1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/DebugCounter.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/InstCombine/InstCombiner.h"
50 #include <type_traits>
54 class AssumptionCache
;
62 #define DEBUG_TYPE "instcombine"
64 STATISTIC(NegatorTotalNegationsAttempted
,
65 "Negator: Number of negations attempted to be sinked");
66 STATISTIC(NegatorNumTreesNegated
,
67 "Negator: Number of negations successfully sinked");
68 STATISTIC(NegatorMaxDepthVisited
, "Negator: Maximal traversal depth ever "
69 "reached while attempting to sink negation");
70 STATISTIC(NegatorTimesDepthLimitReached
,
71 "Negator: How many times did the traversal depth limit was reached "
74 NegatorNumValuesVisited
,
75 "Negator: Total number of values visited during attempts to sink negation");
76 STATISTIC(NegatorNumNegationsFoundInCache
,
77 "Negator: How many negations did we retrieve/reuse from cache");
78 STATISTIC(NegatorMaxTotalValuesVisited
,
79 "Negator: Maximal number of values ever visited while attempting to "
81 STATISTIC(NegatorNumInstructionsCreatedTotal
,
82 "Negator: Number of new negated instructions created, total");
83 STATISTIC(NegatorMaxInstructionsCreated
,
84 "Negator: Maximal number of new instructions created during negation "
86 STATISTIC(NegatorNumInstructionsNegatedSuccess
,
87 "Negator: Number of new negated instructions created in successful "
88 "negation sinking attempts");
90 DEBUG_COUNTER(NegatorCounter
, "instcombine-negator",
91 "Controls Negator transformations in InstCombine pass");
94 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
95 cl::desc("Should we attempt to sink negations?"));
97 static cl::opt
<unsigned>
98 NegatorMaxDepth("instcombine-negator-max-depth",
99 cl::init(NegatorDefaultMaxDepth
),
100 cl::desc("What is the maximal lookup depth when trying to "
101 "check for viability of negation sinking."));
103 Negator::Negator(LLVMContext
&C
, const DataLayout
&DL_
, AssumptionCache
&AC_
,
104 const DominatorTree
&DT_
, bool IsTrulyNegation_
)
105 : Builder(C
, TargetFolder(DL_
),
106 IRBuilderCallbackInserter([&](Instruction
*I
) {
107 ++NegatorNumInstructionsCreatedTotal
;
108 NewInstructions
.push_back(I
);
110 DL(DL_
), AC(AC_
), DT(DT_
), IsTrulyNegation(IsTrulyNegation_
) {}
112 #if LLVM_ENABLE_STATS
113 Negator::~Negator() {
114 NegatorMaxTotalValuesVisited
.updateMax(NumValuesVisitedInThisNegator
);
118 // Due to the InstCombine's worklist management, there are no guarantees that
119 // each instruction we'll encounter has been visited by InstCombine already.
120 // In particular, most importantly for us, that means we have to canonicalize
121 // constants to RHS ourselves, since that is helpful sometimes.
122 std::array
<Value
*, 2> Negator::getSortedOperandsOfBinOp(Instruction
*I
) {
123 assert(I
->getNumOperands() == 2 && "Only for binops!");
124 std::array
<Value
*, 2> Ops
{I
->getOperand(0), I
->getOperand(1)};
125 if (I
->isCommutative() && InstCombiner::getComplexity(I
->getOperand(0)) <
126 InstCombiner::getComplexity(I
->getOperand(1)))
127 std::swap(Ops
[0], Ops
[1]);
131 // FIXME: can this be reworked into a worklist-based algorithm while preserving
132 // the depth-first, early bailout traversal?
133 LLVM_NODISCARD Value
*Negator::visitImpl(Value
*V
, unsigned Depth
) {
134 // -(undef) -> undef.
135 if (match(V
, m_Undef()))
138 // In i1, negation can simply be ignored.
139 if (V
->getType()->isIntOrIntVectorTy(1))
145 if (match(V
, m_Neg(m_Value(X
))))
148 // Integral constants can be freely negated.
149 if (match(V
, m_AnyIntegralConstant()))
150 return ConstantExpr::getNeg(cast
<Constant
>(V
), /*HasNUW=*/false,
153 // If we have a non-instruction, then give up.
154 if (!isa
<Instruction
>(V
))
157 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
158 // got instruction that does not require recursive reasoning, we can still
159 // negate it even if it has other uses, without increasing instruction count.
160 if (!V
->hasOneUse() && !IsTrulyNegation
)
163 auto *I
= cast
<Instruction
>(V
);
164 unsigned BitWidth
= I
->getType()->getScalarSizeInBits();
166 // We must preserve the insertion point and debug info that is set in the
167 // builder at the time this function is called.
168 InstCombiner::BuilderTy::InsertPointGuard
Guard(Builder
);
169 // And since we are trying to negate instruction I, that tells us about the
170 // insertion point and the debug info that we need to keep.
171 Builder
.SetInsertPoint(I
);
173 // In some cases we can give the answer without further recursion.
174 switch (I
->getOpcode()) {
175 case Instruction::Add
: {
176 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
177 // `inc` is always negatible.
178 if (match(Ops
[1], m_One()))
179 return Builder
.CreateNot(Ops
[0], I
->getName() + ".neg");
182 case Instruction::Xor
:
183 // `not` is always negatible.
184 if (match(I
, m_Not(m_Value(X
))))
185 return Builder
.CreateAdd(X
, ConstantInt::get(X
->getType(), 1),
186 I
->getName() + ".neg");
188 case Instruction::AShr
:
189 case Instruction::LShr
: {
190 // Right-shift sign bit smear is negatible.
192 if (match(I
->getOperand(1), m_APInt(Op1Val
)) && *Op1Val
== BitWidth
- 1) {
193 Value
*BO
= I
->getOpcode() == Instruction::AShr
194 ? Builder
.CreateLShr(I
->getOperand(0), I
->getOperand(1))
195 : Builder
.CreateAShr(I
->getOperand(0), I
->getOperand(1));
196 if (auto *NewInstr
= dyn_cast
<Instruction
>(BO
)) {
197 NewInstr
->copyIRFlags(I
);
198 NewInstr
->setName(I
->getName() + ".neg");
202 // While we could negate exact arithmetic shift:
203 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
204 // iff C != 0 and C u< bitwidth(%x), we don't want to,
205 // because division is *THAT* much worse than a shift.
208 case Instruction::SExt
:
209 case Instruction::ZExt
:
210 // `*ext` of i1 is always negatible
211 if (I
->getOperand(0)->getType()->isIntOrIntVectorTy(1))
212 return I
->getOpcode() == Instruction::SExt
213 ? Builder
.CreateZExt(I
->getOperand(0), I
->getType(),
214 I
->getName() + ".neg")
215 : Builder
.CreateSExt(I
->getOperand(0), I
->getType(),
216 I
->getName() + ".neg");
219 break; // Other instructions require recursive reasoning.
222 if (I
->getOpcode() == Instruction::Sub
&&
223 (I
->hasOneUse() || match(I
->getOperand(0), m_ImmConstant()))) {
224 // `sub` is always negatible.
225 // However, only do this either if the old `sub` doesn't stick around, or
226 // it was subtracting from a constant. Otherwise, this isn't profitable.
227 return Builder
.CreateSub(I
->getOperand(1), I
->getOperand(0),
228 I
->getName() + ".neg");
231 // Some other cases, while still don't require recursion,
232 // are restricted to the one-use case.
236 switch (I
->getOpcode()) {
237 case Instruction::SDiv
:
238 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
239 // While this is normally not behind a use-check,
240 // let's consider division to be special since it's costly.
241 if (auto *Op1C
= dyn_cast
<Constant
>(I
->getOperand(1))) {
242 if (!Op1C
->containsUndefOrPoisonElement() &&
243 Op1C
->isNotMinSignedValue() && Op1C
->isNotOneValue()) {
245 Builder
.CreateSDiv(I
->getOperand(0), ConstantExpr::getNeg(Op1C
),
246 I
->getName() + ".neg");
247 if (auto *NewInstr
= dyn_cast
<Instruction
>(BO
))
248 NewInstr
->setIsExact(I
->isExact());
255 // Rest of the logic is recursive, so if it's time to give up then it's time.
256 if (Depth
> NegatorMaxDepth
) {
257 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
258 << *V
<< ". Giving up.\n");
259 ++NegatorTimesDepthLimitReached
;
263 switch (I
->getOpcode()) {
264 case Instruction::Freeze
: {
265 // `freeze` is negatible if its operand is negatible.
266 Value
*NegOp
= negate(I
->getOperand(0), Depth
+ 1);
267 if (!NegOp
) // Early return.
269 return Builder
.CreateFreeze(NegOp
, I
->getName() + ".neg");
271 case Instruction::PHI
: {
272 // `phi` is negatible if all the incoming values are negatible.
273 auto *PHI
= cast
<PHINode
>(I
);
274 SmallVector
<Value
*, 4> NegatedIncomingValues(PHI
->getNumOperands());
275 for (auto I
: zip(PHI
->incoming_values(), NegatedIncomingValues
)) {
276 if (!(std::get
<1>(I
) =
277 negate(std::get
<0>(I
), Depth
+ 1))) // Early return.
280 // All incoming values are indeed negatible. Create negated PHI node.
281 PHINode
*NegatedPHI
= Builder
.CreatePHI(
282 PHI
->getType(), PHI
->getNumOperands(), PHI
->getName() + ".neg");
283 for (auto I
: zip(NegatedIncomingValues
, PHI
->blocks()))
284 NegatedPHI
->addIncoming(std::get
<0>(I
), std::get
<1>(I
));
287 case Instruction::Select
: {
288 if (isKnownNegation(I
->getOperand(1), I
->getOperand(2))) {
289 // Of one hand of select is known to be negation of another hand,
290 // just swap the hands around.
291 auto *NewSelect
= cast
<SelectInst
>(I
->clone());
292 // Just swap the operands of the select.
293 NewSelect
->swapValues();
294 // Don't swap prof metadata, we didn't change the branch behavior.
295 NewSelect
->setName(I
->getName() + ".neg");
296 Builder
.Insert(NewSelect
);
299 // `select` is negatible if both hands of `select` are negatible.
300 Value
*NegOp1
= negate(I
->getOperand(1), Depth
+ 1);
301 if (!NegOp1
) // Early return.
303 Value
*NegOp2
= negate(I
->getOperand(2), Depth
+ 1);
306 // Do preserve the metadata!
307 return Builder
.CreateSelect(I
->getOperand(0), NegOp1
, NegOp2
,
308 I
->getName() + ".neg", /*MDFrom=*/I
);
310 case Instruction::ShuffleVector
: {
311 // `shufflevector` is negatible if both operands are negatible.
312 auto *Shuf
= cast
<ShuffleVectorInst
>(I
);
313 Value
*NegOp0
= negate(I
->getOperand(0), Depth
+ 1);
314 if (!NegOp0
) // Early return.
316 Value
*NegOp1
= negate(I
->getOperand(1), Depth
+ 1);
319 return Builder
.CreateShuffleVector(NegOp0
, NegOp1
, Shuf
->getShuffleMask(),
320 I
->getName() + ".neg");
322 case Instruction::ExtractElement
: {
323 // `extractelement` is negatible if source operand is negatible.
324 auto *EEI
= cast
<ExtractElementInst
>(I
);
325 Value
*NegVector
= negate(EEI
->getVectorOperand(), Depth
+ 1);
326 if (!NegVector
) // Early return.
328 return Builder
.CreateExtractElement(NegVector
, EEI
->getIndexOperand(),
329 I
->getName() + ".neg");
331 case Instruction::InsertElement
: {
332 // `insertelement` is negatible if both the source vector and
333 // element-to-be-inserted are negatible.
334 auto *IEI
= cast
<InsertElementInst
>(I
);
335 Value
*NegVector
= negate(IEI
->getOperand(0), Depth
+ 1);
336 if (!NegVector
) // Early return.
338 Value
*NegNewElt
= negate(IEI
->getOperand(1), Depth
+ 1);
339 if (!NegNewElt
) // Early return.
341 return Builder
.CreateInsertElement(NegVector
, NegNewElt
, IEI
->getOperand(2),
342 I
->getName() + ".neg");
344 case Instruction::Trunc
: {
345 // `trunc` is negatible if its operand is negatible.
346 Value
*NegOp
= negate(I
->getOperand(0), Depth
+ 1);
347 if (!NegOp
) // Early return.
349 return Builder
.CreateTrunc(NegOp
, I
->getType(), I
->getName() + ".neg");
351 case Instruction::Shl
: {
352 // `shl` is negatible if the first operand is negatible.
353 if (Value
*NegOp0
= negate(I
->getOperand(0), Depth
+ 1))
354 return Builder
.CreateShl(NegOp0
, I
->getOperand(1), I
->getName() + ".neg");
355 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
356 auto *Op1C
= dyn_cast
<Constant
>(I
->getOperand(1));
357 if (!Op1C
) // Early return.
359 return Builder
.CreateMul(
361 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C
->getType()), Op1C
),
362 I
->getName() + ".neg");
364 case Instruction::Or
: {
365 if (!haveNoCommonBitsSet(I
->getOperand(0), I
->getOperand(1), DL
, &AC
, I
,
367 return nullptr; // Don't know how to handle `or` in general.
368 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
369 // `or`/`add` are interchangeable when operands have no common bits set.
370 // `inc` is always negatible.
371 if (match(Ops
[1], m_One()))
372 return Builder
.CreateNot(Ops
[0], I
->getName() + ".neg");
373 // Else, just defer to Instruction::Add handling.
376 case Instruction::Add
: {
377 // `add` is negatible if both of its operands are negatible.
378 SmallVector
<Value
*, 2> NegatedOps
, NonNegatedOps
;
379 for (Value
*Op
: I
->operands()) {
380 // Can we sink the negation into this operand?
381 if (Value
*NegOp
= negate(Op
, Depth
+ 1)) {
382 NegatedOps
.emplace_back(NegOp
); // Successfully negated operand!
385 // Failed to sink negation into this operand. IFF we started from negation
386 // and we manage to sink negation into one operand, we can still do this.
387 if (!IsTrulyNegation
)
389 NonNegatedOps
.emplace_back(Op
); // Just record which operand that was.
391 assert((NegatedOps
.size() + NonNegatedOps
.size()) == 2 &&
392 "Internal consistency sanity check.");
393 // Did we manage to sink negation into both of the operands?
394 if (NegatedOps
.size() == 2) // Then we get to keep the `add`!
395 return Builder
.CreateAdd(NegatedOps
[0], NegatedOps
[1],
396 I
->getName() + ".neg");
397 assert(IsTrulyNegation
&& "We should have early-exited then.");
398 // Completely failed to sink negation?
399 if (NonNegatedOps
.size() == 2)
401 // 0-(a+b) --> (-a)-b
402 return Builder
.CreateSub(NegatedOps
[0], NonNegatedOps
[0],
403 I
->getName() + ".neg");
405 case Instruction::Xor
: {
406 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
407 // `xor` is negatible if one of its operands is invertible.
408 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
409 if (auto *C
= dyn_cast
<Constant
>(Ops
[1])) {
410 Value
*Xor
= Builder
.CreateXor(Ops
[0], ConstantExpr::getNot(C
));
411 return Builder
.CreateAdd(Xor
, ConstantInt::get(Xor
->getType(), 1),
412 I
->getName() + ".neg");
416 case Instruction::Mul
: {
417 std::array
<Value
*, 2> Ops
= getSortedOperandsOfBinOp(I
);
418 // `mul` is negatible if one of its operands is negatible.
419 Value
*NegatedOp
, *OtherOp
;
420 // First try the second operand, in case it's a constant it will be best to
421 // just invert it instead of sinking the `neg` deeper.
422 if (Value
*NegOp1
= negate(Ops
[1], Depth
+ 1)) {
425 } else if (Value
*NegOp0
= negate(Ops
[0], Depth
+ 1)) {
429 // Can't negate either of them.
431 return Builder
.CreateMul(NegatedOp
, OtherOp
, I
->getName() + ".neg");
434 return nullptr; // Don't know, likely not negatible for free.
437 llvm_unreachable("Can't get here. We always return from switch.");
440 LLVM_NODISCARD Value
*Negator::negate(Value
*V
, unsigned Depth
) {
441 NegatorMaxDepthVisited
.updateMax(Depth
);
442 ++NegatorNumValuesVisited
;
444 #if LLVM_ENABLE_STATS
445 ++NumValuesVisitedInThisNegator
;
449 // We can't ever have a Value with such an address.
450 Value
*Placeholder
= reinterpret_cast<Value
*>(static_cast<uintptr_t>(-1));
453 // Did we already try to negate this value?
454 auto NegationsCacheIterator
= NegationsCache
.find(V
);
455 if (NegationsCacheIterator
!= NegationsCache
.end()) {
456 ++NegatorNumNegationsFoundInCache
;
457 Value
*NegatedV
= NegationsCacheIterator
->second
;
458 assert(NegatedV
!= Placeholder
&& "Encountered a cycle during negation.");
463 // We did not find a cached result for negation of V. While there,
464 // let's temporairly cache a placeholder value, with the idea that if later
465 // during negation we fetch it from cache, we'll know we're in a cycle.
466 NegationsCache
[V
] = Placeholder
;
469 // No luck. Try negating it for real.
470 Value
*NegatedV
= visitImpl(V
, Depth
);
471 // And cache the (real) result for the future.
472 NegationsCache
[V
] = NegatedV
;
477 LLVM_NODISCARD Optional
<Negator::Result
> Negator::run(Value
*Root
) {
478 Value
*Negated
= negate(Root
, /*Depth=*/0);
480 // We must cleanup newly-inserted instructions, to avoid any potential
481 // endless combine looping.
482 for (Instruction
*I
: llvm::reverse(NewInstructions
))
483 I
->eraseFromParent();
486 return std::make_pair(ArrayRef
<Instruction
*>(NewInstructions
), Negated
);
489 LLVM_NODISCARD Value
*Negator::Negate(bool LHSIsZero
, Value
*Root
,
490 InstCombinerImpl
&IC
) {
491 ++NegatorTotalNegationsAttempted
;
492 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
495 if (!NegatorEnabled
|| !DebugCounter::shouldExecute(NegatorCounter
))
498 Negator
N(Root
->getContext(), IC
.getDataLayout(), IC
.getAssumptionCache(),
499 IC
.getDominatorTree(), LHSIsZero
);
500 Optional
<Result
> Res
= N
.run(Root
);
501 if (!Res
) { // Negation failed.
502 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
507 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
508 << "\n NEW: " << *Res
->second
<< "\n");
509 ++NegatorNumTreesNegated
;
511 // We must temporarily unset the 'current' insertion point and DebugLoc of the
512 // InstCombine's IRBuilder so that it won't interfere with the ones we have
513 // already specified when producing negated instructions.
514 InstCombiner::BuilderTy::InsertPointGuard
Guard(IC
.Builder
);
515 IC
.Builder
.ClearInsertionPoint();
516 IC
.Builder
.SetCurrentDebugLocation(DebugLoc());
518 // And finally, we must add newly-created instructions into the InstCombine's
519 // worklist (in a proper order!) so it can attempt to combine them.
520 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res
->first
.size()
521 << " instrs to InstCombine\n");
522 NegatorMaxInstructionsCreated
.updateMax(Res
->first
.size());
523 NegatorNumInstructionsNegatedSuccess
+= Res
->first
.size();
525 // They are in def-use order, so nothing fancy, just insert them in order.
526 for (Instruction
*I
: Res
->first
)
527 IC
.Builder
.Insert(I
, I
->getName());
529 // And return the new root.