1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/IR/PatternMatch.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/KnownBits.h"
34 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35 #include "llvm/Transforms/InstCombine/InstCombiner.h"
36 #include "llvm/Transforms/Utils/BuildLibCalls.h"
43 using namespace PatternMatch
;
45 #define DEBUG_TYPE "instcombine"
47 /// The specific integer value is used in a context where it is known to be
48 /// non-zero. If this allows us to simplify the computation, do so and return
49 /// the new operand, otherwise return null.
50 static Value
*simplifyValueKnownNonZero(Value
*V
, InstCombinerImpl
&IC
,
52 // If V has multiple uses, then we would have to do more analysis to determine
53 // if this is safe. For example, the use could be in dynamically unreached
55 if (!V
->hasOneUse()) return nullptr;
57 bool MadeChange
= false;
59 // ((1 << A) >>u B) --> (1 << (A-B))
60 // Because V cannot be zero, we know that B is less than A.
61 Value
*A
= nullptr, *B
= nullptr, *One
= nullptr;
62 if (match(V
, m_LShr(m_OneUse(m_Shl(m_Value(One
), m_Value(A
))), m_Value(B
))) &&
63 match(One
, m_One())) {
64 A
= IC
.Builder
.CreateSub(A
, B
);
65 return IC
.Builder
.CreateShl(One
, A
);
68 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69 // inexact. Similarly for <<.
70 BinaryOperator
*I
= dyn_cast
<BinaryOperator
>(V
);
71 if (I
&& I
->isLogicalShift() &&
72 IC
.isKnownToBeAPowerOfTwo(I
->getOperand(0), false, 0, &CxtI
)) {
73 // We know that this is an exact/nuw shift and that the input is a
74 // non-zero context as well.
75 if (Value
*V2
= simplifyValueKnownNonZero(I
->getOperand(0), IC
, CxtI
)) {
76 IC
.replaceOperand(*I
, 0, V2
);
80 if (I
->getOpcode() == Instruction::LShr
&& !I
->isExact()) {
85 if (I
->getOpcode() == Instruction::Shl
&& !I
->hasNoUnsignedWrap()) {
86 I
->setHasNoUnsignedWrap();
91 // TODO: Lots more we could do here:
92 // If V is a phi node, we can call this on each of its operands.
93 // "select cond, X, 0" can simplify to "X".
95 return MadeChange
? V
: nullptr;
98 // TODO: This is a specific form of a much more general pattern.
99 // We could detect a select with any binop identity constant, or we
100 // could use SimplifyBinOp to see if either arm of the select reduces.
101 // But that needs to be done carefully and/or while removing potential
102 // reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
103 static Value
*foldMulSelectToNegate(BinaryOperator
&I
,
104 InstCombiner::BuilderTy
&Builder
) {
105 Value
*Cond
, *OtherOp
;
107 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109 if (match(&I
, m_c_Mul(m_OneUse(m_Select(m_Value(Cond
), m_One(), m_AllOnes())),
111 return Builder
.CreateSelect(Cond
, OtherOp
, Builder
.CreateNeg(OtherOp
));
113 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
114 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
115 if (match(&I
, m_c_Mul(m_OneUse(m_Select(m_Value(Cond
), m_AllOnes(), m_One())),
117 return Builder
.CreateSelect(Cond
, Builder
.CreateNeg(OtherOp
), OtherOp
);
119 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
121 if (match(&I
, m_c_FMul(m_OneUse(m_Select(m_Value(Cond
), m_SpecificFP(1.0),
122 m_SpecificFP(-1.0))),
123 m_Value(OtherOp
)))) {
124 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
125 Builder
.setFastMathFlags(I
.getFastMathFlags());
126 return Builder
.CreateSelect(Cond
, OtherOp
, Builder
.CreateFNeg(OtherOp
));
129 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131 if (match(&I
, m_c_FMul(m_OneUse(m_Select(m_Value(Cond
), m_SpecificFP(-1.0),
133 m_Value(OtherOp
)))) {
134 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
135 Builder
.setFastMathFlags(I
.getFastMathFlags());
136 return Builder
.CreateSelect(Cond
, Builder
.CreateFNeg(OtherOp
), OtherOp
);
142 Instruction
*InstCombinerImpl::visitMul(BinaryOperator
&I
) {
143 if (Value
*V
= SimplifyMulInst(I
.getOperand(0), I
.getOperand(1),
144 SQ
.getWithInstruction(&I
)))
145 return replaceInstUsesWith(I
, V
);
147 if (SimplifyAssociativeOrCommutative(I
))
150 if (Instruction
*X
= foldVectorBinop(I
))
153 if (Value
*V
= SimplifyUsingDistributiveLaws(I
))
154 return replaceInstUsesWith(I
, V
);
156 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
157 unsigned BitWidth
= I
.getType()->getScalarSizeInBits();
160 if (match(Op1
, m_AllOnes())) {
161 BinaryOperator
*BO
= BinaryOperator::CreateNeg(Op0
, I
.getName());
162 if (I
.hasNoSignedWrap())
163 BO
->setHasNoSignedWrap();
167 // Also allow combining multiply instructions on vectors.
172 if (match(&I
, m_Mul(m_Shl(m_Value(NewOp
), m_Constant(C2
)),
174 match(C1
, m_APInt(IVal
))) {
175 // ((X << C2)*C1) == (X * (C1 << C2))
176 Constant
*Shl
= ConstantExpr::getShl(C1
, C2
);
177 BinaryOperator
*Mul
= cast
<BinaryOperator
>(I
.getOperand(0));
178 BinaryOperator
*BO
= BinaryOperator::CreateMul(NewOp
, Shl
);
179 if (I
.hasNoUnsignedWrap() && Mul
->hasNoUnsignedWrap())
180 BO
->setHasNoUnsignedWrap();
181 if (I
.hasNoSignedWrap() && Mul
->hasNoSignedWrap() &&
182 Shl
->isNotMinSignedValue())
183 BO
->setHasNoSignedWrap();
187 if (match(&I
, m_Mul(m_Value(NewOp
), m_Constant(C1
)))) {
188 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
189 if (Constant
*NewCst
= ConstantExpr::getExactLogBase2(C1
)) {
190 BinaryOperator
*Shl
= BinaryOperator::CreateShl(NewOp
, NewCst
);
192 if (I
.hasNoUnsignedWrap())
193 Shl
->setHasNoUnsignedWrap();
194 if (I
.hasNoSignedWrap()) {
196 if (match(NewCst
, m_APInt(V
)) && *V
!= V
->getBitWidth() - 1)
197 Shl
->setHasNoSignedWrap();
205 if (Op0
->hasOneUse() && match(Op1
, m_NegatedPower2())) {
206 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
207 // The "* (1<<C)" thus becomes a potential shifting opportunity.
208 if (Value
*NegOp0
= Negator::Negate(/*IsNegation*/ true, Op0
, *this))
209 return BinaryOperator::CreateMul(
210 NegOp0
, ConstantExpr::getNeg(cast
<Constant
>(Op1
)), I
.getName());
213 if (Instruction
*FoldedMul
= foldBinOpIntoSelectOrPhi(I
))
216 if (Value
*FoldedMul
= foldMulSelectToNegate(I
, Builder
))
217 return replaceInstUsesWith(I
, FoldedMul
);
219 // Simplify mul instructions with a constant RHS.
220 if (isa
<Constant
>(Op1
)) {
221 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
224 if (match(Op0
, m_OneUse(m_Add(m_Value(X
), m_Constant(C1
))))) {
225 Value
*Mul
= Builder
.CreateMul(C1
, Op1
);
226 // Only go forward with the transform if C1*CI simplifies to a tidier
228 if (!match(Mul
, m_Mul(m_Value(), m_Value())))
229 return BinaryOperator::CreateAdd(Builder
.CreateMul(X
, Op1
), Mul
);
233 // abs(X) * abs(X) -> X * X
234 // nabs(X) * nabs(X) -> X * X
237 SelectPatternFlavor SPF
= matchSelectPattern(Op0
, X
, Y
).Flavor
;
238 if (SPF
== SPF_ABS
|| SPF
== SPF_NABS
)
239 return BinaryOperator::CreateMul(X
, X
);
241 if (match(Op0
, m_Intrinsic
<Intrinsic::abs
>(m_Value(X
))))
242 return BinaryOperator::CreateMul(X
, X
);
248 if (match(Op0
, m_Neg(m_Value(X
))) && match(Op1
, m_Constant(Op1C
)))
249 return BinaryOperator::CreateMul(X
, ConstantExpr::getNeg(Op1C
));
252 if (match(Op0
, m_Neg(m_Value(X
))) && match(Op1
, m_Neg(m_Value(Y
)))) {
253 auto *NewMul
= BinaryOperator::CreateMul(X
, Y
);
254 if (I
.hasNoSignedWrap() &&
255 cast
<OverflowingBinaryOperator
>(Op0
)->hasNoSignedWrap() &&
256 cast
<OverflowingBinaryOperator
>(Op1
)->hasNoSignedWrap())
257 NewMul
->setHasNoSignedWrap();
261 // -X * Y --> -(X * Y)
262 // X * -Y --> -(X * Y)
263 if (match(&I
, m_c_Mul(m_OneUse(m_Neg(m_Value(X
))), m_Value(Y
))))
264 return BinaryOperator::CreateNeg(Builder
.CreateMul(X
, Y
));
266 // (X / Y) * Y = X - (X % Y)
267 // (X / Y) * -Y = (X % Y) - X
270 BinaryOperator
*Div
= dyn_cast
<BinaryOperator
>(Op0
);
271 if (!Div
|| (Div
->getOpcode() != Instruction::UDiv
&&
272 Div
->getOpcode() != Instruction::SDiv
)) {
274 Div
= dyn_cast
<BinaryOperator
>(Op1
);
276 Value
*Neg
= dyn_castNegVal(Y
);
277 if (Div
&& Div
->hasOneUse() &&
278 (Div
->getOperand(1) == Y
|| Div
->getOperand(1) == Neg
) &&
279 (Div
->getOpcode() == Instruction::UDiv
||
280 Div
->getOpcode() == Instruction::SDiv
)) {
281 Value
*X
= Div
->getOperand(0), *DivOp1
= Div
->getOperand(1);
283 // If the division is exact, X % Y is zero, so we end up with X or -X.
284 if (Div
->isExact()) {
286 return replaceInstUsesWith(I
, X
);
287 return BinaryOperator::CreateNeg(X
);
290 auto RemOpc
= Div
->getOpcode() == Instruction::UDiv
? Instruction::URem
292 Value
*Rem
= Builder
.CreateBinOp(RemOpc
, X
, DivOp1
);
294 return BinaryOperator::CreateSub(X
, Rem
);
295 return BinaryOperator::CreateSub(Rem
, X
);
299 /// i1 mul -> i1 and.
300 if (I
.getType()->isIntOrIntVectorTy(1))
301 return BinaryOperator::CreateAnd(Op0
, Op1
);
303 // X*(1 << Y) --> X << Y
304 // (1 << Y)*X --> X << Y
307 BinaryOperator
*BO
= nullptr;
309 if (match(Op0
, m_Shl(m_One(), m_Value(Y
)))) {
310 BO
= BinaryOperator::CreateShl(Op1
, Y
);
311 ShlNSW
= cast
<ShlOperator
>(Op0
)->hasNoSignedWrap();
312 } else if (match(Op1
, m_Shl(m_One(), m_Value(Y
)))) {
313 BO
= BinaryOperator::CreateShl(Op0
, Y
);
314 ShlNSW
= cast
<ShlOperator
>(Op1
)->hasNoSignedWrap();
317 if (I
.hasNoUnsignedWrap())
318 BO
->setHasNoUnsignedWrap();
319 if (I
.hasNoSignedWrap() && ShlNSW
)
320 BO
->setHasNoSignedWrap();
325 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
326 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
327 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
328 if (((match(Op0
, m_ZExt(m_Value(X
))) && match(Op1
, m_ZExt(m_Value(Y
)))) ||
329 (match(Op0
, m_SExt(m_Value(X
))) && match(Op1
, m_SExt(m_Value(Y
))))) &&
330 X
->getType()->isIntOrIntVectorTy(1) && X
->getType() == Y
->getType() &&
331 (Op0
->hasOneUse() || Op1
->hasOneUse() || X
== Y
)) {
332 Value
*And
= Builder
.CreateAnd(X
, Y
, "mulbool");
333 return CastInst::Create(Instruction::ZExt
, And
, I
.getType());
335 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
336 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
337 // Note: -1 * 1 == 1 * -1 == -1
338 if (((match(Op0
, m_SExt(m_Value(X
))) && match(Op1
, m_ZExt(m_Value(Y
)))) ||
339 (match(Op0
, m_ZExt(m_Value(X
))) && match(Op1
, m_SExt(m_Value(Y
))))) &&
340 X
->getType()->isIntOrIntVectorTy(1) && X
->getType() == Y
->getType() &&
341 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
342 Value
*And
= Builder
.CreateAnd(X
, Y
, "mulbool");
343 return CastInst::Create(Instruction::SExt
, And
, I
.getType());
346 // (bool X) * Y --> X ? Y : 0
347 // Y * (bool X) --> X ? Y : 0
348 if (match(Op0
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
349 return SelectInst::Create(X
, Op1
, ConstantInt::get(I
.getType(), 0));
350 if (match(Op1
, m_ZExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
351 return SelectInst::Create(X
, Op0
, ConstantInt::get(I
.getType(), 0));
353 // (lshr X, 31) * Y --> (ashr X, 31) & Y
354 // Y * (lshr X, 31) --> (ashr X, 31) & Y
355 // TODO: We are not checking one-use because the elimination of the multiply
356 // is better for analysis?
357 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
358 // more similar to what we're doing above.
360 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(C
))) && *C
== C
->getBitWidth() - 1)
361 return BinaryOperator::CreateAnd(Builder
.CreateAShr(X
, *C
), Op1
);
362 if (match(Op1
, m_LShr(m_Value(X
), m_APInt(C
))) && *C
== C
->getBitWidth() - 1)
363 return BinaryOperator::CreateAnd(Builder
.CreateAShr(X
, *C
), Op0
);
365 // ((ashr X, 31) | 1) * X --> abs(X)
366 // X * ((ashr X, 31) | 1) --> abs(X)
367 if (match(&I
, m_c_BinOp(m_Or(m_AShr(m_Value(X
),
368 m_SpecificIntAllowUndef(BitWidth
- 1)),
371 Value
*Abs
= Builder
.CreateBinaryIntrinsic(
373 ConstantInt::getBool(I
.getContext(), I
.hasNoSignedWrap()));
375 return replaceInstUsesWith(I
, Abs
);
378 if (Instruction
*Ext
= narrowMathIfNoOverflow(I
))
381 bool Changed
= false;
382 if (!I
.hasNoSignedWrap() && willNotOverflowSignedMul(Op0
, Op1
, I
)) {
384 I
.setHasNoSignedWrap(true);
387 if (!I
.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0
, Op1
, I
)) {
389 I
.setHasNoUnsignedWrap(true);
392 return Changed
? &I
: nullptr;
395 Instruction
*InstCombinerImpl::foldFPSignBitOps(BinaryOperator
&I
) {
396 BinaryOperator::BinaryOps Opcode
= I
.getOpcode();
397 assert((Opcode
== Instruction::FMul
|| Opcode
== Instruction::FDiv
) &&
398 "Expected fmul or fdiv");
400 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
405 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_FNeg(m_Value(Y
))))
406 return BinaryOperator::CreateWithCopiedFlags(Opcode
, X
, Y
, &I
);
408 // fabs(X) * fabs(X) -> X * X
409 // fabs(X) / fabs(X) -> X / X
410 if (Op0
== Op1
&& match(Op0
, m_FAbs(m_Value(X
))))
411 return BinaryOperator::CreateWithCopiedFlags(Opcode
, X
, X
, &I
);
413 // fabs(X) * fabs(Y) --> fabs(X * Y)
414 // fabs(X) / fabs(Y) --> fabs(X / Y)
415 if (match(Op0
, m_FAbs(m_Value(X
))) && match(Op1
, m_FAbs(m_Value(Y
))) &&
416 (Op0
->hasOneUse() || Op1
->hasOneUse())) {
417 IRBuilder
<>::FastMathFlagGuard
FMFGuard(Builder
);
418 Builder
.setFastMathFlags(I
.getFastMathFlags());
419 Value
*XY
= Builder
.CreateBinOp(Opcode
, X
, Y
);
420 Value
*Fabs
= Builder
.CreateUnaryIntrinsic(Intrinsic::fabs
, XY
);
422 return replaceInstUsesWith(I
, Fabs
);
428 Instruction
*InstCombinerImpl::visitFMul(BinaryOperator
&I
) {
429 if (Value
*V
= SimplifyFMulInst(I
.getOperand(0), I
.getOperand(1),
430 I
.getFastMathFlags(),
431 SQ
.getWithInstruction(&I
)))
432 return replaceInstUsesWith(I
, V
);
434 if (SimplifyAssociativeOrCommutative(I
))
437 if (Instruction
*X
= foldVectorBinop(I
))
440 if (Instruction
*FoldedMul
= foldBinOpIntoSelectOrPhi(I
))
443 if (Value
*FoldedMul
= foldMulSelectToNegate(I
, Builder
))
444 return replaceInstUsesWith(I
, FoldedMul
);
446 if (Instruction
*R
= foldFPSignBitOps(I
))
450 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
451 if (match(Op1
, m_SpecificFP(-1.0)))
452 return UnaryOperator::CreateFNegFMF(Op0
, &I
);
457 if (match(Op0
, m_FNeg(m_Value(X
))) && match(Op1
, m_Constant(C
)))
458 return BinaryOperator::CreateFMulFMF(X
, ConstantExpr::getFNeg(C
), &I
);
460 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
461 if (Value
*V
= SimplifySelectsFeedingBinaryOp(I
, Op0
, Op1
))
462 return replaceInstUsesWith(I
, V
);
464 if (I
.hasAllowReassoc()) {
465 // Reassociate constant RHS with another constant to form constant
467 if (match(Op1
, m_Constant(C
)) && C
->isFiniteNonZeroFP()) {
469 if (match(Op0
, m_OneUse(m_FDiv(m_Constant(C1
), m_Value(X
))))) {
470 // (C1 / X) * C --> (C * C1) / X
471 Constant
*CC1
= ConstantExpr::getFMul(C
, C1
);
472 if (CC1
->isNormalFP())
473 return BinaryOperator::CreateFDivFMF(CC1
, X
, &I
);
475 if (match(Op0
, m_FDiv(m_Value(X
), m_Constant(C1
)))) {
476 // (X / C1) * C --> X * (C / C1)
477 Constant
*CDivC1
= ConstantExpr::getFDiv(C
, C1
);
478 if (CDivC1
->isNormalFP())
479 return BinaryOperator::CreateFMulFMF(X
, CDivC1
, &I
);
481 // If the constant was a denormal, try reassociating differently.
482 // (X / C1) * C --> X / (C1 / C)
483 Constant
*C1DivC
= ConstantExpr::getFDiv(C1
, C
);
484 if (Op0
->hasOneUse() && C1DivC
->isNormalFP())
485 return BinaryOperator::CreateFDivFMF(X
, C1DivC
, &I
);
488 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
489 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
490 // further folds and (X * C) + C2 is 'fma'.
491 if (match(Op0
, m_OneUse(m_FAdd(m_Value(X
), m_Constant(C1
))))) {
492 // (X + C1) * C --> (X * C) + (C * C1)
493 Constant
*CC1
= ConstantExpr::getFMul(C
, C1
);
494 Value
*XC
= Builder
.CreateFMulFMF(X
, C
, &I
);
495 return BinaryOperator::CreateFAddFMF(XC
, CC1
, &I
);
497 if (match(Op0
, m_OneUse(m_FSub(m_Constant(C1
), m_Value(X
))))) {
498 // (C1 - X) * C --> (C * C1) - (X * C)
499 Constant
*CC1
= ConstantExpr::getFMul(C
, C1
);
500 Value
*XC
= Builder
.CreateFMulFMF(X
, C
, &I
);
501 return BinaryOperator::CreateFSubFMF(CC1
, XC
, &I
);
506 if (match(&I
, m_c_FMul(m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
))),
508 // Sink division: (X / Y) * Z --> (X * Z) / Y
509 Value
*NewFMul
= Builder
.CreateFMulFMF(X
, Z
, &I
);
510 return BinaryOperator::CreateFDivFMF(NewFMul
, Y
, &I
);
513 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
514 // nnan disallows the possibility of returning a number if both operands are
515 // negative (in that case, we should return NaN).
517 match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::sqrt
>(m_Value(X
)))) &&
518 match(Op1
, m_OneUse(m_Intrinsic
<Intrinsic::sqrt
>(m_Value(Y
))))) {
519 Value
*XY
= Builder
.CreateFMulFMF(X
, Y
, &I
);
520 Value
*Sqrt
= Builder
.CreateUnaryIntrinsic(Intrinsic::sqrt
, XY
, &I
);
521 return replaceInstUsesWith(I
, Sqrt
);
524 // The following transforms are done irrespective of the number of uses
525 // for the expression "1.0/sqrt(X)".
526 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
527 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
528 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
529 // has the necessary (reassoc) fast-math-flags.
530 if (I
.hasNoSignedZeros() &&
531 match(Op0
, (m_FDiv(m_SpecificFP(1.0), m_Value(Y
)))) &&
532 match(Y
, m_Intrinsic
<Intrinsic::sqrt
>(m_Value(X
))) && Op1
== X
)
533 return BinaryOperator::CreateFDivFMF(X
, Y
, &I
);
534 if (I
.hasNoSignedZeros() &&
535 match(Op1
, (m_FDiv(m_SpecificFP(1.0), m_Value(Y
)))) &&
536 match(Y
, m_Intrinsic
<Intrinsic::sqrt
>(m_Value(X
))) && Op0
== X
)
537 return BinaryOperator::CreateFDivFMF(X
, Y
, &I
);
539 // Like the similar transform in instsimplify, this requires 'nsz' because
540 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
541 if (I
.hasNoNaNs() && I
.hasNoSignedZeros() && Op0
== Op1
&&
543 // Peek through fdiv to find squaring of square root:
544 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
545 if (match(Op0
, m_FDiv(m_Value(X
),
546 m_Intrinsic
<Intrinsic::sqrt
>(m_Value(Y
))))) {
547 Value
*XX
= Builder
.CreateFMulFMF(X
, X
, &I
);
548 return BinaryOperator::CreateFDivFMF(XX
, Y
, &I
);
550 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
551 if (match(Op0
, m_FDiv(m_Intrinsic
<Intrinsic::sqrt
>(m_Value(Y
)),
553 Value
*XX
= Builder
.CreateFMulFMF(X
, X
, &I
);
554 return BinaryOperator::CreateFDivFMF(Y
, XX
, &I
);
558 if (I
.isOnlyUserOfAnyOperand()) {
559 // pow(x, y) * pow(x, z) -> pow(x, y + z)
560 if (match(Op0
, m_Intrinsic
<Intrinsic::pow
>(m_Value(X
), m_Value(Y
))) &&
561 match(Op1
, m_Intrinsic
<Intrinsic::pow
>(m_Specific(X
), m_Value(Z
)))) {
562 auto *YZ
= Builder
.CreateFAddFMF(Y
, Z
, &I
);
563 auto *NewPow
= Builder
.CreateBinaryIntrinsic(Intrinsic::pow
, X
, YZ
, &I
);
564 return replaceInstUsesWith(I
, NewPow
);
567 // exp(X) * exp(Y) -> exp(X + Y)
568 if (match(Op0
, m_Intrinsic
<Intrinsic::exp
>(m_Value(X
))) &&
569 match(Op1
, m_Intrinsic
<Intrinsic::exp
>(m_Value(Y
)))) {
570 Value
*XY
= Builder
.CreateFAddFMF(X
, Y
, &I
);
571 Value
*Exp
= Builder
.CreateUnaryIntrinsic(Intrinsic::exp
, XY
, &I
);
572 return replaceInstUsesWith(I
, Exp
);
575 // exp2(X) * exp2(Y) -> exp2(X + Y)
576 if (match(Op0
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(X
))) &&
577 match(Op1
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(Y
)))) {
578 Value
*XY
= Builder
.CreateFAddFMF(X
, Y
, &I
);
579 Value
*Exp2
= Builder
.CreateUnaryIntrinsic(Intrinsic::exp2
, XY
, &I
);
580 return replaceInstUsesWith(I
, Exp2
);
584 // (X*Y) * X => (X*X) * Y where Y != X
585 // The purpose is two-fold:
586 // 1) to form a power expression (of X).
587 // 2) potentially shorten the critical path: After transformation, the
588 // latency of the instruction Y is amortized by the expression of X*X,
589 // and therefore Y is in a "less critical" position compared to what it
590 // was before the transformation.
591 if (match(Op0
, m_OneUse(m_c_FMul(m_Specific(Op1
), m_Value(Y
)))) &&
593 Value
*XX
= Builder
.CreateFMulFMF(Op1
, Op1
, &I
);
594 return BinaryOperator::CreateFMulFMF(XX
, Y
, &I
);
596 if (match(Op1
, m_OneUse(m_c_FMul(m_Specific(Op0
), m_Value(Y
)))) &&
598 Value
*XX
= Builder
.CreateFMulFMF(Op0
, Op0
, &I
);
599 return BinaryOperator::CreateFMulFMF(XX
, Y
, &I
);
603 // log2(X * 0.5) * Y = log2(X) * Y - Y
605 IntrinsicInst
*Log2
= nullptr;
606 if (match(Op0
, m_OneUse(m_Intrinsic
<Intrinsic::log2
>(
607 m_OneUse(m_FMul(m_Value(X
), m_SpecificFP(0.5))))))) {
608 Log2
= cast
<IntrinsicInst
>(Op0
);
611 if (match(Op1
, m_OneUse(m_Intrinsic
<Intrinsic::log2
>(
612 m_OneUse(m_FMul(m_Value(X
), m_SpecificFP(0.5))))))) {
613 Log2
= cast
<IntrinsicInst
>(Op1
);
617 Value
*Log2
= Builder
.CreateUnaryIntrinsic(Intrinsic::log2
, X
, &I
);
618 Value
*LogXTimesY
= Builder
.CreateFMulFMF(Log2
, Y
, &I
);
619 return BinaryOperator::CreateFSubFMF(LogXTimesY
, Y
, &I
);
626 /// Fold a divide or remainder with a select instruction divisor when one of the
627 /// select operands is zero. In that case, we can use the other select operand
628 /// because div/rem by zero is undefined.
629 bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator
&I
) {
630 SelectInst
*SI
= dyn_cast
<SelectInst
>(I
.getOperand(1));
635 if (match(SI
->getTrueValue(), m_Zero()))
636 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
638 else if (match(SI
->getFalseValue(), m_Zero()))
639 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
644 // Change the div/rem to use 'Y' instead of the select.
645 replaceOperand(I
, 1, SI
->getOperand(NonNullOperand
));
647 // Okay, we know we replace the operand of the div/rem with 'Y' with no
648 // problem. However, the select, or the condition of the select may have
649 // multiple uses. Based on our knowledge that the operand must be non-zero,
650 // propagate the known value for the select into other uses of it, and
651 // propagate a known value of the condition into its other users.
653 // If the select and condition only have a single use, don't bother with this,
655 Value
*SelectCond
= SI
->getCondition();
656 if (SI
->use_empty() && SelectCond
->hasOneUse())
659 // Scan the current block backward, looking for other uses of SI.
660 BasicBlock::iterator BBI
= I
.getIterator(), BBFront
= I
.getParent()->begin();
661 Type
*CondTy
= SelectCond
->getType();
662 while (BBI
!= BBFront
) {
664 // If we found an instruction that we can't assume will return, so
665 // information from below it cannot be propagated above it.
666 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI
))
669 // Replace uses of the select or its condition with the known values.
670 for (Use
&Op
: BBI
->operands()) {
672 replaceUse(Op
, SI
->getOperand(NonNullOperand
));
673 Worklist
.push(&*BBI
);
674 } else if (Op
== SelectCond
) {
675 replaceUse(Op
, NonNullOperand
== 1 ? ConstantInt::getTrue(CondTy
)
676 : ConstantInt::getFalse(CondTy
));
677 Worklist
.push(&*BBI
);
681 // If we past the instruction, quit looking for it.
684 if (&*BBI
== SelectCond
)
685 SelectCond
= nullptr;
687 // If we ran out of things to eliminate, break out of the loop.
688 if (!SelectCond
&& !SI
)
695 /// True if the multiply can not be expressed in an int this size.
696 static bool multiplyOverflows(const APInt
&C1
, const APInt
&C2
, APInt
&Product
,
699 Product
= IsSigned
? C1
.smul_ov(C2
, Overflow
) : C1
.umul_ov(C2
, Overflow
);
703 /// True if C1 is a multiple of C2. Quotient contains C1/C2.
704 static bool isMultiple(const APInt
&C1
, const APInt
&C2
, APInt
&Quotient
,
706 assert(C1
.getBitWidth() == C2
.getBitWidth() && "Constant widths not equal");
708 // Bail if we will divide by zero.
709 if (C2
.isNullValue())
712 // Bail if we would divide INT_MIN by -1.
713 if (IsSigned
&& C1
.isMinSignedValue() && C2
.isAllOnesValue())
716 APInt
Remainder(C1
.getBitWidth(), /*val=*/0ULL, IsSigned
);
718 APInt::sdivrem(C1
, C2
, Quotient
, Remainder
);
720 APInt::udivrem(C1
, C2
, Quotient
, Remainder
);
722 return Remainder
.isMinValue();
725 /// This function implements the transforms common to both integer division
726 /// instructions (udiv and sdiv). It is called by the visitors to those integer
727 /// division instructions.
728 /// Common integer divide transforms
729 Instruction
*InstCombinerImpl::commonIDivTransforms(BinaryOperator
&I
) {
730 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
731 bool IsSigned
= I
.getOpcode() == Instruction::SDiv
;
732 Type
*Ty
= I
.getType();
734 // The RHS is known non-zero.
735 if (Value
*V
= simplifyValueKnownNonZero(I
.getOperand(1), *this, I
))
736 return replaceOperand(I
, 1, V
);
738 // Handle cases involving: [su]div X, (select Cond, Y, Z)
739 // This does not apply for fdiv.
740 if (simplifyDivRemOfSelectWithZeroOp(I
))
744 if (match(Op1
, m_APInt(C2
))) {
748 // (X / C1) / C2 -> X / (C1*C2)
749 if ((IsSigned
&& match(Op0
, m_SDiv(m_Value(X
), m_APInt(C1
)))) ||
750 (!IsSigned
&& match(Op0
, m_UDiv(m_Value(X
), m_APInt(C1
))))) {
751 APInt
Product(C1
->getBitWidth(), /*val=*/0ULL, IsSigned
);
752 if (!multiplyOverflows(*C1
, *C2
, Product
, IsSigned
))
753 return BinaryOperator::Create(I
.getOpcode(), X
,
754 ConstantInt::get(Ty
, Product
));
757 if ((IsSigned
&& match(Op0
, m_NSWMul(m_Value(X
), m_APInt(C1
)))) ||
758 (!IsSigned
&& match(Op0
, m_NUWMul(m_Value(X
), m_APInt(C1
))))) {
759 APInt
Quotient(C1
->getBitWidth(), /*val=*/0ULL, IsSigned
);
761 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
762 if (isMultiple(*C2
, *C1
, Quotient
, IsSigned
)) {
763 auto *NewDiv
= BinaryOperator::Create(I
.getOpcode(), X
,
764 ConstantInt::get(Ty
, Quotient
));
765 NewDiv
->setIsExact(I
.isExact());
769 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
770 if (isMultiple(*C1
, *C2
, Quotient
, IsSigned
)) {
771 auto *Mul
= BinaryOperator::Create(Instruction::Mul
, X
,
772 ConstantInt::get(Ty
, Quotient
));
773 auto *OBO
= cast
<OverflowingBinaryOperator
>(Op0
);
774 Mul
->setHasNoUnsignedWrap(!IsSigned
&& OBO
->hasNoUnsignedWrap());
775 Mul
->setHasNoSignedWrap(OBO
->hasNoSignedWrap());
780 if ((IsSigned
&& match(Op0
, m_NSWShl(m_Value(X
), m_APInt(C1
))) &&
781 *C1
!= C1
->getBitWidth() - 1) ||
782 (!IsSigned
&& match(Op0
, m_NUWShl(m_Value(X
), m_APInt(C1
))))) {
783 APInt
Quotient(C1
->getBitWidth(), /*val=*/0ULL, IsSigned
);
784 APInt C1Shifted
= APInt::getOneBitSet(
785 C1
->getBitWidth(), static_cast<unsigned>(C1
->getLimitedValue()));
787 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
788 if (isMultiple(*C2
, C1Shifted
, Quotient
, IsSigned
)) {
789 auto *BO
= BinaryOperator::Create(I
.getOpcode(), X
,
790 ConstantInt::get(Ty
, Quotient
));
791 BO
->setIsExact(I
.isExact());
795 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
796 if (isMultiple(C1Shifted
, *C2
, Quotient
, IsSigned
)) {
797 auto *Mul
= BinaryOperator::Create(Instruction::Mul
, X
,
798 ConstantInt::get(Ty
, Quotient
));
799 auto *OBO
= cast
<OverflowingBinaryOperator
>(Op0
);
800 Mul
->setHasNoUnsignedWrap(!IsSigned
&& OBO
->hasNoUnsignedWrap());
801 Mul
->setHasNoSignedWrap(OBO
->hasNoSignedWrap());
806 if (!C2
->isNullValue()) // avoid X udiv 0
807 if (Instruction
*FoldedDiv
= foldBinOpIntoSelectOrPhi(I
))
811 if (match(Op0
, m_One())) {
812 assert(!Ty
->isIntOrIntVectorTy(1) && "i1 divide not removed?");
814 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
815 // result is one, if Op1 is -1 then the result is minus one, otherwise
817 Value
*Inc
= Builder
.CreateAdd(Op1
, Op0
);
818 Value
*Cmp
= Builder
.CreateICmpULT(Inc
, ConstantInt::get(Ty
, 3));
819 return SelectInst::Create(Cmp
, Op1
, ConstantInt::get(Ty
, 0));
821 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
822 // result is one, otherwise it's zero.
823 return new ZExtInst(Builder
.CreateICmpEQ(Op1
, Op0
), Ty
);
827 // See if we can fold away this div instruction.
828 if (SimplifyDemandedInstructionBits(I
))
831 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
833 if (match(Op0
, m_Sub(m_Value(X
), m_Value(Z
)))) // (X - Z) / Y; Y = Op1
834 if ((IsSigned
&& match(Z
, m_SRem(m_Specific(X
), m_Specific(Op1
)))) ||
835 (!IsSigned
&& match(Z
, m_URem(m_Specific(X
), m_Specific(Op1
)))))
836 return BinaryOperator::Create(I
.getOpcode(), X
, Op1
);
838 // (X << Y) / X -> 1 << Y
840 if (IsSigned
&& match(Op0
, m_NSWShl(m_Specific(Op1
), m_Value(Y
))))
841 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty
, 1), Y
);
842 if (!IsSigned
&& match(Op0
, m_NUWShl(m_Specific(Op1
), m_Value(Y
))))
843 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty
, 1), Y
);
845 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
846 if (match(Op1
, m_c_Mul(m_Specific(Op0
), m_Value(Y
)))) {
847 bool HasNSW
= cast
<OverflowingBinaryOperator
>(Op1
)->hasNoSignedWrap();
848 bool HasNUW
= cast
<OverflowingBinaryOperator
>(Op1
)->hasNoUnsignedWrap();
849 if ((IsSigned
&& HasNSW
) || (!IsSigned
&& HasNUW
)) {
850 replaceOperand(I
, 0, ConstantInt::get(Ty
, 1));
851 replaceOperand(I
, 1, Y
);
859 static const unsigned MaxDepth
= 6;
863 using FoldUDivOperandCb
= Instruction
*(*)(Value
*Op0
, Value
*Op1
,
864 const BinaryOperator
&I
,
865 InstCombinerImpl
&IC
);
867 /// Used to maintain state for visitUDivOperand().
868 struct UDivFoldAction
{
869 /// Informs visitUDiv() how to fold this operand. This can be zero if this
870 /// action joins two actions together.
871 FoldUDivOperandCb FoldAction
;
873 /// Which operand to fold.
874 Value
*OperandToFold
;
877 /// The instruction returned when FoldAction is invoked.
878 Instruction
*FoldResult
;
880 /// Stores the LHS action index if this action joins two actions together.
884 UDivFoldAction(FoldUDivOperandCb FA
, Value
*InputOperand
)
885 : FoldAction(FA
), OperandToFold(InputOperand
), FoldResult(nullptr) {}
886 UDivFoldAction(FoldUDivOperandCb FA
, Value
*InputOperand
, size_t SLHS
)
887 : FoldAction(FA
), OperandToFold(InputOperand
), SelectLHSIdx(SLHS
) {}
890 } // end anonymous namespace
892 // X udiv 2^C -> X >> C
893 static Instruction
*foldUDivPow2Cst(Value
*Op0
, Value
*Op1
,
894 const BinaryOperator
&I
,
895 InstCombinerImpl
&IC
) {
896 Constant
*C1
= ConstantExpr::getExactLogBase2(cast
<Constant
>(Op1
));
898 llvm_unreachable("Failed to constant fold udiv -> logbase2");
899 BinaryOperator
*LShr
= BinaryOperator::CreateLShr(Op0
, C1
);
905 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
906 // X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
907 static Instruction
*foldUDivShl(Value
*Op0
, Value
*Op1
, const BinaryOperator
&I
,
908 InstCombinerImpl
&IC
) {
910 if (!match(Op1
, m_ZExt(m_Value(ShiftLeft
))))
915 if (!match(ShiftLeft
, m_Shl(m_Constant(CI
), m_Value(N
))))
916 llvm_unreachable("match should never fail here!");
917 Constant
*Log2Base
= ConstantExpr::getExactLogBase2(CI
);
919 llvm_unreachable("getLogBase2 should never fail here!");
920 N
= IC
.Builder
.CreateAdd(N
, Log2Base
);
921 if (Op1
!= ShiftLeft
)
922 N
= IC
.Builder
.CreateZExt(N
, Op1
->getType());
923 BinaryOperator
*LShr
= BinaryOperator::CreateLShr(Op0
, N
);
929 // Recursively visits the possible right hand operands of a udiv
930 // instruction, seeing through select instructions, to determine if we can
931 // replace the udiv with something simpler. If we find that an operand is not
932 // able to simplify the udiv, we abort the entire transformation.
933 static size_t visitUDivOperand(Value
*Op0
, Value
*Op1
, const BinaryOperator
&I
,
934 SmallVectorImpl
<UDivFoldAction
> &Actions
,
935 unsigned Depth
= 0) {
936 // FIXME: assert that Op1 isn't/doesn't contain undef.
938 // Check to see if this is an unsigned division with an exact power of 2,
939 // if so, convert to a right shift.
940 if (match(Op1
, m_Power2())) {
941 Actions
.push_back(UDivFoldAction(foldUDivPow2Cst
, Op1
));
942 return Actions
.size();
945 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
946 if (match(Op1
, m_Shl(m_Power2(), m_Value())) ||
947 match(Op1
, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
948 Actions
.push_back(UDivFoldAction(foldUDivShl
, Op1
));
949 return Actions
.size();
952 // The remaining tests are all recursive, so bail out if we hit the limit.
953 if (Depth
++ == MaxDepth
)
956 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
957 // FIXME: missed optimization: if one of the hands of select is/contains
958 // undef, just directly pick the other one.
959 // FIXME: can both hands contain undef?
961 visitUDivOperand(Op0
, SI
->getOperand(1), I
, Actions
, Depth
))
962 if (visitUDivOperand(Op0
, SI
->getOperand(2), I
, Actions
, Depth
)) {
963 Actions
.push_back(UDivFoldAction(nullptr, Op1
, LHSIdx
- 1));
964 return Actions
.size();
970 /// If we have zero-extended operands of an unsigned div or rem, we may be able
971 /// to narrow the operation (sink the zext below the math).
972 static Instruction
*narrowUDivURem(BinaryOperator
&I
,
973 InstCombiner::BuilderTy
&Builder
) {
974 Instruction::BinaryOps Opcode
= I
.getOpcode();
975 Value
*N
= I
.getOperand(0);
976 Value
*D
= I
.getOperand(1);
977 Type
*Ty
= I
.getType();
979 if (match(N
, m_ZExt(m_Value(X
))) && match(D
, m_ZExt(m_Value(Y
))) &&
980 X
->getType() == Y
->getType() && (N
->hasOneUse() || D
->hasOneUse())) {
981 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
982 // urem (zext X), (zext Y) --> zext (urem X, Y)
983 Value
*NarrowOp
= Builder
.CreateBinOp(Opcode
, X
, Y
);
984 return new ZExtInst(NarrowOp
, Ty
);
988 if ((match(N
, m_OneUse(m_ZExt(m_Value(X
)))) && match(D
, m_Constant(C
))) ||
989 (match(D
, m_OneUse(m_ZExt(m_Value(X
)))) && match(N
, m_Constant(C
)))) {
990 // If the constant is the same in the smaller type, use the narrow version.
991 Constant
*TruncC
= ConstantExpr::getTrunc(C
, X
->getType());
992 if (ConstantExpr::getZExt(TruncC
, Ty
) != C
)
995 // udiv (zext X), C --> zext (udiv X, C')
996 // urem (zext X), C --> zext (urem X, C')
997 // udiv C, (zext X) --> zext (udiv C', X)
998 // urem C, (zext X) --> zext (urem C', X)
999 Value
*NarrowOp
= isa
<Constant
>(D
) ? Builder
.CreateBinOp(Opcode
, X
, TruncC
)
1000 : Builder
.CreateBinOp(Opcode
, TruncC
, X
);
1001 return new ZExtInst(NarrowOp
, Ty
);
1007 Instruction
*InstCombinerImpl::visitUDiv(BinaryOperator
&I
) {
1008 if (Value
*V
= SimplifyUDivInst(I
.getOperand(0), I
.getOperand(1),
1009 SQ
.getWithInstruction(&I
)))
1010 return replaceInstUsesWith(I
, V
);
1012 if (Instruction
*X
= foldVectorBinop(I
))
1015 // Handle the integer div common cases
1016 if (Instruction
*Common
= commonIDivTransforms(I
))
1019 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1021 const APInt
*C1
, *C2
;
1022 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(C1
))) && match(Op1
, m_APInt(C2
))) {
1023 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1025 APInt C2ShlC1
= C2
->ushl_ov(*C1
, Overflow
);
1027 bool IsExact
= I
.isExact() && match(Op0
, m_Exact(m_Value()));
1028 BinaryOperator
*BO
= BinaryOperator::CreateUDiv(
1029 X
, ConstantInt::get(X
->getType(), C2ShlC1
));
1036 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1037 // TODO: Could use isKnownNegative() to handle non-constant values.
1038 Type
*Ty
= I
.getType();
1039 if (match(Op1
, m_Negative())) {
1040 Value
*Cmp
= Builder
.CreateICmpUGE(Op0
, Op1
);
1041 return CastInst::CreateZExtOrBitCast(Cmp
, Ty
);
1043 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1044 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)) {
1045 Value
*Cmp
= Builder
.CreateICmpEQ(Op0
, ConstantInt::getAllOnesValue(Ty
));
1046 return CastInst::CreateZExtOrBitCast(Cmp
, Ty
);
1049 if (Instruction
*NarrowDiv
= narrowUDivURem(I
, Builder
))
1052 // If the udiv operands are non-overflowing multiplies with a common operand,
1053 // then eliminate the common factor:
1054 // (A * B) / (A * X) --> B / X (and commuted variants)
1055 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1056 // TODO: If -reassociation handled this generally, we could remove this.
1058 if (match(Op0
, m_NUWMul(m_Value(A
), m_Value(B
)))) {
1059 if (match(Op1
, m_NUWMul(m_Specific(A
), m_Value(X
))) ||
1060 match(Op1
, m_NUWMul(m_Value(X
), m_Specific(A
))))
1061 return BinaryOperator::CreateUDiv(B
, X
);
1062 if (match(Op1
, m_NUWMul(m_Specific(B
), m_Value(X
))) ||
1063 match(Op1
, m_NUWMul(m_Value(X
), m_Specific(B
))))
1064 return BinaryOperator::CreateUDiv(A
, X
);
1067 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1068 SmallVector
<UDivFoldAction
, 6> UDivActions
;
1069 if (visitUDivOperand(Op0
, Op1
, I
, UDivActions
))
1070 for (unsigned i
= 0, e
= UDivActions
.size(); i
!= e
; ++i
) {
1071 FoldUDivOperandCb Action
= UDivActions
[i
].FoldAction
;
1072 Value
*ActionOp1
= UDivActions
[i
].OperandToFold
;
1075 Inst
= Action(Op0
, ActionOp1
, I
, *this);
1077 // This action joins two actions together. The RHS of this action is
1078 // simply the last action we processed, we saved the LHS action index in
1079 // the joining action.
1080 size_t SelectRHSIdx
= i
- 1;
1081 Value
*SelectRHS
= UDivActions
[SelectRHSIdx
].FoldResult
;
1082 size_t SelectLHSIdx
= UDivActions
[i
].SelectLHSIdx
;
1083 Value
*SelectLHS
= UDivActions
[SelectLHSIdx
].FoldResult
;
1084 Inst
= SelectInst::Create(cast
<SelectInst
>(ActionOp1
)->getCondition(),
1085 SelectLHS
, SelectRHS
);
1088 // If this is the last action to process, return it to the InstCombiner.
1089 // Otherwise, we insert it before the UDiv and record it so that we may
1090 // use it as part of a joining action (i.e., a SelectInst).
1092 Inst
->insertBefore(&I
);
1093 UDivActions
[i
].FoldResult
= Inst
;
1101 Instruction
*InstCombinerImpl::visitSDiv(BinaryOperator
&I
) {
1102 if (Value
*V
= SimplifySDivInst(I
.getOperand(0), I
.getOperand(1),
1103 SQ
.getWithInstruction(&I
)))
1104 return replaceInstUsesWith(I
, V
);
1106 if (Instruction
*X
= foldVectorBinop(I
))
1109 // Handle the integer div common cases
1110 if (Instruction
*Common
= commonIDivTransforms(I
))
1113 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1114 Type
*Ty
= I
.getType();
1116 // sdiv Op0, -1 --> -Op0
1117 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1118 if (match(Op1
, m_AllOnes()) ||
1119 (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
1120 return BinaryOperator::CreateNeg(Op0
);
1122 // X / INT_MIN --> X == INT_MIN
1123 if (match(Op1
, m_SignMask()))
1124 return new ZExtInst(Builder
.CreateICmpEQ(Op0
, Op1
), Ty
);
1126 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1127 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1128 if (I
.isExact() && ((match(Op1
, m_Power2()) && match(Op1
, m_NonNegative())) ||
1129 match(Op1
, m_NegatedPower2()))) {
1130 bool DivisorWasNegative
= match(Op1
, m_NegatedPower2());
1131 if (DivisorWasNegative
)
1132 Op1
= ConstantExpr::getNeg(cast
<Constant
>(Op1
));
1133 auto *AShr
= BinaryOperator::CreateExactAShr(
1134 Op0
, ConstantExpr::getExactLogBase2(cast
<Constant
>(Op1
)), I
.getName());
1135 if (!DivisorWasNegative
)
1137 Builder
.Insert(AShr
);
1138 AShr
->setName(I
.getName() + ".neg");
1139 return BinaryOperator::CreateNeg(AShr
, I
.getName());
1143 if (match(Op1
, m_APInt(Op1C
))) {
1144 // If the dividend is sign-extended and the constant divisor is small enough
1145 // to fit in the source type, shrink the division to the narrower type:
1146 // (sext X) sdiv C --> sext (X sdiv C)
1148 if (match(Op0
, m_OneUse(m_SExt(m_Value(Op0Src
)))) &&
1149 Op0Src
->getType()->getScalarSizeInBits() >= Op1C
->getMinSignedBits()) {
1151 // In the general case, we need to make sure that the dividend is not the
1152 // minimum signed value because dividing that by -1 is UB. But here, we
1153 // know that the -1 divisor case is already handled above.
1155 Constant
*NarrowDivisor
=
1156 ConstantExpr::getTrunc(cast
<Constant
>(Op1
), Op0Src
->getType());
1157 Value
*NarrowOp
= Builder
.CreateSDiv(Op0Src
, NarrowDivisor
);
1158 return new SExtInst(NarrowOp
, Ty
);
1161 // -X / C --> X / -C (if the negation doesn't overflow).
1162 // TODO: This could be enhanced to handle arbitrary vector constants by
1163 // checking if all elements are not the min-signed-val.
1164 if (!Op1C
->isMinSignedValue() &&
1165 match(Op0
, m_NSWSub(m_Zero(), m_Value(X
)))) {
1166 Constant
*NegC
= ConstantInt::get(Ty
, -(*Op1C
));
1167 Instruction
*BO
= BinaryOperator::CreateSDiv(X
, NegC
);
1168 BO
->setIsExact(I
.isExact());
1173 // -X / Y --> -(X / Y)
1175 if (match(&I
, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X
))), m_Value(Y
))))
1176 return BinaryOperator::CreateNSWNeg(
1177 Builder
.CreateSDiv(X
, Y
, I
.getName(), I
.isExact()));
1179 // abs(X) / X --> X > -1 ? 1 : -1
1180 // X / abs(X) --> X > -1 ? 1 : -1
1181 if (match(&I
, m_c_BinOp(
1182 m_OneUse(m_Intrinsic
<Intrinsic::abs
>(m_Value(X
), m_One())),
1184 Constant
*NegOne
= ConstantInt::getAllOnesValue(Ty
);
1185 Value
*Cond
= Builder
.CreateICmpSGT(X
, NegOne
);
1186 return SelectInst::Create(Cond
, ConstantInt::get(Ty
, 1), NegOne
);
1189 // If the sign bits of both operands are zero (i.e. we can prove they are
1190 // unsigned inputs), turn this into a udiv.
1191 APInt
Mask(APInt::getSignMask(Ty
->getScalarSizeInBits()));
1192 if (MaskedValueIsZero(Op0
, Mask
, 0, &I
)) {
1193 if (MaskedValueIsZero(Op1
, Mask
, 0, &I
)) {
1194 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1195 auto *BO
= BinaryOperator::CreateUDiv(Op0
, Op1
, I
.getName());
1196 BO
->setIsExact(I
.isExact());
1200 if (match(Op1
, m_NegatedPower2())) {
1201 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1202 // -> -(X udiv (1 << C)) -> -(X u>> C)
1203 return BinaryOperator::CreateNeg(Builder
.Insert(foldUDivPow2Cst(
1204 Op0
, ConstantExpr::getNeg(cast
<Constant
>(Op1
)), I
, *this)));
1207 if (isKnownToBeAPowerOfTwo(Op1
, /*OrZero*/ true, 0, &I
)) {
1208 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1209 // Safe because the only negative value (1 << Y) can take on is
1210 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1211 // the sign bit set.
1212 auto *BO
= BinaryOperator::CreateUDiv(Op0
, Op1
, I
.getName());
1213 BO
->setIsExact(I
.isExact());
1221 /// Remove negation and try to convert division into multiplication.
1222 static Instruction
*foldFDivConstantDivisor(BinaryOperator
&I
) {
1224 if (!match(I
.getOperand(1), m_Constant(C
)))
1227 // -X / C --> X / -C
1229 if (match(I
.getOperand(0), m_FNeg(m_Value(X
))))
1230 return BinaryOperator::CreateFDivFMF(X
, ConstantExpr::getFNeg(C
), &I
);
1232 // If the constant divisor has an exact inverse, this is always safe. If not,
1233 // then we can still create a reciprocal if fast-math-flags allow it and the
1234 // constant is a regular number (not zero, infinite, or denormal).
1235 if (!(C
->hasExactInverseFP() || (I
.hasAllowReciprocal() && C
->isNormalFP())))
1238 // Disallow denormal constants because we don't know what would happen
1240 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1241 // denorms are flushed?
1242 auto *RecipC
= ConstantExpr::getFDiv(ConstantFP::get(I
.getType(), 1.0), C
);
1243 if (!RecipC
->isNormalFP())
1246 // X / C --> X * (1 / C)
1247 return BinaryOperator::CreateFMulFMF(I
.getOperand(0), RecipC
, &I
);
1250 /// Remove negation and try to reassociate constant math.
1251 static Instruction
*foldFDivConstantDividend(BinaryOperator
&I
) {
1253 if (!match(I
.getOperand(0), m_Constant(C
)))
1256 // C / -X --> -C / X
1258 if (match(I
.getOperand(1), m_FNeg(m_Value(X
))))
1259 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C
), X
, &I
);
1261 if (!I
.hasAllowReassoc() || !I
.hasAllowReciprocal())
1264 // Try to reassociate C / X expressions where X includes another constant.
1265 Constant
*C2
, *NewC
= nullptr;
1266 if (match(I
.getOperand(1), m_FMul(m_Value(X
), m_Constant(C2
)))) {
1267 // C / (X * C2) --> (C / C2) / X
1268 NewC
= ConstantExpr::getFDiv(C
, C2
);
1269 } else if (match(I
.getOperand(1), m_FDiv(m_Value(X
), m_Constant(C2
)))) {
1270 // C / (X / C2) --> (C * C2) / X
1271 NewC
= ConstantExpr::getFMul(C
, C2
);
1273 // Disallow denormal constants because we don't know what would happen
1275 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1276 // denorms are flushed?
1277 if (!NewC
|| !NewC
->isNormalFP())
1280 return BinaryOperator::CreateFDivFMF(NewC
, X
, &I
);
1283 /// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1284 static Instruction
*foldFDivPowDivisor(BinaryOperator
&I
,
1285 InstCombiner::BuilderTy
&Builder
) {
1286 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1287 auto *II
= dyn_cast
<IntrinsicInst
>(Op1
);
1288 if (!II
|| !II
->hasOneUse() || !I
.hasAllowReassoc() ||
1289 !I
.hasAllowReciprocal())
1292 // Z / pow(X, Y) --> Z * pow(X, -Y)
1293 // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1294 // In the general case, this creates an extra instruction, but fmul allows
1295 // for better canonicalization and optimization than fdiv.
1296 Intrinsic::ID IID
= II
->getIntrinsicID();
1297 SmallVector
<Value
*> Args
;
1299 case Intrinsic::pow
:
1300 Args
.push_back(II
->getArgOperand(0));
1301 Args
.push_back(Builder
.CreateFNegFMF(II
->getArgOperand(1), &I
));
1303 case Intrinsic::powi
: {
1304 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1305 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1306 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1307 // non-standard results, so this corner case should be acceptable if the
1308 // code rules out INF values.
1311 Args
.push_back(II
->getArgOperand(0));
1312 Args
.push_back(Builder
.CreateNeg(II
->getArgOperand(1)));
1313 Type
*Tys
[] = {I
.getType(), II
->getArgOperand(1)->getType()};
1314 Value
*Pow
= Builder
.CreateIntrinsic(IID
, Tys
, Args
, &I
);
1315 return BinaryOperator::CreateFMulFMF(Op0
, Pow
, &I
);
1317 case Intrinsic::exp
:
1318 case Intrinsic::exp2
:
1319 Args
.push_back(Builder
.CreateFNegFMF(II
->getArgOperand(0), &I
));
1324 Value
*Pow
= Builder
.CreateIntrinsic(IID
, I
.getType(), Args
, &I
);
1325 return BinaryOperator::CreateFMulFMF(Op0
, Pow
, &I
);
1328 Instruction
*InstCombinerImpl::visitFDiv(BinaryOperator
&I
) {
1329 if (Value
*V
= SimplifyFDivInst(I
.getOperand(0), I
.getOperand(1),
1330 I
.getFastMathFlags(),
1331 SQ
.getWithInstruction(&I
)))
1332 return replaceInstUsesWith(I
, V
);
1334 if (Instruction
*X
= foldVectorBinop(I
))
1337 if (Instruction
*R
= foldFDivConstantDivisor(I
))
1340 if (Instruction
*R
= foldFDivConstantDividend(I
))
1343 if (Instruction
*R
= foldFPSignBitOps(I
))
1346 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1347 if (isa
<Constant
>(Op0
))
1348 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op1
))
1349 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1352 if (isa
<Constant
>(Op1
))
1353 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0
))
1354 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1357 if (I
.hasAllowReassoc() && I
.hasAllowReciprocal()) {
1359 if (match(Op0
, m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
)))) &&
1360 (!isa
<Constant
>(Y
) || !isa
<Constant
>(Op1
))) {
1361 // (X / Y) / Z => X / (Y * Z)
1362 Value
*YZ
= Builder
.CreateFMulFMF(Y
, Op1
, &I
);
1363 return BinaryOperator::CreateFDivFMF(X
, YZ
, &I
);
1365 if (match(Op1
, m_OneUse(m_FDiv(m_Value(X
), m_Value(Y
)))) &&
1366 (!isa
<Constant
>(Y
) || !isa
<Constant
>(Op0
))) {
1367 // Z / (X / Y) => (Y * Z) / X
1368 Value
*YZ
= Builder
.CreateFMulFMF(Y
, Op0
, &I
);
1369 return BinaryOperator::CreateFDivFMF(YZ
, X
, &I
);
1371 // Z / (1.0 / Y) => (Y * Z)
1373 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1374 // m_OneUse check is avoided because even in the case of the multiple uses
1375 // for 1.0/Y, the number of instructions remain the same and a division is
1376 // replaced by a multiplication.
1377 if (match(Op1
, m_FDiv(m_SpecificFP(1.0), m_Value(Y
))))
1378 return BinaryOperator::CreateFMulFMF(Y
, Op0
, &I
);
1381 if (I
.hasAllowReassoc() && Op0
->hasOneUse() && Op1
->hasOneUse()) {
1382 // sin(X) / cos(X) -> tan(X)
1383 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1385 bool IsTan
= match(Op0
, m_Intrinsic
<Intrinsic::sin
>(m_Value(X
))) &&
1386 match(Op1
, m_Intrinsic
<Intrinsic::cos
>(m_Specific(X
)));
1388 !IsTan
&& match(Op0
, m_Intrinsic
<Intrinsic::cos
>(m_Value(X
))) &&
1389 match(Op1
, m_Intrinsic
<Intrinsic::sin
>(m_Specific(X
)));
1391 if ((IsTan
|| IsCot
) &&
1392 hasFloatFn(&TLI
, I
.getType(), LibFunc_tan
, LibFunc_tanf
, LibFunc_tanl
)) {
1394 IRBuilder
<>::FastMathFlagGuard
FMFGuard(B
);
1395 B
.setFastMathFlags(I
.getFastMathFlags());
1396 AttributeList Attrs
=
1397 cast
<CallBase
>(Op0
)->getCalledFunction()->getAttributes();
1398 Value
*Res
= emitUnaryFloatFnCall(X
, &TLI
, LibFunc_tan
, LibFunc_tanf
,
1399 LibFunc_tanl
, B
, Attrs
);
1401 Res
= B
.CreateFDiv(ConstantFP::get(I
.getType(), 1.0), Res
);
1402 return replaceInstUsesWith(I
, Res
);
1406 // X / (X * Y) --> 1.0 / Y
1407 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1408 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1410 if (I
.hasNoNaNs() && I
.hasAllowReassoc() &&
1411 match(Op1
, m_c_FMul(m_Specific(Op0
), m_Value(Y
)))) {
1412 replaceOperand(I
, 0, ConstantFP::get(I
.getType(), 1.0));
1413 replaceOperand(I
, 1, Y
);
1417 // X / fabs(X) -> copysign(1.0, X)
1418 // fabs(X) / X -> copysign(1.0, X)
1419 if (I
.hasNoNaNs() && I
.hasNoInfs() &&
1420 (match(&I
, m_FDiv(m_Value(X
), m_FAbs(m_Deferred(X
)))) ||
1421 match(&I
, m_FDiv(m_FAbs(m_Value(X
)), m_Deferred(X
))))) {
1422 Value
*V
= Builder
.CreateBinaryIntrinsic(
1423 Intrinsic::copysign
, ConstantFP::get(I
.getType(), 1.0), X
, &I
);
1424 return replaceInstUsesWith(I
, V
);
1427 if (Instruction
*Mul
= foldFDivPowDivisor(I
, Builder
))
1433 /// This function implements the transforms common to both integer remainder
1434 /// instructions (urem and srem). It is called by the visitors to those integer
1435 /// remainder instructions.
1436 /// Common integer remainder transforms
1437 Instruction
*InstCombinerImpl::commonIRemTransforms(BinaryOperator
&I
) {
1438 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1440 // The RHS is known non-zero.
1441 if (Value
*V
= simplifyValueKnownNonZero(I
.getOperand(1), *this, I
))
1442 return replaceOperand(I
, 1, V
);
1444 // Handle cases involving: rem X, (select Cond, Y, Z)
1445 if (simplifyDivRemOfSelectWithZeroOp(I
))
1448 if (isa
<Constant
>(Op1
)) {
1449 if (Instruction
*Op0I
= dyn_cast
<Instruction
>(Op0
)) {
1450 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op0I
)) {
1451 if (Instruction
*R
= FoldOpIntoSelect(I
, SI
))
1453 } else if (auto *PN
= dyn_cast
<PHINode
>(Op0I
)) {
1454 const APInt
*Op1Int
;
1455 if (match(Op1
, m_APInt(Op1Int
)) && !Op1Int
->isMinValue() &&
1456 (I
.getOpcode() == Instruction::URem
||
1457 !Op1Int
->isMinSignedValue())) {
1458 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1459 // predecessor blocks, so do this only if we know the srem or urem
1461 if (Instruction
*NV
= foldOpIntoPhi(I
, PN
))
1466 // See if we can fold away this rem instruction.
1467 if (SimplifyDemandedInstructionBits(I
))
1475 Instruction
*InstCombinerImpl::visitURem(BinaryOperator
&I
) {
1476 if (Value
*V
= SimplifyURemInst(I
.getOperand(0), I
.getOperand(1),
1477 SQ
.getWithInstruction(&I
)))
1478 return replaceInstUsesWith(I
, V
);
1480 if (Instruction
*X
= foldVectorBinop(I
))
1483 if (Instruction
*common
= commonIRemTransforms(I
))
1486 if (Instruction
*NarrowRem
= narrowUDivURem(I
, Builder
))
1489 // X urem Y -> X and Y-1, where Y is a power of 2,
1490 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1491 Type
*Ty
= I
.getType();
1492 if (isKnownToBeAPowerOfTwo(Op1
, /*OrZero*/ true, 0, &I
)) {
1493 // This may increase instruction count, we don't enforce that Y is a
1495 Constant
*N1
= Constant::getAllOnesValue(Ty
);
1496 Value
*Add
= Builder
.CreateAdd(Op1
, N1
);
1497 return BinaryOperator::CreateAnd(Op0
, Add
);
1500 // 1 urem X -> zext(X != 1)
1501 if (match(Op0
, m_One())) {
1502 Value
*Cmp
= Builder
.CreateICmpNE(Op1
, ConstantInt::get(Ty
, 1));
1503 return CastInst::CreateZExtOrBitCast(Cmp
, Ty
);
1506 // X urem C -> X < C ? X : X - C, where C >= signbit.
1507 if (match(Op1
, m_Negative())) {
1508 Value
*Cmp
= Builder
.CreateICmpULT(Op0
, Op1
);
1509 Value
*Sub
= Builder
.CreateSub(Op0
, Op1
);
1510 return SelectInst::Create(Cmp
, Op0
, Sub
);
1513 // If the divisor is a sext of a boolean, then the divisor must be max
1514 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1515 // max unsigned value. In that case, the remainder is 0:
1516 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1518 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)) {
1519 Value
*Cmp
= Builder
.CreateICmpEQ(Op0
, ConstantInt::getAllOnesValue(Ty
));
1520 return SelectInst::Create(Cmp
, ConstantInt::getNullValue(Ty
), Op0
);
1526 Instruction
*InstCombinerImpl::visitSRem(BinaryOperator
&I
) {
1527 if (Value
*V
= SimplifySRemInst(I
.getOperand(0), I
.getOperand(1),
1528 SQ
.getWithInstruction(&I
)))
1529 return replaceInstUsesWith(I
, V
);
1531 if (Instruction
*X
= foldVectorBinop(I
))
1534 // Handle the integer rem common cases
1535 if (Instruction
*Common
= commonIRemTransforms(I
))
1538 Value
*Op0
= I
.getOperand(0), *Op1
= I
.getOperand(1);
1542 if (match(Op1
, m_Negative(Y
)) && !Y
->isMinSignedValue())
1543 return replaceOperand(I
, 1, ConstantInt::get(I
.getType(), -*Y
));
1546 // -X srem Y --> -(X srem Y)
1548 if (match(&I
, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X
))), m_Value(Y
))))
1549 return BinaryOperator::CreateNSWNeg(Builder
.CreateSRem(X
, Y
));
1551 // If the sign bits of both operands are zero (i.e. we can prove they are
1552 // unsigned inputs), turn this into a urem.
1553 APInt
Mask(APInt::getSignMask(I
.getType()->getScalarSizeInBits()));
1554 if (MaskedValueIsZero(Op1
, Mask
, 0, &I
) &&
1555 MaskedValueIsZero(Op0
, Mask
, 0, &I
)) {
1556 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1557 return BinaryOperator::CreateURem(Op0
, Op1
, I
.getName());
1560 // If it's a constant vector, flip any negative values positive.
1561 if (isa
<ConstantVector
>(Op1
) || isa
<ConstantDataVector
>(Op1
)) {
1562 Constant
*C
= cast
<Constant
>(Op1
);
1563 unsigned VWidth
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
1565 bool hasNegative
= false;
1566 bool hasMissing
= false;
1567 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1568 Constant
*Elt
= C
->getAggregateElement(i
);
1574 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Elt
))
1575 if (RHS
->isNegative())
1579 if (hasNegative
&& !hasMissing
) {
1580 SmallVector
<Constant
*, 16> Elts(VWidth
);
1581 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1582 Elts
[i
] = C
->getAggregateElement(i
); // Handle undef, etc.
1583 if (ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(Elts
[i
])) {
1584 if (RHS
->isNegative())
1585 Elts
[i
] = cast
<ConstantInt
>(ConstantExpr::getNeg(RHS
));
1589 Constant
*NewRHSV
= ConstantVector::get(Elts
);
1590 if (NewRHSV
!= C
) // Don't loop on -MININT
1591 return replaceOperand(I
, 1, NewRHSV
);
1598 Instruction
*InstCombinerImpl::visitFRem(BinaryOperator
&I
) {
1599 if (Value
*V
= SimplifyFRemInst(I
.getOperand(0), I
.getOperand(1),
1600 I
.getFastMathFlags(),
1601 SQ
.getWithInstruction(&I
)))
1602 return replaceInstUsesWith(I
, V
);
1604 if (Instruction
*X
= foldVectorBinop(I
))