[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineLoadStoreAlloca.cpp
blob80abc775299a581ce03923e81bd81a7c26452042
1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
32 #define DEBUG_TYPE "instcombine"
34 STATISTIC(NumDeadStore, "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46 Value *V, MemTransferInst *&TheCopy,
47 SmallVectorImpl<Instruction *> &ToDelete) {
48 // We track lifetime intrinsics as we encounter them. If we decide to go
49 // ahead and replace the value with the global, this lets the caller quickly
50 // eliminate the markers.
52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53 ValuesToInspect.emplace_back(V, false);
54 while (!ValuesToInspect.empty()) {
55 auto ValuePair = ValuesToInspect.pop_back_val();
56 const bool IsOffset = ValuePair.second;
57 for (auto &U : ValuePair.first->uses()) {
58 auto *I = cast<Instruction>(U.getUser());
60 if (auto *LI = dyn_cast<LoadInst>(I)) {
61 // Ignore non-volatile loads, they are always ok.
62 if (!LI->isSimple()) return false;
63 continue;
66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67 // If uses of the bitcast are ok, we are ok.
68 ValuesToInspect.emplace_back(I, IsOffset);
69 continue;
71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72 // If the GEP has all zero indices, it doesn't offset the pointer. If it
73 // doesn't, it does.
74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75 continue;
78 if (auto *Call = dyn_cast<CallBase>(I)) {
79 // If this is the function being called then we treat it like a load and
80 // ignore it.
81 if (Call->isCallee(&U))
82 continue;
84 unsigned DataOpNo = Call->getDataOperandNo(&U);
85 bool IsArgOperand = Call->isArgOperand(&U);
87 // Inalloca arguments are clobbered by the call.
88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89 return false;
91 // If this is a readonly/readnone call site, then we know it is just a
92 // load (but one that potentially returns the value itself), so we can
93 // ignore it if we know that the value isn't captured.
94 if (Call->onlyReadsMemory() &&
95 (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96 continue;
98 // If this is being passed as a byval argument, the caller is making a
99 // copy, so it is only a read of the alloca.
100 if (IsArgOperand && Call->isByValArgument(DataOpNo))
101 continue;
104 // Lifetime intrinsics can be handled by the caller.
105 if (I->isLifetimeStartOrEnd()) {
106 assert(I->use_empty() && "Lifetime markers have no result to use!");
107 ToDelete.push_back(I);
108 continue;
111 // If this is isn't our memcpy/memmove, reject it as something we can't
112 // handle.
113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114 if (!MI)
115 return false;
117 // If the transfer is using the alloca as a source of the transfer, then
118 // ignore it since it is a load (unless the transfer is volatile).
119 if (U.getOperandNo() == 1) {
120 if (MI->isVolatile()) return false;
121 continue;
124 // If we already have seen a copy, reject the second one.
125 if (TheCopy) return false;
127 // If the pointer has been offset from the start of the alloca, we can't
128 // safely handle this.
129 if (IsOffset) return false;
131 // If the memintrinsic isn't using the alloca as the dest, reject it.
132 if (U.getOperandNo() != 0) return false;
134 // If the source of the memcpy/move is not a constant global, reject it.
135 if (!AA->pointsToConstantMemory(MI->getSource()))
136 return false;
138 // Otherwise, the transform is safe. Remember the copy instruction.
139 TheCopy = MI;
142 return true;
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global. If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150 AllocaInst *AI,
151 SmallVectorImpl<Instruction *> &ToDelete) {
152 MemTransferInst *TheCopy = nullptr;
153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154 return TheCopy;
155 return nullptr;
158 /// Returns true if V is dereferenceable for size of alloca.
159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160 const DataLayout &DL) {
161 if (AI->isArrayAllocation())
162 return false;
163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164 if (!AllocaSize)
165 return false;
166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
167 APInt(64, AllocaSize), DL);
170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171 AllocaInst &AI) {
172 // Check for array size of 1 (scalar allocation).
173 if (!AI.isArrayAllocation()) {
174 // i32 1 is the canonical array size for scalar allocations.
175 if (AI.getArraySize()->getType()->isIntegerTy(32))
176 return nullptr;
178 // Canonicalize it.
179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184 if (C->getValue().getActiveBits() <= 64) {
185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187 New->setAlignment(AI.getAlign());
189 // Scan to the end of the allocation instructions, to skip over a block of
190 // allocas if possible...also skip interleaved debug info
192 BasicBlock::iterator It(New);
193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194 ++It;
196 // Now that I is pointing to the first non-allocation-inst in the block,
197 // insert our getelementptr instruction...
199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200 Value *NullIdx = Constant::getNullValue(IdxTy);
201 Value *Idx[2] = {NullIdx, NullIdx};
202 Instruction *NewI = GetElementPtrInst::CreateInBounds(
203 NewTy, New, Idx, New->getName() + ".sub");
204 IC.InsertNewInstBefore(NewI, *It);
206 // Gracefully handle allocas in other address spaces.
207 if (AI.getType()->getPointerAddressSpace() !=
208 NewI->getType()->getPointerAddressSpace()) {
209 NewI =
210 CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType());
211 IC.InsertNewInstBefore(NewI, *It);
214 // Now make everything use the getelementptr instead of the original
215 // allocation.
216 return IC.replaceInstUsesWith(AI, NewI);
220 if (isa<UndefValue>(AI.getArraySize()))
221 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
223 // Ensure that the alloca array size argument has type intptr_t, so that
224 // any casting is exposed early.
225 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
226 if (AI.getArraySize()->getType() != IntPtrTy) {
227 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
228 return IC.replaceOperand(AI, 0, V);
231 return nullptr;
234 namespace {
235 // If I and V are pointers in different address space, it is not allowed to
236 // use replaceAllUsesWith since I and V have different types. A
237 // non-target-specific transformation should not use addrspacecast on V since
238 // the two address space may be disjoint depending on target.
240 // This class chases down uses of the old pointer until reaching the load
241 // instructions, then replaces the old pointer in the load instructions with
242 // the new pointer. If during the chasing it sees bitcast or GEP, it will
243 // create new bitcast or GEP with the new pointer and use them in the load
244 // instruction.
245 class PointerReplacer {
246 public:
247 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
249 bool collectUsers(Instruction &I);
250 void replacePointer(Instruction &I, Value *V);
252 private:
253 void replace(Instruction *I);
254 Value *getReplacement(Value *I);
256 SmallSetVector<Instruction *, 4> Worklist;
257 MapVector<Value *, Value *> WorkMap;
258 InstCombinerImpl &IC;
260 } // end anonymous namespace
262 bool PointerReplacer::collectUsers(Instruction &I) {
263 for (auto U : I.users()) {
264 auto *Inst = cast<Instruction>(&*U);
265 if (auto *Load = dyn_cast<LoadInst>(Inst)) {
266 if (Load->isVolatile())
267 return false;
268 Worklist.insert(Load);
269 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
270 Worklist.insert(Inst);
271 if (!collectUsers(*Inst))
272 return false;
273 } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
274 if (MI->isVolatile())
275 return false;
276 Worklist.insert(Inst);
277 } else if (Inst->isLifetimeStartOrEnd()) {
278 continue;
279 } else {
280 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
281 return false;
285 return true;
288 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
290 void PointerReplacer::replace(Instruction *I) {
291 if (getReplacement(I))
292 return;
294 if (auto *LT = dyn_cast<LoadInst>(I)) {
295 auto *V = getReplacement(LT->getPointerOperand());
296 assert(V && "Operand not replaced");
297 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
298 LT->getAlign(), LT->getOrdering(),
299 LT->getSyncScopeID());
300 NewI->takeName(LT);
301 copyMetadataForLoad(*NewI, *LT);
303 IC.InsertNewInstWith(NewI, *LT);
304 IC.replaceInstUsesWith(*LT, NewI);
305 WorkMap[LT] = NewI;
306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307 auto *V = getReplacement(GEP->getPointerOperand());
308 assert(V && "Operand not replaced");
309 SmallVector<Value *, 8> Indices;
310 Indices.append(GEP->idx_begin(), GEP->idx_end());
311 auto *NewI = GetElementPtrInst::Create(
312 V->getType()->getPointerElementType(), V, Indices);
313 IC.InsertNewInstWith(NewI, *GEP);
314 NewI->takeName(GEP);
315 WorkMap[GEP] = NewI;
316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317 auto *V = getReplacement(BC->getOperand(0));
318 assert(V && "Operand not replaced");
319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320 V->getType()->getPointerAddressSpace());
321 auto *NewI = new BitCastInst(V, NewT);
322 IC.InsertNewInstWith(NewI, *BC);
323 NewI->takeName(BC);
324 WorkMap[BC] = NewI;
325 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
326 auto *SrcV = getReplacement(MemCpy->getRawSource());
327 // The pointer may appear in the destination of a copy, but we don't want to
328 // replace it.
329 if (!SrcV) {
330 assert(getReplacement(MemCpy->getRawDest()) &&
331 "destination not in replace list");
332 return;
335 IC.Builder.SetInsertPoint(MemCpy);
336 auto *NewI = IC.Builder.CreateMemTransferInst(
337 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
338 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
339 MemCpy->isVolatile());
340 AAMDNodes AAMD;
341 MemCpy->getAAMetadata(AAMD);
342 if (AAMD)
343 NewI->setAAMetadata(AAMD);
345 IC.eraseInstFromFunction(*MemCpy);
346 WorkMap[MemCpy] = NewI;
347 } else {
348 llvm_unreachable("should never reach here");
352 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
353 #ifndef NDEBUG
354 auto *PT = cast<PointerType>(I.getType());
355 auto *NT = cast<PointerType>(V->getType());
356 assert(PT != NT && PT->getElementType() == NT->getElementType() &&
357 "Invalid usage");
358 #endif
359 WorkMap[&I] = V;
361 for (Instruction *Workitem : Worklist)
362 replace(Workitem);
365 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
366 if (auto *I = simplifyAllocaArraySize(*this, AI))
367 return I;
369 if (AI.getAllocatedType()->isSized()) {
370 // Move all alloca's of zero byte objects to the entry block and merge them
371 // together. Note that we only do this for alloca's, because malloc should
372 // allocate and return a unique pointer, even for a zero byte allocation.
373 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
374 // For a zero sized alloca there is no point in doing an array allocation.
375 // This is helpful if the array size is a complicated expression not used
376 // elsewhere.
377 if (AI.isArrayAllocation())
378 return replaceOperand(AI, 0,
379 ConstantInt::get(AI.getArraySize()->getType(), 1));
381 // Get the first instruction in the entry block.
382 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
383 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
384 if (FirstInst != &AI) {
385 // If the entry block doesn't start with a zero-size alloca then move
386 // this one to the start of the entry block. There is no problem with
387 // dominance as the array size was forced to a constant earlier already.
388 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
389 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
390 DL.getTypeAllocSize(EntryAI->getAllocatedType())
391 .getKnownMinSize() != 0) {
392 AI.moveBefore(FirstInst);
393 return &AI;
396 // Replace this zero-sized alloca with the one at the start of the entry
397 // block after ensuring that the address will be aligned enough for both
398 // types.
399 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
400 EntryAI->setAlignment(MaxAlign);
401 if (AI.getType() != EntryAI->getType())
402 return new BitCastInst(EntryAI, AI.getType());
403 return replaceInstUsesWith(AI, EntryAI);
408 // Check to see if this allocation is only modified by a memcpy/memmove from
409 // a constant whose alignment is equal to or exceeds that of the allocation.
410 // If this is the case, we can change all users to use the constant global
411 // instead. This is commonly produced by the CFE by constructs like "void
412 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
413 // read.
414 SmallVector<Instruction *, 4> ToDelete;
415 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
416 Value *TheSrc = Copy->getSource();
417 Align AllocaAlign = AI.getAlign();
418 Align SourceAlign = getOrEnforceKnownAlignment(
419 TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
420 if (AllocaAlign <= SourceAlign &&
421 isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
422 !isa<Instruction>(TheSrc)) {
423 // FIXME: Can we sink instructions without violating dominance when TheSrc
424 // is an instruction instead of a constant or argument?
425 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
426 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n');
427 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
428 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
429 if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
430 for (Instruction *Delete : ToDelete)
431 eraseInstFromFunction(*Delete);
433 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
434 Instruction *NewI = replaceInstUsesWith(AI, Cast);
435 eraseInstFromFunction(*Copy);
436 ++NumGlobalCopies;
437 return NewI;
440 PointerReplacer PtrReplacer(*this);
441 if (PtrReplacer.collectUsers(AI)) {
442 for (Instruction *Delete : ToDelete)
443 eraseInstFromFunction(*Delete);
445 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
446 PtrReplacer.replacePointer(AI, Cast);
447 ++NumGlobalCopies;
452 // At last, use the generic allocation site handler to aggressively remove
453 // unused allocas.
454 return visitAllocSite(AI);
457 // Are we allowed to form a atomic load or store of this type?
458 static bool isSupportedAtomicType(Type *Ty) {
459 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
462 /// Helper to combine a load to a new type.
464 /// This just does the work of combining a load to a new type. It handles
465 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
466 /// loaded *value* type. This will convert it to a pointer, cast the operand to
467 /// that pointer type, load it, etc.
469 /// Note that this will create all of the instructions with whatever insert
470 /// point the \c InstCombinerImpl currently is using.
471 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
472 const Twine &Suffix) {
473 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
474 "can't fold an atomic load to requested type");
476 Value *Ptr = LI.getPointerOperand();
477 unsigned AS = LI.getPointerAddressSpace();
478 Type *NewPtrTy = NewTy->getPointerTo(AS);
479 Value *NewPtr = nullptr;
480 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
481 NewPtr->getType() == NewPtrTy))
482 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
484 LoadInst *NewLoad = Builder.CreateAlignedLoad(
485 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
486 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
487 copyMetadataForLoad(*NewLoad, LI);
488 return NewLoad;
491 /// Combine a store to a new type.
493 /// Returns the newly created store instruction.
494 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
495 Value *V) {
496 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
497 "can't fold an atomic store of requested type");
499 Value *Ptr = SI.getPointerOperand();
500 unsigned AS = SI.getPointerAddressSpace();
501 SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
502 SI.getAllMetadata(MD);
504 StoreInst *NewStore = IC.Builder.CreateAlignedStore(
505 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
506 SI.getAlign(), SI.isVolatile());
507 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
508 for (const auto &MDPair : MD) {
509 unsigned ID = MDPair.first;
510 MDNode *N = MDPair.second;
511 // Note, essentially every kind of metadata should be preserved here! This
512 // routine is supposed to clone a store instruction changing *only its
513 // type*. The only metadata it makes sense to drop is metadata which is
514 // invalidated when the pointer type changes. This should essentially
515 // never be the case in LLVM, but we explicitly switch over only known
516 // metadata to be conservatively correct. If you are adding metadata to
517 // LLVM which pertains to stores, you almost certainly want to add it
518 // here.
519 switch (ID) {
520 case LLVMContext::MD_dbg:
521 case LLVMContext::MD_tbaa:
522 case LLVMContext::MD_prof:
523 case LLVMContext::MD_fpmath:
524 case LLVMContext::MD_tbaa_struct:
525 case LLVMContext::MD_alias_scope:
526 case LLVMContext::MD_noalias:
527 case LLVMContext::MD_nontemporal:
528 case LLVMContext::MD_mem_parallel_loop_access:
529 case LLVMContext::MD_access_group:
530 // All of these directly apply.
531 NewStore->setMetadata(ID, N);
532 break;
533 case LLVMContext::MD_invariant_load:
534 case LLVMContext::MD_nonnull:
535 case LLVMContext::MD_noundef:
536 case LLVMContext::MD_range:
537 case LLVMContext::MD_align:
538 case LLVMContext::MD_dereferenceable:
539 case LLVMContext::MD_dereferenceable_or_null:
540 // These don't apply for stores.
541 break;
545 return NewStore;
548 /// Returns true if instruction represent minmax pattern like:
549 /// select ((cmp load V1, load V2), V1, V2).
550 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
551 assert(V->getType()->isPointerTy() && "Expected pointer type.");
552 // Ignore possible ty* to ixx* bitcast.
553 V = InstCombiner::peekThroughBitcast(V);
554 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
555 // pattern.
556 CmpInst::Predicate Pred;
557 Instruction *L1;
558 Instruction *L2;
559 Value *LHS;
560 Value *RHS;
561 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
562 m_Value(LHS), m_Value(RHS))))
563 return false;
564 LoadTy = L1->getType();
565 return (match(L1, m_Load(m_Specific(LHS))) &&
566 match(L2, m_Load(m_Specific(RHS)))) ||
567 (match(L1, m_Load(m_Specific(RHS))) &&
568 match(L2, m_Load(m_Specific(LHS))));
571 /// Combine loads to match the type of their uses' value after looking
572 /// through intervening bitcasts.
574 /// The core idea here is that if the result of a load is used in an operation,
575 /// we should load the type most conducive to that operation. For example, when
576 /// loading an integer and converting that immediately to a pointer, we should
577 /// instead directly load a pointer.
579 /// However, this routine must never change the width of a load or the number of
580 /// loads as that would introduce a semantic change. This combine is expected to
581 /// be a semantic no-op which just allows loads to more closely model the types
582 /// of their consuming operations.
584 /// Currently, we also refuse to change the precise type used for an atomic load
585 /// or a volatile load. This is debatable, and might be reasonable to change
586 /// later. However, it is risky in case some backend or other part of LLVM is
587 /// relying on the exact type loaded to select appropriate atomic operations.
588 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
589 LoadInst &LI) {
590 // FIXME: We could probably with some care handle both volatile and ordered
591 // atomic loads here but it isn't clear that this is important.
592 if (!LI.isUnordered())
593 return nullptr;
595 if (LI.use_empty())
596 return nullptr;
598 // swifterror values can't be bitcasted.
599 if (LI.getPointerOperand()->isSwiftError())
600 return nullptr;
602 const DataLayout &DL = IC.getDataLayout();
604 // Fold away bit casts of the loaded value by loading the desired type.
605 // Note that we should not do this for pointer<->integer casts,
606 // because that would result in type punning.
607 if (LI.hasOneUse()) {
608 // Don't transform when the type is x86_amx, it makes the pass that lower
609 // x86_amx type happy.
610 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
611 assert(!LI.getType()->isX86_AMXTy() &&
612 "load from x86_amx* should not happen!");
613 if (BC->getType()->isX86_AMXTy())
614 return nullptr;
617 if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
618 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
619 CI->getDestTy()->isPtrOrPtrVectorTy())
620 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
621 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
622 CI->replaceAllUsesWith(NewLoad);
623 IC.eraseInstFromFunction(*CI);
624 return &LI;
628 // FIXME: We should also canonicalize loads of vectors when their elements are
629 // cast to other types.
630 return nullptr;
633 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
634 // FIXME: We could probably with some care handle both volatile and atomic
635 // stores here but it isn't clear that this is important.
636 if (!LI.isSimple())
637 return nullptr;
639 Type *T = LI.getType();
640 if (!T->isAggregateType())
641 return nullptr;
643 StringRef Name = LI.getName();
644 assert(LI.getAlignment() && "Alignment must be set at this point");
646 if (auto *ST = dyn_cast<StructType>(T)) {
647 // If the struct only have one element, we unpack.
648 auto NumElements = ST->getNumElements();
649 if (NumElements == 1) {
650 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
651 ".unpack");
652 AAMDNodes AAMD;
653 LI.getAAMetadata(AAMD);
654 NewLoad->setAAMetadata(AAMD);
655 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
656 UndefValue::get(T), NewLoad, 0, Name));
659 // We don't want to break loads with padding here as we'd loose
660 // the knowledge that padding exists for the rest of the pipeline.
661 const DataLayout &DL = IC.getDataLayout();
662 auto *SL = DL.getStructLayout(ST);
663 if (SL->hasPadding())
664 return nullptr;
666 const auto Align = LI.getAlign();
667 auto *Addr = LI.getPointerOperand();
668 auto *IdxType = Type::getInt32Ty(T->getContext());
669 auto *Zero = ConstantInt::get(IdxType, 0);
671 Value *V = UndefValue::get(T);
672 for (unsigned i = 0; i < NumElements; i++) {
673 Value *Indices[2] = {
674 Zero,
675 ConstantInt::get(IdxType, i),
677 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
678 Name + ".elt");
679 auto *L = IC.Builder.CreateAlignedLoad(
680 ST->getElementType(i), Ptr,
681 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
682 // Propagate AA metadata. It'll still be valid on the narrowed load.
683 AAMDNodes AAMD;
684 LI.getAAMetadata(AAMD);
685 L->setAAMetadata(AAMD);
686 V = IC.Builder.CreateInsertValue(V, L, i);
689 V->setName(Name);
690 return IC.replaceInstUsesWith(LI, V);
693 if (auto *AT = dyn_cast<ArrayType>(T)) {
694 auto *ET = AT->getElementType();
695 auto NumElements = AT->getNumElements();
696 if (NumElements == 1) {
697 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
698 AAMDNodes AAMD;
699 LI.getAAMetadata(AAMD);
700 NewLoad->setAAMetadata(AAMD);
701 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
702 UndefValue::get(T), NewLoad, 0, Name));
705 // Bail out if the array is too large. Ideally we would like to optimize
706 // arrays of arbitrary size but this has a terrible impact on compile time.
707 // The threshold here is chosen arbitrarily, maybe needs a little bit of
708 // tuning.
709 if (NumElements > IC.MaxArraySizeForCombine)
710 return nullptr;
712 const DataLayout &DL = IC.getDataLayout();
713 auto EltSize = DL.getTypeAllocSize(ET);
714 const auto Align = LI.getAlign();
716 auto *Addr = LI.getPointerOperand();
717 auto *IdxType = Type::getInt64Ty(T->getContext());
718 auto *Zero = ConstantInt::get(IdxType, 0);
720 Value *V = UndefValue::get(T);
721 uint64_t Offset = 0;
722 for (uint64_t i = 0; i < NumElements; i++) {
723 Value *Indices[2] = {
724 Zero,
725 ConstantInt::get(IdxType, i),
727 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
728 Name + ".elt");
729 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
730 commonAlignment(Align, Offset),
731 Name + ".unpack");
732 AAMDNodes AAMD;
733 LI.getAAMetadata(AAMD);
734 L->setAAMetadata(AAMD);
735 V = IC.Builder.CreateInsertValue(V, L, i);
736 Offset += EltSize;
739 V->setName(Name);
740 return IC.replaceInstUsesWith(LI, V);
743 return nullptr;
746 // If we can determine that all possible objects pointed to by the provided
747 // pointer value are, not only dereferenceable, but also definitively less than
748 // or equal to the provided maximum size, then return true. Otherwise, return
749 // false (constant global values and allocas fall into this category).
751 // FIXME: This should probably live in ValueTracking (or similar).
752 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
753 const DataLayout &DL) {
754 SmallPtrSet<Value *, 4> Visited;
755 SmallVector<Value *, 4> Worklist(1, V);
757 do {
758 Value *P = Worklist.pop_back_val();
759 P = P->stripPointerCasts();
761 if (!Visited.insert(P).second)
762 continue;
764 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
765 Worklist.push_back(SI->getTrueValue());
766 Worklist.push_back(SI->getFalseValue());
767 continue;
770 if (PHINode *PN = dyn_cast<PHINode>(P)) {
771 append_range(Worklist, PN->incoming_values());
772 continue;
775 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
776 if (GA->isInterposable())
777 return false;
778 Worklist.push_back(GA->getAliasee());
779 continue;
782 // If we know how big this object is, and it is less than MaxSize, continue
783 // searching. Otherwise, return false.
784 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
785 if (!AI->getAllocatedType()->isSized())
786 return false;
788 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
789 if (!CS)
790 return false;
792 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
793 // Make sure that, even if the multiplication below would wrap as an
794 // uint64_t, we still do the right thing.
795 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
796 return false;
797 continue;
800 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
801 if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
802 return false;
804 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
805 if (InitSize > MaxSize)
806 return false;
807 continue;
810 return false;
811 } while (!Worklist.empty());
813 return true;
816 // If we're indexing into an object of a known size, and the outer index is
817 // not a constant, but having any value but zero would lead to undefined
818 // behavior, replace it with zero.
820 // For example, if we have:
821 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
822 // ...
823 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
824 // ... = load i32* %arrayidx, align 4
825 // Then we know that we can replace %x in the GEP with i64 0.
827 // FIXME: We could fold any GEP index to zero that would cause UB if it were
828 // not zero. Currently, we only handle the first such index. Also, we could
829 // also search through non-zero constant indices if we kept track of the
830 // offsets those indices implied.
831 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
832 GetElementPtrInst *GEPI, Instruction *MemI,
833 unsigned &Idx) {
834 if (GEPI->getNumOperands() < 2)
835 return false;
837 // Find the first non-zero index of a GEP. If all indices are zero, return
838 // one past the last index.
839 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
840 unsigned I = 1;
841 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
842 Value *V = GEPI->getOperand(I);
843 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
844 if (CI->isZero())
845 continue;
847 break;
850 return I;
853 // Skip through initial 'zero' indices, and find the corresponding pointer
854 // type. See if the next index is not a constant.
855 Idx = FirstNZIdx(GEPI);
856 if (Idx == GEPI->getNumOperands())
857 return false;
858 if (isa<Constant>(GEPI->getOperand(Idx)))
859 return false;
861 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
862 Type *SourceElementType = GEPI->getSourceElementType();
863 // Size information about scalable vectors is not available, so we cannot
864 // deduce whether indexing at n is undefined behaviour or not. Bail out.
865 if (isa<ScalableVectorType>(SourceElementType))
866 return false;
868 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
869 if (!AllocTy || !AllocTy->isSized())
870 return false;
871 const DataLayout &DL = IC.getDataLayout();
872 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
874 // If there are more indices after the one we might replace with a zero, make
875 // sure they're all non-negative. If any of them are negative, the overall
876 // address being computed might be before the base address determined by the
877 // first non-zero index.
878 auto IsAllNonNegative = [&]() {
879 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
880 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
881 if (Known.isNonNegative())
882 continue;
883 return false;
886 return true;
889 // FIXME: If the GEP is not inbounds, and there are extra indices after the
890 // one we'll replace, those could cause the address computation to wrap
891 // (rendering the IsAllNonNegative() check below insufficient). We can do
892 // better, ignoring zero indices (and other indices we can prove small
893 // enough not to wrap).
894 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
895 return false;
897 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
898 // also known to be dereferenceable.
899 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
900 IsAllNonNegative();
903 // If we're indexing into an object with a variable index for the memory
904 // access, but the object has only one element, we can assume that the index
905 // will always be zero. If we replace the GEP, return it.
906 template <typename T>
907 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
908 T &MemI) {
909 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
910 unsigned Idx;
911 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
912 Instruction *NewGEPI = GEPI->clone();
913 NewGEPI->setOperand(Idx,
914 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
915 NewGEPI->insertBefore(GEPI);
916 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
917 return NewGEPI;
921 return nullptr;
924 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
925 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
926 return false;
928 auto *Ptr = SI.getPointerOperand();
929 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
930 Ptr = GEPI->getOperand(0);
931 return (isa<ConstantPointerNull>(Ptr) &&
932 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
935 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
936 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
937 const Value *GEPI0 = GEPI->getOperand(0);
938 if (isa<ConstantPointerNull>(GEPI0) &&
939 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
940 return true;
942 if (isa<UndefValue>(Op) ||
943 (isa<ConstantPointerNull>(Op) &&
944 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
945 return true;
946 return false;
949 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
950 Value *Op = LI.getOperand(0);
952 // Try to canonicalize the loaded type.
953 if (Instruction *Res = combineLoadToOperationType(*this, LI))
954 return Res;
956 // Attempt to improve the alignment.
957 Align KnownAlign = getOrEnforceKnownAlignment(
958 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
959 if (KnownAlign > LI.getAlign())
960 LI.setAlignment(KnownAlign);
962 // Replace GEP indices if possible.
963 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
964 Worklist.push(NewGEPI);
965 return &LI;
968 if (Instruction *Res = unpackLoadToAggregate(*this, LI))
969 return Res;
971 // Do really simple store-to-load forwarding and load CSE, to catch cases
972 // where there are several consecutive memory accesses to the same location,
973 // separated by a few arithmetic operations.
974 bool IsLoadCSE = false;
975 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
976 if (IsLoadCSE)
977 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
979 return replaceInstUsesWith(
980 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
981 LI.getName() + ".cast"));
984 // None of the following transforms are legal for volatile/ordered atomic
985 // loads. Most of them do apply for unordered atomics.
986 if (!LI.isUnordered()) return nullptr;
988 // load(gep null, ...) -> unreachable
989 // load null/undef -> unreachable
990 // TODO: Consider a target hook for valid address spaces for this xforms.
991 if (canSimplifyNullLoadOrGEP(LI, Op)) {
992 // Insert a new store to null instruction before the load to indicate
993 // that this code is not reachable. We do this instead of inserting
994 // an unreachable instruction directly because we cannot modify the
995 // CFG.
996 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
997 Constant::getNullValue(Op->getType()), &LI);
998 SI->setDebugLoc(LI.getDebugLoc());
999 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
1002 if (Op->hasOneUse()) {
1003 // Change select and PHI nodes to select values instead of addresses: this
1004 // helps alias analysis out a lot, allows many others simplifications, and
1005 // exposes redundancy in the code.
1007 // Note that we cannot do the transformation unless we know that the
1008 // introduced loads cannot trap! Something like this is valid as long as
1009 // the condition is always false: load (select bool %C, int* null, int* %G),
1010 // but it would not be valid if we transformed it to load from null
1011 // unconditionally.
1013 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1014 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1015 Align Alignment = LI.getAlign();
1016 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1017 Alignment, DL, SI) &&
1018 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1019 Alignment, DL, SI)) {
1020 LoadInst *V1 =
1021 Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1022 SI->getOperand(1)->getName() + ".val");
1023 LoadInst *V2 =
1024 Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1025 SI->getOperand(2)->getName() + ".val");
1026 assert(LI.isUnordered() && "implied by above");
1027 V1->setAlignment(Alignment);
1028 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1029 V2->setAlignment(Alignment);
1030 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1031 return SelectInst::Create(SI->getCondition(), V1, V2);
1034 // load (select (cond, null, P)) -> load P
1035 if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1036 !NullPointerIsDefined(SI->getFunction(),
1037 LI.getPointerAddressSpace()))
1038 return replaceOperand(LI, 0, SI->getOperand(2));
1040 // load (select (cond, P, null)) -> load P
1041 if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1042 !NullPointerIsDefined(SI->getFunction(),
1043 LI.getPointerAddressSpace()))
1044 return replaceOperand(LI, 0, SI->getOperand(1));
1047 return nullptr;
1050 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1052 /// \returns underlying value that was "cast", or nullptr otherwise.
1054 /// For example, if we have:
1056 /// %E0 = extractelement <2 x double> %U, i32 0
1057 /// %V0 = insertvalue [2 x double] undef, double %E0, 0
1058 /// %E1 = extractelement <2 x double> %U, i32 1
1059 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1061 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1062 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1063 /// Note that %U may contain non-undef values where %V1 has undef.
1064 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1065 Value *U = nullptr;
1066 while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1067 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1068 if (!E)
1069 return nullptr;
1070 auto *W = E->getVectorOperand();
1071 if (!U)
1072 U = W;
1073 else if (U != W)
1074 return nullptr;
1075 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1076 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1077 return nullptr;
1078 V = IV->getAggregateOperand();
1080 if (!match(V, m_Undef()) || !U)
1081 return nullptr;
1083 auto *UT = cast<VectorType>(U->getType());
1084 auto *VT = V->getType();
1085 // Check that types UT and VT are bitwise isomorphic.
1086 const auto &DL = IC.getDataLayout();
1087 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1088 return nullptr;
1090 if (auto *AT = dyn_cast<ArrayType>(VT)) {
1091 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1092 return nullptr;
1093 } else {
1094 auto *ST = cast<StructType>(VT);
1095 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1096 return nullptr;
1097 for (const auto *EltT : ST->elements()) {
1098 if (EltT != UT->getElementType())
1099 return nullptr;
1102 return U;
1105 /// Combine stores to match the type of value being stored.
1107 /// The core idea here is that the memory does not have any intrinsic type and
1108 /// where we can we should match the type of a store to the type of value being
1109 /// stored.
1111 /// However, this routine must never change the width of a store or the number of
1112 /// stores as that would introduce a semantic change. This combine is expected to
1113 /// be a semantic no-op which just allows stores to more closely model the types
1114 /// of their incoming values.
1116 /// Currently, we also refuse to change the precise type used for an atomic or
1117 /// volatile store. This is debatable, and might be reasonable to change later.
1118 /// However, it is risky in case some backend or other part of LLVM is relying
1119 /// on the exact type stored to select appropriate atomic operations.
1121 /// \returns true if the store was successfully combined away. This indicates
1122 /// the caller must erase the store instruction. We have to let the caller erase
1123 /// the store instruction as otherwise there is no way to signal whether it was
1124 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1125 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1126 // FIXME: We could probably with some care handle both volatile and ordered
1127 // atomic stores here but it isn't clear that this is important.
1128 if (!SI.isUnordered())
1129 return false;
1131 // swifterror values can't be bitcasted.
1132 if (SI.getPointerOperand()->isSwiftError())
1133 return false;
1135 Value *V = SI.getValueOperand();
1137 // Fold away bit casts of the stored value by storing the original type.
1138 if (auto *BC = dyn_cast<BitCastInst>(V)) {
1139 assert(!BC->getType()->isX86_AMXTy() &&
1140 "store to x86_amx* should not happen!");
1141 V = BC->getOperand(0);
1142 // Don't transform when the type is x86_amx, it makes the pass that lower
1143 // x86_amx type happy.
1144 if (V->getType()->isX86_AMXTy())
1145 return false;
1146 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1147 combineStoreToNewValue(IC, SI, V);
1148 return true;
1152 if (Value *U = likeBitCastFromVector(IC, V))
1153 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1154 combineStoreToNewValue(IC, SI, U);
1155 return true;
1158 // FIXME: We should also canonicalize stores of vectors when their elements
1159 // are cast to other types.
1160 return false;
1163 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1164 // FIXME: We could probably with some care handle both volatile and atomic
1165 // stores here but it isn't clear that this is important.
1166 if (!SI.isSimple())
1167 return false;
1169 Value *V = SI.getValueOperand();
1170 Type *T = V->getType();
1172 if (!T->isAggregateType())
1173 return false;
1175 if (auto *ST = dyn_cast<StructType>(T)) {
1176 // If the struct only have one element, we unpack.
1177 unsigned Count = ST->getNumElements();
1178 if (Count == 1) {
1179 V = IC.Builder.CreateExtractValue(V, 0);
1180 combineStoreToNewValue(IC, SI, V);
1181 return true;
1184 // We don't want to break loads with padding here as we'd loose
1185 // the knowledge that padding exists for the rest of the pipeline.
1186 const DataLayout &DL = IC.getDataLayout();
1187 auto *SL = DL.getStructLayout(ST);
1188 if (SL->hasPadding())
1189 return false;
1191 const auto Align = SI.getAlign();
1193 SmallString<16> EltName = V->getName();
1194 EltName += ".elt";
1195 auto *Addr = SI.getPointerOperand();
1196 SmallString<16> AddrName = Addr->getName();
1197 AddrName += ".repack";
1199 auto *IdxType = Type::getInt32Ty(ST->getContext());
1200 auto *Zero = ConstantInt::get(IdxType, 0);
1201 for (unsigned i = 0; i < Count; i++) {
1202 Value *Indices[2] = {
1203 Zero,
1204 ConstantInt::get(IdxType, i),
1206 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1207 AddrName);
1208 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1209 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1210 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1211 AAMDNodes AAMD;
1212 SI.getAAMetadata(AAMD);
1213 NS->setAAMetadata(AAMD);
1216 return true;
1219 if (auto *AT = dyn_cast<ArrayType>(T)) {
1220 // If the array only have one element, we unpack.
1221 auto NumElements = AT->getNumElements();
1222 if (NumElements == 1) {
1223 V = IC.Builder.CreateExtractValue(V, 0);
1224 combineStoreToNewValue(IC, SI, V);
1225 return true;
1228 // Bail out if the array is too large. Ideally we would like to optimize
1229 // arrays of arbitrary size but this has a terrible impact on compile time.
1230 // The threshold here is chosen arbitrarily, maybe needs a little bit of
1231 // tuning.
1232 if (NumElements > IC.MaxArraySizeForCombine)
1233 return false;
1235 const DataLayout &DL = IC.getDataLayout();
1236 auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1237 const auto Align = SI.getAlign();
1239 SmallString<16> EltName = V->getName();
1240 EltName += ".elt";
1241 auto *Addr = SI.getPointerOperand();
1242 SmallString<16> AddrName = Addr->getName();
1243 AddrName += ".repack";
1245 auto *IdxType = Type::getInt64Ty(T->getContext());
1246 auto *Zero = ConstantInt::get(IdxType, 0);
1248 uint64_t Offset = 0;
1249 for (uint64_t i = 0; i < NumElements; i++) {
1250 Value *Indices[2] = {
1251 Zero,
1252 ConstantInt::get(IdxType, i),
1254 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1255 AddrName);
1256 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1257 auto EltAlign = commonAlignment(Align, Offset);
1258 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1259 AAMDNodes AAMD;
1260 SI.getAAMetadata(AAMD);
1261 NS->setAAMetadata(AAMD);
1262 Offset += EltSize;
1265 return true;
1268 return false;
1271 /// equivalentAddressValues - Test if A and B will obviously have the same
1272 /// value. This includes recognizing that %t0 and %t1 will have the same
1273 /// value in code like this:
1274 /// %t0 = getelementptr \@a, 0, 3
1275 /// store i32 0, i32* %t0
1276 /// %t1 = getelementptr \@a, 0, 3
1277 /// %t2 = load i32* %t1
1279 static bool equivalentAddressValues(Value *A, Value *B) {
1280 // Test if the values are trivially equivalent.
1281 if (A == B) return true;
1283 // Test if the values come form identical arithmetic instructions.
1284 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1285 // its only used to compare two uses within the same basic block, which
1286 // means that they'll always either have the same value or one of them
1287 // will have an undefined value.
1288 if (isa<BinaryOperator>(A) ||
1289 isa<CastInst>(A) ||
1290 isa<PHINode>(A) ||
1291 isa<GetElementPtrInst>(A))
1292 if (Instruction *BI = dyn_cast<Instruction>(B))
1293 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1294 return true;
1296 // Otherwise they may not be equivalent.
1297 return false;
1300 /// Converts store (bitcast (load (bitcast (select ...)))) to
1301 /// store (load (select ...)), where select is minmax:
1302 /// select ((cmp load V1, load V2), V1, V2).
1303 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1304 StoreInst &SI) {
1305 // bitcast?
1306 if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1307 return false;
1308 // load? integer?
1309 Value *LoadAddr;
1310 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1311 return false;
1312 auto *LI = cast<LoadInst>(SI.getValueOperand());
1313 if (!LI->getType()->isIntegerTy())
1314 return false;
1315 Type *CmpLoadTy;
1316 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1317 return false;
1319 // Make sure the type would actually change.
1320 // This condition can be hit with chains of bitcasts.
1321 if (LI->getType() == CmpLoadTy)
1322 return false;
1324 // Make sure we're not changing the size of the load/store.
1325 const auto &DL = IC.getDataLayout();
1326 if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1327 DL.getTypeStoreSizeInBits(CmpLoadTy))
1328 return false;
1330 if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1331 auto *SI = dyn_cast<StoreInst>(U);
1332 return SI && SI->getPointerOperand() != LI &&
1333 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1334 LoadAddr &&
1335 !SI->getPointerOperand()->isSwiftError();
1337 return false;
1339 IC.Builder.SetInsertPoint(LI);
1340 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1341 // Replace all the stores with stores of the newly loaded value.
1342 for (auto *UI : LI->users()) {
1343 auto *USI = cast<StoreInst>(UI);
1344 IC.Builder.SetInsertPoint(USI);
1345 combineStoreToNewValue(IC, *USI, NewLI);
1347 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
1348 IC.eraseInstFromFunction(*LI);
1349 return true;
1352 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1353 Value *Val = SI.getOperand(0);
1354 Value *Ptr = SI.getOperand(1);
1356 // Try to canonicalize the stored type.
1357 if (combineStoreToValueType(*this, SI))
1358 return eraseInstFromFunction(SI);
1360 // Attempt to improve the alignment.
1361 const Align KnownAlign = getOrEnforceKnownAlignment(
1362 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1363 if (KnownAlign > SI.getAlign())
1364 SI.setAlignment(KnownAlign);
1366 // Try to canonicalize the stored type.
1367 if (unpackStoreToAggregate(*this, SI))
1368 return eraseInstFromFunction(SI);
1370 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1371 return eraseInstFromFunction(SI);
1373 // Replace GEP indices if possible.
1374 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1375 Worklist.push(NewGEPI);
1376 return &SI;
1379 // Don't hack volatile/ordered stores.
1380 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1381 if (!SI.isUnordered()) return nullptr;
1383 // If the RHS is an alloca with a single use, zapify the store, making the
1384 // alloca dead.
1385 if (Ptr->hasOneUse()) {
1386 if (isa<AllocaInst>(Ptr))
1387 return eraseInstFromFunction(SI);
1388 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1389 if (isa<AllocaInst>(GEP->getOperand(0))) {
1390 if (GEP->getOperand(0)->hasOneUse())
1391 return eraseInstFromFunction(SI);
1396 // If we have a store to a location which is known constant, we can conclude
1397 // that the store must be storing the constant value (else the memory
1398 // wouldn't be constant), and this must be a noop.
1399 if (AA->pointsToConstantMemory(Ptr))
1400 return eraseInstFromFunction(SI);
1402 // Do really simple DSE, to catch cases where there are several consecutive
1403 // stores to the same location, separated by a few arithmetic operations. This
1404 // situation often occurs with bitfield accesses.
1405 BasicBlock::iterator BBI(SI);
1406 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1407 --ScanInsts) {
1408 --BBI;
1409 // Don't count debug info directives, lest they affect codegen,
1410 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1411 if (BBI->isDebugOrPseudoInst() ||
1412 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1413 ScanInsts++;
1414 continue;
1417 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1418 // Prev store isn't volatile, and stores to the same location?
1419 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1420 SI.getOperand(1))) {
1421 ++NumDeadStore;
1422 // Manually add back the original store to the worklist now, so it will
1423 // be processed after the operands of the removed store, as this may
1424 // expose additional DSE opportunities.
1425 Worklist.push(&SI);
1426 eraseInstFromFunction(*PrevSI);
1427 return nullptr;
1429 break;
1432 // If this is a load, we have to stop. However, if the loaded value is from
1433 // the pointer we're loading and is producing the pointer we're storing,
1434 // then *this* store is dead (X = load P; store X -> P).
1435 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1436 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1437 assert(SI.isUnordered() && "can't eliminate ordering operation");
1438 return eraseInstFromFunction(SI);
1441 // Otherwise, this is a load from some other location. Stores before it
1442 // may not be dead.
1443 break;
1446 // Don't skip over loads, throws or things that can modify memory.
1447 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1448 break;
1451 // store X, null -> turns into 'unreachable' in SimplifyCFG
1452 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1453 if (canSimplifyNullStoreOrGEP(SI)) {
1454 if (!isa<PoisonValue>(Val))
1455 return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1456 return nullptr; // Do not modify these!
1459 // store undef, Ptr -> noop
1460 if (isa<UndefValue>(Val))
1461 return eraseInstFromFunction(SI);
1463 return nullptr;
1466 /// Try to transform:
1467 /// if () { *P = v1; } else { *P = v2 }
1468 /// or:
1469 /// *P = v1; if () { *P = v2; }
1470 /// into a phi node with a store in the successor.
1471 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1472 if (!SI.isUnordered())
1473 return false; // This code has not been audited for volatile/ordered case.
1475 // Check if the successor block has exactly 2 incoming edges.
1476 BasicBlock *StoreBB = SI.getParent();
1477 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1478 if (!DestBB->hasNPredecessors(2))
1479 return false;
1481 // Capture the other block (the block that doesn't contain our store).
1482 pred_iterator PredIter = pred_begin(DestBB);
1483 if (*PredIter == StoreBB)
1484 ++PredIter;
1485 BasicBlock *OtherBB = *PredIter;
1487 // Bail out if all of the relevant blocks aren't distinct. This can happen,
1488 // for example, if SI is in an infinite loop.
1489 if (StoreBB == DestBB || OtherBB == DestBB)
1490 return false;
1492 // Verify that the other block ends in a branch and is not otherwise empty.
1493 BasicBlock::iterator BBI(OtherBB->getTerminator());
1494 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1495 if (!OtherBr || BBI == OtherBB->begin())
1496 return false;
1498 // If the other block ends in an unconditional branch, check for the 'if then
1499 // else' case. There is an instruction before the branch.
1500 StoreInst *OtherStore = nullptr;
1501 if (OtherBr->isUnconditional()) {
1502 --BBI;
1503 // Skip over debugging info.
1504 while (isa<DbgInfoIntrinsic>(BBI) ||
1505 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1506 if (BBI==OtherBB->begin())
1507 return false;
1508 --BBI;
1510 // If this isn't a store, isn't a store to the same location, or is not the
1511 // right kind of store, bail out.
1512 OtherStore = dyn_cast<StoreInst>(BBI);
1513 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1514 !SI.isSameOperationAs(OtherStore))
1515 return false;
1516 } else {
1517 // Otherwise, the other block ended with a conditional branch. If one of the
1518 // destinations is StoreBB, then we have the if/then case.
1519 if (OtherBr->getSuccessor(0) != StoreBB &&
1520 OtherBr->getSuccessor(1) != StoreBB)
1521 return false;
1523 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1524 // if/then triangle. See if there is a store to the same ptr as SI that
1525 // lives in OtherBB.
1526 for (;; --BBI) {
1527 // Check to see if we find the matching store.
1528 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1529 if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1530 !SI.isSameOperationAs(OtherStore))
1531 return false;
1532 break;
1534 // If we find something that may be using or overwriting the stored
1535 // value, or if we run out of instructions, we can't do the transform.
1536 if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1537 BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1538 return false;
1541 // In order to eliminate the store in OtherBr, we have to make sure nothing
1542 // reads or overwrites the stored value in StoreBB.
1543 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1544 // FIXME: This should really be AA driven.
1545 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1546 return false;
1550 // Insert a PHI node now if we need it.
1551 Value *MergedVal = OtherStore->getOperand(0);
1552 // The debug locations of the original instructions might differ. Merge them.
1553 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1554 OtherStore->getDebugLoc());
1555 if (MergedVal != SI.getOperand(0)) {
1556 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1557 PN->addIncoming(SI.getOperand(0), SI.getParent());
1558 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1559 MergedVal = InsertNewInstBefore(PN, DestBB->front());
1560 PN->setDebugLoc(MergedLoc);
1563 // Advance to a place where it is safe to insert the new store and insert it.
1564 BBI = DestBB->getFirstInsertionPt();
1565 StoreInst *NewSI =
1566 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1567 SI.getOrdering(), SI.getSyncScopeID());
1568 InsertNewInstBefore(NewSI, *BBI);
1569 NewSI->setDebugLoc(MergedLoc);
1571 // If the two stores had AA tags, merge them.
1572 AAMDNodes AATags;
1573 SI.getAAMetadata(AATags);
1574 if (AATags) {
1575 OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1576 NewSI->setAAMetadata(AATags);
1579 // Nuke the old stores.
1580 eraseInstFromFunction(SI);
1581 eraseInstFromFunction(*OtherStore);
1582 return true;