1 //===- InstCombineSelect.cpp ----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visitSelect function.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
47 using namespace PatternMatch
;
49 #define DEBUG_TYPE "instcombine"
51 static Value
*createMinMax(InstCombiner::BuilderTy
&Builder
,
52 SelectPatternFlavor SPF
, Value
*A
, Value
*B
) {
53 CmpInst::Predicate Pred
= getMinMaxPred(SPF
);
54 assert(CmpInst::isIntPredicate(Pred
) && "Expected integer predicate");
55 return Builder
.CreateSelect(Builder
.CreateICmp(Pred
, A
, B
), A
, B
);
58 /// Replace a select operand based on an equality comparison with the identity
59 /// constant of a binop.
60 static Instruction
*foldSelectBinOpIdentity(SelectInst
&Sel
,
61 const TargetLibraryInfo
&TLI
,
62 InstCombinerImpl
&IC
) {
63 // The select condition must be an equality compare with a constant operand.
66 CmpInst::Predicate Pred
;
67 if (!match(Sel
.getCondition(), m_Cmp(Pred
, m_Value(X
), m_Constant(C
))))
71 if (ICmpInst::isEquality(Pred
))
72 IsEq
= Pred
== ICmpInst::ICMP_EQ
;
73 else if (Pred
== FCmpInst::FCMP_OEQ
)
75 else if (Pred
== FCmpInst::FCMP_UNE
)
80 // A select operand must be a binop.
82 if (!match(Sel
.getOperand(IsEq
? 1 : 2), m_BinOp(BO
)))
85 // The compare constant must be the identity constant for that binop.
86 // If this a floating-point compare with 0.0, any zero constant will do.
87 Type
*Ty
= BO
->getType();
88 Constant
*IdC
= ConstantExpr::getBinOpIdentity(BO
->getOpcode(), Ty
, true);
90 if (!IdC
|| !CmpInst::isFPPredicate(Pred
))
92 if (!match(IdC
, m_AnyZeroFP()) || !match(C
, m_AnyZeroFP()))
96 // Last, match the compare variable operand with a binop operand.
98 if (!BO
->isCommutative() && !match(BO
, m_BinOp(m_Value(Y
), m_Specific(X
))))
100 if (!match(BO
, m_c_BinOp(m_Value(Y
), m_Specific(X
))))
103 // +0.0 compares equal to -0.0, and so it does not behave as required for this
104 // transform. Bail out if we can not exclude that possibility.
105 if (isa
<FPMathOperator
>(BO
))
106 if (!BO
->hasNoSignedZeros() && !CannotBeNegativeZero(Y
, &TLI
))
110 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
113 return IC
.replaceOperand(Sel
, IsEq
? 1 : 2, Y
);
117 /// select (icmp eq (and X, C1)), TC, FC
118 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
119 /// To something like:
120 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
123 /// With some variations depending if FC is larger than TC, or the shift
124 /// isn't needed, or the bit widths don't match.
125 static Value
*foldSelectICmpAnd(SelectInst
&Sel
, ICmpInst
*Cmp
,
126 InstCombiner::BuilderTy
&Builder
) {
127 const APInt
*SelTC
, *SelFC
;
128 if (!match(Sel
.getTrueValue(), m_APInt(SelTC
)) ||
129 !match(Sel
.getFalseValue(), m_APInt(SelFC
)))
132 // If this is a vector select, we need a vector compare.
133 Type
*SelType
= Sel
.getType();
134 if (SelType
->isVectorTy() != Cmp
->getType()->isVectorTy())
139 bool CreateAnd
= false;
140 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
141 if (ICmpInst::isEquality(Pred
)) {
142 if (!match(Cmp
->getOperand(1), m_Zero()))
145 V
= Cmp
->getOperand(0);
147 if (!match(V
, m_And(m_Value(), m_Power2(AndRHS
))))
151 } else if (decomposeBitTestICmp(Cmp
->getOperand(0), Cmp
->getOperand(1),
153 assert(ICmpInst::isEquality(Pred
) && "Not equality test?");
154 if (!AndMask
.isPowerOf2())
162 // In general, when both constants are non-zero, we would need an offset to
163 // replace the select. This would require more instructions than we started
164 // with. But there's one special-case that we handle here because it can
165 // simplify/reduce the instructions.
168 if (!TC
.isNullValue() && !FC
.isNullValue()) {
169 // If the select constants differ by exactly one bit and that's the same
170 // bit that is masked and checked by the select condition, the select can
171 // be replaced by bitwise logic to set/clear one bit of the constant result.
172 if (TC
.getBitWidth() != AndMask
.getBitWidth() || (TC
^ FC
) != AndMask
)
175 // If we have to create an 'and', then we must kill the cmp to not
176 // increase the instruction count.
177 if (!Cmp
->hasOneUse())
179 V
= Builder
.CreateAnd(V
, ConstantInt::get(SelType
, AndMask
));
181 bool ExtraBitInTC
= TC
.ugt(FC
);
182 if (Pred
== ICmpInst::ICMP_EQ
) {
183 // If the masked bit in V is clear, clear or set the bit in the result:
184 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
186 Constant
*C
= ConstantInt::get(SelType
, TC
);
187 return ExtraBitInTC
? Builder
.CreateXor(V
, C
) : Builder
.CreateOr(V
, C
);
189 if (Pred
== ICmpInst::ICMP_NE
) {
190 // If the masked bit in V is set, set or clear the bit in the result:
191 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
193 Constant
*C
= ConstantInt::get(SelType
, FC
);
194 return ExtraBitInTC
? Builder
.CreateOr(V
, C
) : Builder
.CreateXor(V
, C
);
196 llvm_unreachable("Only expecting equality predicates");
199 // Make sure one of the select arms is a power-of-2.
200 if (!TC
.isPowerOf2() && !FC
.isPowerOf2())
203 // Determine which shift is needed to transform result of the 'and' into the
205 const APInt
&ValC
= !TC
.isNullValue() ? TC
: FC
;
206 unsigned ValZeros
= ValC
.logBase2();
207 unsigned AndZeros
= AndMask
.logBase2();
209 // Insert the 'and' instruction on the input to the truncate.
211 V
= Builder
.CreateAnd(V
, ConstantInt::get(V
->getType(), AndMask
));
213 // If types don't match, we can still convert the select by introducing a zext
214 // or a trunc of the 'and'.
215 if (ValZeros
> AndZeros
) {
216 V
= Builder
.CreateZExtOrTrunc(V
, SelType
);
217 V
= Builder
.CreateShl(V
, ValZeros
- AndZeros
);
218 } else if (ValZeros
< AndZeros
) {
219 V
= Builder
.CreateLShr(V
, AndZeros
- ValZeros
);
220 V
= Builder
.CreateZExtOrTrunc(V
, SelType
);
222 V
= Builder
.CreateZExtOrTrunc(V
, SelType
);
225 // Okay, now we know that everything is set up, we just don't know whether we
226 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
227 bool ShouldNotVal
= !TC
.isNullValue();
228 ShouldNotVal
^= Pred
== ICmpInst::ICMP_NE
;
230 V
= Builder
.CreateXor(V
, ValC
);
235 /// We want to turn code that looks like this:
237 /// %D = select %cond, %C, %A
239 /// %C = select %cond, %B, 0
242 /// Assuming that the specified instruction is an operand to the select, return
243 /// a bitmask indicating which operands of this instruction are foldable if they
244 /// equal the other incoming value of the select.
245 static unsigned getSelectFoldableOperands(BinaryOperator
*I
) {
246 switch (I
->getOpcode()) {
247 case Instruction::Add
:
248 case Instruction::Mul
:
249 case Instruction::And
:
250 case Instruction::Or
:
251 case Instruction::Xor
:
252 return 3; // Can fold through either operand.
253 case Instruction::Sub
: // Can only fold on the amount subtracted.
254 case Instruction::Shl
: // Can only fold on the shift amount.
255 case Instruction::LShr
:
256 case Instruction::AShr
:
259 return 0; // Cannot fold
263 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
264 Instruction
*InstCombinerImpl::foldSelectOpOp(SelectInst
&SI
, Instruction
*TI
,
266 // Don't break up min/max patterns. The hasOneUse checks below prevent that
267 // for most cases, but vector min/max with bitcasts can be transformed. If the
268 // one-use restrictions are eased for other patterns, we still don't want to
269 // obfuscate min/max.
270 if ((match(&SI
, m_SMin(m_Value(), m_Value())) ||
271 match(&SI
, m_SMax(m_Value(), m_Value())) ||
272 match(&SI
, m_UMin(m_Value(), m_Value())) ||
273 match(&SI
, m_UMax(m_Value(), m_Value()))))
276 // If this is a cast from the same type, merge.
277 Value
*Cond
= SI
.getCondition();
278 Type
*CondTy
= Cond
->getType();
279 if (TI
->getNumOperands() == 1 && TI
->isCast()) {
280 Type
*FIOpndTy
= FI
->getOperand(0)->getType();
281 if (TI
->getOperand(0)->getType() != FIOpndTy
)
284 // The select condition may be a vector. We may only change the operand
285 // type if the vector width remains the same (and matches the condition).
286 if (auto *CondVTy
= dyn_cast
<VectorType
>(CondTy
)) {
287 if (!FIOpndTy
->isVectorTy() ||
288 CondVTy
->getElementCount() !=
289 cast
<VectorType
>(FIOpndTy
)->getElementCount())
292 // TODO: If the backend knew how to deal with casts better, we could
293 // remove this limitation. For now, there's too much potential to create
294 // worse codegen by promoting the select ahead of size-altering casts
297 // Note that ValueTracking's matchSelectPattern() looks through casts
298 // without checking 'hasOneUse' when it matches min/max patterns, so this
299 // transform may end up happening anyway.
300 if (TI
->getOpcode() != Instruction::BitCast
&&
301 (!TI
->hasOneUse() || !FI
->hasOneUse()))
303 } else if (!TI
->hasOneUse() || !FI
->hasOneUse()) {
304 // TODO: The one-use restrictions for a scalar select could be eased if
305 // the fold of a select in visitLoadInst() was enhanced to match a pattern
306 // that includes a cast.
310 // Fold this by inserting a select from the input values.
312 Builder
.CreateSelect(Cond
, TI
->getOperand(0), FI
->getOperand(0),
313 SI
.getName() + ".v", &SI
);
314 return CastInst::Create(Instruction::CastOps(TI
->getOpcode()), NewSI
,
318 // Cond ? -X : -Y --> -(Cond ? X : Y)
320 if (match(TI
, m_FNeg(m_Value(X
))) && match(FI
, m_FNeg(m_Value(Y
))) &&
321 (TI
->hasOneUse() || FI
->hasOneUse())) {
322 Value
*NewSel
= Builder
.CreateSelect(Cond
, X
, Y
, SI
.getName() + ".v", &SI
);
323 return UnaryOperator::CreateFNegFMF(NewSel
, TI
);
326 // Min/max intrinsic with a common operand can have the common operand pulled
327 // after the select. This is the same transform as below for binops, but
328 // specialized for intrinsic matching and without the restrictive uses clause.
329 auto *TII
= dyn_cast
<IntrinsicInst
>(TI
);
330 auto *FII
= dyn_cast
<IntrinsicInst
>(FI
);
331 if (TII
&& FII
&& TII
->getIntrinsicID() == FII
->getIntrinsicID() &&
332 (TII
->hasOneUse() || FII
->hasOneUse())) {
333 Value
*T0
, *T1
, *F0
, *F1
;
334 if (match(TII
, m_MaxOrMin(m_Value(T0
), m_Value(T1
))) &&
335 match(FII
, m_MaxOrMin(m_Value(F0
), m_Value(F1
)))) {
337 Value
*NewSel
= Builder
.CreateSelect(Cond
, T1
, F1
, "minmaxop", &SI
);
338 return CallInst::Create(TII
->getCalledFunction(), {NewSel
, T0
});
341 Value
*NewSel
= Builder
.CreateSelect(Cond
, T1
, F0
, "minmaxop", &SI
);
342 return CallInst::Create(TII
->getCalledFunction(), {NewSel
, T0
});
345 Value
*NewSel
= Builder
.CreateSelect(Cond
, T0
, F1
, "minmaxop", &SI
);
346 return CallInst::Create(TII
->getCalledFunction(), {NewSel
, T1
});
349 Value
*NewSel
= Builder
.CreateSelect(Cond
, T0
, F0
, "minmaxop", &SI
);
350 return CallInst::Create(TII
->getCalledFunction(), {NewSel
, T1
});
355 // Only handle binary operators (including two-operand getelementptr) with
356 // one-use here. As with the cast case above, it may be possible to relax the
357 // one-use constraint, but that needs be examined carefully since it may not
358 // reduce the total number of instructions.
359 if (TI
->getNumOperands() != 2 || FI
->getNumOperands() != 2 ||
360 (!isa
<BinaryOperator
>(TI
) && !isa
<GetElementPtrInst
>(TI
)) ||
361 !TI
->hasOneUse() || !FI
->hasOneUse())
364 // Figure out if the operations have any operands in common.
365 Value
*MatchOp
, *OtherOpT
, *OtherOpF
;
367 if (TI
->getOperand(0) == FI
->getOperand(0)) {
368 MatchOp
= TI
->getOperand(0);
369 OtherOpT
= TI
->getOperand(1);
370 OtherOpF
= FI
->getOperand(1);
371 MatchIsOpZero
= true;
372 } else if (TI
->getOperand(1) == FI
->getOperand(1)) {
373 MatchOp
= TI
->getOperand(1);
374 OtherOpT
= TI
->getOperand(0);
375 OtherOpF
= FI
->getOperand(0);
376 MatchIsOpZero
= false;
377 } else if (!TI
->isCommutative()) {
379 } else if (TI
->getOperand(0) == FI
->getOperand(1)) {
380 MatchOp
= TI
->getOperand(0);
381 OtherOpT
= TI
->getOperand(1);
382 OtherOpF
= FI
->getOperand(0);
383 MatchIsOpZero
= true;
384 } else if (TI
->getOperand(1) == FI
->getOperand(0)) {
385 MatchOp
= TI
->getOperand(1);
386 OtherOpT
= TI
->getOperand(0);
387 OtherOpF
= FI
->getOperand(1);
388 MatchIsOpZero
= true;
393 // If the select condition is a vector, the operands of the original select's
394 // operands also must be vectors. This may not be the case for getelementptr
396 if (CondTy
->isVectorTy() && (!OtherOpT
->getType()->isVectorTy() ||
397 !OtherOpF
->getType()->isVectorTy()))
400 // If we reach here, they do have operations in common.
401 Value
*NewSI
= Builder
.CreateSelect(Cond
, OtherOpT
, OtherOpF
,
402 SI
.getName() + ".v", &SI
);
403 Value
*Op0
= MatchIsOpZero
? MatchOp
: NewSI
;
404 Value
*Op1
= MatchIsOpZero
? NewSI
: MatchOp
;
405 if (auto *BO
= dyn_cast
<BinaryOperator
>(TI
)) {
406 BinaryOperator
*NewBO
= BinaryOperator::Create(BO
->getOpcode(), Op0
, Op1
);
407 NewBO
->copyIRFlags(TI
);
408 NewBO
->andIRFlags(FI
);
411 if (auto *TGEP
= dyn_cast
<GetElementPtrInst
>(TI
)) {
412 auto *FGEP
= cast
<GetElementPtrInst
>(FI
);
413 Type
*ElementType
= TGEP
->getResultElementType();
414 return TGEP
->isInBounds() && FGEP
->isInBounds()
415 ? GetElementPtrInst::CreateInBounds(ElementType
, Op0
, {Op1
})
416 : GetElementPtrInst::Create(ElementType
, Op0
, {Op1
});
418 llvm_unreachable("Expected BinaryOperator or GEP");
422 static bool isSelect01(const APInt
&C1I
, const APInt
&C2I
) {
423 if (!C1I
.isNullValue() && !C2I
.isNullValue()) // One side must be zero.
425 return C1I
.isOneValue() || C1I
.isAllOnesValue() ||
426 C2I
.isOneValue() || C2I
.isAllOnesValue();
429 /// Try to fold the select into one of the operands to allow further
431 Instruction
*InstCombinerImpl::foldSelectIntoOp(SelectInst
&SI
, Value
*TrueVal
,
433 // See the comment above GetSelectFoldableOperands for a description of the
434 // transformation we are doing here.
435 if (auto *TVI
= dyn_cast
<BinaryOperator
>(TrueVal
)) {
436 if (TVI
->hasOneUse() && !isa
<Constant
>(FalseVal
)) {
437 if (unsigned SFO
= getSelectFoldableOperands(TVI
)) {
438 unsigned OpToFold
= 0;
439 if ((SFO
& 1) && FalseVal
== TVI
->getOperand(0)) {
441 } else if ((SFO
& 2) && FalseVal
== TVI
->getOperand(1)) {
446 Constant
*C
= ConstantExpr::getBinOpIdentity(TVI
->getOpcode(),
447 TVI
->getType(), true);
448 Value
*OOp
= TVI
->getOperand(2-OpToFold
);
449 // Avoid creating select between 2 constants unless it's selecting
450 // between 0, 1 and -1.
452 bool OOpIsAPInt
= match(OOp
, m_APInt(OOpC
));
453 if (!isa
<Constant
>(OOp
) ||
454 (OOpIsAPInt
&& isSelect01(C
->getUniqueInteger(), *OOpC
))) {
455 Value
*NewSel
= Builder
.CreateSelect(SI
.getCondition(), OOp
, C
);
456 NewSel
->takeName(TVI
);
457 BinaryOperator
*BO
= BinaryOperator::Create(TVI
->getOpcode(),
459 BO
->copyIRFlags(TVI
);
467 if (auto *FVI
= dyn_cast
<BinaryOperator
>(FalseVal
)) {
468 if (FVI
->hasOneUse() && !isa
<Constant
>(TrueVal
)) {
469 if (unsigned SFO
= getSelectFoldableOperands(FVI
)) {
470 unsigned OpToFold
= 0;
471 if ((SFO
& 1) && TrueVal
== FVI
->getOperand(0)) {
473 } else if ((SFO
& 2) && TrueVal
== FVI
->getOperand(1)) {
478 Constant
*C
= ConstantExpr::getBinOpIdentity(FVI
->getOpcode(),
479 FVI
->getType(), true);
480 Value
*OOp
= FVI
->getOperand(2-OpToFold
);
481 // Avoid creating select between 2 constants unless it's selecting
482 // between 0, 1 and -1.
484 bool OOpIsAPInt
= match(OOp
, m_APInt(OOpC
));
485 if (!isa
<Constant
>(OOp
) ||
486 (OOpIsAPInt
&& isSelect01(C
->getUniqueInteger(), *OOpC
))) {
487 Value
*NewSel
= Builder
.CreateSelect(SI
.getCondition(), C
, OOp
);
488 NewSel
->takeName(FVI
);
489 BinaryOperator
*BO
= BinaryOperator::Create(FVI
->getOpcode(),
491 BO
->copyIRFlags(FVI
);
503 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
505 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
507 /// Z may be 0 if lshr is missing.
508 /// Worst-case scenario is that we will replace 5 instructions with 5 different
509 /// instructions, but we got rid of select.
510 static Instruction
*foldSelectICmpAndAnd(Type
*SelType
, const ICmpInst
*Cmp
,
511 Value
*TVal
, Value
*FVal
,
512 InstCombiner::BuilderTy
&Builder
) {
513 if (!(Cmp
->hasOneUse() && Cmp
->getOperand(0)->hasOneUse() &&
514 Cmp
->getPredicate() == ICmpInst::ICMP_EQ
&&
515 match(Cmp
->getOperand(1), m_Zero()) && match(FVal
, m_One())))
518 // The TrueVal has general form of: and %B, 1
520 if (!match(TVal
, m_OneUse(m_And(m_Value(B
), m_One()))))
523 // Where %B may be optionally shifted: lshr %X, %Z.
525 const bool HasShift
= match(B
, m_OneUse(m_LShr(m_Value(X
), m_Value(Z
))));
530 if (!match(Cmp
->getOperand(0), m_c_And(m_Specific(X
), m_Value(Y
))))
533 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
534 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
535 Constant
*One
= ConstantInt::get(SelType
, 1);
536 Value
*MaskB
= HasShift
? Builder
.CreateShl(One
, Z
) : One
;
537 Value
*FullMask
= Builder
.CreateOr(Y
, MaskB
);
538 Value
*MaskedX
= Builder
.CreateAnd(X
, FullMask
);
539 Value
*ICmpNeZero
= Builder
.CreateIsNotNull(MaskedX
);
540 return new ZExtInst(ICmpNeZero
, SelType
);
544 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
545 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
548 static Value
*foldSelectICmpLshrAshr(const ICmpInst
*IC
, Value
*TrueVal
,
550 InstCombiner::BuilderTy
&Builder
) {
551 ICmpInst::Predicate Pred
= IC
->getPredicate();
552 Value
*CmpLHS
= IC
->getOperand(0);
553 Value
*CmpRHS
= IC
->getOperand(1);
554 if (!CmpRHS
->getType()->isIntOrIntVectorTy())
558 unsigned Bitwidth
= CmpRHS
->getType()->getScalarSizeInBits();
559 if ((Pred
!= ICmpInst::ICMP_SGT
||
561 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE
, APInt(Bitwidth
, -1)))) &&
562 (Pred
!= ICmpInst::ICMP_SLT
||
564 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE
, APInt(Bitwidth
, 0)))))
567 // Canonicalize so that ashr is in FalseVal.
568 if (Pred
== ICmpInst::ICMP_SLT
)
569 std::swap(TrueVal
, FalseVal
);
571 if (match(TrueVal
, m_LShr(m_Value(X
), m_Value(Y
))) &&
572 match(FalseVal
, m_AShr(m_Specific(X
), m_Specific(Y
))) &&
573 match(CmpLHS
, m_Specific(X
))) {
574 const auto *Ashr
= cast
<Instruction
>(FalseVal
);
575 // if lshr is not exact and ashr is, this new ashr must not be exact.
576 bool IsExact
= Ashr
->isExact() && cast
<Instruction
>(TrueVal
)->isExact();
577 return Builder
.CreateAShr(X
, Y
, IC
->getName(), IsExact
);
584 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
586 /// (or (shl (and X, C1), C3), Y)
588 /// C1 and C2 are both powers of 2
590 /// C3 = Log(C2) - Log(C1)
592 /// This transform handles cases where:
593 /// 1. The icmp predicate is inverted
594 /// 2. The select operands are reversed
595 /// 3. The magnitude of C2 and C1 are flipped
596 static Value
*foldSelectICmpAndOr(const ICmpInst
*IC
, Value
*TrueVal
,
598 InstCombiner::BuilderTy
&Builder
) {
599 // Only handle integer compares. Also, if this is a vector select, we need a
601 if (!TrueVal
->getType()->isIntOrIntVectorTy() ||
602 TrueVal
->getType()->isVectorTy() != IC
->getType()->isVectorTy())
605 Value
*CmpLHS
= IC
->getOperand(0);
606 Value
*CmpRHS
= IC
->getOperand(1);
611 bool NeedAnd
= false;
612 if (IC
->isEquality()) {
613 if (!match(CmpRHS
, m_Zero()))
617 if (!match(CmpLHS
, m_And(m_Value(), m_Power2(C1
))))
621 C1Log
= C1
->logBase2();
622 IsEqualZero
= IC
->getPredicate() == ICmpInst::ICMP_EQ
;
623 } else if (IC
->getPredicate() == ICmpInst::ICMP_SLT
||
624 IC
->getPredicate() == ICmpInst::ICMP_SGT
) {
625 // We also need to recognize (icmp slt (trunc (X)), 0) and
626 // (icmp sgt (trunc (X)), -1).
627 IsEqualZero
= IC
->getPredicate() == ICmpInst::ICMP_SGT
;
628 if ((IsEqualZero
&& !match(CmpRHS
, m_AllOnes())) ||
629 (!IsEqualZero
&& !match(CmpRHS
, m_Zero())))
632 if (!match(CmpLHS
, m_OneUse(m_Trunc(m_Value(V
)))))
635 C1Log
= CmpLHS
->getType()->getScalarSizeInBits() - 1;
642 bool OrOnTrueVal
= false;
643 bool OrOnFalseVal
= match(FalseVal
, m_Or(m_Specific(TrueVal
), m_Power2(C2
)));
645 OrOnTrueVal
= match(TrueVal
, m_Or(m_Specific(FalseVal
), m_Power2(C2
)));
647 if (!OrOnFalseVal
&& !OrOnTrueVal
)
650 Value
*Y
= OrOnFalseVal
? TrueVal
: FalseVal
;
652 unsigned C2Log
= C2
->logBase2();
654 bool NeedXor
= (!IsEqualZero
&& OrOnFalseVal
) || (IsEqualZero
&& OrOnTrueVal
);
655 bool NeedShift
= C1Log
!= C2Log
;
656 bool NeedZExtTrunc
= Y
->getType()->getScalarSizeInBits() !=
657 V
->getType()->getScalarSizeInBits();
659 // Make sure we don't create more instructions than we save.
660 Value
*Or
= OrOnFalseVal
? FalseVal
: TrueVal
;
661 if ((NeedShift
+ NeedXor
+ NeedZExtTrunc
) >
662 (IC
->hasOneUse() + Or
->hasOneUse()))
666 // Insert the AND instruction on the input to the truncate.
667 APInt C1
= APInt::getOneBitSet(V
->getType()->getScalarSizeInBits(), C1Log
);
668 V
= Builder
.CreateAnd(V
, ConstantInt::get(V
->getType(), C1
));
672 V
= Builder
.CreateZExtOrTrunc(V
, Y
->getType());
673 V
= Builder
.CreateShl(V
, C2Log
- C1Log
);
674 } else if (C1Log
> C2Log
) {
675 V
= Builder
.CreateLShr(V
, C1Log
- C2Log
);
676 V
= Builder
.CreateZExtOrTrunc(V
, Y
->getType());
678 V
= Builder
.CreateZExtOrTrunc(V
, Y
->getType());
681 V
= Builder
.CreateXor(V
, *C2
);
683 return Builder
.CreateOr(V
, Y
);
686 /// Canonicalize a set or clear of a masked set of constant bits to
687 /// select-of-constants form.
688 static Instruction
*foldSetClearBits(SelectInst
&Sel
,
689 InstCombiner::BuilderTy
&Builder
) {
690 Value
*Cond
= Sel
.getCondition();
691 Value
*T
= Sel
.getTrueValue();
692 Value
*F
= Sel
.getFalseValue();
693 Type
*Ty
= Sel
.getType();
695 const APInt
*NotC
, *C
;
697 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
698 if (match(T
, m_And(m_Value(X
), m_APInt(NotC
))) &&
699 match(F
, m_OneUse(m_Or(m_Specific(X
), m_APInt(C
)))) && *NotC
== ~(*C
)) {
700 Constant
*Zero
= ConstantInt::getNullValue(Ty
);
701 Constant
*OrC
= ConstantInt::get(Ty
, *C
);
702 Value
*NewSel
= Builder
.CreateSelect(Cond
, Zero
, OrC
, "masksel", &Sel
);
703 return BinaryOperator::CreateOr(T
, NewSel
);
706 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
707 if (match(F
, m_And(m_Value(X
), m_APInt(NotC
))) &&
708 match(T
, m_OneUse(m_Or(m_Specific(X
), m_APInt(C
)))) && *NotC
== ~(*C
)) {
709 Constant
*Zero
= ConstantInt::getNullValue(Ty
);
710 Constant
*OrC
= ConstantInt::get(Ty
, *C
);
711 Value
*NewSel
= Builder
.CreateSelect(Cond
, OrC
, Zero
, "masksel", &Sel
);
712 return BinaryOperator::CreateOr(F
, NewSel
);
718 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
719 /// There are 8 commuted/swapped variants of this pattern.
720 /// TODO: Also support a - UMIN(a,b) patterns.
721 static Value
*canonicalizeSaturatedSubtract(const ICmpInst
*ICI
,
722 const Value
*TrueVal
,
723 const Value
*FalseVal
,
724 InstCombiner::BuilderTy
&Builder
) {
725 ICmpInst::Predicate Pred
= ICI
->getPredicate();
726 if (!ICmpInst::isUnsigned(Pred
))
729 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
730 if (match(TrueVal
, m_Zero())) {
731 Pred
= ICmpInst::getInversePredicate(Pred
);
732 std::swap(TrueVal
, FalseVal
);
734 if (!match(FalseVal
, m_Zero()))
737 Value
*A
= ICI
->getOperand(0);
738 Value
*B
= ICI
->getOperand(1);
739 if (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_ULT
) {
740 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
742 Pred
= ICmpInst::getSwappedPredicate(Pred
);
745 assert((Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_UGT
) &&
746 "Unexpected isUnsigned predicate!");
748 // Ensure the sub is of the form:
749 // (a > b) ? a - b : 0 -> usub.sat(a, b)
750 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
751 // Checking for both a-b and a+(-b) as a constant.
752 bool IsNegative
= false;
754 if (match(TrueVal
, m_Sub(m_Specific(B
), m_Specific(A
))) ||
755 (match(A
, m_APInt(C
)) &&
756 match(TrueVal
, m_Add(m_Specific(B
), m_SpecificInt(-*C
)))))
758 else if (!match(TrueVal
, m_Sub(m_Specific(A
), m_Specific(B
))) &&
759 !(match(B
, m_APInt(C
)) &&
760 match(TrueVal
, m_Add(m_Specific(A
), m_SpecificInt(-*C
)))))
763 // If we are adding a negate and the sub and icmp are used anywhere else, we
764 // would end up with more instructions.
765 if (IsNegative
&& !TrueVal
->hasOneUse() && !ICI
->hasOneUse())
768 // (a > b) ? a - b : 0 -> usub.sat(a, b)
769 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
770 Value
*Result
= Builder
.CreateBinaryIntrinsic(Intrinsic::usub_sat
, A
, B
);
772 Result
= Builder
.CreateNeg(Result
);
776 static Value
*canonicalizeSaturatedAdd(ICmpInst
*Cmp
, Value
*TVal
, Value
*FVal
,
777 InstCombiner::BuilderTy
&Builder
) {
778 if (!Cmp
->hasOneUse())
781 // Match unsigned saturated add with constant.
782 Value
*Cmp0
= Cmp
->getOperand(0);
783 Value
*Cmp1
= Cmp
->getOperand(1);
784 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
786 const APInt
*C
, *CmpC
;
787 if (Pred
== ICmpInst::ICMP_ULT
&&
788 match(TVal
, m_Add(m_Value(X
), m_APInt(C
))) && X
== Cmp0
&&
789 match(FVal
, m_AllOnes()) && match(Cmp1
, m_APInt(CmpC
)) && *CmpC
== ~*C
) {
790 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
791 return Builder
.CreateBinaryIntrinsic(
792 Intrinsic::uadd_sat
, X
, ConstantInt::get(X
->getType(), *C
));
795 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
796 // There are 8 commuted variants.
797 // Canonicalize -1 (saturated result) to true value of the select.
798 if (match(FVal
, m_AllOnes())) {
799 std::swap(TVal
, FVal
);
800 Pred
= CmpInst::getInversePredicate(Pred
);
802 if (!match(TVal
, m_AllOnes()))
805 // Canonicalize predicate to less-than or less-or-equal-than.
806 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_UGE
) {
807 std::swap(Cmp0
, Cmp1
);
808 Pred
= CmpInst::getSwappedPredicate(Pred
);
810 if (Pred
!= ICmpInst::ICMP_ULT
&& Pred
!= ICmpInst::ICMP_ULE
)
813 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
814 // Strictness of the comparison is irrelevant.
816 if (match(Cmp0
, m_Not(m_Value(X
))) &&
817 match(FVal
, m_c_Add(m_Specific(X
), m_Value(Y
))) && Y
== Cmp1
) {
818 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
819 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
820 return Builder
.CreateBinaryIntrinsic(Intrinsic::uadd_sat
, X
, Y
);
822 // The 'not' op may be included in the sum but not the compare.
823 // Strictness of the comparison is irrelevant.
826 if (match(FVal
, m_c_Add(m_Not(m_Specific(X
)), m_Specific(Y
)))) {
827 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
828 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
829 BinaryOperator
*BO
= cast
<BinaryOperator
>(FVal
);
830 return Builder
.CreateBinaryIntrinsic(
831 Intrinsic::uadd_sat
, BO
->getOperand(0), BO
->getOperand(1));
833 // The overflow may be detected via the add wrapping round.
834 // This is only valid for strict comparison!
835 if (Pred
== ICmpInst::ICMP_ULT
&&
836 match(Cmp0
, m_c_Add(m_Specific(Cmp1
), m_Value(Y
))) &&
837 match(FVal
, m_c_Add(m_Specific(Cmp1
), m_Specific(Y
)))) {
838 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
839 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
840 return Builder
.CreateBinaryIntrinsic(Intrinsic::uadd_sat
, Cmp1
, Y
);
846 /// Fold the following code sequence:
848 /// int a = ctlz(x & -x);
854 static Instruction
*foldSelectCtlzToCttz(ICmpInst
*ICI
, Value
*TrueVal
,
856 InstCombiner::BuilderTy
&Builder
) {
857 unsigned BitWidth
= TrueVal
->getType()->getScalarSizeInBits();
858 if (!ICI
->isEquality() || !match(ICI
->getOperand(1), m_Zero()))
861 if (ICI
->getPredicate() == ICmpInst::ICMP_NE
)
862 std::swap(TrueVal
, FalseVal
);
865 m_Xor(m_Deferred(TrueVal
), m_SpecificInt(BitWidth
- 1))))
868 if (!match(TrueVal
, m_Intrinsic
<Intrinsic::ctlz
>()))
871 Value
*X
= ICI
->getOperand(0);
872 auto *II
= cast
<IntrinsicInst
>(TrueVal
);
873 if (!match(II
->getOperand(0), m_c_And(m_Specific(X
), m_Neg(m_Specific(X
)))))
876 Function
*F
= Intrinsic::getDeclaration(II
->getModule(), Intrinsic::cttz
,
878 return CallInst::Create(F
, {X
, II
->getArgOperand(1)});
881 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
882 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
884 /// For example, we can fold the following code sequence:
886 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
887 /// %1 = icmp ne i32 %x, 0
888 /// %2 = select i1 %1, i32 %0, i32 32
892 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
893 static Value
*foldSelectCttzCtlz(ICmpInst
*ICI
, Value
*TrueVal
, Value
*FalseVal
,
894 InstCombiner::BuilderTy
&Builder
) {
895 ICmpInst::Predicate Pred
= ICI
->getPredicate();
896 Value
*CmpLHS
= ICI
->getOperand(0);
897 Value
*CmpRHS
= ICI
->getOperand(1);
899 // Check if the condition value compares a value for equality against zero.
900 if (!ICI
->isEquality() || !match(CmpRHS
, m_Zero()))
903 Value
*SelectArg
= FalseVal
;
904 Value
*ValueOnZero
= TrueVal
;
905 if (Pred
== ICmpInst::ICMP_NE
)
906 std::swap(SelectArg
, ValueOnZero
);
908 // Skip zero extend/truncate.
909 Value
*Count
= nullptr;
910 if (!match(SelectArg
, m_ZExt(m_Value(Count
))) &&
911 !match(SelectArg
, m_Trunc(m_Value(Count
))))
914 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
915 // input to the cttz/ctlz is used as LHS for the compare instruction.
916 if (!match(Count
, m_Intrinsic
<Intrinsic::cttz
>(m_Specific(CmpLHS
))) &&
917 !match(Count
, m_Intrinsic
<Intrinsic::ctlz
>(m_Specific(CmpLHS
))))
920 IntrinsicInst
*II
= cast
<IntrinsicInst
>(Count
);
922 // Check if the value propagated on zero is a constant number equal to the
923 // sizeof in bits of 'Count'.
924 unsigned SizeOfInBits
= Count
->getType()->getScalarSizeInBits();
925 if (match(ValueOnZero
, m_SpecificInt(SizeOfInBits
))) {
926 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
927 // true to false on this flag, so we can replace it for all users.
928 II
->setArgOperand(1, ConstantInt::getFalse(II
->getContext()));
932 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
933 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
934 // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
935 if (II
->hasOneUse() && SelectArg
->hasOneUse() &&
936 !match(II
->getArgOperand(1), m_One()))
937 II
->setArgOperand(1, ConstantInt::getTrue(II
->getContext()));
942 /// Return true if we find and adjust an icmp+select pattern where the compare
943 /// is with a constant that can be incremented or decremented to match the
944 /// minimum or maximum idiom.
945 static bool adjustMinMax(SelectInst
&Sel
, ICmpInst
&Cmp
) {
946 ICmpInst::Predicate Pred
= Cmp
.getPredicate();
947 Value
*CmpLHS
= Cmp
.getOperand(0);
948 Value
*CmpRHS
= Cmp
.getOperand(1);
949 Value
*TrueVal
= Sel
.getTrueValue();
950 Value
*FalseVal
= Sel
.getFalseValue();
952 // We may move or edit the compare, so make sure the select is the only user.
954 if (!Cmp
.hasOneUse() || !match(CmpRHS
, m_APInt(CmpC
)))
957 // These transforms only work for selects of integers or vector selects of
959 Type
*SelTy
= Sel
.getType();
960 auto *SelEltTy
= dyn_cast
<IntegerType
>(SelTy
->getScalarType());
961 if (!SelEltTy
|| SelTy
->isVectorTy() != Cmp
.getType()->isVectorTy())
964 Constant
*AdjustedRHS
;
965 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_SGT
)
966 AdjustedRHS
= ConstantInt::get(CmpRHS
->getType(), *CmpC
+ 1);
967 else if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_SLT
)
968 AdjustedRHS
= ConstantInt::get(CmpRHS
->getType(), *CmpC
- 1);
972 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
973 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
974 if ((CmpLHS
== TrueVal
&& AdjustedRHS
== FalseVal
) ||
975 (CmpLHS
== FalseVal
&& AdjustedRHS
== TrueVal
)) {
976 ; // Nothing to do here. Values match without any sign/zero extension.
978 // Types do not match. Instead of calculating this with mixed types, promote
979 // all to the larger type. This enables scalar evolution to analyze this
981 else if (CmpRHS
->getType()->getScalarSizeInBits() < SelEltTy
->getBitWidth()) {
982 Constant
*SextRHS
= ConstantExpr::getSExt(AdjustedRHS
, SelTy
);
984 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
985 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
986 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
987 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
988 if (match(TrueVal
, m_SExt(m_Specific(CmpLHS
))) && SextRHS
== FalseVal
) {
990 AdjustedRHS
= SextRHS
;
991 } else if (match(FalseVal
, m_SExt(m_Specific(CmpLHS
))) &&
992 SextRHS
== TrueVal
) {
994 AdjustedRHS
= SextRHS
;
995 } else if (Cmp
.isUnsigned()) {
996 Constant
*ZextRHS
= ConstantExpr::getZExt(AdjustedRHS
, SelTy
);
997 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
998 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
999 // zext + signed compare cannot be changed:
1000 // 0xff <s 0x00, but 0x00ff >s 0x0000
1001 if (match(TrueVal
, m_ZExt(m_Specific(CmpLHS
))) && ZextRHS
== FalseVal
) {
1003 AdjustedRHS
= ZextRHS
;
1004 } else if (match(FalseVal
, m_ZExt(m_Specific(CmpLHS
))) &&
1005 ZextRHS
== TrueVal
) {
1007 AdjustedRHS
= ZextRHS
;
1018 Pred
= ICmpInst::getSwappedPredicate(Pred
);
1019 CmpRHS
= AdjustedRHS
;
1020 std::swap(FalseVal
, TrueVal
);
1021 Cmp
.setPredicate(Pred
);
1022 Cmp
.setOperand(0, CmpLHS
);
1023 Cmp
.setOperand(1, CmpRHS
);
1024 Sel
.setOperand(1, TrueVal
);
1025 Sel
.setOperand(2, FalseVal
);
1026 Sel
.swapProfMetadata();
1028 // Move the compare instruction right before the select instruction. Otherwise
1029 // the sext/zext value may be defined after the compare instruction uses it.
1030 Cmp
.moveBefore(&Sel
);
1035 /// If this is an integer min/max (icmp + select) with a constant operand,
1036 /// create the canonical icmp for the min/max operation and canonicalize the
1037 /// constant to the 'false' operand of the select:
1038 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1039 /// Note: if C1 != C2, this will change the icmp constant to the existing
1040 /// constant operand of the select.
1041 static Instruction
*canonicalizeMinMaxWithConstant(SelectInst
&Sel
,
1043 InstCombinerImpl
&IC
) {
1044 if (!Cmp
.hasOneUse() || !isa
<Constant
>(Cmp
.getOperand(1)))
1047 // Canonicalize the compare predicate based on whether we have min or max.
1049 SelectPatternResult SPR
= matchSelectPattern(&Sel
, LHS
, RHS
);
1050 if (!SelectPatternResult::isMinOrMax(SPR
.Flavor
))
1053 // Is this already canonical?
1054 ICmpInst::Predicate CanonicalPred
= getMinMaxPred(SPR
.Flavor
);
1055 if (Cmp
.getOperand(0) == LHS
&& Cmp
.getOperand(1) == RHS
&&
1056 Cmp
.getPredicate() == CanonicalPred
)
1059 // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1060 // as this may cause an infinite combine loop. Let the sub be folded first.
1061 if (match(LHS
, m_Sub(m_Value(), m_Zero())) ||
1062 match(RHS
, m_Sub(m_Value(), m_Zero())))
1065 // Create the canonical compare and plug it into the select.
1066 IC
.replaceOperand(Sel
, 0, IC
.Builder
.CreateICmp(CanonicalPred
, LHS
, RHS
));
1068 // If the select operands did not change, we're done.
1069 if (Sel
.getTrueValue() == LHS
&& Sel
.getFalseValue() == RHS
)
1072 // If we are swapping the select operands, swap the metadata too.
1073 assert(Sel
.getTrueValue() == RHS
&& Sel
.getFalseValue() == LHS
&&
1074 "Unexpected results from matchSelectPattern");
1076 Sel
.swapProfMetadata();
1080 static Instruction
*canonicalizeAbsNabs(SelectInst
&Sel
, ICmpInst
&Cmp
,
1081 InstCombinerImpl
&IC
) {
1082 if (!Cmp
.hasOneUse() || !isa
<Constant
>(Cmp
.getOperand(1)))
1086 SelectPatternFlavor SPF
= matchSelectPattern(&Sel
, LHS
, RHS
).Flavor
;
1087 if (SPF
!= SelectPatternFlavor::SPF_ABS
&&
1088 SPF
!= SelectPatternFlavor::SPF_NABS
)
1091 // Note that NSW flag can only be propagated for normal, non-negated abs!
1092 bool IntMinIsPoison
= SPF
== SelectPatternFlavor::SPF_ABS
&&
1093 match(RHS
, m_NSWNeg(m_Specific(LHS
)));
1094 Constant
*IntMinIsPoisonC
=
1095 ConstantInt::get(Type::getInt1Ty(Sel
.getContext()), IntMinIsPoison
);
1097 IC
.Builder
.CreateBinaryIntrinsic(Intrinsic::abs
, LHS
, IntMinIsPoisonC
);
1099 if (SPF
== SelectPatternFlavor::SPF_NABS
)
1100 return BinaryOperator::CreateNeg(Abs
); // Always without NSW flag!
1102 return IC
.replaceInstUsesWith(Sel
, Abs
);
1105 /// If we have a select with an equality comparison, then we know the value in
1106 /// one of the arms of the select. See if substituting this value into an arm
1107 /// and simplifying the result yields the same value as the other arm.
1109 /// To make this transform safe, we must drop poison-generating flags
1110 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1111 /// that poison from propagating. If the existing binop already had no
1112 /// poison-generating flags, then this transform can be done by instsimplify.
1115 /// %cmp = icmp eq i32 %x, 2147483647
1116 /// %add = add nsw i32 %x, 1
1117 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1119 /// We can't replace %sel with %add unless we strip away the flags.
1120 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1121 Instruction
*InstCombinerImpl::foldSelectValueEquivalence(SelectInst
&Sel
,
1123 // Value equivalence substitution requires an all-or-nothing replacement.
1124 // It does not make sense for a vector compare where each lane is chosen
1126 if (!Cmp
.isEquality() || Cmp
.getType()->isVectorTy())
1129 // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1130 Value
*TrueVal
= Sel
.getTrueValue(), *FalseVal
= Sel
.getFalseValue();
1131 bool Swapped
= false;
1132 if (Cmp
.getPredicate() == ICmpInst::ICMP_NE
) {
1133 std::swap(TrueVal
, FalseVal
);
1137 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1138 // Make sure Y cannot be undef though, as we might pick different values for
1139 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1140 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1141 // replacement cycle.
1142 Value
*CmpLHS
= Cmp
.getOperand(0), *CmpRHS
= Cmp
.getOperand(1);
1143 if (TrueVal
!= CmpLHS
&&
1144 isGuaranteedNotToBeUndefOrPoison(CmpRHS
, SQ
.AC
, &Sel
, &DT
)) {
1145 if (Value
*V
= simplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, SQ
,
1146 /* AllowRefinement */ true))
1147 return replaceOperand(Sel
, Swapped
? 2 : 1, V
);
1149 // Even if TrueVal does not simplify, we can directly replace a use of
1150 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1151 // else and is safe to speculatively execute (we may end up executing it
1152 // with different operands, which should not cause side-effects or trigger
1153 // undefined behavior). Only do this if CmpRHS is a constant, as
1154 // profitability is not clear for other cases.
1155 // FIXME: The replacement could be performed recursively.
1156 if (match(CmpRHS
, m_ImmConstant()) && !match(CmpLHS
, m_ImmConstant()))
1157 if (auto *I
= dyn_cast
<Instruction
>(TrueVal
))
1158 if (I
->hasOneUse() && isSafeToSpeculativelyExecute(I
))
1159 for (Use
&U
: I
->operands())
1161 replaceUse(U
, CmpRHS
);
1165 if (TrueVal
!= CmpRHS
&&
1166 isGuaranteedNotToBeUndefOrPoison(CmpLHS
, SQ
.AC
, &Sel
, &DT
))
1167 if (Value
*V
= simplifyWithOpReplaced(TrueVal
, CmpRHS
, CmpLHS
, SQ
,
1168 /* AllowRefinement */ true))
1169 return replaceOperand(Sel
, Swapped
? 2 : 1, V
);
1171 auto *FalseInst
= dyn_cast
<Instruction
>(FalseVal
);
1175 // InstSimplify already performed this fold if it was possible subject to
1176 // current poison-generating flags. Try the transform again with
1177 // poison-generating flags temporarily dropped.
1178 bool WasNUW
= false, WasNSW
= false, WasExact
= false, WasInBounds
= false;
1179 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(FalseVal
)) {
1180 WasNUW
= OBO
->hasNoUnsignedWrap();
1181 WasNSW
= OBO
->hasNoSignedWrap();
1182 FalseInst
->setHasNoUnsignedWrap(false);
1183 FalseInst
->setHasNoSignedWrap(false);
1185 if (auto *PEO
= dyn_cast
<PossiblyExactOperator
>(FalseVal
)) {
1186 WasExact
= PEO
->isExact();
1187 FalseInst
->setIsExact(false);
1189 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(FalseVal
)) {
1190 WasInBounds
= GEP
->isInBounds();
1191 GEP
->setIsInBounds(false);
1194 // Try each equivalence substitution possibility.
1195 // We have an 'EQ' comparison, so the select's false value will propagate.
1197 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1198 if (simplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, SQ
,
1199 /* AllowRefinement */ false) == TrueVal
||
1200 simplifyWithOpReplaced(FalseVal
, CmpRHS
, CmpLHS
, SQ
,
1201 /* AllowRefinement */ false) == TrueVal
) {
1202 return replaceInstUsesWith(Sel
, FalseVal
);
1205 // Restore poison-generating flags if the transform did not apply.
1207 FalseInst
->setHasNoUnsignedWrap();
1209 FalseInst
->setHasNoSignedWrap();
1211 FalseInst
->setIsExact();
1213 cast
<GetElementPtrInst
>(FalseInst
)->setIsInBounds();
1218 // See if this is a pattern like:
1219 // %old_cmp1 = icmp slt i32 %x, C2
1220 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1221 // %old_x_offseted = add i32 %x, C1
1222 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1223 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1224 // This can be rewritten as more canonical pattern:
1225 // %new_cmp1 = icmp slt i32 %x, -C1
1226 // %new_cmp2 = icmp sge i32 %x, C0-C1
1227 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1228 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1229 // Iff -C1 s<= C2 s<= C0-C1
1230 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1231 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1232 static Instruction
*canonicalizeClampLike(SelectInst
&Sel0
, ICmpInst
&Cmp0
,
1233 InstCombiner::BuilderTy
&Builder
) {
1234 Value
*X
= Sel0
.getTrueValue();
1235 Value
*Sel1
= Sel0
.getFalseValue();
1237 // First match the condition of the outermost select.
1238 // Said condition must be one-use.
1239 if (!Cmp0
.hasOneUse())
1241 Value
*Cmp00
= Cmp0
.getOperand(0);
1243 if (!match(Cmp0
.getOperand(1),
1244 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0
))))
1246 // Canonicalize Cmp0 into the form we expect.
1247 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1248 switch (Cmp0
.getPredicate()) {
1249 case ICmpInst::Predicate::ICMP_ULT
:
1251 case ICmpInst::Predicate::ICMP_ULE
:
1252 // We'd have to increment C0 by one, and for that it must not have all-ones
1253 // element, but then it would have been canonicalized to 'ult' before
1254 // we get here. So we can't do anything useful with 'ule'.
1256 case ICmpInst::Predicate::ICMP_UGT
:
1257 // We want to canonicalize it to 'ult', so we'll need to increment C0,
1258 // which again means it must not have any all-ones elements.
1260 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE
,
1261 APInt::getAllOnesValue(
1262 C0
->getType()->getScalarSizeInBits()))))
1263 return nullptr; // Can't do, have all-ones element[s].
1264 C0
= InstCombiner::AddOne(C0
);
1267 case ICmpInst::Predicate::ICMP_UGE
:
1268 // The only way we'd get this predicate if this `icmp` has extra uses,
1269 // but then we won't be able to do this fold.
1272 return nullptr; // Unknown predicate.
1275 // Now that we've canonicalized the ICmp, we know the X we expect;
1276 // the select in other hand should be one-use.
1277 if (!Sel1
->hasOneUse())
1280 // We now can finish matching the condition of the outermost select:
1281 // it should either be the X itself, or an addition of some constant to X.
1284 C1
= ConstantInt::getNullValue(Sel0
.getType());
1285 else if (!match(Cmp00
,
1286 m_Add(m_Specific(X
),
1287 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1
)))))
1291 ICmpInst::Predicate Pred1
;
1293 Value
*ReplacementLow
, *ReplacementHigh
;
1294 if (!match(Sel1
, m_Select(m_Value(Cmp1
), m_Value(ReplacementLow
),
1295 m_Value(ReplacementHigh
))) ||
1297 m_ICmp(Pred1
, m_Specific(X
),
1298 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2
)))))
1301 if (!Cmp1
->hasOneUse() && (Cmp00
== X
|| !Cmp00
->hasOneUse()))
1302 return nullptr; // Not enough one-use instructions for the fold.
1303 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1304 // two comparisons we'll need to build.
1306 // Canonicalize Cmp1 into the form we expect.
1307 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1309 case ICmpInst::Predicate::ICMP_SLT
:
1311 case ICmpInst::Predicate::ICMP_SLE
:
1312 // We'd have to increment C2 by one, and for that it must not have signed
1313 // max element, but then it would have been canonicalized to 'slt' before
1314 // we get here. So we can't do anything useful with 'sle'.
1316 case ICmpInst::Predicate::ICMP_SGT
:
1317 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1318 // which again means it must not have any signed max elements.
1320 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE
,
1321 APInt::getSignedMaxValue(
1322 C2
->getType()->getScalarSizeInBits()))))
1323 return nullptr; // Can't do, have signed max element[s].
1324 C2
= InstCombiner::AddOne(C2
);
1326 case ICmpInst::Predicate::ICMP_SGE
:
1327 // Also non-canonical, but here we don't need to change C2,
1328 // so we don't have any restrictions on C2, so we can just handle it.
1329 std::swap(ReplacementLow
, ReplacementHigh
);
1332 return nullptr; // Unknown predicate.
1335 // The thresholds of this clamp-like pattern.
1336 auto *ThresholdLowIncl
= ConstantExpr::getNeg(C1
);
1337 auto *ThresholdHighExcl
= ConstantExpr::getSub(C0
, C1
);
1339 // The fold has a precondition 1: C2 s>= ThresholdLow
1340 auto *Precond1
= ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE
, C2
,
1342 if (!match(Precond1
, m_One()))
1344 // The fold has a precondition 2: C2 s<= ThresholdHigh
1345 auto *Precond2
= ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE
, C2
,
1347 if (!match(Precond2
, m_One()))
1350 // All good, finally emit the new pattern.
1351 Value
*ShouldReplaceLow
= Builder
.CreateICmpSLT(X
, ThresholdLowIncl
);
1352 Value
*ShouldReplaceHigh
= Builder
.CreateICmpSGE(X
, ThresholdHighExcl
);
1353 Value
*MaybeReplacedLow
=
1354 Builder
.CreateSelect(ShouldReplaceLow
, ReplacementLow
, X
);
1355 Instruction
*MaybeReplacedHigh
=
1356 SelectInst::Create(ShouldReplaceHigh
, ReplacementHigh
, MaybeReplacedLow
);
1358 return MaybeReplacedHigh
;
1362 // %cmp = icmp [canonical predicate] i32 %x, C0
1363 // %r = select i1 %cmp, i32 %y, i32 C1
1364 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1365 // will have if we flip the strictness of the predicate (i.e. without changing
1366 // the result) is identical to the C1 in select. If it matches we can change
1367 // original comparison to one with swapped predicate, reuse the constant,
1368 // and swap the hands of select.
1369 static Instruction
*
1370 tryToReuseConstantFromSelectInComparison(SelectInst
&Sel
, ICmpInst
&Cmp
,
1371 InstCombinerImpl
&IC
) {
1372 ICmpInst::Predicate Pred
;
1375 if (!match(&Cmp
, m_OneUse(m_ICmp(
1377 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0
))))))
1380 // If comparison predicate is non-relational, we won't be able to do anything.
1381 if (ICmpInst::isEquality(Pred
))
1384 // If comparison predicate is non-canonical, then we certainly won't be able
1385 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1386 if (!InstCombiner::isCanonicalPredicate(Pred
))
1389 // If the [input] type of comparison and select type are different, lets abort
1390 // for now. We could try to compare constants with trunc/[zs]ext though.
1391 if (C0
->getType() != Sel
.getType())
1394 // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1396 Value
*SelVal0
, *SelVal1
; // We do not care which one is from where.
1397 match(&Sel
, m_Select(m_Value(), m_Value(SelVal0
), m_Value(SelVal1
)));
1398 // At least one of these values we are selecting between must be a constant
1399 // else we'll never succeed.
1400 if (!match(SelVal0
, m_AnyIntegralConstant()) &&
1401 !match(SelVal1
, m_AnyIntegralConstant()))
1404 // Does this constant C match any of the `select` values?
1405 auto MatchesSelectValue
= [SelVal0
, SelVal1
](Constant
*C
) {
1406 return C
->isElementWiseEqual(SelVal0
) || C
->isElementWiseEqual(SelVal1
);
1409 // If C0 *already* matches true/false value of select, we are done.
1410 if (MatchesSelectValue(C0
))
1413 // Check the constant we'd have with flipped-strictness predicate.
1414 auto FlippedStrictness
=
1415 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred
, C0
);
1416 if (!FlippedStrictness
)
1419 // If said constant doesn't match either, then there is no hope,
1420 if (!MatchesSelectValue(FlippedStrictness
->second
))
1423 // It matched! Lets insert the new comparison just before select.
1424 InstCombiner::BuilderTy::InsertPointGuard
Guard(IC
.Builder
);
1425 IC
.Builder
.SetInsertPoint(&Sel
);
1427 Pred
= ICmpInst::getSwappedPredicate(Pred
); // Yes, swapped.
1428 Value
*NewCmp
= IC
.Builder
.CreateICmp(Pred
, X
, FlippedStrictness
->second
,
1429 Cmp
.getName() + ".inv");
1430 IC
.replaceOperand(Sel
, 0, NewCmp
);
1432 Sel
.swapProfMetadata();
1437 /// Visit a SelectInst that has an ICmpInst as its first operand.
1438 Instruction
*InstCombinerImpl::foldSelectInstWithICmp(SelectInst
&SI
,
1440 if (Instruction
*NewSel
= foldSelectValueEquivalence(SI
, *ICI
))
1443 if (Instruction
*NewSel
= canonicalizeMinMaxWithConstant(SI
, *ICI
, *this))
1446 if (Instruction
*NewAbs
= canonicalizeAbsNabs(SI
, *ICI
, *this))
1449 if (Instruction
*NewAbs
= canonicalizeClampLike(SI
, *ICI
, Builder
))
1452 if (Instruction
*NewSel
=
1453 tryToReuseConstantFromSelectInComparison(SI
, *ICI
, *this))
1456 bool Changed
= adjustMinMax(SI
, *ICI
);
1458 if (Value
*V
= foldSelectICmpAnd(SI
, ICI
, Builder
))
1459 return replaceInstUsesWith(SI
, V
);
1461 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1462 Value
*TrueVal
= SI
.getTrueValue();
1463 Value
*FalseVal
= SI
.getFalseValue();
1464 ICmpInst::Predicate Pred
= ICI
->getPredicate();
1465 Value
*CmpLHS
= ICI
->getOperand(0);
1466 Value
*CmpRHS
= ICI
->getOperand(1);
1467 if (CmpRHS
!= CmpLHS
&& isa
<Constant
>(CmpRHS
)) {
1468 if (CmpLHS
== TrueVal
&& Pred
== ICmpInst::ICMP_EQ
) {
1469 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1470 SI
.setOperand(1, CmpRHS
);
1472 } else if (CmpLHS
== FalseVal
&& Pred
== ICmpInst::ICMP_NE
) {
1473 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1474 SI
.setOperand(2, CmpRHS
);
1479 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1480 // decomposeBitTestICmp() might help.
1483 DL
.getTypeSizeInBits(TrueVal
->getType()->getScalarType());
1484 APInt MinSignedValue
= APInt::getSignedMinValue(BitWidth
);
1488 bool IsBitTest
= false;
1489 if (ICmpInst::isEquality(Pred
) &&
1490 match(CmpLHS
, m_And(m_Value(X
), m_Power2(Y
))) &&
1491 match(CmpRHS
, m_Zero())) {
1493 TrueWhenUnset
= Pred
== ICmpInst::ICMP_EQ
;
1494 } else if (Pred
== ICmpInst::ICMP_SLT
&& match(CmpRHS
, m_Zero())) {
1496 Y
= &MinSignedValue
;
1498 TrueWhenUnset
= false;
1499 } else if (Pred
== ICmpInst::ICMP_SGT
&& match(CmpRHS
, m_AllOnes())) {
1501 Y
= &MinSignedValue
;
1503 TrueWhenUnset
= true;
1507 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1508 if (TrueWhenUnset
&& TrueVal
== X
&&
1509 match(FalseVal
, m_Xor(m_Specific(X
), m_APInt(C
))) && *Y
== *C
)
1510 V
= Builder
.CreateAnd(X
, ~(*Y
));
1511 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1512 else if (!TrueWhenUnset
&& FalseVal
== X
&&
1513 match(TrueVal
, m_Xor(m_Specific(X
), m_APInt(C
))) && *Y
== *C
)
1514 V
= Builder
.CreateAnd(X
, ~(*Y
));
1515 // (X & Y) == 0 ? X ^ Y : X --> X | Y
1516 else if (TrueWhenUnset
&& FalseVal
== X
&&
1517 match(TrueVal
, m_Xor(m_Specific(X
), m_APInt(C
))) && *Y
== *C
)
1518 V
= Builder
.CreateOr(X
, *Y
);
1519 // (X & Y) != 0 ? X : X ^ Y --> X | Y
1520 else if (!TrueWhenUnset
&& TrueVal
== X
&&
1521 match(FalseVal
, m_Xor(m_Specific(X
), m_APInt(C
))) && *Y
== *C
)
1522 V
= Builder
.CreateOr(X
, *Y
);
1525 return replaceInstUsesWith(SI
, V
);
1529 if (Instruction
*V
=
1530 foldSelectICmpAndAnd(SI
.getType(), ICI
, TrueVal
, FalseVal
, Builder
))
1533 if (Instruction
*V
= foldSelectCtlzToCttz(ICI
, TrueVal
, FalseVal
, Builder
))
1536 if (Value
*V
= foldSelectICmpAndOr(ICI
, TrueVal
, FalseVal
, Builder
))
1537 return replaceInstUsesWith(SI
, V
);
1539 if (Value
*V
= foldSelectICmpLshrAshr(ICI
, TrueVal
, FalseVal
, Builder
))
1540 return replaceInstUsesWith(SI
, V
);
1542 if (Value
*V
= foldSelectCttzCtlz(ICI
, TrueVal
, FalseVal
, Builder
))
1543 return replaceInstUsesWith(SI
, V
);
1545 if (Value
*V
= canonicalizeSaturatedSubtract(ICI
, TrueVal
, FalseVal
, Builder
))
1546 return replaceInstUsesWith(SI
, V
);
1548 if (Value
*V
= canonicalizeSaturatedAdd(ICI
, TrueVal
, FalseVal
, Builder
))
1549 return replaceInstUsesWith(SI
, V
);
1551 return Changed
? &SI
: nullptr;
1554 /// SI is a select whose condition is a PHI node (but the two may be in
1555 /// different blocks). See if the true/false values (V) are live in all of the
1556 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1558 /// X = phi [ C1, BB1], [C2, BB2]
1560 /// Z = select X, Y, 0
1562 /// because Y is not live in BB1/BB2.
1563 static bool canSelectOperandBeMappingIntoPredBlock(const Value
*V
,
1564 const SelectInst
&SI
) {
1565 // If the value is a non-instruction value like a constant or argument, it
1566 // can always be mapped.
1567 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
1568 if (!I
) return true;
1570 // If V is a PHI node defined in the same block as the condition PHI, we can
1571 // map the arguments.
1572 const PHINode
*CondPHI
= cast
<PHINode
>(SI
.getCondition());
1574 if (const PHINode
*VP
= dyn_cast
<PHINode
>(I
))
1575 if (VP
->getParent() == CondPHI
->getParent())
1578 // Otherwise, if the PHI and select are defined in the same block and if V is
1579 // defined in a different block, then we can transform it.
1580 if (SI
.getParent() == CondPHI
->getParent() &&
1581 I
->getParent() != CondPHI
->getParent())
1584 // Otherwise we have a 'hard' case and we can't tell without doing more
1585 // detailed dominator based analysis, punt.
1589 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1590 /// SPF2(SPF1(A, B), C)
1591 Instruction
*InstCombinerImpl::foldSPFofSPF(Instruction
*Inner
,
1592 SelectPatternFlavor SPF1
, Value
*A
,
1593 Value
*B
, Instruction
&Outer
,
1594 SelectPatternFlavor SPF2
,
1596 if (Outer
.getType() != Inner
->getType())
1599 if (C
== A
|| C
== B
) {
1600 // MAX(MAX(A, B), B) -> MAX(A, B)
1601 // MIN(MIN(a, b), a) -> MIN(a, b)
1602 // TODO: This could be done in instsimplify.
1603 if (SPF1
== SPF2
&& SelectPatternResult::isMinOrMax(SPF1
))
1604 return replaceInstUsesWith(Outer
, Inner
);
1606 // MAX(MIN(a, b), a) -> a
1607 // MIN(MAX(a, b), a) -> a
1608 // TODO: This could be done in instsimplify.
1609 if ((SPF1
== SPF_SMIN
&& SPF2
== SPF_SMAX
) ||
1610 (SPF1
== SPF_SMAX
&& SPF2
== SPF_SMIN
) ||
1611 (SPF1
== SPF_UMIN
&& SPF2
== SPF_UMAX
) ||
1612 (SPF1
== SPF_UMAX
&& SPF2
== SPF_UMIN
))
1613 return replaceInstUsesWith(Outer
, C
);
1617 const APInt
*CB
, *CC
;
1618 if (match(B
, m_APInt(CB
)) && match(C
, m_APInt(CC
))) {
1619 // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1620 // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1621 // TODO: This could be done in instsimplify.
1622 if ((SPF1
== SPF_UMIN
&& CB
->ule(*CC
)) ||
1623 (SPF1
== SPF_SMIN
&& CB
->sle(*CC
)) ||
1624 (SPF1
== SPF_UMAX
&& CB
->uge(*CC
)) ||
1625 (SPF1
== SPF_SMAX
&& CB
->sge(*CC
)))
1626 return replaceInstUsesWith(Outer
, Inner
);
1628 // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1629 // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1630 if ((SPF1
== SPF_UMIN
&& CB
->ugt(*CC
)) ||
1631 (SPF1
== SPF_SMIN
&& CB
->sgt(*CC
)) ||
1632 (SPF1
== SPF_UMAX
&& CB
->ult(*CC
)) ||
1633 (SPF1
== SPF_SMAX
&& CB
->slt(*CC
))) {
1634 Outer
.replaceUsesOfWith(Inner
, A
);
1640 // max(max(A, B), min(A, B)) --> max(A, B)
1641 // min(min(A, B), max(A, B)) --> min(A, B)
1642 // TODO: This could be done in instsimplify.
1644 ((SPF1
== SPF_UMIN
&& match(C
, m_c_UMax(m_Specific(A
), m_Specific(B
)))) ||
1645 (SPF1
== SPF_SMIN
&& match(C
, m_c_SMax(m_Specific(A
), m_Specific(B
)))) ||
1646 (SPF1
== SPF_UMAX
&& match(C
, m_c_UMin(m_Specific(A
), m_Specific(B
)))) ||
1647 (SPF1
== SPF_SMAX
&& match(C
, m_c_SMin(m_Specific(A
), m_Specific(B
))))))
1648 return replaceInstUsesWith(Outer
, Inner
);
1650 // ABS(ABS(X)) -> ABS(X)
1651 // NABS(NABS(X)) -> NABS(X)
1652 // TODO: This could be done in instsimplify.
1653 if (SPF1
== SPF2
&& (SPF1
== SPF_ABS
|| SPF1
== SPF_NABS
)) {
1654 return replaceInstUsesWith(Outer
, Inner
);
1657 // ABS(NABS(X)) -> ABS(X)
1658 // NABS(ABS(X)) -> NABS(X)
1659 if ((SPF1
== SPF_ABS
&& SPF2
== SPF_NABS
) ||
1660 (SPF1
== SPF_NABS
&& SPF2
== SPF_ABS
)) {
1661 SelectInst
*SI
= cast
<SelectInst
>(Inner
);
1663 Builder
.CreateSelect(SI
->getCondition(), SI
->getFalseValue(),
1664 SI
->getTrueValue(), SI
->getName(), SI
);
1665 return replaceInstUsesWith(Outer
, NewSI
);
1668 auto IsFreeOrProfitableToInvert
=
1669 [&](Value
*V
, Value
*&NotV
, bool &ElidesXor
) {
1670 if (match(V
, m_Not(m_Value(NotV
)))) {
1671 // If V has at most 2 uses then we can get rid of the xor operation
1673 ElidesXor
|= !V
->hasNUsesOrMore(3);
1677 if (isFreeToInvert(V
, !V
->hasNUsesOrMore(3))) {
1685 Value
*NotA
, *NotB
, *NotC
;
1686 bool ElidesXor
= false;
1688 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1689 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1690 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1691 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1693 // This transform is performance neutral if we can elide at least one xor from
1694 // the set of three operands, since we'll be tacking on an xor at the very
1696 if (SelectPatternResult::isMinOrMax(SPF1
) &&
1697 SelectPatternResult::isMinOrMax(SPF2
) &&
1698 IsFreeOrProfitableToInvert(A
, NotA
, ElidesXor
) &&
1699 IsFreeOrProfitableToInvert(B
, NotB
, ElidesXor
) &&
1700 IsFreeOrProfitableToInvert(C
, NotC
, ElidesXor
) && ElidesXor
) {
1702 NotA
= Builder
.CreateNot(A
);
1704 NotB
= Builder
.CreateNot(B
);
1706 NotC
= Builder
.CreateNot(C
);
1708 Value
*NewInner
= createMinMax(Builder
, getInverseMinMaxFlavor(SPF1
), NotA
,
1710 Value
*NewOuter
= Builder
.CreateNot(
1711 createMinMax(Builder
, getInverseMinMaxFlavor(SPF2
), NewInner
, NotC
));
1712 return replaceInstUsesWith(Outer
, NewOuter
);
1718 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1719 /// This is even legal for FP.
1720 static Instruction
*foldAddSubSelect(SelectInst
&SI
,
1721 InstCombiner::BuilderTy
&Builder
) {
1722 Value
*CondVal
= SI
.getCondition();
1723 Value
*TrueVal
= SI
.getTrueValue();
1724 Value
*FalseVal
= SI
.getFalseValue();
1725 auto *TI
= dyn_cast
<Instruction
>(TrueVal
);
1726 auto *FI
= dyn_cast
<Instruction
>(FalseVal
);
1727 if (!TI
|| !FI
|| !TI
->hasOneUse() || !FI
->hasOneUse())
1730 Instruction
*AddOp
= nullptr, *SubOp
= nullptr;
1731 if ((TI
->getOpcode() == Instruction::Sub
&&
1732 FI
->getOpcode() == Instruction::Add
) ||
1733 (TI
->getOpcode() == Instruction::FSub
&&
1734 FI
->getOpcode() == Instruction::FAdd
)) {
1737 } else if ((FI
->getOpcode() == Instruction::Sub
&&
1738 TI
->getOpcode() == Instruction::Add
) ||
1739 (FI
->getOpcode() == Instruction::FSub
&&
1740 TI
->getOpcode() == Instruction::FAdd
)) {
1746 Value
*OtherAddOp
= nullptr;
1747 if (SubOp
->getOperand(0) == AddOp
->getOperand(0)) {
1748 OtherAddOp
= AddOp
->getOperand(1);
1749 } else if (SubOp
->getOperand(0) == AddOp
->getOperand(1)) {
1750 OtherAddOp
= AddOp
->getOperand(0);
1754 // So at this point we know we have (Y -> OtherAddOp):
1755 // select C, (add X, Y), (sub X, Z)
1756 Value
*NegVal
; // Compute -Z
1757 if (SI
.getType()->isFPOrFPVectorTy()) {
1758 NegVal
= Builder
.CreateFNeg(SubOp
->getOperand(1));
1759 if (Instruction
*NegInst
= dyn_cast
<Instruction
>(NegVal
)) {
1760 FastMathFlags Flags
= AddOp
->getFastMathFlags();
1761 Flags
&= SubOp
->getFastMathFlags();
1762 NegInst
->setFastMathFlags(Flags
);
1765 NegVal
= Builder
.CreateNeg(SubOp
->getOperand(1));
1768 Value
*NewTrueOp
= OtherAddOp
;
1769 Value
*NewFalseOp
= NegVal
;
1771 std::swap(NewTrueOp
, NewFalseOp
);
1772 Value
*NewSel
= Builder
.CreateSelect(CondVal
, NewTrueOp
, NewFalseOp
,
1773 SI
.getName() + ".p", &SI
);
1775 if (SI
.getType()->isFPOrFPVectorTy()) {
1777 BinaryOperator::CreateFAdd(SubOp
->getOperand(0), NewSel
);
1779 FastMathFlags Flags
= AddOp
->getFastMathFlags();
1780 Flags
&= SubOp
->getFastMathFlags();
1781 RI
->setFastMathFlags(Flags
);
1784 return BinaryOperator::CreateAdd(SubOp
->getOperand(0), NewSel
);
1790 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1791 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1792 /// Along with a number of patterns similar to:
1793 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1794 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1795 static Instruction
*
1796 foldOverflowingAddSubSelect(SelectInst
&SI
, InstCombiner::BuilderTy
&Builder
) {
1797 Value
*CondVal
= SI
.getCondition();
1798 Value
*TrueVal
= SI
.getTrueValue();
1799 Value
*FalseVal
= SI
.getFalseValue();
1801 WithOverflowInst
*II
;
1802 if (!match(CondVal
, m_ExtractValue
<1>(m_WithOverflowInst(II
))) ||
1803 !match(FalseVal
, m_ExtractValue
<0>(m_Specific(II
))))
1806 Value
*X
= II
->getLHS();
1807 Value
*Y
= II
->getRHS();
1809 auto IsSignedSaturateLimit
= [&](Value
*Limit
, bool IsAdd
) {
1810 Type
*Ty
= Limit
->getType();
1812 ICmpInst::Predicate Pred
;
1813 Value
*TrueVal
, *FalseVal
, *Op
;
1815 if (!match(Limit
, m_Select(m_ICmp(Pred
, m_Value(Op
), m_APInt(C
)),
1816 m_Value(TrueVal
), m_Value(FalseVal
))))
1819 auto IsZeroOrOne
= [](const APInt
&C
) {
1820 return C
.isNullValue() || C
.isOneValue();
1822 auto IsMinMax
= [&](Value
*Min
, Value
*Max
) {
1823 APInt MinVal
= APInt::getSignedMinValue(Ty
->getScalarSizeInBits());
1824 APInt MaxVal
= APInt::getSignedMaxValue(Ty
->getScalarSizeInBits());
1825 return match(Min
, m_SpecificInt(MinVal
)) &&
1826 match(Max
, m_SpecificInt(MaxVal
));
1829 if (Op
!= X
&& Op
!= Y
)
1833 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1834 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1835 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1836 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1837 if (Pred
== ICmpInst::ICMP_SLT
&& IsZeroOrOne(*C
) &&
1838 IsMinMax(TrueVal
, FalseVal
))
1840 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1841 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1842 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1843 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1844 if (Pred
== ICmpInst::ICMP_SGT
&& IsZeroOrOne(*C
+ 1) &&
1845 IsMinMax(FalseVal
, TrueVal
))
1848 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1849 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1850 if (Op
== X
&& Pred
== ICmpInst::ICMP_SLT
&& IsZeroOrOne(*C
+ 1) &&
1851 IsMinMax(TrueVal
, FalseVal
))
1853 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1854 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1855 if (Op
== X
&& Pred
== ICmpInst::ICMP_SGT
&& IsZeroOrOne(*C
+ 2) &&
1856 IsMinMax(FalseVal
, TrueVal
))
1858 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1859 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1860 if (Op
== Y
&& Pred
== ICmpInst::ICMP_SLT
&& IsZeroOrOne(*C
) &&
1861 IsMinMax(FalseVal
, TrueVal
))
1863 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1864 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1865 if (Op
== Y
&& Pred
== ICmpInst::ICMP_SGT
&& IsZeroOrOne(*C
+ 1) &&
1866 IsMinMax(TrueVal
, FalseVal
))
1873 Intrinsic::ID NewIntrinsicID
;
1874 if (II
->getIntrinsicID() == Intrinsic::uadd_with_overflow
&&
1875 match(TrueVal
, m_AllOnes()))
1876 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1877 NewIntrinsicID
= Intrinsic::uadd_sat
;
1878 else if (II
->getIntrinsicID() == Intrinsic::usub_with_overflow
&&
1879 match(TrueVal
, m_Zero()))
1880 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1881 NewIntrinsicID
= Intrinsic::usub_sat
;
1882 else if (II
->getIntrinsicID() == Intrinsic::sadd_with_overflow
&&
1883 IsSignedSaturateLimit(TrueVal
, /*IsAdd=*/true))
1884 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1885 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1886 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1887 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1888 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1889 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1890 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1891 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1892 NewIntrinsicID
= Intrinsic::sadd_sat
;
1893 else if (II
->getIntrinsicID() == Intrinsic::ssub_with_overflow
&&
1894 IsSignedSaturateLimit(TrueVal
, /*IsAdd=*/false))
1895 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1896 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1897 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1898 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1899 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1900 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1901 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1902 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1903 NewIntrinsicID
= Intrinsic::ssub_sat
;
1908 Intrinsic::getDeclaration(SI
.getModule(), NewIntrinsicID
, SI
.getType());
1909 return CallInst::Create(F
, {X
, Y
});
1912 Instruction
*InstCombinerImpl::foldSelectExtConst(SelectInst
&Sel
) {
1914 if (!match(Sel
.getTrueValue(), m_Constant(C
)) &&
1915 !match(Sel
.getFalseValue(), m_Constant(C
)))
1918 Instruction
*ExtInst
;
1919 if (!match(Sel
.getTrueValue(), m_Instruction(ExtInst
)) &&
1920 !match(Sel
.getFalseValue(), m_Instruction(ExtInst
)))
1923 auto ExtOpcode
= ExtInst
->getOpcode();
1924 if (ExtOpcode
!= Instruction::ZExt
&& ExtOpcode
!= Instruction::SExt
)
1927 // If we are extending from a boolean type or if we can create a select that
1928 // has the same size operands as its condition, try to narrow the select.
1929 Value
*X
= ExtInst
->getOperand(0);
1930 Type
*SmallType
= X
->getType();
1931 Value
*Cond
= Sel
.getCondition();
1932 auto *Cmp
= dyn_cast
<CmpInst
>(Cond
);
1933 if (!SmallType
->isIntOrIntVectorTy(1) &&
1934 (!Cmp
|| Cmp
->getOperand(0)->getType() != SmallType
))
1937 // If the constant is the same after truncation to the smaller type and
1938 // extension to the original type, we can narrow the select.
1939 Type
*SelType
= Sel
.getType();
1940 Constant
*TruncC
= ConstantExpr::getTrunc(C
, SmallType
);
1941 Constant
*ExtC
= ConstantExpr::getCast(ExtOpcode
, TruncC
, SelType
);
1942 if (ExtC
== C
&& ExtInst
->hasOneUse()) {
1943 Value
*TruncCVal
= cast
<Value
>(TruncC
);
1944 if (ExtInst
== Sel
.getFalseValue())
1945 std::swap(X
, TruncCVal
);
1947 // select Cond, (ext X), C --> ext(select Cond, X, C')
1948 // select Cond, C, (ext X) --> ext(select Cond, C', X)
1949 Value
*NewSel
= Builder
.CreateSelect(Cond
, X
, TruncCVal
, "narrow", &Sel
);
1950 return CastInst::Create(Instruction::CastOps(ExtOpcode
), NewSel
, SelType
);
1953 // If one arm of the select is the extend of the condition, replace that arm
1954 // with the extension of the appropriate known bool value.
1956 if (ExtInst
== Sel
.getTrueValue()) {
1957 // select X, (sext X), C --> select X, -1, C
1958 // select X, (zext X), C --> select X, 1, C
1959 Constant
*One
= ConstantInt::getTrue(SmallType
);
1960 Constant
*AllOnesOrOne
= ConstantExpr::getCast(ExtOpcode
, One
, SelType
);
1961 return SelectInst::Create(Cond
, AllOnesOrOne
, C
, "", nullptr, &Sel
);
1963 // select X, C, (sext X) --> select X, C, 0
1964 // select X, C, (zext X) --> select X, C, 0
1965 Constant
*Zero
= ConstantInt::getNullValue(SelType
);
1966 return SelectInst::Create(Cond
, C
, Zero
, "", nullptr, &Sel
);
1973 /// Try to transform a vector select with a constant condition vector into a
1974 /// shuffle for easier combining with other shuffles and insert/extract.
1975 static Instruction
*canonicalizeSelectToShuffle(SelectInst
&SI
) {
1976 Value
*CondVal
= SI
.getCondition();
1978 auto *CondValTy
= dyn_cast
<FixedVectorType
>(CondVal
->getType());
1979 if (!CondValTy
|| !match(CondVal
, m_Constant(CondC
)))
1982 unsigned NumElts
= CondValTy
->getNumElements();
1983 SmallVector
<int, 16> Mask
;
1984 Mask
.reserve(NumElts
);
1985 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1986 Constant
*Elt
= CondC
->getAggregateElement(i
);
1990 if (Elt
->isOneValue()) {
1991 // If the select condition element is true, choose from the 1st vector.
1993 } else if (Elt
->isNullValue()) {
1994 // If the select condition element is false, choose from the 2nd vector.
1995 Mask
.push_back(i
+ NumElts
);
1996 } else if (isa
<UndefValue
>(Elt
)) {
1997 // Undef in a select condition (choose one of the operands) does not mean
1998 // the same thing as undef in a shuffle mask (any value is acceptable), so
2002 // Bail out on a constant expression.
2007 return new ShuffleVectorInst(SI
.getTrueValue(), SI
.getFalseValue(), Mask
);
2010 /// If we have a select of vectors with a scalar condition, try to convert that
2011 /// to a vector select by splatting the condition. A splat may get folded with
2012 /// other operations in IR and having all operands of a select be vector types
2013 /// is likely better for vector codegen.
2014 static Instruction
*canonicalizeScalarSelectOfVecs(SelectInst
&Sel
,
2015 InstCombinerImpl
&IC
) {
2016 auto *Ty
= dyn_cast
<VectorType
>(Sel
.getType());
2020 // We can replace a single-use extract with constant index.
2021 Value
*Cond
= Sel
.getCondition();
2022 if (!match(Cond
, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2025 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2026 // Splatting the extracted condition reduces code (we could directly create a
2027 // splat shuffle of the source vector to eliminate the intermediate step).
2028 return IC
.replaceOperand(
2029 Sel
, 0, IC
.Builder
.CreateVectorSplat(Ty
->getElementCount(), Cond
));
2032 /// Reuse bitcasted operands between a compare and select:
2033 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2034 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2035 static Instruction
*foldSelectCmpBitcasts(SelectInst
&Sel
,
2036 InstCombiner::BuilderTy
&Builder
) {
2037 Value
*Cond
= Sel
.getCondition();
2038 Value
*TVal
= Sel
.getTrueValue();
2039 Value
*FVal
= Sel
.getFalseValue();
2041 CmpInst::Predicate Pred
;
2043 if (!match(Cond
, m_Cmp(Pred
, m_Value(A
), m_Value(B
))))
2046 // The select condition is a compare instruction. If the select's true/false
2047 // values are already the same as the compare operands, there's nothing to do.
2048 if (TVal
== A
|| TVal
== B
|| FVal
== A
|| FVal
== B
)
2052 if (!match(A
, m_BitCast(m_Value(C
))) || !match(B
, m_BitCast(m_Value(D
))))
2055 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2057 if (!match(TVal
, m_BitCast(m_Value(TSrc
))) ||
2058 !match(FVal
, m_BitCast(m_Value(FSrc
))))
2061 // If the select true/false values are *different bitcasts* of the same source
2062 // operands, make the select operands the same as the compare operands and
2063 // cast the result. This is the canonical select form for min/max.
2065 if (TSrc
== C
&& FSrc
== D
) {
2066 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2067 // bitcast (select (cmp A, B), A, B)
2068 NewSel
= Builder
.CreateSelect(Cond
, A
, B
, "", &Sel
);
2069 } else if (TSrc
== D
&& FSrc
== C
) {
2070 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2071 // bitcast (select (cmp A, B), B, A)
2072 NewSel
= Builder
.CreateSelect(Cond
, B
, A
, "", &Sel
);
2076 return CastInst::CreateBitOrPointerCast(NewSel
, Sel
.getType());
2079 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2082 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2083 /// selects between the returned value of the cmpxchg instruction its compare
2084 /// operand, the result of the select will always be equal to its false value.
2087 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2088 /// %1 = extractvalue { i64, i1 } %0, 1
2089 /// %2 = extractvalue { i64, i1 } %0, 0
2090 /// %3 = select i1 %1, i64 %compare, i64 %2
2093 /// The returned value of the cmpxchg instruction (%2) is the original value
2094 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2095 /// must have been equal to %compare. Thus, the result of the select is always
2096 /// equal to %2, and the code can be simplified to:
2098 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2099 /// %1 = extractvalue { i64, i1 } %0, 0
2102 static Value
*foldSelectCmpXchg(SelectInst
&SI
) {
2103 // A helper that determines if V is an extractvalue instruction whose
2104 // aggregate operand is a cmpxchg instruction and whose single index is equal
2105 // to I. If such conditions are true, the helper returns the cmpxchg
2106 // instruction; otherwise, a nullptr is returned.
2107 auto isExtractFromCmpXchg
= [](Value
*V
, unsigned I
) -> AtomicCmpXchgInst
* {
2108 auto *Extract
= dyn_cast
<ExtractValueInst
>(V
);
2111 if (Extract
->getIndices()[0] != I
)
2113 return dyn_cast
<AtomicCmpXchgInst
>(Extract
->getAggregateOperand());
2116 // If the select has a single user, and this user is a select instruction that
2117 // we can simplify, skip the cmpxchg simplification for now.
2119 if (auto *Select
= dyn_cast
<SelectInst
>(SI
.user_back()))
2120 if (Select
->getCondition() == SI
.getCondition())
2121 if (Select
->getFalseValue() == SI
.getTrueValue() ||
2122 Select
->getTrueValue() == SI
.getFalseValue())
2125 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2126 auto *CmpXchg
= isExtractFromCmpXchg(SI
.getCondition(), 1);
2130 // Check the true value case: The true value of the select is the returned
2131 // value of the same cmpxchg used by the condition, and the false value is the
2132 // cmpxchg instruction's compare operand.
2133 if (auto *X
= isExtractFromCmpXchg(SI
.getTrueValue(), 0))
2134 if (X
== CmpXchg
&& X
->getCompareOperand() == SI
.getFalseValue())
2135 return SI
.getFalseValue();
2137 // Check the false value case: The false value of the select is the returned
2138 // value of the same cmpxchg used by the condition, and the true value is the
2139 // cmpxchg instruction's compare operand.
2140 if (auto *X
= isExtractFromCmpXchg(SI
.getFalseValue(), 0))
2141 if (X
== CmpXchg
&& X
->getCompareOperand() == SI
.getTrueValue())
2142 return SI
.getFalseValue();
2147 static Instruction
*moveAddAfterMinMax(SelectPatternFlavor SPF
, Value
*X
,
2149 InstCombiner::BuilderTy
&Builder
) {
2150 assert(SelectPatternResult::isMinOrMax(SPF
) && "Expected min/max pattern");
2151 bool IsUnsigned
= SPF
== SelectPatternFlavor::SPF_UMIN
||
2152 SPF
== SelectPatternFlavor::SPF_UMAX
;
2153 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2154 // the constant value check to an assert.
2156 const APInt
*C1
, *C2
;
2157 if (IsUnsigned
&& match(X
, m_NUWAdd(m_Value(A
), m_APInt(C1
))) &&
2158 match(Y
, m_APInt(C2
)) && C2
->uge(*C1
) && X
->hasNUses(2)) {
2159 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2160 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2161 Value
*NewMinMax
= createMinMax(Builder
, SPF
, A
,
2162 ConstantInt::get(X
->getType(), *C2
- *C1
));
2163 return BinaryOperator::CreateNUW(BinaryOperator::Add
, NewMinMax
,
2164 ConstantInt::get(X
->getType(), *C1
));
2167 if (!IsUnsigned
&& match(X
, m_NSWAdd(m_Value(A
), m_APInt(C1
))) &&
2168 match(Y
, m_APInt(C2
)) && X
->hasNUses(2)) {
2170 APInt Diff
= C2
->ssub_ov(*C1
, Overflow
);
2172 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2173 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2174 Value
*NewMinMax
= createMinMax(Builder
, SPF
, A
,
2175 ConstantInt::get(X
->getType(), Diff
));
2176 return BinaryOperator::CreateNSW(BinaryOperator::Add
, NewMinMax
,
2177 ConstantInt::get(X
->getType(), *C1
));
2184 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2185 Instruction
*InstCombinerImpl::matchSAddSubSat(Instruction
&MinMax1
) {
2186 Type
*Ty
= MinMax1
.getType();
2188 // We are looking for a tree of:
2189 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2190 // Where the min and max could be reversed
2191 Instruction
*MinMax2
;
2192 BinaryOperator
*AddSub
;
2193 const APInt
*MinValue
, *MaxValue
;
2194 if (match(&MinMax1
, m_SMin(m_Instruction(MinMax2
), m_APInt(MaxValue
)))) {
2195 if (!match(MinMax2
, m_SMax(m_BinOp(AddSub
), m_APInt(MinValue
))))
2197 } else if (match(&MinMax1
,
2198 m_SMax(m_Instruction(MinMax2
), m_APInt(MinValue
)))) {
2199 if (!match(MinMax2
, m_SMin(m_BinOp(AddSub
), m_APInt(MaxValue
))))
2204 // Check that the constants clamp a saturate, and that the new type would be
2205 // sensible to convert to.
2206 if (!(*MaxValue
+ 1).isPowerOf2() || -*MinValue
!= *MaxValue
+ 1)
2208 // In what bitwidth can this be treated as saturating arithmetics?
2209 unsigned NewBitWidth
= (*MaxValue
+ 1).logBase2() + 1;
2210 // FIXME: This isn't quite right for vectors, but using the scalar type is a
2211 // good first approximation for what should be done there.
2212 if (!shouldChangeType(Ty
->getScalarType()->getIntegerBitWidth(), NewBitWidth
))
2215 // Also make sure that the number of uses is as expected. The 3 is for the
2216 // the two items of the compare and the select, or 2 from a min/max.
2217 unsigned ExpUses
= isa
<IntrinsicInst
>(MinMax1
) ? 2 : 3;
2218 if (MinMax2
->hasNUsesOrMore(ExpUses
) || AddSub
->hasNUsesOrMore(ExpUses
))
2221 // Create the new type (which can be a vector type)
2222 Type
*NewTy
= Ty
->getWithNewBitWidth(NewBitWidth
);
2223 // Match the two extends from the add/sub
2225 if(!match(AddSub
, m_BinOp(m_SExt(m_Value(A
)), m_SExt(m_Value(B
)))))
2227 // And check the incoming values are of a type smaller than or equal to the
2228 // size of the saturation. Otherwise the higher bits can cause different
2230 if (A
->getType()->getScalarSizeInBits() > NewBitWidth
||
2231 B
->getType()->getScalarSizeInBits() > NewBitWidth
)
2234 Intrinsic::ID IntrinsicID
;
2235 if (AddSub
->getOpcode() == Instruction::Add
)
2236 IntrinsicID
= Intrinsic::sadd_sat
;
2237 else if (AddSub
->getOpcode() == Instruction::Sub
)
2238 IntrinsicID
= Intrinsic::ssub_sat
;
2242 // Finally create and return the sat intrinsic, truncated to the new type
2243 Function
*F
= Intrinsic::getDeclaration(MinMax1
.getModule(), IntrinsicID
, NewTy
);
2244 Value
*AT
= Builder
.CreateSExt(A
, NewTy
);
2245 Value
*BT
= Builder
.CreateSExt(B
, NewTy
);
2246 Value
*Sat
= Builder
.CreateCall(F
, {AT
, BT
});
2247 return CastInst::Create(Instruction::SExt
, Sat
, Ty
);
2250 /// Reduce a sequence of min/max with a common operand.
2251 static Instruction
*factorizeMinMaxTree(SelectPatternFlavor SPF
, Value
*LHS
,
2253 InstCombiner::BuilderTy
&Builder
) {
2254 assert(SelectPatternResult::isMinOrMax(SPF
) && "Expected a min/max");
2255 // TODO: Allow FP min/max with nnan/nsz.
2256 if (!LHS
->getType()->isIntOrIntVectorTy())
2259 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2260 Value
*A
, *B
, *C
, *D
;
2261 SelectPatternResult L
= matchSelectPattern(LHS
, A
, B
);
2262 SelectPatternResult R
= matchSelectPattern(RHS
, C
, D
);
2263 if (SPF
!= L
.Flavor
|| L
.Flavor
!= R
.Flavor
)
2266 // Look for a common operand. The use checks are different than usual because
2267 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2269 Value
*MinMaxOp
= nullptr;
2270 Value
*ThirdOp
= nullptr;
2271 if (!LHS
->hasNUsesOrMore(3) && RHS
->hasNUsesOrMore(3)) {
2272 // If the LHS is only used in this chain and the RHS is used outside of it,
2273 // reuse the RHS min/max because that will eliminate the LHS.
2274 if (D
== A
|| C
== A
) {
2275 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2276 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2279 } else if (D
== B
|| C
== B
) {
2280 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2281 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2285 } else if (!RHS
->hasNUsesOrMore(3)) {
2286 // Reuse the LHS. This will eliminate the RHS.
2287 if (D
== A
|| D
== B
) {
2288 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2289 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2292 } else if (C
== A
|| C
== B
) {
2293 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2294 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2299 if (!MinMaxOp
|| !ThirdOp
)
2302 CmpInst::Predicate P
= getMinMaxPred(SPF
);
2303 Value
*CmpABC
= Builder
.CreateICmp(P
, MinMaxOp
, ThirdOp
);
2304 return SelectInst::Create(CmpABC
, MinMaxOp
, ThirdOp
);
2307 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2308 /// into a funnel shift intrinsic. Example:
2309 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2310 /// --> call llvm.fshl.i32(a, a, b)
2311 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2312 /// --> call llvm.fshl.i32(a, b, c)
2313 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2314 /// --> call llvm.fshr.i32(a, b, c)
2315 static Instruction
*foldSelectFunnelShift(SelectInst
&Sel
,
2316 InstCombiner::BuilderTy
&Builder
) {
2317 // This must be a power-of-2 type for a bitmasking transform to be valid.
2318 unsigned Width
= Sel
.getType()->getScalarSizeInBits();
2319 if (!isPowerOf2_32(Width
))
2322 BinaryOperator
*Or0
, *Or1
;
2323 if (!match(Sel
.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0
), m_BinOp(Or1
)))))
2326 Value
*SV0
, *SV1
, *SA0
, *SA1
;
2327 if (!match(Or0
, m_OneUse(m_LogicalShift(m_Value(SV0
),
2328 m_ZExtOrSelf(m_Value(SA0
))))) ||
2329 !match(Or1
, m_OneUse(m_LogicalShift(m_Value(SV1
),
2330 m_ZExtOrSelf(m_Value(SA1
))))) ||
2331 Or0
->getOpcode() == Or1
->getOpcode())
2334 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2335 if (Or0
->getOpcode() == BinaryOperator::LShr
) {
2336 std::swap(Or0
, Or1
);
2337 std::swap(SV0
, SV1
);
2338 std::swap(SA0
, SA1
);
2340 assert(Or0
->getOpcode() == BinaryOperator::Shl
&&
2341 Or1
->getOpcode() == BinaryOperator::LShr
&&
2342 "Illegal or(shift,shift) pair");
2344 // Check the shift amounts to see if they are an opposite pair.
2346 if (match(SA1
, m_OneUse(m_Sub(m_SpecificInt(Width
), m_Specific(SA0
)))))
2348 else if (match(SA0
, m_OneUse(m_Sub(m_SpecificInt(Width
), m_Specific(SA1
)))))
2353 // We should now have this pattern:
2354 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2355 // The false value of the select must be a funnel-shift of the true value:
2356 // IsFShl -> TVal must be SV0 else TVal must be SV1.
2357 bool IsFshl
= (ShAmt
== SA0
);
2358 Value
*TVal
= Sel
.getTrueValue();
2359 if ((IsFshl
&& TVal
!= SV0
) || (!IsFshl
&& TVal
!= SV1
))
2362 // Finally, see if the select is filtering out a shift-by-zero.
2363 Value
*Cond
= Sel
.getCondition();
2364 ICmpInst::Predicate Pred
;
2365 if (!match(Cond
, m_OneUse(m_ICmp(Pred
, m_Specific(ShAmt
), m_ZeroInt()))) ||
2366 Pred
!= ICmpInst::ICMP_EQ
)
2369 // If this is not a rotate then the select was blocking poison from the
2370 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2372 if (IsFshl
&& !llvm::isGuaranteedNotToBePoison(SV1
))
2373 SV1
= Builder
.CreateFreeze(SV1
);
2374 else if (!IsFshl
&& !llvm::isGuaranteedNotToBePoison(SV0
))
2375 SV0
= Builder
.CreateFreeze(SV0
);
2378 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2379 // Convert to funnel shift intrinsic.
2380 Intrinsic::ID IID
= IsFshl
? Intrinsic::fshl
: Intrinsic::fshr
;
2381 Function
*F
= Intrinsic::getDeclaration(Sel
.getModule(), IID
, Sel
.getType());
2382 ShAmt
= Builder
.CreateZExt(ShAmt
, Sel
.getType());
2383 return CallInst::Create(F
, { SV0
, SV1
, ShAmt
});
2386 static Instruction
*foldSelectToCopysign(SelectInst
&Sel
,
2387 InstCombiner::BuilderTy
&Builder
) {
2388 Value
*Cond
= Sel
.getCondition();
2389 Value
*TVal
= Sel
.getTrueValue();
2390 Value
*FVal
= Sel
.getFalseValue();
2391 Type
*SelType
= Sel
.getType();
2393 // Match select ?, TC, FC where the constants are equal but negated.
2394 // TODO: Generalize to handle a negated variable operand?
2395 const APFloat
*TC
, *FC
;
2396 if (!match(TVal
, m_APFloat(TC
)) || !match(FVal
, m_APFloat(FC
)) ||
2397 !abs(*TC
).bitwiseIsEqual(abs(*FC
)))
2400 assert(TC
!= FC
&& "Expected equal select arms to simplify");
2404 bool IsTrueIfSignSet
;
2405 ICmpInst::Predicate Pred
;
2406 if (!match(Cond
, m_OneUse(m_ICmp(Pred
, m_BitCast(m_Value(X
)), m_APInt(C
)))) ||
2407 !InstCombiner::isSignBitCheck(Pred
, *C
, IsTrueIfSignSet
) ||
2408 X
->getType() != SelType
)
2411 // If needed, negate the value that will be the sign argument of the copysign:
2412 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
2413 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
2414 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
2415 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
2416 if (IsTrueIfSignSet
^ TC
->isNegative())
2417 X
= Builder
.CreateFNegFMF(X
, &Sel
);
2419 // Canonicalize the magnitude argument as the positive constant since we do
2420 // not care about its sign.
2421 Value
*MagArg
= TC
->isNegative() ? FVal
: TVal
;
2422 Function
*F
= Intrinsic::getDeclaration(Sel
.getModule(), Intrinsic::copysign
,
2424 Instruction
*CopySign
= CallInst::Create(F
, { MagArg
, X
});
2425 CopySign
->setFastMathFlags(Sel
.getFastMathFlags());
2429 Instruction
*InstCombinerImpl::foldVectorSelect(SelectInst
&Sel
) {
2430 auto *VecTy
= dyn_cast
<FixedVectorType
>(Sel
.getType());
2434 unsigned NumElts
= VecTy
->getNumElements();
2435 APInt
UndefElts(NumElts
, 0);
2436 APInt
AllOnesEltMask(APInt::getAllOnesValue(NumElts
));
2437 if (Value
*V
= SimplifyDemandedVectorElts(&Sel
, AllOnesEltMask
, UndefElts
)) {
2439 return replaceInstUsesWith(Sel
, V
);
2443 // A select of a "select shuffle" with a common operand can be rearranged
2444 // to select followed by "select shuffle". Because of poison, this only works
2445 // in the case of a shuffle with no undefined mask elements.
2446 Value
*Cond
= Sel
.getCondition();
2447 Value
*TVal
= Sel
.getTrueValue();
2448 Value
*FVal
= Sel
.getFalseValue();
2451 if (match(TVal
, m_OneUse(m_Shuffle(m_Value(X
), m_Value(Y
), m_Mask(Mask
)))) &&
2452 !is_contained(Mask
, UndefMaskElem
) &&
2453 cast
<ShuffleVectorInst
>(TVal
)->isSelect()) {
2455 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2456 Value
*NewSel
= Builder
.CreateSelect(Cond
, Y
, X
, "sel", &Sel
);
2457 return new ShuffleVectorInst(X
, NewSel
, Mask
);
2460 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2461 Value
*NewSel
= Builder
.CreateSelect(Cond
, X
, Y
, "sel", &Sel
);
2462 return new ShuffleVectorInst(NewSel
, Y
, Mask
);
2465 if (match(FVal
, m_OneUse(m_Shuffle(m_Value(X
), m_Value(Y
), m_Mask(Mask
)))) &&
2466 !is_contained(Mask
, UndefMaskElem
) &&
2467 cast
<ShuffleVectorInst
>(FVal
)->isSelect()) {
2469 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2470 Value
*NewSel
= Builder
.CreateSelect(Cond
, X
, Y
, "sel", &Sel
);
2471 return new ShuffleVectorInst(X
, NewSel
, Mask
);
2474 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2475 Value
*NewSel
= Builder
.CreateSelect(Cond
, Y
, X
, "sel", &Sel
);
2476 return new ShuffleVectorInst(NewSel
, Y
, Mask
);
2483 static Instruction
*foldSelectToPhiImpl(SelectInst
&Sel
, BasicBlock
*BB
,
2484 const DominatorTree
&DT
,
2485 InstCombiner::BuilderTy
&Builder
) {
2486 // Find the block's immediate dominator that ends with a conditional branch
2487 // that matches select's condition (maybe inverted).
2488 auto *IDomNode
= DT
[BB
]->getIDom();
2491 BasicBlock
*IDom
= IDomNode
->getBlock();
2493 Value
*Cond
= Sel
.getCondition();
2494 Value
*IfTrue
, *IfFalse
;
2495 BasicBlock
*TrueSucc
, *FalseSucc
;
2496 if (match(IDom
->getTerminator(),
2497 m_Br(m_Specific(Cond
), m_BasicBlock(TrueSucc
),
2498 m_BasicBlock(FalseSucc
)))) {
2499 IfTrue
= Sel
.getTrueValue();
2500 IfFalse
= Sel
.getFalseValue();
2501 } else if (match(IDom
->getTerminator(),
2502 m_Br(m_Not(m_Specific(Cond
)), m_BasicBlock(TrueSucc
),
2503 m_BasicBlock(FalseSucc
)))) {
2504 IfTrue
= Sel
.getFalseValue();
2505 IfFalse
= Sel
.getTrueValue();
2509 // Make sure the branches are actually different.
2510 if (TrueSucc
== FalseSucc
)
2513 // We want to replace select %cond, %a, %b with a phi that takes value %a
2514 // for all incoming edges that are dominated by condition `%cond == true`,
2515 // and value %b for edges dominated by condition `%cond == false`. If %a
2516 // or %b are also phis from the same basic block, we can go further and take
2517 // their incoming values from the corresponding blocks.
2518 BasicBlockEdge
TrueEdge(IDom
, TrueSucc
);
2519 BasicBlockEdge
FalseEdge(IDom
, FalseSucc
);
2520 DenseMap
<BasicBlock
*, Value
*> Inputs
;
2521 for (auto *Pred
: predecessors(BB
)) {
2522 // Check implication.
2523 BasicBlockEdge
Incoming(Pred
, BB
);
2524 if (DT
.dominates(TrueEdge
, Incoming
))
2525 Inputs
[Pred
] = IfTrue
->DoPHITranslation(BB
, Pred
);
2526 else if (DT
.dominates(FalseEdge
, Incoming
))
2527 Inputs
[Pred
] = IfFalse
->DoPHITranslation(BB
, Pred
);
2530 // Check availability.
2531 if (auto *Insn
= dyn_cast
<Instruction
>(Inputs
[Pred
]))
2532 if (!DT
.dominates(Insn
, Pred
->getTerminator()))
2536 Builder
.SetInsertPoint(&*BB
->begin());
2537 auto *PN
= Builder
.CreatePHI(Sel
.getType(), Inputs
.size());
2538 for (auto *Pred
: predecessors(BB
))
2539 PN
->addIncoming(Inputs
[Pred
], Pred
);
2544 static Instruction
*foldSelectToPhi(SelectInst
&Sel
, const DominatorTree
&DT
,
2545 InstCombiner::BuilderTy
&Builder
) {
2546 // Try to replace this select with Phi in one of these blocks.
2547 SmallSetVector
<BasicBlock
*, 4> CandidateBlocks
;
2548 CandidateBlocks
.insert(Sel
.getParent());
2549 for (Value
*V
: Sel
.operands())
2550 if (auto *I
= dyn_cast
<Instruction
>(V
))
2551 CandidateBlocks
.insert(I
->getParent());
2553 for (BasicBlock
*BB
: CandidateBlocks
)
2554 if (auto *PN
= foldSelectToPhiImpl(Sel
, BB
, DT
, Builder
))
2559 static Value
*foldSelectWithFrozenICmp(SelectInst
&Sel
, InstCombiner::BuilderTy
&Builder
) {
2560 FreezeInst
*FI
= dyn_cast
<FreezeInst
>(Sel
.getCondition());
2564 Value
*Cond
= FI
->getOperand(0);
2565 Value
*TrueVal
= Sel
.getTrueValue(), *FalseVal
= Sel
.getFalseValue();
2567 // select (freeze(x == y)), x, y --> y
2568 // select (freeze(x != y)), x, y --> x
2569 // The freeze should be only used by this select. Otherwise, remaining uses of
2570 // the freeze can observe a contradictory value.
2571 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
2572 // a = select c, x, y ;
2573 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
2574 // ; to y, this can happen.
2575 CmpInst::Predicate Pred
;
2576 if (FI
->hasOneUse() &&
2577 match(Cond
, m_c_ICmp(Pred
, m_Specific(TrueVal
), m_Specific(FalseVal
))) &&
2578 (Pred
== ICmpInst::ICMP_EQ
|| Pred
== ICmpInst::ICMP_NE
)) {
2579 return Pred
== ICmpInst::ICMP_EQ
? FalseVal
: TrueVal
;
2585 Instruction
*InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value
*Op
,
2588 Value
*CondVal
= SI
.getCondition();
2589 Value
*A
= SI
.getTrueValue();
2590 Value
*B
= SI
.getFalseValue();
2592 assert(Op
->getType()->isIntOrIntVectorTy(1) &&
2593 "Op must be either i1 or vector of i1.");
2595 Optional
<bool> Res
= isImpliedCondition(Op
, CondVal
, DL
, IsAnd
);
2599 Value
*Zero
= Constant::getNullValue(A
->getType());
2600 Value
*One
= Constant::getAllOnesValue(A
->getType());
2604 // select op, (select cond, A, B), false => select op, A, false
2605 // and op, (select cond, A, B) => select op, A, false
2606 // if op = true implies condval = true.
2607 return SelectInst::Create(Op
, A
, Zero
);
2609 // select op, true, (select cond, A, B) => select op, true, A
2610 // or op, (select cond, A, B) => select op, true, A
2611 // if op = false implies condval = true.
2612 return SelectInst::Create(Op
, One
, A
);
2615 // select op, (select cond, A, B), false => select op, B, false
2616 // and op, (select cond, A, B) => select op, B, false
2617 // if op = true implies condval = false.
2618 return SelectInst::Create(Op
, B
, Zero
);
2620 // select op, true, (select cond, A, B) => select op, true, B
2621 // or op, (select cond, A, B) => select op, true, B
2622 // if op = false implies condval = false.
2623 return SelectInst::Create(Op
, One
, B
);
2627 Instruction
*InstCombinerImpl::visitSelectInst(SelectInst
&SI
) {
2628 Value
*CondVal
= SI
.getCondition();
2629 Value
*TrueVal
= SI
.getTrueValue();
2630 Value
*FalseVal
= SI
.getFalseValue();
2631 Type
*SelType
= SI
.getType();
2633 // FIXME: Remove this workaround when freeze related patches are done.
2634 // For select with undef operand which feeds into an equality comparison,
2635 // don't simplify it so loop unswitch can know the equality comparison
2636 // may have an undef operand. This is a workaround for PR31652 caused by
2637 // descrepancy about branch on undef between LoopUnswitch and GVN.
2638 if (match(TrueVal
, m_Undef()) || match(FalseVal
, m_Undef())) {
2639 if (llvm::any_of(SI
.users(), [&](User
*U
) {
2640 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(U
);
2641 if (CI
&& CI
->isEquality())
2649 if (Value
*V
= SimplifySelectInst(CondVal
, TrueVal
, FalseVal
,
2650 SQ
.getWithInstruction(&SI
)))
2651 return replaceInstUsesWith(SI
, V
);
2653 if (Instruction
*I
= canonicalizeSelectToShuffle(SI
))
2656 if (Instruction
*I
= canonicalizeScalarSelectOfVecs(SI
, *this))
2659 CmpInst::Predicate Pred
;
2661 // Avoid potential infinite loops by checking for non-constant condition.
2662 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2663 // Scalar select must have simplified?
2664 if (SelType
->isIntOrIntVectorTy(1) && !isa
<Constant
>(CondVal
) &&
2665 TrueVal
->getType() == CondVal
->getType()) {
2666 // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2667 // checks whether folding it does not convert a well-defined value into
2669 if (match(TrueVal
, m_One()) && impliesPoison(FalseVal
, CondVal
)) {
2670 // Change: A = select B, true, C --> A = or B, C
2671 return BinaryOperator::CreateOr(CondVal
, FalseVal
);
2673 if (match(FalseVal
, m_Zero()) && impliesPoison(TrueVal
, CondVal
)) {
2674 // Change: A = select B, C, false --> A = and B, C
2675 return BinaryOperator::CreateAnd(CondVal
, TrueVal
);
2678 auto *One
= ConstantInt::getTrue(SelType
);
2679 auto *Zero
= ConstantInt::getFalse(SelType
);
2681 // We match the "full" 0 or 1 constant here to avoid a potential infinite
2682 // loop with vectors that may have undefined/poison elements.
2683 // select a, false, b -> select !a, b, false
2684 if (match(TrueVal
, m_Specific(Zero
))) {
2685 Value
*NotCond
= Builder
.CreateNot(CondVal
, "not." + CondVal
->getName());
2686 return SelectInst::Create(NotCond
, FalseVal
, Zero
);
2688 // select a, b, true -> select !a, true, b
2689 if (match(FalseVal
, m_Specific(One
))) {
2690 Value
*NotCond
= Builder
.CreateNot(CondVal
, "not." + CondVal
->getName());
2691 return SelectInst::Create(NotCond
, One
, TrueVal
);
2694 // select a, a, b -> select a, true, b
2695 if (CondVal
== TrueVal
)
2696 return replaceOperand(SI
, 1, One
);
2697 // select a, b, a -> select a, b, false
2698 if (CondVal
== FalseVal
)
2699 return replaceOperand(SI
, 2, Zero
);
2701 // select a, !a, b -> select !a, b, false
2702 if (match(TrueVal
, m_Not(m_Specific(CondVal
))))
2703 return SelectInst::Create(TrueVal
, FalseVal
, Zero
);
2704 // select a, b, !a -> select !a, true, b
2705 if (match(FalseVal
, m_Not(m_Specific(CondVal
))))
2706 return SelectInst::Create(FalseVal
, One
, TrueVal
);
2710 // DeMorgan in select form: !a && !b --> !(a || b)
2711 // select !a, !b, false --> not (select a, true, b)
2712 if (match(&SI
, m_LogicalAnd(m_Not(m_Value(A
)), m_Not(m_Value(B
)))) &&
2713 (CondVal
->hasOneUse() || TrueVal
->hasOneUse()) &&
2714 !match(A
, m_ConstantExpr()) && !match(B
, m_ConstantExpr()))
2715 return BinaryOperator::CreateNot(Builder
.CreateSelect(A
, One
, B
));
2717 // DeMorgan in select form: !a || !b --> !(a && b)
2718 // select !a, true, !b --> not (select a, b, false)
2719 if (match(&SI
, m_LogicalOr(m_Not(m_Value(A
)), m_Not(m_Value(B
)))) &&
2720 (CondVal
->hasOneUse() || FalseVal
->hasOneUse()) &&
2721 !match(A
, m_ConstantExpr()) && !match(B
, m_ConstantExpr()))
2722 return BinaryOperator::CreateNot(Builder
.CreateSelect(A
, B
, Zero
));
2724 // select (select a, true, b), true, b -> select a, true, b
2725 if (match(CondVal
, m_Select(m_Value(A
), m_One(), m_Value(B
))) &&
2726 match(TrueVal
, m_One()) && match(FalseVal
, m_Specific(B
)))
2727 return replaceOperand(SI
, 0, A
);
2728 // select (select a, b, false), b, false -> select a, b, false
2729 if (match(CondVal
, m_Select(m_Value(A
), m_Value(B
), m_Zero())) &&
2730 match(TrueVal
, m_Specific(B
)) && match(FalseVal
, m_Zero()))
2731 return replaceOperand(SI
, 0, A
);
2733 if (!SelType
->isVectorTy()) {
2734 if (Value
*S
= simplifyWithOpReplaced(TrueVal
, CondVal
, One
, SQ
,
2735 /* AllowRefinement */ true))
2736 return replaceOperand(SI
, 1, S
);
2737 if (Value
*S
= simplifyWithOpReplaced(FalseVal
, CondVal
, Zero
, SQ
,
2738 /* AllowRefinement */ true))
2739 return replaceOperand(SI
, 2, S
);
2742 if (match(FalseVal
, m_Zero()) || match(TrueVal
, m_One())) {
2744 bool IsAnd
= match(FalseVal
, m_Zero()) ? true : false;
2745 Value
*Op1
= IsAnd
? TrueVal
: FalseVal
;
2746 if (isCheckForZeroAndMulWithOverflow(CondVal
, Op1
, IsAnd
, Y
)) {
2747 auto *FI
= new FreezeInst(*Y
, (*Y
)->getName() + ".fr");
2748 InsertNewInstBefore(FI
, *cast
<Instruction
>(Y
->getUser()));
2750 return replaceInstUsesWith(SI
, Op1
);
2753 if (auto *Op1SI
= dyn_cast
<SelectInst
>(Op1
))
2754 if (auto *I
= foldAndOrOfSelectUsingImpliedCond(CondVal
, *Op1SI
,
2758 if (auto *ICmp0
= dyn_cast
<ICmpInst
>(CondVal
))
2759 if (auto *ICmp1
= dyn_cast
<ICmpInst
>(Op1
))
2760 if (auto *V
= foldAndOrOfICmpsOfAndWithPow2(ICmp0
, ICmp1
, &SI
, IsAnd
,
2761 /* IsLogical */ true))
2762 return replaceInstUsesWith(SI
, V
);
2765 // select (select a, true, b), c, false -> select a, c, false
2766 // select c, (select a, true, b), false -> select c, a, false
2767 // if c implies that b is false.
2768 if (match(CondVal
, m_Select(m_Value(A
), m_One(), m_Value(B
))) &&
2769 match(FalseVal
, m_Zero())) {
2770 Optional
<bool> Res
= isImpliedCondition(TrueVal
, B
, DL
);
2771 if (Res
&& *Res
== false)
2772 return replaceOperand(SI
, 0, A
);
2774 if (match(TrueVal
, m_Select(m_Value(A
), m_One(), m_Value(B
))) &&
2775 match(FalseVal
, m_Zero())) {
2776 Optional
<bool> Res
= isImpliedCondition(CondVal
, B
, DL
);
2777 if (Res
&& *Res
== false)
2778 return replaceOperand(SI
, 1, A
);
2780 // select c, true, (select a, b, false) -> select c, true, a
2781 // select (select a, b, false), true, c -> select a, true, c
2782 // if c = false implies that b = true
2783 if (match(TrueVal
, m_One()) &&
2784 match(FalseVal
, m_Select(m_Value(A
), m_Value(B
), m_Zero()))) {
2785 Optional
<bool> Res
= isImpliedCondition(CondVal
, B
, DL
, false);
2786 if (Res
&& *Res
== true)
2787 return replaceOperand(SI
, 2, A
);
2789 if (match(CondVal
, m_Select(m_Value(A
), m_Value(B
), m_Zero())) &&
2790 match(TrueVal
, m_One())) {
2791 Optional
<bool> Res
= isImpliedCondition(FalseVal
, B
, DL
, false);
2792 if (Res
&& *Res
== true)
2793 return replaceOperand(SI
, 0, A
);
2796 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2797 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2799 if (match(CondVal
, m_Select(m_Value(C1
), m_Value(A
), m_Zero())) &&
2800 match(TrueVal
, m_One()) &&
2801 match(FalseVal
, m_Select(m_Value(C2
), m_Value(B
), m_Zero()))) {
2802 if (match(C2
, m_Not(m_Specific(C1
)))) // first case
2803 return SelectInst::Create(C1
, A
, B
);
2804 else if (match(C1
, m_Not(m_Specific(C2
)))) // second case
2805 return SelectInst::Create(C2
, B
, A
);
2809 // Selecting between two integer or vector splat integer constants?
2811 // Note that we don't handle a scalar select of vectors:
2812 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2813 // because that may need 3 instructions to splat the condition value:
2814 // extend, insertelement, shufflevector.
2816 // Do not handle i1 TrueVal and FalseVal otherwise would result in
2817 // zext/sext i1 to i1.
2818 if (SelType
->isIntOrIntVectorTy() && !SelType
->isIntOrIntVectorTy(1) &&
2819 CondVal
->getType()->isVectorTy() == SelType
->isVectorTy()) {
2820 // select C, 1, 0 -> zext C to int
2821 if (match(TrueVal
, m_One()) && match(FalseVal
, m_Zero()))
2822 return new ZExtInst(CondVal
, SelType
);
2824 // select C, -1, 0 -> sext C to int
2825 if (match(TrueVal
, m_AllOnes()) && match(FalseVal
, m_Zero()))
2826 return new SExtInst(CondVal
, SelType
);
2828 // select C, 0, 1 -> zext !C to int
2829 if (match(TrueVal
, m_Zero()) && match(FalseVal
, m_One())) {
2830 Value
*NotCond
= Builder
.CreateNot(CondVal
, "not." + CondVal
->getName());
2831 return new ZExtInst(NotCond
, SelType
);
2834 // select C, 0, -1 -> sext !C to int
2835 if (match(TrueVal
, m_Zero()) && match(FalseVal
, m_AllOnes())) {
2836 Value
*NotCond
= Builder
.CreateNot(CondVal
, "not." + CondVal
->getName());
2837 return new SExtInst(NotCond
, SelType
);
2841 if (auto *FCmp
= dyn_cast
<FCmpInst
>(CondVal
)) {
2842 Value
*Cmp0
= FCmp
->getOperand(0), *Cmp1
= FCmp
->getOperand(1);
2843 // Are we selecting a value based on a comparison of the two values?
2844 if ((Cmp0
== TrueVal
&& Cmp1
== FalseVal
) ||
2845 (Cmp0
== FalseVal
&& Cmp1
== TrueVal
)) {
2846 // Canonicalize to use ordered comparisons by swapping the select
2850 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2851 if (FCmp
->hasOneUse() && FCmpInst::isUnordered(FCmp
->getPredicate())) {
2852 FCmpInst::Predicate InvPred
= FCmp
->getInversePredicate();
2853 IRBuilder
<>::FastMathFlagGuard
FMFG(Builder
);
2854 // FIXME: The FMF should propagate from the select, not the fcmp.
2855 Builder
.setFastMathFlags(FCmp
->getFastMathFlags());
2856 Value
*NewCond
= Builder
.CreateFCmp(InvPred
, Cmp0
, Cmp1
,
2857 FCmp
->getName() + ".inv");
2858 Value
*NewSel
= Builder
.CreateSelect(NewCond
, FalseVal
, TrueVal
);
2859 return replaceInstUsesWith(SI
, NewSel
);
2862 // NOTE: if we wanted to, this is where to detect MIN/MAX
2866 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2867 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2868 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2870 if (match(CondVal
, m_FCmp(Pred
, m_Specific(FalseVal
), m_AnyZeroFP())) &&
2871 match(TrueVal
, m_FSub(m_PosZeroFP(), m_Specific(FalseVal
))) &&
2872 match(TrueVal
, m_Instruction(FSub
)) &&
2873 (Pred
== FCmpInst::FCMP_OLE
|| Pred
== FCmpInst::FCMP_ULE
)) {
2874 Value
*Fabs
= Builder
.CreateUnaryIntrinsic(Intrinsic::fabs
, FalseVal
, &SI
);
2875 return replaceInstUsesWith(SI
, Fabs
);
2877 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X)
2878 if (match(CondVal
, m_FCmp(Pred
, m_Specific(TrueVal
), m_AnyZeroFP())) &&
2879 match(FalseVal
, m_FSub(m_PosZeroFP(), m_Specific(TrueVal
))) &&
2880 match(FalseVal
, m_Instruction(FSub
)) &&
2881 (Pred
== FCmpInst::FCMP_OGT
|| Pred
== FCmpInst::FCMP_UGT
)) {
2882 Value
*Fabs
= Builder
.CreateUnaryIntrinsic(Intrinsic::fabs
, TrueVal
, &SI
);
2883 return replaceInstUsesWith(SI
, Fabs
);
2885 // With nnan and nsz:
2886 // (X < +/-0.0) ? -X : X --> fabs(X)
2887 // (X <= +/-0.0) ? -X : X --> fabs(X)
2889 if (match(CondVal
, m_FCmp(Pred
, m_Specific(FalseVal
), m_AnyZeroFP())) &&
2890 match(TrueVal
, m_FNeg(m_Specific(FalseVal
))) &&
2891 match(TrueVal
, m_Instruction(FNeg
)) && SI
.hasNoSignedZeros() &&
2892 (Pred
== FCmpInst::FCMP_OLT
|| Pred
== FCmpInst::FCMP_OLE
||
2893 Pred
== FCmpInst::FCMP_ULT
|| Pred
== FCmpInst::FCMP_ULE
)) {
2894 Value
*Fabs
= Builder
.CreateUnaryIntrinsic(Intrinsic::fabs
, FalseVal
, &SI
);
2895 return replaceInstUsesWith(SI
, Fabs
);
2897 // With nnan and nsz:
2898 // (X > +/-0.0) ? X : -X --> fabs(X)
2899 // (X >= +/-0.0) ? X : -X --> fabs(X)
2900 if (match(CondVal
, m_FCmp(Pred
, m_Specific(TrueVal
), m_AnyZeroFP())) &&
2901 match(FalseVal
, m_FNeg(m_Specific(TrueVal
))) &&
2902 match(FalseVal
, m_Instruction(FNeg
)) && SI
.hasNoSignedZeros() &&
2903 (Pred
== FCmpInst::FCMP_OGT
|| Pred
== FCmpInst::FCMP_OGE
||
2904 Pred
== FCmpInst::FCMP_UGT
|| Pred
== FCmpInst::FCMP_UGE
)) {
2905 Value
*Fabs
= Builder
.CreateUnaryIntrinsic(Intrinsic::fabs
, TrueVal
, &SI
);
2906 return replaceInstUsesWith(SI
, Fabs
);
2909 // See if we are selecting two values based on a comparison of the two values.
2910 if (ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(CondVal
))
2911 if (Instruction
*Result
= foldSelectInstWithICmp(SI
, ICI
))
2914 if (Instruction
*Add
= foldAddSubSelect(SI
, Builder
))
2916 if (Instruction
*Add
= foldOverflowingAddSubSelect(SI
, Builder
))
2918 if (Instruction
*Or
= foldSetClearBits(SI
, Builder
))
2921 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2922 auto *TI
= dyn_cast
<Instruction
>(TrueVal
);
2923 auto *FI
= dyn_cast
<Instruction
>(FalseVal
);
2924 if (TI
&& FI
&& TI
->getOpcode() == FI
->getOpcode())
2925 if (Instruction
*IV
= foldSelectOpOp(SI
, TI
, FI
))
2928 if (Instruction
*I
= foldSelectExtConst(SI
))
2931 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
2932 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
2933 auto SelectGepWithBase
= [&](GetElementPtrInst
*Gep
, Value
*Base
,
2934 bool Swap
) -> GetElementPtrInst
* {
2935 Value
*Ptr
= Gep
->getPointerOperand();
2936 if (Gep
->getNumOperands() != 2 || Gep
->getPointerOperand() != Base
||
2939 Type
*ElementType
= Gep
->getResultElementType();
2940 Value
*Idx
= Gep
->getOperand(1);
2942 Value
*NewF
= Constant::getNullValue(Idx
->getType());
2944 std::swap(NewT
, NewF
);
2946 Builder
.CreateSelect(CondVal
, NewT
, NewF
, SI
.getName() + ".idx", &SI
);
2947 return GetElementPtrInst::Create(ElementType
, Ptr
, {NewSI
});
2949 if (auto *TrueGep
= dyn_cast
<GetElementPtrInst
>(TrueVal
))
2950 if (auto *NewGep
= SelectGepWithBase(TrueGep
, FalseVal
, false))
2952 if (auto *FalseGep
= dyn_cast
<GetElementPtrInst
>(FalseVal
))
2953 if (auto *NewGep
= SelectGepWithBase(FalseGep
, TrueVal
, true))
2956 // See if we can fold the select into one of our operands.
2957 if (SelType
->isIntOrIntVectorTy() || SelType
->isFPOrFPVectorTy()) {
2958 if (Instruction
*FoldI
= foldSelectIntoOp(SI
, TrueVal
, FalseVal
))
2962 Instruction::CastOps CastOp
;
2963 SelectPatternResult SPR
= matchSelectPattern(&SI
, LHS
, RHS
, &CastOp
);
2964 auto SPF
= SPR
.Flavor
;
2967 if (SelectPatternFlavor SPF2
= matchSelectPattern(LHS
, LHS2
, RHS2
).Flavor
)
2968 if (Instruction
*R
= foldSPFofSPF(cast
<Instruction
>(LHS
), SPF2
, LHS2
,
2969 RHS2
, SI
, SPF
, RHS
))
2971 if (SelectPatternFlavor SPF2
= matchSelectPattern(RHS
, LHS2
, RHS2
).Flavor
)
2972 if (Instruction
*R
= foldSPFofSPF(cast
<Instruction
>(RHS
), SPF2
, LHS2
,
2973 RHS2
, SI
, SPF
, LHS
))
2976 // ABS(-X) -> ABS(X)
2979 if (SelectPatternResult::isMinOrMax(SPF
)) {
2980 // Canonicalize so that
2981 // - type casts are outside select patterns.
2982 // - float clamp is transformed to min/max pattern
2984 bool IsCastNeeded
= LHS
->getType() != SelType
;
2985 Value
*CmpLHS
= cast
<CmpInst
>(CondVal
)->getOperand(0);
2986 Value
*CmpRHS
= cast
<CmpInst
>(CondVal
)->getOperand(1);
2988 (LHS
->getType()->isFPOrFPVectorTy() &&
2989 ((CmpLHS
!= LHS
&& CmpLHS
!= RHS
) ||
2990 (CmpRHS
!= LHS
&& CmpRHS
!= RHS
)))) {
2991 CmpInst::Predicate MinMaxPred
= getMinMaxPred(SPF
, SPR
.Ordered
);
2994 if (CmpInst::isIntPredicate(MinMaxPred
)) {
2995 Cmp
= Builder
.CreateICmp(MinMaxPred
, LHS
, RHS
);
2997 IRBuilder
<>::FastMathFlagGuard
FMFG(Builder
);
2999 cast
<FPMathOperator
>(SI
.getCondition())->getFastMathFlags();
3000 Builder
.setFastMathFlags(FMF
);
3001 Cmp
= Builder
.CreateFCmp(MinMaxPred
, LHS
, RHS
);
3004 Value
*NewSI
= Builder
.CreateSelect(Cmp
, LHS
, RHS
, SI
.getName(), &SI
);
3006 return replaceInstUsesWith(SI
, NewSI
);
3008 Value
*NewCast
= Builder
.CreateCast(CastOp
, NewSI
, SelType
);
3009 return replaceInstUsesWith(SI
, NewCast
);
3012 // MAX(~a, ~b) -> ~MIN(a, b)
3013 // MAX(~a, C) -> ~MIN(a, ~C)
3014 // MIN(~a, ~b) -> ~MAX(a, b)
3015 // MIN(~a, C) -> ~MAX(a, ~C)
3016 auto moveNotAfterMinMax
= [&](Value
*X
, Value
*Y
) -> Instruction
* {
3018 if (match(X
, m_Not(m_Value(A
))) && !X
->hasNUsesOrMore(3) &&
3019 !isFreeToInvert(A
, A
->hasOneUse()) &&
3020 // Passing false to only consider m_Not and constants.
3021 isFreeToInvert(Y
, false)) {
3022 Value
*B
= Builder
.CreateNot(Y
);
3023 Value
*NewMinMax
= createMinMax(Builder
, getInverseMinMaxFlavor(SPF
),
3025 // Copy the profile metadata.
3026 if (MDNode
*MD
= SI
.getMetadata(LLVMContext::MD_prof
)) {
3027 cast
<SelectInst
>(NewMinMax
)->setMetadata(LLVMContext::MD_prof
, MD
);
3028 // Swap the metadata if the operands are swapped.
3029 if (X
== SI
.getFalseValue() && Y
== SI
.getTrueValue())
3030 cast
<SelectInst
>(NewMinMax
)->swapProfMetadata();
3033 return BinaryOperator::CreateNot(NewMinMax
);
3039 if (Instruction
*I
= moveNotAfterMinMax(LHS
, RHS
))
3041 if (Instruction
*I
= moveNotAfterMinMax(RHS
, LHS
))
3044 if (Instruction
*I
= moveAddAfterMinMax(SPF
, LHS
, RHS
, Builder
))
3047 if (Instruction
*I
= factorizeMinMaxTree(SPF
, LHS
, RHS
, Builder
))
3049 if (Instruction
*I
= matchSAddSubSat(SI
))
3054 // Canonicalize select of FP values where NaN and -0.0 are not valid as
3055 // minnum/maxnum intrinsics.
3056 if (isa
<FPMathOperator
>(SI
) && SI
.hasNoNaNs() && SI
.hasNoSignedZeros()) {
3058 if (match(&SI
, m_OrdFMax(m_Value(X
), m_Value(Y
))))
3059 return replaceInstUsesWith(
3060 SI
, Builder
.CreateBinaryIntrinsic(Intrinsic::maxnum
, X
, Y
, &SI
));
3062 if (match(&SI
, m_OrdFMin(m_Value(X
), m_Value(Y
))))
3063 return replaceInstUsesWith(
3064 SI
, Builder
.CreateBinaryIntrinsic(Intrinsic::minnum
, X
, Y
, &SI
));
3067 // See if we can fold the select into a phi node if the condition is a select.
3068 if (auto *PN
= dyn_cast
<PHINode
>(SI
.getCondition()))
3069 // The true/false values have to be live in the PHI predecessor's blocks.
3070 if (canSelectOperandBeMappingIntoPredBlock(TrueVal
, SI
) &&
3071 canSelectOperandBeMappingIntoPredBlock(FalseVal
, SI
))
3072 if (Instruction
*NV
= foldOpIntoPhi(SI
, PN
))
3075 if (SelectInst
*TrueSI
= dyn_cast
<SelectInst
>(TrueVal
)) {
3076 if (TrueSI
->getCondition()->getType() == CondVal
->getType()) {
3077 // select(C, select(C, a, b), c) -> select(C, a, c)
3078 if (TrueSI
->getCondition() == CondVal
) {
3079 if (SI
.getTrueValue() == TrueSI
->getTrueValue())
3081 return replaceOperand(SI
, 1, TrueSI
->getTrueValue());
3083 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3084 // We choose this as normal form to enable folding on the And and
3085 // shortening paths for the values (this helps getUnderlyingObjects() for
3087 if (TrueSI
->getFalseValue() == FalseVal
&& TrueSI
->hasOneUse()) {
3088 Value
*And
= Builder
.CreateLogicalAnd(CondVal
, TrueSI
->getCondition());
3089 replaceOperand(SI
, 0, And
);
3090 replaceOperand(SI
, 1, TrueSI
->getTrueValue());
3095 if (SelectInst
*FalseSI
= dyn_cast
<SelectInst
>(FalseVal
)) {
3096 if (FalseSI
->getCondition()->getType() == CondVal
->getType()) {
3097 // select(C, a, select(C, b, c)) -> select(C, a, c)
3098 if (FalseSI
->getCondition() == CondVal
) {
3099 if (SI
.getFalseValue() == FalseSI
->getFalseValue())
3101 return replaceOperand(SI
, 2, FalseSI
->getFalseValue());
3103 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3104 if (FalseSI
->getTrueValue() == TrueVal
&& FalseSI
->hasOneUse()) {
3105 Value
*Or
= Builder
.CreateLogicalOr(CondVal
, FalseSI
->getCondition());
3106 replaceOperand(SI
, 0, Or
);
3107 replaceOperand(SI
, 2, FalseSI
->getFalseValue());
3113 auto canMergeSelectThroughBinop
= [](BinaryOperator
*BO
) {
3114 // The select might be preventing a division by 0.
3115 switch (BO
->getOpcode()) {
3118 case Instruction::SRem
:
3119 case Instruction::URem
:
3120 case Instruction::SDiv
:
3121 case Instruction::UDiv
:
3126 // Try to simplify a binop sandwiched between 2 selects with the same
3128 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3129 BinaryOperator
*TrueBO
;
3130 if (match(TrueVal
, m_OneUse(m_BinOp(TrueBO
))) &&
3131 canMergeSelectThroughBinop(TrueBO
)) {
3132 if (auto *TrueBOSI
= dyn_cast
<SelectInst
>(TrueBO
->getOperand(0))) {
3133 if (TrueBOSI
->getCondition() == CondVal
) {
3134 replaceOperand(*TrueBO
, 0, TrueBOSI
->getTrueValue());
3135 Worklist
.push(TrueBO
);
3139 if (auto *TrueBOSI
= dyn_cast
<SelectInst
>(TrueBO
->getOperand(1))) {
3140 if (TrueBOSI
->getCondition() == CondVal
) {
3141 replaceOperand(*TrueBO
, 1, TrueBOSI
->getTrueValue());
3142 Worklist
.push(TrueBO
);
3148 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3149 BinaryOperator
*FalseBO
;
3150 if (match(FalseVal
, m_OneUse(m_BinOp(FalseBO
))) &&
3151 canMergeSelectThroughBinop(FalseBO
)) {
3152 if (auto *FalseBOSI
= dyn_cast
<SelectInst
>(FalseBO
->getOperand(0))) {
3153 if (FalseBOSI
->getCondition() == CondVal
) {
3154 replaceOperand(*FalseBO
, 0, FalseBOSI
->getFalseValue());
3155 Worklist
.push(FalseBO
);
3159 if (auto *FalseBOSI
= dyn_cast
<SelectInst
>(FalseBO
->getOperand(1))) {
3160 if (FalseBOSI
->getCondition() == CondVal
) {
3161 replaceOperand(*FalseBO
, 1, FalseBOSI
->getFalseValue());
3162 Worklist
.push(FalseBO
);
3169 if (match(CondVal
, m_Not(m_Value(NotCond
))) &&
3170 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI
)) {
3171 replaceOperand(SI
, 0, NotCond
);
3173 SI
.swapProfMetadata();
3177 if (Instruction
*I
= foldVectorSelect(SI
))
3180 // If we can compute the condition, there's no need for a select.
3181 // Like the above fold, we are attempting to reduce compile-time cost by
3182 // putting this fold here with limitations rather than in InstSimplify.
3183 // The motivation for this call into value tracking is to take advantage of
3184 // the assumption cache, so make sure that is populated.
3185 if (!CondVal
->getType()->isVectorTy() && !AC
.assumptions().empty()) {
3187 computeKnownBits(CondVal
, Known
, 0, &SI
);
3188 if (Known
.One
.isOneValue())
3189 return replaceInstUsesWith(SI
, TrueVal
);
3190 if (Known
.Zero
.isOneValue())
3191 return replaceInstUsesWith(SI
, FalseVal
);
3194 if (Instruction
*BitCastSel
= foldSelectCmpBitcasts(SI
, Builder
))
3197 // Simplify selects that test the returned flag of cmpxchg instructions.
3198 if (Value
*V
= foldSelectCmpXchg(SI
))
3199 return replaceInstUsesWith(SI
, V
);
3201 if (Instruction
*Select
= foldSelectBinOpIdentity(SI
, TLI
, *this))
3204 if (Instruction
*Funnel
= foldSelectFunnelShift(SI
, Builder
))
3207 if (Instruction
*Copysign
= foldSelectToCopysign(SI
, Builder
))
3210 if (Instruction
*PN
= foldSelectToPhi(SI
, DT
, Builder
))
3211 return replaceInstUsesWith(SI
, PN
);
3213 if (Value
*Fr
= foldSelectWithFrozenICmp(SI
, Builder
))
3214 return replaceInstUsesWith(SI
, Fr
);
3216 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3217 // Load inst is intentionally not checked for hasOneUse()
3218 if (match(FalseVal
, m_Zero()) &&
3219 match(TrueVal
, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal
),
3220 m_CombineOr(m_Undef(), m_Zero())))) {
3221 auto *MaskedLoad
= cast
<IntrinsicInst
>(TrueVal
);
3222 if (isa
<UndefValue
>(MaskedLoad
->getArgOperand(3)))
3223 MaskedLoad
->setArgOperand(3, FalseVal
/* Zero */);
3224 return replaceInstUsesWith(SI
, MaskedLoad
);
3228 if (match(TrueVal
, m_Zero()) &&
3229 match(FalseVal
, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask
),
3230 m_CombineOr(m_Undef(), m_Zero()))) &&
3231 (CondVal
->getType() == Mask
->getType())) {
3232 // We can remove the select by ensuring the load zeros all lanes the
3233 // select would have. We determine this by proving there is no overlap
3234 // between the load and select masks.
3235 // (i.e (load_mask & select_mask) == 0 == no overlap)
3236 bool CanMergeSelectIntoLoad
= false;
3237 if (Value
*V
= SimplifyAndInst(CondVal
, Mask
, SQ
.getWithInstruction(&SI
)))
3238 CanMergeSelectIntoLoad
= match(V
, m_Zero());
3240 if (CanMergeSelectIntoLoad
) {
3241 auto *MaskedLoad
= cast
<IntrinsicInst
>(FalseVal
);
3242 if (isa
<UndefValue
>(MaskedLoad
->getArgOperand(3)))
3243 MaskedLoad
->setArgOperand(3, TrueVal
/* Zero */);
3244 return replaceInstUsesWith(SI
, MaskedLoad
);