[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineNegator.cpp
blob37c7e6135501c33b9b208861fe4c11154ff24c88
1 //===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements sinking of negation into expression trees,
10 // as long as that can be done without increasing instruction count.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Twine.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/TargetFolder.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DebugLoc.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/DebugCounter.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/InstCombine/InstCombiner.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <functional>
49 #include <tuple>
50 #include <type_traits>
51 #include <utility>
53 namespace llvm {
54 class AssumptionCache;
55 class DataLayout;
56 class DominatorTree;
57 class LLVMContext;
58 } // namespace llvm
60 using namespace llvm;
62 #define DEBUG_TYPE "instcombine"
64 STATISTIC(NegatorTotalNegationsAttempted,
65 "Negator: Number of negations attempted to be sinked");
66 STATISTIC(NegatorNumTreesNegated,
67 "Negator: Number of negations successfully sinked");
68 STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
69 "reached while attempting to sink negation");
70 STATISTIC(NegatorTimesDepthLimitReached,
71 "Negator: How many times did the traversal depth limit was reached "
72 "during sinking");
73 STATISTIC(
74 NegatorNumValuesVisited,
75 "Negator: Total number of values visited during attempts to sink negation");
76 STATISTIC(NegatorNumNegationsFoundInCache,
77 "Negator: How many negations did we retrieve/reuse from cache");
78 STATISTIC(NegatorMaxTotalValuesVisited,
79 "Negator: Maximal number of values ever visited while attempting to "
80 "sink negation");
81 STATISTIC(NegatorNumInstructionsCreatedTotal,
82 "Negator: Number of new negated instructions created, total");
83 STATISTIC(NegatorMaxInstructionsCreated,
84 "Negator: Maximal number of new instructions created during negation "
85 "attempt");
86 STATISTIC(NegatorNumInstructionsNegatedSuccess,
87 "Negator: Number of new negated instructions created in successful "
88 "negation sinking attempts");
90 DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
91 "Controls Negator transformations in InstCombine pass");
93 static cl::opt<bool>
94 NegatorEnabled("instcombine-negator-enabled", cl::init(true),
95 cl::desc("Should we attempt to sink negations?"));
97 static cl::opt<unsigned>
98 NegatorMaxDepth("instcombine-negator-max-depth",
99 cl::init(NegatorDefaultMaxDepth),
100 cl::desc("What is the maximal lookup depth when trying to "
101 "check for viability of negation sinking."));
103 Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
104 const DominatorTree &DT_, bool IsTrulyNegation_)
105 : Builder(C, TargetFolder(DL_),
106 IRBuilderCallbackInserter([&](Instruction *I) {
107 ++NegatorNumInstructionsCreatedTotal;
108 NewInstructions.push_back(I);
109 })),
110 DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
112 #if LLVM_ENABLE_STATS
113 Negator::~Negator() {
114 NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
116 #endif
118 // Due to the InstCombine's worklist management, there are no guarantees that
119 // each instruction we'll encounter has been visited by InstCombine already.
120 // In particular, most importantly for us, that means we have to canonicalize
121 // constants to RHS ourselves, since that is helpful sometimes.
122 std::array<Value *, 2> Negator::getSortedOperandsOfBinOp(Instruction *I) {
123 assert(I->getNumOperands() == 2 && "Only for binops!");
124 std::array<Value *, 2> Ops{I->getOperand(0), I->getOperand(1)};
125 if (I->isCommutative() && InstCombiner::getComplexity(I->getOperand(0)) <
126 InstCombiner::getComplexity(I->getOperand(1)))
127 std::swap(Ops[0], Ops[1]);
128 return Ops;
131 // FIXME: can this be reworked into a worklist-based algorithm while preserving
132 // the depth-first, early bailout traversal?
133 LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
134 // -(undef) -> undef.
135 if (match(V, m_Undef()))
136 return V;
138 // In i1, negation can simply be ignored.
139 if (V->getType()->isIntOrIntVectorTy(1))
140 return V;
142 Value *X;
144 // -(-(X)) -> X.
145 if (match(V, m_Neg(m_Value(X))))
146 return X;
148 // Integral constants can be freely negated.
149 if (match(V, m_AnyIntegralConstant()))
150 return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
151 /*HasNSW=*/false);
153 // If we have a non-instruction, then give up.
154 if (!isa<Instruction>(V))
155 return nullptr;
157 // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
158 // got instruction that does not require recursive reasoning, we can still
159 // negate it even if it has other uses, without increasing instruction count.
160 if (!V->hasOneUse() && !IsTrulyNegation)
161 return nullptr;
163 auto *I = cast<Instruction>(V);
164 unsigned BitWidth = I->getType()->getScalarSizeInBits();
166 // We must preserve the insertion point and debug info that is set in the
167 // builder at the time this function is called.
168 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
169 // And since we are trying to negate instruction I, that tells us about the
170 // insertion point and the debug info that we need to keep.
171 Builder.SetInsertPoint(I);
173 // In some cases we can give the answer without further recursion.
174 switch (I->getOpcode()) {
175 case Instruction::Add: {
176 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
177 // `inc` is always negatible.
178 if (match(Ops[1], m_One()))
179 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
180 break;
182 case Instruction::Xor:
183 // `not` is always negatible.
184 if (match(I, m_Not(m_Value(X))))
185 return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
186 I->getName() + ".neg");
187 break;
188 case Instruction::AShr:
189 case Instruction::LShr: {
190 // Right-shift sign bit smear is negatible.
191 const APInt *Op1Val;
192 if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
193 Value *BO = I->getOpcode() == Instruction::AShr
194 ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
195 : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
196 if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
197 NewInstr->copyIRFlags(I);
198 NewInstr->setName(I->getName() + ".neg");
200 return BO;
202 // While we could negate exact arithmetic shift:
203 // ashr exact %x, C --> sdiv exact i8 %x, -1<<C
204 // iff C != 0 and C u< bitwidth(%x), we don't want to,
205 // because division is *THAT* much worse than a shift.
206 break;
208 case Instruction::SExt:
209 case Instruction::ZExt:
210 // `*ext` of i1 is always negatible
211 if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
212 return I->getOpcode() == Instruction::SExt
213 ? Builder.CreateZExt(I->getOperand(0), I->getType(),
214 I->getName() + ".neg")
215 : Builder.CreateSExt(I->getOperand(0), I->getType(),
216 I->getName() + ".neg");
217 break;
218 default:
219 break; // Other instructions require recursive reasoning.
222 if (I->getOpcode() == Instruction::Sub &&
223 (I->hasOneUse() || match(I->getOperand(0), m_ImmConstant()))) {
224 // `sub` is always negatible.
225 // However, only do this either if the old `sub` doesn't stick around, or
226 // it was subtracting from a constant. Otherwise, this isn't profitable.
227 return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
228 I->getName() + ".neg");
231 // Some other cases, while still don't require recursion,
232 // are restricted to the one-use case.
233 if (!V->hasOneUse())
234 return nullptr;
236 switch (I->getOpcode()) {
237 case Instruction::SDiv:
238 // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
239 // While this is normally not behind a use-check,
240 // let's consider division to be special since it's costly.
241 if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
242 if (!Op1C->containsUndefOrPoisonElement() &&
243 Op1C->isNotMinSignedValue() && Op1C->isNotOneValue()) {
244 Value *BO =
245 Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
246 I->getName() + ".neg");
247 if (auto *NewInstr = dyn_cast<Instruction>(BO))
248 NewInstr->setIsExact(I->isExact());
249 return BO;
252 break;
255 // Rest of the logic is recursive, so if it's time to give up then it's time.
256 if (Depth > NegatorMaxDepth) {
257 LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
258 << *V << ". Giving up.\n");
259 ++NegatorTimesDepthLimitReached;
260 return nullptr;
263 switch (I->getOpcode()) {
264 case Instruction::Freeze: {
265 // `freeze` is negatible if its operand is negatible.
266 Value *NegOp = negate(I->getOperand(0), Depth + 1);
267 if (!NegOp) // Early return.
268 return nullptr;
269 return Builder.CreateFreeze(NegOp, I->getName() + ".neg");
271 case Instruction::PHI: {
272 // `phi` is negatible if all the incoming values are negatible.
273 auto *PHI = cast<PHINode>(I);
274 SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
275 for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
276 if (!(std::get<1>(I) =
277 negate(std::get<0>(I), Depth + 1))) // Early return.
278 return nullptr;
280 // All incoming values are indeed negatible. Create negated PHI node.
281 PHINode *NegatedPHI = Builder.CreatePHI(
282 PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
283 for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
284 NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
285 return NegatedPHI;
287 case Instruction::Select: {
288 if (isKnownNegation(I->getOperand(1), I->getOperand(2))) {
289 // Of one hand of select is known to be negation of another hand,
290 // just swap the hands around.
291 auto *NewSelect = cast<SelectInst>(I->clone());
292 // Just swap the operands of the select.
293 NewSelect->swapValues();
294 // Don't swap prof metadata, we didn't change the branch behavior.
295 NewSelect->setName(I->getName() + ".neg");
296 Builder.Insert(NewSelect);
297 return NewSelect;
299 // `select` is negatible if both hands of `select` are negatible.
300 Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
301 if (!NegOp1) // Early return.
302 return nullptr;
303 Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
304 if (!NegOp2)
305 return nullptr;
306 // Do preserve the metadata!
307 return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
308 I->getName() + ".neg", /*MDFrom=*/I);
310 case Instruction::ShuffleVector: {
311 // `shufflevector` is negatible if both operands are negatible.
312 auto *Shuf = cast<ShuffleVectorInst>(I);
313 Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
314 if (!NegOp0) // Early return.
315 return nullptr;
316 Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
317 if (!NegOp1)
318 return nullptr;
319 return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
320 I->getName() + ".neg");
322 case Instruction::ExtractElement: {
323 // `extractelement` is negatible if source operand is negatible.
324 auto *EEI = cast<ExtractElementInst>(I);
325 Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
326 if (!NegVector) // Early return.
327 return nullptr;
328 return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
329 I->getName() + ".neg");
331 case Instruction::InsertElement: {
332 // `insertelement` is negatible if both the source vector and
333 // element-to-be-inserted are negatible.
334 auto *IEI = cast<InsertElementInst>(I);
335 Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
336 if (!NegVector) // Early return.
337 return nullptr;
338 Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
339 if (!NegNewElt) // Early return.
340 return nullptr;
341 return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
342 I->getName() + ".neg");
344 case Instruction::Trunc: {
345 // `trunc` is negatible if its operand is negatible.
346 Value *NegOp = negate(I->getOperand(0), Depth + 1);
347 if (!NegOp) // Early return.
348 return nullptr;
349 return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
351 case Instruction::Shl: {
352 // `shl` is negatible if the first operand is negatible.
353 if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1))
354 return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
355 // Otherwise, `shl %x, C` can be interpreted as `mul %x, 1<<C`.
356 auto *Op1C = dyn_cast<Constant>(I->getOperand(1));
357 if (!Op1C) // Early return.
358 return nullptr;
359 return Builder.CreateMul(
360 I->getOperand(0),
361 ConstantExpr::getShl(Constant::getAllOnesValue(Op1C->getType()), Op1C),
362 I->getName() + ".neg");
364 case Instruction::Or: {
365 if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
366 &DT))
367 return nullptr; // Don't know how to handle `or` in general.
368 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
369 // `or`/`add` are interchangeable when operands have no common bits set.
370 // `inc` is always negatible.
371 if (match(Ops[1], m_One()))
372 return Builder.CreateNot(Ops[0], I->getName() + ".neg");
373 // Else, just defer to Instruction::Add handling.
374 LLVM_FALLTHROUGH;
376 case Instruction::Add: {
377 // `add` is negatible if both of its operands are negatible.
378 SmallVector<Value *, 2> NegatedOps, NonNegatedOps;
379 for (Value *Op : I->operands()) {
380 // Can we sink the negation into this operand?
381 if (Value *NegOp = negate(Op, Depth + 1)) {
382 NegatedOps.emplace_back(NegOp); // Successfully negated operand!
383 continue;
385 // Failed to sink negation into this operand. IFF we started from negation
386 // and we manage to sink negation into one operand, we can still do this.
387 if (!IsTrulyNegation)
388 return nullptr;
389 NonNegatedOps.emplace_back(Op); // Just record which operand that was.
391 assert((NegatedOps.size() + NonNegatedOps.size()) == 2 &&
392 "Internal consistency sanity check.");
393 // Did we manage to sink negation into both of the operands?
394 if (NegatedOps.size() == 2) // Then we get to keep the `add`!
395 return Builder.CreateAdd(NegatedOps[0], NegatedOps[1],
396 I->getName() + ".neg");
397 assert(IsTrulyNegation && "We should have early-exited then.");
398 // Completely failed to sink negation?
399 if (NonNegatedOps.size() == 2)
400 return nullptr;
401 // 0-(a+b) --> (-a)-b
402 return Builder.CreateSub(NegatedOps[0], NonNegatedOps[0],
403 I->getName() + ".neg");
405 case Instruction::Xor: {
406 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
407 // `xor` is negatible if one of its operands is invertible.
408 // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
409 if (auto *C = dyn_cast<Constant>(Ops[1])) {
410 Value *Xor = Builder.CreateXor(Ops[0], ConstantExpr::getNot(C));
411 return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
412 I->getName() + ".neg");
414 return nullptr;
416 case Instruction::Mul: {
417 std::array<Value *, 2> Ops = getSortedOperandsOfBinOp(I);
418 // `mul` is negatible if one of its operands is negatible.
419 Value *NegatedOp, *OtherOp;
420 // First try the second operand, in case it's a constant it will be best to
421 // just invert it instead of sinking the `neg` deeper.
422 if (Value *NegOp1 = negate(Ops[1], Depth + 1)) {
423 NegatedOp = NegOp1;
424 OtherOp = Ops[0];
425 } else if (Value *NegOp0 = negate(Ops[0], Depth + 1)) {
426 NegatedOp = NegOp0;
427 OtherOp = Ops[1];
428 } else
429 // Can't negate either of them.
430 return nullptr;
431 return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
433 default:
434 return nullptr; // Don't know, likely not negatible for free.
437 llvm_unreachable("Can't get here. We always return from switch.");
440 LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
441 NegatorMaxDepthVisited.updateMax(Depth);
442 ++NegatorNumValuesVisited;
444 #if LLVM_ENABLE_STATS
445 ++NumValuesVisitedInThisNegator;
446 #endif
448 #ifndef NDEBUG
449 // We can't ever have a Value with such an address.
450 Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
451 #endif
453 // Did we already try to negate this value?
454 auto NegationsCacheIterator = NegationsCache.find(V);
455 if (NegationsCacheIterator != NegationsCache.end()) {
456 ++NegatorNumNegationsFoundInCache;
457 Value *NegatedV = NegationsCacheIterator->second;
458 assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
459 return NegatedV;
462 #ifndef NDEBUG
463 // We did not find a cached result for negation of V. While there,
464 // let's temporairly cache a placeholder value, with the idea that if later
465 // during negation we fetch it from cache, we'll know we're in a cycle.
466 NegationsCache[V] = Placeholder;
467 #endif
469 // No luck. Try negating it for real.
470 Value *NegatedV = visitImpl(V, Depth);
471 // And cache the (real) result for the future.
472 NegationsCache[V] = NegatedV;
474 return NegatedV;
477 LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
478 Value *Negated = negate(Root, /*Depth=*/0);
479 if (!Negated) {
480 // We must cleanup newly-inserted instructions, to avoid any potential
481 // endless combine looping.
482 for (Instruction *I : llvm::reverse(NewInstructions))
483 I->eraseFromParent();
484 return llvm::None;
486 return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
489 LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
490 InstCombinerImpl &IC) {
491 ++NegatorTotalNegationsAttempted;
492 LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
493 << "\n");
495 if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
496 return nullptr;
498 Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
499 IC.getDominatorTree(), LHSIsZero);
500 Optional<Result> Res = N.run(Root);
501 if (!Res) { // Negation failed.
502 LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
503 << "\n");
504 return nullptr;
507 LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
508 << "\n NEW: " << *Res->second << "\n");
509 ++NegatorNumTreesNegated;
511 // We must temporarily unset the 'current' insertion point and DebugLoc of the
512 // InstCombine's IRBuilder so that it won't interfere with the ones we have
513 // already specified when producing negated instructions.
514 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
515 IC.Builder.ClearInsertionPoint();
516 IC.Builder.SetCurrentDebugLocation(DebugLoc());
518 // And finally, we must add newly-created instructions into the InstCombine's
519 // worklist (in a proper order!) so it can attempt to combine them.
520 LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
521 << " instrs to InstCombine\n");
522 NegatorMaxInstructionsCreated.updateMax(Res->first.size());
523 NegatorNumInstructionsNegatedSuccess += Res->first.size();
525 // They are in def-use order, so nothing fancy, just insert them in order.
526 for (Instruction *I : Res->first)
527 IC.Builder.Insert(I, I->getName());
529 // And return the new root.
530 return Res->second;