().
342 /// \see CastInst::isEliminableCastPair
343 Instruction::CastOps
isEliminableCastPair(const CastInst
*CI1
,
344 const CastInst
*CI2
);
345 Value
*simplifyIntToPtrRoundTripCast(Value
*Val
);
347 Value
*foldAndOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, BinaryOperator
&And
);
348 Value
*foldOrOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, BinaryOperator
&Or
);
349 Value
*foldXorOfICmps(ICmpInst
*LHS
, ICmpInst
*RHS
, BinaryOperator
&Xor
);
351 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
352 /// NOTE: Unlike most of instcombine, this returns a Value which should
353 /// already be inserted into the function.
354 Value
*foldLogicOfFCmps(FCmpInst
*LHS
, FCmpInst
*RHS
, bool IsAnd
);
356 Value
*foldAndOrOfICmpsOfAndWithPow2(ICmpInst
*LHS
, ICmpInst
*RHS
,
357 Instruction
*CxtI
, bool IsAnd
,
358 bool IsLogical
= false);
359 Value
*matchSelectFromAndOr(Value
*A
, Value
*B
, Value
*C
, Value
*D
);
360 Value
*getSelectCondition(Value
*A
, Value
*B
);
362 Instruction
*foldIntrinsicWithOverflowCommon(IntrinsicInst
*II
);
363 Instruction
*foldFPSignBitOps(BinaryOperator
&I
);
365 // Optimize one of these forms:
366 // and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
367 // or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
368 // into simplier select instruction using isImpliedCondition.
369 Instruction
*foldAndOrOfSelectUsingImpliedCond(Value
*Op
, SelectInst
&SI
,
373 /// Inserts an instruction \p New before instruction \p Old
375 /// Also adds the new instruction to the worklist and returns \p New so that
376 /// it is suitable for use as the return from the visitation patterns.
377 Instruction
*InsertNewInstBefore(Instruction
*New
, Instruction
&Old
) {
378 assert(New
&& !New
->getParent() &&
379 "New instruction already inserted into a basic block!");
380 BasicBlock
*BB
= Old
.getParent();
381 BB
->getInstList().insert(Old
.getIterator(), New
); // Insert inst
386 /// Same as InsertNewInstBefore, but also sets the debug loc.
387 Instruction
*InsertNewInstWith(Instruction
*New
, Instruction
&Old
) {
388 New
->setDebugLoc(Old
.getDebugLoc());
389 return InsertNewInstBefore(New
, Old
);
392 /// A combiner-aware RAUW-like routine.
394 /// This method is to be used when an instruction is found to be dead,
395 /// replaceable with another preexisting expression. Here we add all uses of
396 /// I to the worklist, replace all uses of I with the new value, then return
397 /// I, so that the inst combiner will know that I was modified.
398 Instruction
*replaceInstUsesWith(Instruction
&I
, Value
*V
) {
399 // If there are no uses to replace, then we return nullptr to indicate that
400 // no changes were made to the program.
401 if (I
.use_empty()) return nullptr;
403 Worklist
.pushUsersToWorkList(I
); // Add all modified instrs to worklist.
405 // If we are replacing the instruction with itself, this must be in a
406 // segment of unreachable code, so just clobber the instruction.
408 V
= UndefValue::get(I
.getType());
410 LLVM_DEBUG(dbgs() << "IC: Replacing " << I
<< "\n"
411 << " with " << *V
<< '\n');
413 I
.replaceAllUsesWith(V
);
418 /// Replace operand of instruction and add old operand to the worklist.
419 Instruction
*replaceOperand(Instruction
&I
, unsigned OpNum
, Value
*V
) {
420 Worklist
.addValue(I
.getOperand(OpNum
));
421 I
.setOperand(OpNum
, V
);
425 /// Replace use and add the previously used value to the worklist.
426 void replaceUse(Use
&U
, Value
*NewValue
) {
427 Worklist
.addValue(U
);
431 /// Create and insert the idiom we use to indicate a block is unreachable
432 /// without having to rewrite the CFG from within InstCombine.
433 void CreateNonTerminatorUnreachable(Instruction
*InsertAt
) {
434 auto &Ctx
= InsertAt
->getContext();
435 new StoreInst(ConstantInt::getTrue(Ctx
),
436 UndefValue::get(Type::getInt1PtrTy(Ctx
)),
441 /// Combiner aware instruction erasure.
443 /// When dealing with an instruction that has side effects or produces a void
444 /// value, we can't rely on DCE to delete the instruction. Instead, visit
445 /// methods should return the value returned by this function.
446 Instruction
*eraseInstFromFunction(Instruction
&I
) override
{
447 LLVM_DEBUG(dbgs() << "IC: ERASE " << I
<< '\n');
448 assert(I
.use_empty() && "Cannot erase instruction that is used!");
451 // Make sure that we reprocess all operands now that we reduced their
453 for (Use
&Operand
: I
.operands())
454 if (auto *Inst
= dyn_cast
<Instruction
>(Operand
))
460 return nullptr; // Don't do anything with FI
463 void computeKnownBits(const Value
*V
, KnownBits
&Known
,
464 unsigned Depth
, const Instruction
*CxtI
) const {
465 llvm::computeKnownBits(V
, Known
, DL
, Depth
, &AC
, CxtI
, &DT
);
468 KnownBits
computeKnownBits(const Value
*V
, unsigned Depth
,
469 const Instruction
*CxtI
) const {
470 return llvm::computeKnownBits(V
, DL
, Depth
, &AC
, CxtI
, &DT
);
473 bool isKnownToBeAPowerOfTwo(const Value
*V
, bool OrZero
= false,
475 const Instruction
*CxtI
= nullptr) {
476 return llvm::isKnownToBeAPowerOfTwo(V
, DL
, OrZero
, Depth
, &AC
, CxtI
, &DT
);
479 bool MaskedValueIsZero(const Value
*V
, const APInt
&Mask
, unsigned Depth
= 0,
480 const Instruction
*CxtI
= nullptr) const {
481 return llvm::MaskedValueIsZero(V
, Mask
, DL
, Depth
, &AC
, CxtI
, &DT
);
484 unsigned ComputeNumSignBits(const Value
*Op
, unsigned Depth
= 0,
485 const Instruction
*CxtI
= nullptr) const {
486 return llvm::ComputeNumSignBits(Op
, DL
, Depth
, &AC
, CxtI
, &DT
);
489 OverflowResult
computeOverflowForUnsignedMul(const Value
*LHS
,
491 const Instruction
*CxtI
) const {
492 return llvm::computeOverflowForUnsignedMul(LHS
, RHS
, DL
, &AC
, CxtI
, &DT
);
495 OverflowResult
computeOverflowForSignedMul(const Value
*LHS
,
497 const Instruction
*CxtI
) const {
498 return llvm::computeOverflowForSignedMul(LHS
, RHS
, DL
, &AC
, CxtI
, &DT
);
501 OverflowResult
computeOverflowForUnsignedAdd(const Value
*LHS
,
503 const Instruction
*CxtI
) const {
504 return llvm::computeOverflowForUnsignedAdd(LHS
, RHS
, DL
, &AC
, CxtI
, &DT
);
507 OverflowResult
computeOverflowForSignedAdd(const Value
*LHS
,
509 const Instruction
*CxtI
) const {
510 return llvm::computeOverflowForSignedAdd(LHS
, RHS
, DL
, &AC
, CxtI
, &DT
);
513 OverflowResult
computeOverflowForUnsignedSub(const Value
*LHS
,
515 const Instruction
*CxtI
) const {
516 return llvm::computeOverflowForUnsignedSub(LHS
, RHS
, DL
, &AC
, CxtI
, &DT
);
519 OverflowResult
computeOverflowForSignedSub(const Value
*LHS
, const Value
*RHS
,
520 const Instruction
*CxtI
) const {
521 return llvm::computeOverflowForSignedSub(LHS
, RHS
, DL
, &AC
, CxtI
, &DT
);
524 OverflowResult
computeOverflow(
525 Instruction::BinaryOps BinaryOp
, bool IsSigned
,
526 Value
*LHS
, Value
*RHS
, Instruction
*CxtI
) const;
528 /// Performs a few simplifications for operators which are associative
530 bool SimplifyAssociativeOrCommutative(BinaryOperator
&I
);
532 /// Tries to simplify binary operations which some other binary
533 /// operation distributes over.
535 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
536 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
537 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
538 /// value, or null if it didn't simplify.
539 Value
*SimplifyUsingDistributiveLaws(BinaryOperator
&I
);
541 /// Tries to simplify add operations using the definition of remainder.
543 /// The definition of remainder is X % C = X - (X / C ) * C. The add
544 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
546 Value
*SimplifyAddWithRemainder(BinaryOperator
&I
);
548 // Binary Op helper for select operations where the expression can be
549 // efficiently reorganized.
550 Value
*SimplifySelectsFeedingBinaryOp(BinaryOperator
&I
, Value
*LHS
,
553 /// This tries to simplify binary operations by factorizing out common terms
554 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
555 Value
*tryFactorization(BinaryOperator
&, Instruction::BinaryOps
, Value
*,
556 Value
*, Value
*, Value
*);
558 /// Match a select chain which produces one of three values based on whether
559 /// the LHS is less than, equal to, or greater than RHS respectively.
560 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
561 /// Equal and Greater values are saved in the matching process and returned to
563 bool matchThreeWayIntCompare(SelectInst
*SI
, Value
*&LHS
, Value
*&RHS
,
564 ConstantInt
*&Less
, ConstantInt
*&Equal
,
565 ConstantInt
*&Greater
);
567 /// Attempts to replace V with a simpler value based on the demanded
569 Value
*SimplifyDemandedUseBits(Value
*V
, APInt DemandedMask
, KnownBits
&Known
,
570 unsigned Depth
, Instruction
*CxtI
);
571 bool SimplifyDemandedBits(Instruction
*I
, unsigned Op
,
572 const APInt
&DemandedMask
, KnownBits
&Known
,
573 unsigned Depth
= 0) override
;
575 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
576 /// bits. It also tries to handle simplifications that can be done based on
577 /// DemandedMask, but without modifying the Instruction.
578 Value
*SimplifyMultipleUseDemandedBits(Instruction
*I
,
579 const APInt
&DemandedMask
,
581 unsigned Depth
, Instruction
*CxtI
);
583 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
584 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
585 Value
*simplifyShrShlDemandedBits(
586 Instruction
*Shr
, const APInt
&ShrOp1
, Instruction
*Shl
,
587 const APInt
&ShlOp1
, const APInt
&DemandedMask
, KnownBits
&Known
);
589 /// Tries to simplify operands to an integer instruction based on its
591 bool SimplifyDemandedInstructionBits(Instruction
&Inst
);
594 SimplifyDemandedVectorElts(Value
*V
, APInt DemandedElts
, APInt
&UndefElts
,
596 bool AllowMultipleUsers
= false) override
;
598 /// Canonicalize the position of binops relative to shufflevector.
599 Instruction
*foldVectorBinop(BinaryOperator
&Inst
);
600 Instruction
*foldVectorSelect(SelectInst
&Sel
);
602 /// Given a binary operator, cast instruction, or select which has a PHI node
603 /// as operand #0, see if we can fold the instruction into the PHI (which is
604 /// only possible if all operands to the PHI are constants).
605 Instruction
*foldOpIntoPhi(Instruction
&I
, PHINode
*PN
);
607 /// Given an instruction with a select as one operand and a constant as the
608 /// other operand, try to fold the binary operator into the select arguments.
609 /// This also works for Cast instructions, which obviously do not have a
611 Instruction
*FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
);
613 /// This is a convenience wrapper function for the above two functions.
614 Instruction
*foldBinOpIntoSelectOrPhi(BinaryOperator
&I
);
616 Instruction
*foldAddWithConstant(BinaryOperator
&Add
);
618 /// Try to rotate an operation below a PHI node, using PHI nodes for
620 Instruction
*foldPHIArgOpIntoPHI(PHINode
&PN
);
621 Instruction
*foldPHIArgBinOpIntoPHI(PHINode
&PN
);
622 Instruction
*foldPHIArgInsertValueInstructionIntoPHI(PHINode
&PN
);
623 Instruction
*foldPHIArgExtractValueInstructionIntoPHI(PHINode
&PN
);
624 Instruction
*foldPHIArgGEPIntoPHI(PHINode
&PN
);
625 Instruction
*foldPHIArgLoadIntoPHI(PHINode
&PN
);
626 Instruction
*foldPHIArgZextsIntoPHI(PHINode
&PN
);
627 Instruction
*foldPHIArgIntToPtrToPHI(PHINode
&PN
);
629 /// If an integer typed PHI has only one use which is an IntToPtr operation,
630 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
631 /// insert a new pointer typed PHI and replace the original one.
632 Instruction
*foldIntegerTypedPHI(PHINode
&PN
);
634 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
635 /// folded operation.
636 void PHIArgMergedDebugLoc(Instruction
*Inst
, PHINode
&PN
);
638 Instruction
*foldGEPICmp(GEPOperator
*GEPLHS
, Value
*RHS
,
639 ICmpInst::Predicate Cond
, Instruction
&I
);
640 Instruction
*foldAllocaCmp(ICmpInst
&ICI
, const AllocaInst
*Alloca
,
642 Instruction
*foldCmpLoadFromIndexedGlobal(GetElementPtrInst
*GEP
,
643 GlobalVariable
*GV
, CmpInst
&ICI
,
644 ConstantInt
*AndCst
= nullptr);
645 Instruction
*foldFCmpIntToFPConst(FCmpInst
&I
, Instruction
*LHSI
,
647 Instruction
*foldICmpAddOpConst(Value
*X
, const APInt
&C
,
648 ICmpInst::Predicate Pred
);
649 Instruction
*foldICmpWithCastOp(ICmpInst
&ICI
);
651 Instruction
*foldICmpUsingKnownBits(ICmpInst
&Cmp
);
652 Instruction
*foldICmpWithDominatingICmp(ICmpInst
&Cmp
);
653 Instruction
*foldICmpWithConstant(ICmpInst
&Cmp
);
654 Instruction
*foldICmpInstWithConstant(ICmpInst
&Cmp
);
655 Instruction
*foldICmpInstWithConstantNotInt(ICmpInst
&Cmp
);
656 Instruction
*foldICmpBinOp(ICmpInst
&Cmp
, const SimplifyQuery
&SQ
);
657 Instruction
*foldICmpEquality(ICmpInst
&Cmp
);
658 Instruction
*foldIRemByPowerOfTwoToBitTest(ICmpInst
&I
);
659 Instruction
*foldSignBitTest(ICmpInst
&I
);
660 Instruction
*foldICmpWithZero(ICmpInst
&Cmp
);
662 Value
*foldUnsignedMultiplicationOverflowCheck(ICmpInst
&Cmp
);
664 Instruction
*foldICmpSelectConstant(ICmpInst
&Cmp
, SelectInst
*Select
,
666 Instruction
*foldICmpTruncConstant(ICmpInst
&Cmp
, TruncInst
*Trunc
,
668 Instruction
*foldICmpAndConstant(ICmpInst
&Cmp
, BinaryOperator
*And
,
670 Instruction
*foldICmpXorConstant(ICmpInst
&Cmp
, BinaryOperator
*Xor
,
672 Instruction
*foldICmpOrConstant(ICmpInst
&Cmp
, BinaryOperator
*Or
,
674 Instruction
*foldICmpMulConstant(ICmpInst
&Cmp
, BinaryOperator
*Mul
,
676 Instruction
*foldICmpShlConstant(ICmpInst
&Cmp
, BinaryOperator
*Shl
,
678 Instruction
*foldICmpShrConstant(ICmpInst
&Cmp
, BinaryOperator
*Shr
,
680 Instruction
*foldICmpSRemConstant(ICmpInst
&Cmp
, BinaryOperator
*UDiv
,
682 Instruction
*foldICmpUDivConstant(ICmpInst
&Cmp
, BinaryOperator
*UDiv
,
684 Instruction
*foldICmpDivConstant(ICmpInst
&Cmp
, BinaryOperator
*Div
,
686 Instruction
*foldICmpSubConstant(ICmpInst
&Cmp
, BinaryOperator
*Sub
,
688 Instruction
*foldICmpAddConstant(ICmpInst
&Cmp
, BinaryOperator
*Add
,
690 Instruction
*foldICmpAndConstConst(ICmpInst
&Cmp
, BinaryOperator
*And
,
692 Instruction
*foldICmpAndShift(ICmpInst
&Cmp
, BinaryOperator
*And
,
693 const APInt
&C1
, const APInt
&C2
);
694 Instruction
*foldICmpShrConstConst(ICmpInst
&I
, Value
*ShAmt
, const APInt
&C1
,
696 Instruction
*foldICmpShlConstConst(ICmpInst
&I
, Value
*ShAmt
, const APInt
&C1
,
699 Instruction
*foldICmpBinOpEqualityWithConstant(ICmpInst
&Cmp
,
702 Instruction
*foldICmpIntrinsicWithConstant(ICmpInst
&ICI
, IntrinsicInst
*II
,
704 Instruction
*foldICmpEqIntrinsicWithConstant(ICmpInst
&ICI
, IntrinsicInst
*II
,
706 Instruction
*foldICmpBitCast(ICmpInst
&Cmp
);
708 // Helpers of visitSelectInst().
709 Instruction
*foldSelectExtConst(SelectInst
&Sel
);
710 Instruction
*foldSelectOpOp(SelectInst
&SI
, Instruction
*TI
, Instruction
*FI
);
711 Instruction
*foldSelectIntoOp(SelectInst
&SI
, Value
*, Value
*);
712 Instruction
*foldSPFofSPF(Instruction
*Inner
, SelectPatternFlavor SPF1
,
713 Value
*A
, Value
*B
, Instruction
&Outer
,
714 SelectPatternFlavor SPF2
, Value
*C
);
715 Instruction
*foldSelectInstWithICmp(SelectInst
&SI
, ICmpInst
*ICI
);
716 Instruction
*foldSelectValueEquivalence(SelectInst
&SI
, ICmpInst
&ICI
);
718 Value
*insertRangeTest(Value
*V
, const APInt
&Lo
, const APInt
&Hi
,
719 bool isSigned
, bool Inside
);
720 Instruction
*PromoteCastOfAllocation(BitCastInst
&CI
, AllocaInst
&AI
);
721 bool mergeStoreIntoSuccessor(StoreInst
&SI
);
723 /// Given an initial instruction, check to see if it is the root of a
724 /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
726 Instruction
*matchBSwapOrBitReverse(Instruction
&I
, bool MatchBSwaps
,
727 bool MatchBitReversals
);
729 Instruction
*SimplifyAnyMemTransfer(AnyMemTransferInst
*MI
);
730 Instruction
*SimplifyAnyMemSet(AnyMemSetInst
*MI
);
732 Value
*EvaluateInDifferentType(Value
*V
, Type
*Ty
, bool isSigned
);
734 /// Returns a value X such that Val = X * Scale, or null if none.
736 /// If the multiplication is known not to overflow then NoSignedWrap is set.
737 Value
*Descale(Value
*Val
, APInt Scale
, bool &NoSignedWrap
);
740 class Negator final
{
741 /// Top-to-bottom, def-to-use negated instruction tree we produced.
742 SmallVector
<Instruction
*, NegatorMaxNodesSSO
> NewInstructions
;
744 using BuilderTy
= IRBuilder
<TargetFolder
, IRBuilderCallbackInserter
>;
747 const DataLayout
&DL
;
749 const DominatorTree
&DT
;
751 const bool IsTrulyNegation
;
753 SmallDenseMap
<Value
*, Value
*> NegationsCache
;
755 Negator(LLVMContext
&C
, const DataLayout
&DL
, AssumptionCache
&AC
,
756 const DominatorTree
&DT
, bool IsTrulyNegation
);
758 #if LLVM_ENABLE_STATS
759 unsigned NumValuesVisitedInThisNegator
= 0;
763 using Result
= std::pair
<ArrayRef
<Instruction
*> /*NewInstructions*/,
764 Value
* /*NegatedRoot*/>;
766 std::array
<Value
*, 2> getSortedOperandsOfBinOp(Instruction
*I
);
768 LLVM_NODISCARD Value
*visitImpl(Value
*V
, unsigned Depth
);
770 LLVM_NODISCARD Value
*negate(Value
*V
, unsigned Depth
);
772 /// Recurse depth-first and attempt to sink the negation.
773 /// FIXME: use worklist?
774 LLVM_NODISCARD Optional
<Result
> run(Value
*Root
);
776 Negator(const Negator
&) = delete;
777 Negator(Negator
&&) = delete;
778 Negator
&operator=(const Negator
&) = delete;
779 Negator
&operator=(Negator
&&) = delete;
782 /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
783 /// otherwise returns negated value.
784 LLVM_NODISCARD
static Value
*Negate(bool LHSIsZero
, Value
*Root
,
785 InstCombinerImpl
&IC
);
788 } // end namespace llvm
792 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H