1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/TargetTransformInfo.h"
16 #include "llvm/Analysis/ValueTracking.h"
17 #include "llvm/IR/IntrinsicInst.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/KnownBits.h"
20 #include "llvm/Transforms/InstCombine/InstCombiner.h"
23 using namespace llvm::PatternMatch
;
25 #define DEBUG_TYPE "instcombine"
27 /// Check to see if the specified operand of the specified instruction is a
28 /// constant integer. If so, check to see if there are any bits set in the
29 /// constant that are not demanded. If so, shrink the constant and return true.
30 static bool ShrinkDemandedConstant(Instruction
*I
, unsigned OpNo
,
31 const APInt
&Demanded
) {
32 assert(I
&& "No instruction?");
33 assert(OpNo
< I
->getNumOperands() && "Operand index too large");
35 // The operand must be a constant integer or splat integer.
36 Value
*Op
= I
->getOperand(OpNo
);
38 if (!match(Op
, m_APInt(C
)))
41 // If there are no bits set that aren't demanded, nothing to do.
42 if (C
->isSubsetOf(Demanded
))
45 // This instruction is producing bits that are not demanded. Shrink the RHS.
46 I
->setOperand(OpNo
, ConstantInt::get(Op
->getType(), *C
& Demanded
));
53 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
54 /// the instruction has any properties that allow us to simplify its operands.
55 bool InstCombinerImpl::SimplifyDemandedInstructionBits(Instruction
&Inst
) {
56 unsigned BitWidth
= Inst
.getType()->getScalarSizeInBits();
57 KnownBits
Known(BitWidth
);
58 APInt
DemandedMask(APInt::getAllOnesValue(BitWidth
));
60 Value
*V
= SimplifyDemandedUseBits(&Inst
, DemandedMask
, Known
,
63 if (V
== &Inst
) return true;
64 replaceInstUsesWith(Inst
, V
);
68 /// This form of SimplifyDemandedBits simplifies the specified instruction
69 /// operand if possible, updating it in place. It returns true if it made any
70 /// change and false otherwise.
71 bool InstCombinerImpl::SimplifyDemandedBits(Instruction
*I
, unsigned OpNo
,
72 const APInt
&DemandedMask
,
73 KnownBits
&Known
, unsigned Depth
) {
74 Use
&U
= I
->getOperandUse(OpNo
);
75 Value
*NewVal
= SimplifyDemandedUseBits(U
.get(), DemandedMask
, Known
,
77 if (!NewVal
) return false;
78 if (Instruction
* OpInst
= dyn_cast
<Instruction
>(U
))
79 salvageDebugInfo(*OpInst
);
81 replaceUse(U
, NewVal
);
85 /// This function attempts to replace V with a simpler value based on the
86 /// demanded bits. When this function is called, it is known that only the bits
87 /// set in DemandedMask of the result of V are ever used downstream.
88 /// Consequently, depending on the mask and V, it may be possible to replace V
89 /// with a constant or one of its operands. In such cases, this function does
90 /// the replacement and returns true. In all other cases, it returns false after
91 /// analyzing the expression and setting KnownOne and known to be one in the
92 /// expression. Known.Zero contains all the bits that are known to be zero in
93 /// the expression. These are provided to potentially allow the caller (which
94 /// might recursively be SimplifyDemandedBits itself) to simplify the
96 /// Known.One and Known.Zero always follow the invariant that:
97 /// Known.One & Known.Zero == 0.
98 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
99 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
100 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
103 /// This returns null if it did not change anything and it permits no
104 /// simplification. This returns V itself if it did some simplification of V's
105 /// operands based on the information about what bits are demanded. This returns
106 /// some other non-null value if it found out that V is equal to another value
107 /// in the context where the specified bits are demanded, but not for all users.
108 Value
*InstCombinerImpl::SimplifyDemandedUseBits(Value
*V
, APInt DemandedMask
,
112 assert(V
!= nullptr && "Null pointer of Value???");
113 assert(Depth
<= MaxAnalysisRecursionDepth
&& "Limit Search Depth");
114 uint32_t BitWidth
= DemandedMask
.getBitWidth();
115 Type
*VTy
= V
->getType();
117 (!VTy
->isIntOrIntVectorTy() || VTy
->getScalarSizeInBits() == BitWidth
) &&
118 Known
.getBitWidth() == BitWidth
&&
119 "Value *V, DemandedMask and Known must have same BitWidth");
121 if (isa
<Constant
>(V
)) {
122 computeKnownBits(V
, Known
, Depth
, CxtI
);
127 if (DemandedMask
.isNullValue()) // Not demanding any bits from V.
128 return UndefValue::get(VTy
);
130 if (Depth
== MaxAnalysisRecursionDepth
)
133 if (isa
<ScalableVectorType
>(VTy
))
136 Instruction
*I
= dyn_cast
<Instruction
>(V
);
138 computeKnownBits(V
, Known
, Depth
, CxtI
);
139 return nullptr; // Only analyze instructions.
142 // If there are multiple uses of this value and we aren't at the root, then
143 // we can't do any simplifications of the operands, because DemandedMask
144 // only reflects the bits demanded by *one* of the users.
145 if (Depth
!= 0 && !I
->hasOneUse())
146 return SimplifyMultipleUseDemandedBits(I
, DemandedMask
, Known
, Depth
, CxtI
);
148 KnownBits
LHSKnown(BitWidth
), RHSKnown(BitWidth
);
150 // If this is the root being simplified, allow it to have multiple uses,
151 // just set the DemandedMask to all bits so that we can try to simplify the
152 // operands. This allows visitTruncInst (for example) to simplify the
153 // operand of a trunc without duplicating all the logic below.
154 if (Depth
== 0 && !V
->hasOneUse())
155 DemandedMask
.setAllBits();
157 switch (I
->getOpcode()) {
159 computeKnownBits(I
, Known
, Depth
, CxtI
);
161 case Instruction::And
: {
162 // If either the LHS or the RHS are Zero, the result is zero.
163 if (SimplifyDemandedBits(I
, 1, DemandedMask
, RHSKnown
, Depth
+ 1) ||
164 SimplifyDemandedBits(I
, 0, DemandedMask
& ~RHSKnown
.Zero
, LHSKnown
,
167 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
168 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
170 Known
= LHSKnown
& RHSKnown
;
172 // If the client is only demanding bits that we know, return the known
174 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
175 return Constant::getIntegerValue(VTy
, Known
.One
);
177 // If all of the demanded bits are known 1 on one side, return the other.
178 // These bits cannot contribute to the result of the 'and'.
179 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
180 return I
->getOperand(0);
181 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
182 return I
->getOperand(1);
184 // If the RHS is a constant, see if we can simplify it.
185 if (ShrinkDemandedConstant(I
, 1, DemandedMask
& ~LHSKnown
.Zero
))
190 case Instruction::Or
: {
191 // If either the LHS or the RHS are One, the result is One.
192 if (SimplifyDemandedBits(I
, 1, DemandedMask
, RHSKnown
, Depth
+ 1) ||
193 SimplifyDemandedBits(I
, 0, DemandedMask
& ~RHSKnown
.One
, LHSKnown
,
196 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
197 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
199 Known
= LHSKnown
| RHSKnown
;
201 // If the client is only demanding bits that we know, return the known
203 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
204 return Constant::getIntegerValue(VTy
, Known
.One
);
206 // If all of the demanded bits are known zero on one side, return the other.
207 // These bits cannot contribute to the result of the 'or'.
208 if (DemandedMask
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
209 return I
->getOperand(0);
210 if (DemandedMask
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
211 return I
->getOperand(1);
213 // If the RHS is a constant, see if we can simplify it.
214 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
219 case Instruction::Xor
: {
220 if (SimplifyDemandedBits(I
, 1, DemandedMask
, RHSKnown
, Depth
+ 1) ||
221 SimplifyDemandedBits(I
, 0, DemandedMask
, LHSKnown
, Depth
+ 1))
224 if (DemandedMask
== 1 &&
225 match(I
->getOperand(0), m_Intrinsic
<Intrinsic::ctpop
>(m_Value(LHS
))) &&
226 match(I
->getOperand(1), m_Intrinsic
<Intrinsic::ctpop
>(m_Value(RHS
)))) {
227 // (ctpop(X) ^ ctpop(Y)) & 1 --> ctpop(X^Y) & 1
228 IRBuilderBase::InsertPointGuard
Guard(Builder
);
229 Builder
.SetInsertPoint(I
);
230 auto *Xor
= Builder
.CreateXor(LHS
, RHS
);
231 return Builder
.CreateUnaryIntrinsic(Intrinsic::ctpop
, Xor
);
234 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
235 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
237 Known
= LHSKnown
^ RHSKnown
;
239 // If the client is only demanding bits that we know, return the known
241 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
242 return Constant::getIntegerValue(VTy
, Known
.One
);
244 // If all of the demanded bits are known zero on one side, return the other.
245 // These bits cannot contribute to the result of the 'xor'.
246 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
))
247 return I
->getOperand(0);
248 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
))
249 return I
->getOperand(1);
251 // If all of the demanded bits are known to be zero on one side or the
252 // other, turn this into an *inclusive* or.
253 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
254 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.Zero
)) {
256 BinaryOperator::CreateOr(I
->getOperand(0), I
->getOperand(1),
258 return InsertNewInstWith(Or
, *I
);
261 // If all of the demanded bits on one side are known, and all of the set
262 // bits on that side are also known to be set on the other side, turn this
263 // into an AND, as we know the bits will be cleared.
264 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
265 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
|RHSKnown
.One
) &&
266 RHSKnown
.One
.isSubsetOf(LHSKnown
.One
)) {
267 Constant
*AndC
= Constant::getIntegerValue(VTy
,
268 ~RHSKnown
.One
& DemandedMask
);
269 Instruction
*And
= BinaryOperator::CreateAnd(I
->getOperand(0), AndC
);
270 return InsertNewInstWith(And
, *I
);
273 // If the RHS is a constant, see if we can change it. Don't alter a -1
274 // constant because that's a canonical 'not' op, and that is better for
275 // combining, SCEV, and codegen.
277 if (match(I
->getOperand(1), m_APInt(C
)) && !C
->isAllOnesValue()) {
278 if ((*C
| ~DemandedMask
).isAllOnesValue()) {
279 // Force bits to 1 to create a 'not' op.
280 I
->setOperand(1, ConstantInt::getAllOnesValue(VTy
));
283 // If we can't turn this into a 'not', try to shrink the constant.
284 if (ShrinkDemandedConstant(I
, 1, DemandedMask
))
288 // If our LHS is an 'and' and if it has one use, and if any of the bits we
289 // are flipping are known to be set, then the xor is just resetting those
290 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
291 // simplifying both of them.
292 if (Instruction
*LHSInst
= dyn_cast
<Instruction
>(I
->getOperand(0))) {
293 ConstantInt
*AndRHS
, *XorRHS
;
294 if (LHSInst
->getOpcode() == Instruction::And
&& LHSInst
->hasOneUse() &&
295 match(I
->getOperand(1), m_ConstantInt(XorRHS
)) &&
296 match(LHSInst
->getOperand(1), m_ConstantInt(AndRHS
)) &&
297 (LHSKnown
.One
& RHSKnown
.One
& DemandedMask
) != 0) {
298 APInt NewMask
= ~(LHSKnown
.One
& RHSKnown
.One
& DemandedMask
);
301 ConstantInt::get(I
->getType(), NewMask
& AndRHS
->getValue());
302 Instruction
*NewAnd
= BinaryOperator::CreateAnd(I
->getOperand(0), AndC
);
303 InsertNewInstWith(NewAnd
, *I
);
306 ConstantInt::get(I
->getType(), NewMask
& XorRHS
->getValue());
307 Instruction
*NewXor
= BinaryOperator::CreateXor(NewAnd
, XorC
);
308 return InsertNewInstWith(NewXor
, *I
);
313 case Instruction::Select
: {
315 SelectPatternFlavor SPF
= matchSelectPattern(I
, LHS
, RHS
).Flavor
;
316 if (SPF
== SPF_UMAX
) {
317 // UMax(A, C) == A if ...
318 // The lowest non-zero bit of DemandMask is higher than the highest
319 // non-zero bit of C.
321 unsigned CTZ
= DemandedMask
.countTrailingZeros();
322 if (match(RHS
, m_APInt(C
)) && CTZ
>= C
->getActiveBits())
324 } else if (SPF
== SPF_UMIN
) {
325 // UMin(A, C) == A if ...
326 // The lowest non-zero bit of DemandMask is higher than the highest
328 // This comes from using DeMorgans on the above umax example.
330 unsigned CTZ
= DemandedMask
.countTrailingZeros();
331 if (match(RHS
, m_APInt(C
)) &&
332 CTZ
>= C
->getBitWidth() - C
->countLeadingOnes())
336 // If this is a select as part of any other min/max pattern, don't simplify
337 // any further in case we break the structure.
338 if (SPF
!= SPF_UNKNOWN
)
341 if (SimplifyDemandedBits(I
, 2, DemandedMask
, RHSKnown
, Depth
+ 1) ||
342 SimplifyDemandedBits(I
, 1, DemandedMask
, LHSKnown
, Depth
+ 1))
344 assert(!RHSKnown
.hasConflict() && "Bits known to be one AND zero?");
345 assert(!LHSKnown
.hasConflict() && "Bits known to be one AND zero?");
347 // If the operands are constants, see if we can simplify them.
348 // This is similar to ShrinkDemandedConstant, but for a select we want to
349 // try to keep the selected constants the same as icmp value constants, if
350 // we can. This helps not break apart (or helps put back together)
351 // canonical patterns like min and max.
352 auto CanonicalizeSelectConstant
= [](Instruction
*I
, unsigned OpNo
,
353 const APInt
&DemandedMask
) {
355 if (!match(I
->getOperand(OpNo
), m_APInt(SelC
)))
358 // Get the constant out of the ICmp, if there is one.
359 // Only try this when exactly 1 operand is a constant (if both operands
360 // are constant, the icmp should eventually simplify). Otherwise, we may
361 // invert the transform that reduces set bits and infinite-loop.
364 ICmpInst::Predicate Pred
;
365 if (!match(I
->getOperand(0), m_ICmp(Pred
, m_Value(X
), m_APInt(CmpC
))) ||
366 isa
<Constant
>(X
) || CmpC
->getBitWidth() != SelC
->getBitWidth())
367 return ShrinkDemandedConstant(I
, OpNo
, DemandedMask
);
369 // If the constant is already the same as the ICmp, leave it as-is.
372 // If the constants are not already the same, but can be with the demand
373 // mask, use the constant value from the ICmp.
374 if ((*CmpC
& DemandedMask
) == (*SelC
& DemandedMask
)) {
375 I
->setOperand(OpNo
, ConstantInt::get(I
->getType(), *CmpC
));
378 return ShrinkDemandedConstant(I
, OpNo
, DemandedMask
);
380 if (CanonicalizeSelectConstant(I
, 1, DemandedMask
) ||
381 CanonicalizeSelectConstant(I
, 2, DemandedMask
))
384 // Only known if known in both the LHS and RHS.
385 Known
= KnownBits::commonBits(LHSKnown
, RHSKnown
);
388 case Instruction::ZExt
:
389 case Instruction::Trunc
: {
390 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
392 APInt InputDemandedMask
= DemandedMask
.zextOrTrunc(SrcBitWidth
);
393 KnownBits
InputKnown(SrcBitWidth
);
394 if (SimplifyDemandedBits(I
, 0, InputDemandedMask
, InputKnown
, Depth
+ 1))
396 assert(InputKnown
.getBitWidth() == SrcBitWidth
&& "Src width changed?");
397 Known
= InputKnown
.zextOrTrunc(BitWidth
);
398 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
401 case Instruction::BitCast
:
402 if (!I
->getOperand(0)->getType()->isIntOrIntVectorTy())
403 return nullptr; // vector->int or fp->int?
405 if (VectorType
*DstVTy
= dyn_cast
<VectorType
>(I
->getType())) {
406 if (VectorType
*SrcVTy
=
407 dyn_cast
<VectorType
>(I
->getOperand(0)->getType())) {
408 if (cast
<FixedVectorType
>(DstVTy
)->getNumElements() !=
409 cast
<FixedVectorType
>(SrcVTy
)->getNumElements())
410 // Don't touch a bitcast between vectors of different element counts.
413 // Don't touch a scalar-to-vector bitcast.
415 } else if (I
->getOperand(0)->getType()->isVectorTy())
416 // Don't touch a vector-to-scalar bitcast.
419 if (SimplifyDemandedBits(I
, 0, DemandedMask
, Known
, Depth
+ 1))
421 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
423 case Instruction::SExt
: {
424 // Compute the bits in the result that are not present in the input.
425 unsigned SrcBitWidth
= I
->getOperand(0)->getType()->getScalarSizeInBits();
427 APInt InputDemandedBits
= DemandedMask
.trunc(SrcBitWidth
);
429 // If any of the sign extended bits are demanded, we know that the sign
431 if (DemandedMask
.getActiveBits() > SrcBitWidth
)
432 InputDemandedBits
.setBit(SrcBitWidth
-1);
434 KnownBits
InputKnown(SrcBitWidth
);
435 if (SimplifyDemandedBits(I
, 0, InputDemandedBits
, InputKnown
, Depth
+ 1))
438 // If the input sign bit is known zero, or if the NewBits are not demanded
439 // convert this into a zero extension.
440 if (InputKnown
.isNonNegative() ||
441 DemandedMask
.getActiveBits() <= SrcBitWidth
) {
442 // Convert to ZExt cast.
443 CastInst
*NewCast
= new ZExtInst(I
->getOperand(0), VTy
, I
->getName());
444 return InsertNewInstWith(NewCast
, *I
);
447 // If the sign bit of the input is known set or clear, then we know the
448 // top bits of the result.
449 Known
= InputKnown
.sext(BitWidth
);
450 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
453 case Instruction::Add
:
454 if ((DemandedMask
& 1) == 0) {
455 // If we do not need the low bit, try to convert bool math to logic:
456 // add iN (zext i1 X), (sext i1 Y) --> sext (~X & Y) to iN
458 if (match(I
, m_c_Add(m_OneUse(m_ZExt(m_Value(X
))),
459 m_OneUse(m_SExt(m_Value(Y
))))) &&
460 X
->getType()->isIntOrIntVectorTy(1) && X
->getType() == Y
->getType()) {
461 // Truth table for inputs and output signbits:
467 IRBuilderBase::InsertPointGuard
Guard(Builder
);
468 Builder
.SetInsertPoint(I
);
469 Value
*AndNot
= Builder
.CreateAnd(Builder
.CreateNot(X
), Y
);
470 return Builder
.CreateSExt(AndNot
, VTy
);
473 // add iN (sext i1 X), (sext i1 Y) --> sext (X | Y) to iN
474 // TODO: Relax the one-use checks because we are removing an instruction?
475 if (match(I
, m_Add(m_OneUse(m_SExt(m_Value(X
))),
476 m_OneUse(m_SExt(m_Value(Y
))))) &&
477 X
->getType()->isIntOrIntVectorTy(1) && X
->getType() == Y
->getType()) {
478 // Truth table for inputs and output signbits:
484 IRBuilderBase::InsertPointGuard
Guard(Builder
);
485 Builder
.SetInsertPoint(I
);
486 Value
*Or
= Builder
.CreateOr(X
, Y
);
487 return Builder
.CreateSExt(Or
, VTy
);
491 case Instruction::Sub
: {
492 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
493 /// about the high bits of the operands.
494 unsigned NLZ
= DemandedMask
.countLeadingZeros();
495 // Right fill the mask of bits for this ADD/SUB to demand the most
496 // significant bit and all those below it.
497 APInt
DemandedFromOps(APInt::getLowBitsSet(BitWidth
, BitWidth
-NLZ
));
498 if (ShrinkDemandedConstant(I
, 0, DemandedFromOps
) ||
499 SimplifyDemandedBits(I
, 0, DemandedFromOps
, LHSKnown
, Depth
+ 1) ||
500 ShrinkDemandedConstant(I
, 1, DemandedFromOps
) ||
501 SimplifyDemandedBits(I
, 1, DemandedFromOps
, RHSKnown
, Depth
+ 1)) {
503 // Disable the nsw and nuw flags here: We can no longer guarantee that
504 // we won't wrap after simplification. Removing the nsw/nuw flags is
505 // legal here because the top bit is not demanded.
506 BinaryOperator
&BinOP
= *cast
<BinaryOperator
>(I
);
507 BinOP
.setHasNoSignedWrap(false);
508 BinOP
.setHasNoUnsignedWrap(false);
513 // If we are known to be adding/subtracting zeros to every bit below
514 // the highest demanded bit, we just return the other side.
515 if (DemandedFromOps
.isSubsetOf(RHSKnown
.Zero
))
516 return I
->getOperand(0);
517 // We can't do this with the LHS for subtraction, unless we are only
518 // demanding the LSB.
519 if ((I
->getOpcode() == Instruction::Add
||
520 DemandedFromOps
.isOneValue()) &&
521 DemandedFromOps
.isSubsetOf(LHSKnown
.Zero
))
522 return I
->getOperand(1);
524 // Otherwise just compute the known bits of the result.
525 bool NSW
= cast
<OverflowingBinaryOperator
>(I
)->hasNoSignedWrap();
526 Known
= KnownBits::computeForAddSub(I
->getOpcode() == Instruction::Add
,
527 NSW
, LHSKnown
, RHSKnown
);
530 case Instruction::Shl
: {
532 if (match(I
->getOperand(1), m_APInt(SA
))) {
534 if (match(I
->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt
))))
535 if (Instruction
*Shr
= dyn_cast
<Instruction
>(I
->getOperand(0)))
536 if (Value
*R
= simplifyShrShlDemandedBits(Shr
, *ShrAmt
, I
, *SA
,
537 DemandedMask
, Known
))
540 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
541 APInt
DemandedMaskIn(DemandedMask
.lshr(ShiftAmt
));
543 // If the shift is NUW/NSW, then it does demand the high bits.
544 ShlOperator
*IOp
= cast
<ShlOperator
>(I
);
545 if (IOp
->hasNoSignedWrap())
546 DemandedMaskIn
.setHighBits(ShiftAmt
+1);
547 else if (IOp
->hasNoUnsignedWrap())
548 DemandedMaskIn
.setHighBits(ShiftAmt
);
550 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, Known
, Depth
+ 1))
552 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
554 bool SignBitZero
= Known
.Zero
.isSignBitSet();
555 bool SignBitOne
= Known
.One
.isSignBitSet();
556 Known
.Zero
<<= ShiftAmt
;
557 Known
.One
<<= ShiftAmt
;
558 // low bits known zero.
560 Known
.Zero
.setLowBits(ShiftAmt
);
562 // If this shift has "nsw" keyword, then the result is either a poison
563 // value or has the same sign bit as the first operand.
564 if (IOp
->hasNoSignedWrap()) {
566 Known
.Zero
.setSignBit();
568 Known
.One
.setSignBit();
569 if (Known
.hasConflict())
570 return UndefValue::get(I
->getType());
573 // This is a variable shift, so we can't shift the demand mask by a known
574 // amount. But if we are not demanding high bits, then we are not
575 // demanding those bits from the pre-shifted operand either.
576 if (unsigned CTLZ
= DemandedMask
.countLeadingZeros()) {
577 APInt
DemandedFromOp(APInt::getLowBitsSet(BitWidth
, BitWidth
- CTLZ
));
578 if (SimplifyDemandedBits(I
, 0, DemandedFromOp
, Known
, Depth
+ 1)) {
579 // We can't guarantee that nsw/nuw hold after simplifying the operand.
580 I
->dropPoisonGeneratingFlags();
584 computeKnownBits(I
, Known
, Depth
, CxtI
);
588 case Instruction::LShr
: {
590 if (match(I
->getOperand(1), m_APInt(SA
))) {
591 uint64_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
593 // Unsigned shift right.
594 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
596 // If the shift is exact, then it does demand the low bits (and knows that
598 if (cast
<LShrOperator
>(I
)->isExact())
599 DemandedMaskIn
.setLowBits(ShiftAmt
);
601 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, Known
, Depth
+ 1))
603 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
604 Known
.Zero
.lshrInPlace(ShiftAmt
);
605 Known
.One
.lshrInPlace(ShiftAmt
);
607 Known
.Zero
.setHighBits(ShiftAmt
); // high bits known zero.
609 computeKnownBits(I
, Known
, Depth
, CxtI
);
613 case Instruction::AShr
: {
614 // If this is an arithmetic shift right and only the low-bit is set, we can
615 // always convert this into a logical shr, even if the shift amount is
616 // variable. The low bit of the shift cannot be an input sign bit unless
617 // the shift amount is >= the size of the datatype, which is undefined.
618 if (DemandedMask
.isOneValue()) {
619 // Perform the logical shift right.
620 Instruction
*NewVal
= BinaryOperator::CreateLShr(
621 I
->getOperand(0), I
->getOperand(1), I
->getName());
622 return InsertNewInstWith(NewVal
, *I
);
625 // If the sign bit is the only bit demanded by this ashr, then there is no
626 // need to do it, the shift doesn't change the high bit.
627 if (DemandedMask
.isSignMask())
628 return I
->getOperand(0);
631 if (match(I
->getOperand(1), m_APInt(SA
))) {
632 uint32_t ShiftAmt
= SA
->getLimitedValue(BitWidth
-1);
634 // Signed shift right.
635 APInt
DemandedMaskIn(DemandedMask
.shl(ShiftAmt
));
636 // If any of the high bits are demanded, we should set the sign bit as
638 if (DemandedMask
.countLeadingZeros() <= ShiftAmt
)
639 DemandedMaskIn
.setSignBit();
641 // If the shift is exact, then it does demand the low bits (and knows that
643 if (cast
<AShrOperator
>(I
)->isExact())
644 DemandedMaskIn
.setLowBits(ShiftAmt
);
646 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, Known
, Depth
+ 1))
649 unsigned SignBits
= ComputeNumSignBits(I
->getOperand(0), Depth
+ 1, CxtI
);
651 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
652 // Compute the new bits that are at the top now plus sign bits.
653 APInt
HighBits(APInt::getHighBitsSet(
654 BitWidth
, std::min(SignBits
+ ShiftAmt
- 1, BitWidth
)));
655 Known
.Zero
.lshrInPlace(ShiftAmt
);
656 Known
.One
.lshrInPlace(ShiftAmt
);
658 // If the input sign bit is known to be zero, or if none of the top bits
659 // are demanded, turn this into an unsigned shift right.
660 assert(BitWidth
> ShiftAmt
&& "Shift amount not saturated?");
661 if (Known
.Zero
[BitWidth
-ShiftAmt
-1] ||
662 !DemandedMask
.intersects(HighBits
)) {
663 BinaryOperator
*LShr
= BinaryOperator::CreateLShr(I
->getOperand(0),
665 LShr
->setIsExact(cast
<BinaryOperator
>(I
)->isExact());
666 return InsertNewInstWith(LShr
, *I
);
667 } else if (Known
.One
[BitWidth
-ShiftAmt
-1]) { // New bits are known one.
668 Known
.One
|= HighBits
;
671 computeKnownBits(I
, Known
, Depth
, CxtI
);
675 case Instruction::UDiv
: {
676 // UDiv doesn't demand low bits that are zero in the divisor.
678 if (match(I
->getOperand(1), m_APInt(SA
))) {
679 // If the shift is exact, then it does demand the low bits.
680 if (cast
<UDivOperator
>(I
)->isExact())
683 // FIXME: Take the demanded mask of the result into account.
684 unsigned RHSTrailingZeros
= SA
->countTrailingZeros();
685 APInt DemandedMaskIn
=
686 APInt::getHighBitsSet(BitWidth
, BitWidth
- RHSTrailingZeros
);
687 if (SimplifyDemandedBits(I
, 0, DemandedMaskIn
, LHSKnown
, Depth
+ 1))
690 // Propagate zero bits from the input.
691 Known
.Zero
.setHighBits(std::min(
692 BitWidth
, LHSKnown
.Zero
.countLeadingOnes() + RHSTrailingZeros
));
694 computeKnownBits(I
, Known
, Depth
, CxtI
);
698 case Instruction::SRem
: {
700 if (match(I
->getOperand(1), m_ConstantInt(Rem
))) {
701 // X % -1 demands all the bits because we don't want to introduce
702 // INT_MIN % -1 (== undef) by accident.
703 if (Rem
->isMinusOne())
705 APInt RA
= Rem
->getValue().abs();
706 if (RA
.isPowerOf2()) {
707 if (DemandedMask
.ult(RA
)) // srem won't affect demanded bits
708 return I
->getOperand(0);
710 APInt LowBits
= RA
- 1;
711 APInt Mask2
= LowBits
| APInt::getSignMask(BitWidth
);
712 if (SimplifyDemandedBits(I
, 0, Mask2
, LHSKnown
, Depth
+ 1))
715 // The low bits of LHS are unchanged by the srem.
716 Known
.Zero
= LHSKnown
.Zero
& LowBits
;
717 Known
.One
= LHSKnown
.One
& LowBits
;
719 // If LHS is non-negative or has all low bits zero, then the upper bits
721 if (LHSKnown
.isNonNegative() || LowBits
.isSubsetOf(LHSKnown
.Zero
))
722 Known
.Zero
|= ~LowBits
;
724 // If LHS is negative and not all low bits are zero, then the upper bits
726 if (LHSKnown
.isNegative() && LowBits
.intersects(LHSKnown
.One
))
727 Known
.One
|= ~LowBits
;
729 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
734 // The sign bit is the LHS's sign bit, except when the result of the
735 // remainder is zero.
736 if (DemandedMask
.isSignBitSet()) {
737 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1, CxtI
);
738 // If it's known zero, our sign bit is also zero.
739 if (LHSKnown
.isNonNegative())
740 Known
.makeNonNegative();
744 case Instruction::URem
: {
745 KnownBits
Known2(BitWidth
);
746 APInt AllOnes
= APInt::getAllOnesValue(BitWidth
);
747 if (SimplifyDemandedBits(I
, 0, AllOnes
, Known2
, Depth
+ 1) ||
748 SimplifyDemandedBits(I
, 1, AllOnes
, Known2
, Depth
+ 1))
751 unsigned Leaders
= Known2
.countMinLeadingZeros();
752 Known
.Zero
= APInt::getHighBitsSet(BitWidth
, Leaders
) & DemandedMask
;
755 case Instruction::Call
: {
756 bool KnownBitsComputed
= false;
757 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
758 switch (II
->getIntrinsicID()) {
759 case Intrinsic::abs
: {
760 if (DemandedMask
== 1)
761 return II
->getArgOperand(0);
764 case Intrinsic::ctpop
: {
765 // Checking if the number of clear bits is odd (parity)? If the type has
766 // an even number of bits, that's the same as checking if the number of
767 // set bits is odd, so we can eliminate the 'not' op.
769 if (DemandedMask
== 1 && VTy
->getScalarSizeInBits() % 2 == 0 &&
770 match(II
->getArgOperand(0), m_Not(m_Value(X
)))) {
771 Function
*Ctpop
= Intrinsic::getDeclaration(
772 II
->getModule(), Intrinsic::ctpop
, II
->getType());
773 return InsertNewInstWith(CallInst::Create(Ctpop
, {X
}), *I
);
777 case Intrinsic::bswap
: {
778 // If the only bits demanded come from one byte of the bswap result,
779 // just shift the input byte into position to eliminate the bswap.
780 unsigned NLZ
= DemandedMask
.countLeadingZeros();
781 unsigned NTZ
= DemandedMask
.countTrailingZeros();
783 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
784 // we need all the bits down to bit 8. Likewise, round NLZ. If we
785 // have 14 leading zeros, round to 8.
788 // If we need exactly one byte, we can do this transformation.
789 if (BitWidth
-NLZ
-NTZ
== 8) {
790 unsigned ResultBit
= NTZ
;
791 unsigned InputBit
= BitWidth
-NTZ
-8;
793 // Replace this with either a left or right shift to get the byte into
796 if (InputBit
> ResultBit
)
797 NewVal
= BinaryOperator::CreateLShr(II
->getArgOperand(0),
798 ConstantInt::get(I
->getType(), InputBit
-ResultBit
));
800 NewVal
= BinaryOperator::CreateShl(II
->getArgOperand(0),
801 ConstantInt::get(I
->getType(), ResultBit
-InputBit
));
803 return InsertNewInstWith(NewVal
, *I
);
807 case Intrinsic::fshr
:
808 case Intrinsic::fshl
: {
810 if (!match(I
->getOperand(2), m_APInt(SA
)))
813 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
814 // defined, so no need to special-case zero shifts here.
815 uint64_t ShiftAmt
= SA
->urem(BitWidth
);
816 if (II
->getIntrinsicID() == Intrinsic::fshr
)
817 ShiftAmt
= BitWidth
- ShiftAmt
;
819 APInt
DemandedMaskLHS(DemandedMask
.lshr(ShiftAmt
));
820 APInt
DemandedMaskRHS(DemandedMask
.shl(BitWidth
- ShiftAmt
));
821 if (SimplifyDemandedBits(I
, 0, DemandedMaskLHS
, LHSKnown
, Depth
+ 1) ||
822 SimplifyDemandedBits(I
, 1, DemandedMaskRHS
, RHSKnown
, Depth
+ 1))
825 Known
.Zero
= LHSKnown
.Zero
.shl(ShiftAmt
) |
826 RHSKnown
.Zero
.lshr(BitWidth
- ShiftAmt
);
827 Known
.One
= LHSKnown
.One
.shl(ShiftAmt
) |
828 RHSKnown
.One
.lshr(BitWidth
- ShiftAmt
);
829 KnownBitsComputed
= true;
832 case Intrinsic::umax
: {
833 // UMax(A, C) == A if ...
834 // The lowest non-zero bit of DemandMask is higher than the highest
835 // non-zero bit of C.
837 unsigned CTZ
= DemandedMask
.countTrailingZeros();
838 if (match(II
->getArgOperand(1), m_APInt(C
)) &&
839 CTZ
>= C
->getActiveBits())
840 return II
->getArgOperand(0);
843 case Intrinsic::umin
: {
844 // UMin(A, C) == A if ...
845 // The lowest non-zero bit of DemandMask is higher than the highest
847 // This comes from using DeMorgans on the above umax example.
849 unsigned CTZ
= DemandedMask
.countTrailingZeros();
850 if (match(II
->getArgOperand(1), m_APInt(C
)) &&
851 CTZ
>= C
->getBitWidth() - C
->countLeadingOnes())
852 return II
->getArgOperand(0);
856 // Handle target specific intrinsics
857 Optional
<Value
*> V
= targetSimplifyDemandedUseBitsIntrinsic(
858 *II
, DemandedMask
, Known
, KnownBitsComputed
);
866 if (!KnownBitsComputed
)
867 computeKnownBits(V
, Known
, Depth
, CxtI
);
872 // If the client is only demanding bits that we know, return the known
874 if (DemandedMask
.isSubsetOf(Known
.Zero
|Known
.One
))
875 return Constant::getIntegerValue(VTy
, Known
.One
);
879 /// Helper routine of SimplifyDemandedUseBits. It computes Known
880 /// bits. It also tries to handle simplifications that can be done based on
881 /// DemandedMask, but without modifying the Instruction.
882 Value
*InstCombinerImpl::SimplifyMultipleUseDemandedBits(
883 Instruction
*I
, const APInt
&DemandedMask
, KnownBits
&Known
, unsigned Depth
,
885 unsigned BitWidth
= DemandedMask
.getBitWidth();
886 Type
*ITy
= I
->getType();
888 KnownBits
LHSKnown(BitWidth
);
889 KnownBits
RHSKnown(BitWidth
);
891 // Despite the fact that we can't simplify this instruction in all User's
892 // context, we can at least compute the known bits, and we can
893 // do simplifications that apply to *just* the one user if we know that
894 // this instruction has a simpler value in that context.
895 switch (I
->getOpcode()) {
896 case Instruction::And
: {
897 // If either the LHS or the RHS are Zero, the result is zero.
898 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
899 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1,
902 Known
= LHSKnown
& RHSKnown
;
904 // If the client is only demanding bits that we know, return the known
906 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
907 return Constant::getIntegerValue(ITy
, Known
.One
);
909 // If all of the demanded bits are known 1 on one side, return the other.
910 // These bits cannot contribute to the result of the 'and' in this
912 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
| RHSKnown
.One
))
913 return I
->getOperand(0);
914 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
| LHSKnown
.One
))
915 return I
->getOperand(1);
919 case Instruction::Or
: {
920 // We can simplify (X|Y) -> X or Y in the user's context if we know that
921 // only bits from X or Y are demanded.
923 // If either the LHS or the RHS are One, the result is One.
924 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
925 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1,
928 Known
= LHSKnown
| RHSKnown
;
930 // If the client is only demanding bits that we know, return the known
932 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
933 return Constant::getIntegerValue(ITy
, Known
.One
);
935 // If all of the demanded bits are known zero on one side, return the
936 // other. These bits cannot contribute to the result of the 'or' in this
938 if (DemandedMask
.isSubsetOf(LHSKnown
.One
| RHSKnown
.Zero
))
939 return I
->getOperand(0);
940 if (DemandedMask
.isSubsetOf(RHSKnown
.One
| LHSKnown
.Zero
))
941 return I
->getOperand(1);
945 case Instruction::Xor
: {
946 // We can simplify (X^Y) -> X or Y in the user's context if we know that
947 // only bits from X or Y are demanded.
949 computeKnownBits(I
->getOperand(1), RHSKnown
, Depth
+ 1, CxtI
);
950 computeKnownBits(I
->getOperand(0), LHSKnown
, Depth
+ 1,
953 Known
= LHSKnown
^ RHSKnown
;
955 // If the client is only demanding bits that we know, return the known
957 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
958 return Constant::getIntegerValue(ITy
, Known
.One
);
960 // If all of the demanded bits are known zero on one side, return the
962 if (DemandedMask
.isSubsetOf(RHSKnown
.Zero
))
963 return I
->getOperand(0);
964 if (DemandedMask
.isSubsetOf(LHSKnown
.Zero
))
965 return I
->getOperand(1);
969 case Instruction::AShr
: {
970 // Compute the Known bits to simplify things downstream.
971 computeKnownBits(I
, Known
, Depth
, CxtI
);
973 // If this user is only demanding bits that we know, return the known
975 if (DemandedMask
.isSubsetOf(Known
.Zero
| Known
.One
))
976 return Constant::getIntegerValue(ITy
, Known
.One
);
978 // If the right shift operand 0 is a result of a left shift by the same
979 // amount, this is probably a zero/sign extension, which may be unnecessary,
980 // if we do not demand any of the new sign bits. So, return the original
982 const APInt
*ShiftRC
;
983 const APInt
*ShiftLC
;
985 unsigned BitWidth
= DemandedMask
.getBitWidth();
987 m_AShr(m_Shl(m_Value(X
), m_APInt(ShiftLC
)), m_APInt(ShiftRC
))) &&
988 ShiftLC
== ShiftRC
&& ShiftLC
->ult(BitWidth
) &&
989 DemandedMask
.isSubsetOf(APInt::getLowBitsSet(
990 BitWidth
, BitWidth
- ShiftRC
->getZExtValue()))) {
997 // Compute the Known bits to simplify things downstream.
998 computeKnownBits(I
, Known
, Depth
, CxtI
);
1000 // If this user is only demanding bits that we know, return the known
1002 if (DemandedMask
.isSubsetOf(Known
.Zero
|Known
.One
))
1003 return Constant::getIntegerValue(ITy
, Known
.One
);
1011 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
1012 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
1013 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
1016 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
1017 /// ..., bn}, without considering the specific value X is holding.
1018 /// This transformation is legal iff one of following conditions is hold:
1019 /// 1) All the bit in S are 0, in this case E1 == E2.
1020 /// 2) We don't care those bits in S, per the input DemandedMask.
1021 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
1024 /// Currently we only test condition 2).
1026 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
1028 Value
*InstCombinerImpl::simplifyShrShlDemandedBits(
1029 Instruction
*Shr
, const APInt
&ShrOp1
, Instruction
*Shl
,
1030 const APInt
&ShlOp1
, const APInt
&DemandedMask
, KnownBits
&Known
) {
1031 if (!ShlOp1
|| !ShrOp1
)
1032 return nullptr; // No-op.
1034 Value
*VarX
= Shr
->getOperand(0);
1035 Type
*Ty
= VarX
->getType();
1036 unsigned BitWidth
= Ty
->getScalarSizeInBits();
1037 if (ShlOp1
.uge(BitWidth
) || ShrOp1
.uge(BitWidth
))
1038 return nullptr; // Undef.
1040 unsigned ShlAmt
= ShlOp1
.getZExtValue();
1041 unsigned ShrAmt
= ShrOp1
.getZExtValue();
1043 Known
.One
.clearAllBits();
1044 Known
.Zero
.setLowBits(ShlAmt
- 1);
1045 Known
.Zero
&= DemandedMask
;
1047 APInt
BitMask1(APInt::getAllOnesValue(BitWidth
));
1048 APInt
BitMask2(APInt::getAllOnesValue(BitWidth
));
1050 bool isLshr
= (Shr
->getOpcode() == Instruction::LShr
);
1051 BitMask1
= isLshr
? (BitMask1
.lshr(ShrAmt
) << ShlAmt
) :
1052 (BitMask1
.ashr(ShrAmt
) << ShlAmt
);
1054 if (ShrAmt
<= ShlAmt
) {
1055 BitMask2
<<= (ShlAmt
- ShrAmt
);
1057 BitMask2
= isLshr
? BitMask2
.lshr(ShrAmt
- ShlAmt
):
1058 BitMask2
.ashr(ShrAmt
- ShlAmt
);
1061 // Check if condition-2 (see the comment to this function) is satified.
1062 if ((BitMask1
& DemandedMask
) == (BitMask2
& DemandedMask
)) {
1063 if (ShrAmt
== ShlAmt
)
1066 if (!Shr
->hasOneUse())
1069 BinaryOperator
*New
;
1070 if (ShrAmt
< ShlAmt
) {
1071 Constant
*Amt
= ConstantInt::get(VarX
->getType(), ShlAmt
- ShrAmt
);
1072 New
= BinaryOperator::CreateShl(VarX
, Amt
);
1073 BinaryOperator
*Orig
= cast
<BinaryOperator
>(Shl
);
1074 New
->setHasNoSignedWrap(Orig
->hasNoSignedWrap());
1075 New
->setHasNoUnsignedWrap(Orig
->hasNoUnsignedWrap());
1077 Constant
*Amt
= ConstantInt::get(VarX
->getType(), ShrAmt
- ShlAmt
);
1078 New
= isLshr
? BinaryOperator::CreateLShr(VarX
, Amt
) :
1079 BinaryOperator::CreateAShr(VarX
, Amt
);
1080 if (cast
<BinaryOperator
>(Shr
)->isExact())
1081 New
->setIsExact(true);
1084 return InsertNewInstWith(New
, *Shl
);
1090 /// The specified value produces a vector with any number of elements.
1091 /// This method analyzes which elements of the operand are undef or poison and
1092 /// returns that information in UndefElts.
1094 /// DemandedElts contains the set of elements that are actually used by the
1095 /// caller, and by default (AllowMultipleUsers equals false) the value is
1096 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1097 /// to true, DemandedElts refers to the union of sets of elements that are
1098 /// used by all callers.
1100 /// If the information about demanded elements can be used to simplify the
1101 /// operation, the operation is simplified, then the resultant value is
1102 /// returned. This returns null if no change was made.
1103 Value
*InstCombinerImpl::SimplifyDemandedVectorElts(Value
*V
,
1107 bool AllowMultipleUsers
) {
1108 // Cannot analyze scalable type. The number of vector elements is not a
1109 // compile-time constant.
1110 if (isa
<ScalableVectorType
>(V
->getType()))
1113 unsigned VWidth
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
1114 APInt
EltMask(APInt::getAllOnesValue(VWidth
));
1115 assert((DemandedElts
& ~EltMask
) == 0 && "Invalid DemandedElts!");
1117 if (match(V
, m_Undef())) {
1118 // If the entire vector is undef or poison, just return this info.
1119 UndefElts
= EltMask
;
1123 if (DemandedElts
.isNullValue()) { // If nothing is demanded, provide poison.
1124 UndefElts
= EltMask
;
1125 return PoisonValue::get(V
->getType());
1130 if (auto *C
= dyn_cast
<Constant
>(V
)) {
1131 // Check if this is identity. If so, return 0 since we are not simplifying
1133 if (DemandedElts
.isAllOnesValue())
1136 Type
*EltTy
= cast
<VectorType
>(V
->getType())->getElementType();
1137 Constant
*Poison
= PoisonValue::get(EltTy
);
1138 SmallVector
<Constant
*, 16> Elts
;
1139 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
1140 if (!DemandedElts
[i
]) { // If not demanded, set to poison.
1141 Elts
.push_back(Poison
);
1142 UndefElts
.setBit(i
);
1146 Constant
*Elt
= C
->getAggregateElement(i
);
1147 if (!Elt
) return nullptr;
1149 Elts
.push_back(Elt
);
1150 if (isa
<UndefValue
>(Elt
)) // Already undef or poison.
1151 UndefElts
.setBit(i
);
1154 // If we changed the constant, return it.
1155 Constant
*NewCV
= ConstantVector::get(Elts
);
1156 return NewCV
!= C
? NewCV
: nullptr;
1159 // Limit search depth.
1163 if (!AllowMultipleUsers
) {
1164 // If multiple users are using the root value, proceed with
1165 // simplification conservatively assuming that all elements
1167 if (!V
->hasOneUse()) {
1168 // Quit if we find multiple users of a non-root value though.
1169 // They'll be handled when it's their turn to be visited by
1170 // the main instcombine process.
1172 // TODO: Just compute the UndefElts information recursively.
1175 // Conservatively assume that all elements are needed.
1176 DemandedElts
= EltMask
;
1180 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1181 if (!I
) return nullptr; // Only analyze instructions.
1183 bool MadeChange
= false;
1184 auto simplifyAndSetOp
= [&](Instruction
*Inst
, unsigned OpNum
,
1185 APInt Demanded
, APInt
&Undef
) {
1186 auto *II
= dyn_cast
<IntrinsicInst
>(Inst
);
1187 Value
*Op
= II
? II
->getArgOperand(OpNum
) : Inst
->getOperand(OpNum
);
1188 if (Value
*V
= SimplifyDemandedVectorElts(Op
, Demanded
, Undef
, Depth
+ 1)) {
1189 replaceOperand(*Inst
, OpNum
, V
);
1194 APInt
UndefElts2(VWidth
, 0);
1195 APInt
UndefElts3(VWidth
, 0);
1196 switch (I
->getOpcode()) {
1199 case Instruction::GetElementPtr
: {
1200 // The LangRef requires that struct geps have all constant indices. As
1201 // such, we can't convert any operand to partial undef.
1202 auto mayIndexStructType
= [](GetElementPtrInst
&GEP
) {
1203 for (auto I
= gep_type_begin(GEP
), E
= gep_type_end(GEP
);
1209 if (mayIndexStructType(cast
<GetElementPtrInst
>(*I
)))
1212 // Conservatively track the demanded elements back through any vector
1213 // operands we may have. We know there must be at least one, or we
1214 // wouldn't have a vector result to get here. Note that we intentionally
1215 // merge the undef bits here since gepping with either an undef base or
1216 // index results in undef.
1217 for (unsigned i
= 0; i
< I
->getNumOperands(); i
++) {
1218 if (match(I
->getOperand(i
), m_Undef())) {
1219 // If the entire vector is undefined, just return this info.
1220 UndefElts
= EltMask
;
1223 if (I
->getOperand(i
)->getType()->isVectorTy()) {
1224 APInt
UndefEltsOp(VWidth
, 0);
1225 simplifyAndSetOp(I
, i
, DemandedElts
, UndefEltsOp
);
1226 UndefElts
|= UndefEltsOp
;
1232 case Instruction::InsertElement
: {
1233 // If this is a variable index, we don't know which element it overwrites.
1234 // demand exactly the same input as we produce.
1235 ConstantInt
*Idx
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1237 // Note that we can't propagate undef elt info, because we don't know
1238 // which elt is getting updated.
1239 simplifyAndSetOp(I
, 0, DemandedElts
, UndefElts2
);
1243 // The element inserted overwrites whatever was there, so the input demanded
1244 // set is simpler than the output set.
1245 unsigned IdxNo
= Idx
->getZExtValue();
1246 APInt PreInsertDemandedElts
= DemandedElts
;
1248 PreInsertDemandedElts
.clearBit(IdxNo
);
1250 // If we only demand the element that is being inserted and that element
1251 // was extracted from the same index in another vector with the same type,
1252 // replace this insert with that other vector.
1253 // Note: This is attempted before the call to simplifyAndSetOp because that
1254 // may change UndefElts to a value that does not match with Vec.
1256 if (PreInsertDemandedElts
== 0 &&
1257 match(I
->getOperand(1),
1258 m_ExtractElt(m_Value(Vec
), m_SpecificInt(IdxNo
))) &&
1259 Vec
->getType() == I
->getType()) {
1263 simplifyAndSetOp(I
, 0, PreInsertDemandedElts
, UndefElts
);
1265 // If this is inserting an element that isn't demanded, remove this
1267 if (IdxNo
>= VWidth
|| !DemandedElts
[IdxNo
]) {
1269 return I
->getOperand(0);
1272 // The inserted element is defined.
1273 UndefElts
.clearBit(IdxNo
);
1276 case Instruction::ShuffleVector
: {
1277 auto *Shuffle
= cast
<ShuffleVectorInst
>(I
);
1278 assert(Shuffle
->getOperand(0)->getType() ==
1279 Shuffle
->getOperand(1)->getType() &&
1280 "Expected shuffle operands to have same type");
1281 unsigned OpWidth
= cast
<FixedVectorType
>(Shuffle
->getOperand(0)->getType())
1283 // Handle trivial case of a splat. Only check the first element of LHS
1285 if (all_of(Shuffle
->getShuffleMask(), [](int Elt
) { return Elt
== 0; }) &&
1286 DemandedElts
.isAllOnesValue()) {
1287 if (!match(I
->getOperand(1), m_Undef())) {
1288 I
->setOperand(1, PoisonValue::get(I
->getOperand(1)->getType()));
1291 APInt
LeftDemanded(OpWidth
, 1);
1292 APInt
LHSUndefElts(OpWidth
, 0);
1293 simplifyAndSetOp(I
, 0, LeftDemanded
, LHSUndefElts
);
1294 if (LHSUndefElts
[0])
1295 UndefElts
= EltMask
;
1297 UndefElts
.clearAllBits();
1301 APInt
LeftDemanded(OpWidth
, 0), RightDemanded(OpWidth
, 0);
1302 for (unsigned i
= 0; i
< VWidth
; i
++) {
1303 if (DemandedElts
[i
]) {
1304 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1305 if (MaskVal
!= -1u) {
1306 assert(MaskVal
< OpWidth
* 2 &&
1307 "shufflevector mask index out of range!");
1308 if (MaskVal
< OpWidth
)
1309 LeftDemanded
.setBit(MaskVal
);
1311 RightDemanded
.setBit(MaskVal
- OpWidth
);
1316 APInt
LHSUndefElts(OpWidth
, 0);
1317 simplifyAndSetOp(I
, 0, LeftDemanded
, LHSUndefElts
);
1319 APInt
RHSUndefElts(OpWidth
, 0);
1320 simplifyAndSetOp(I
, 1, RightDemanded
, RHSUndefElts
);
1322 // If this shuffle does not change the vector length and the elements
1323 // demanded by this shuffle are an identity mask, then this shuffle is
1326 // We are assuming canonical form for the mask, so the source vector is
1327 // operand 0 and operand 1 is not used.
1329 // Note that if an element is demanded and this shuffle mask is undefined
1330 // for that element, then the shuffle is not considered an identity
1331 // operation. The shuffle prevents poison from the operand vector from
1332 // leaking to the result by replacing poison with an undefined value.
1333 if (VWidth
== OpWidth
) {
1334 bool IsIdentityShuffle
= true;
1335 for (unsigned i
= 0; i
< VWidth
; i
++) {
1336 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1337 if (DemandedElts
[i
] && i
!= MaskVal
) {
1338 IsIdentityShuffle
= false;
1342 if (IsIdentityShuffle
)
1343 return Shuffle
->getOperand(0);
1346 bool NewUndefElts
= false;
1347 unsigned LHSIdx
= -1u, LHSValIdx
= -1u;
1348 unsigned RHSIdx
= -1u, RHSValIdx
= -1u;
1349 bool LHSUniform
= true;
1350 bool RHSUniform
= true;
1351 for (unsigned i
= 0; i
< VWidth
; i
++) {
1352 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
1353 if (MaskVal
== -1u) {
1354 UndefElts
.setBit(i
);
1355 } else if (!DemandedElts
[i
]) {
1356 NewUndefElts
= true;
1357 UndefElts
.setBit(i
);
1358 } else if (MaskVal
< OpWidth
) {
1359 if (LHSUndefElts
[MaskVal
]) {
1360 NewUndefElts
= true;
1361 UndefElts
.setBit(i
);
1363 LHSIdx
= LHSIdx
== -1u ? i
: OpWidth
;
1364 LHSValIdx
= LHSValIdx
== -1u ? MaskVal
: OpWidth
;
1365 LHSUniform
= LHSUniform
&& (MaskVal
== i
);
1368 if (RHSUndefElts
[MaskVal
- OpWidth
]) {
1369 NewUndefElts
= true;
1370 UndefElts
.setBit(i
);
1372 RHSIdx
= RHSIdx
== -1u ? i
: OpWidth
;
1373 RHSValIdx
= RHSValIdx
== -1u ? MaskVal
- OpWidth
: OpWidth
;
1374 RHSUniform
= RHSUniform
&& (MaskVal
- OpWidth
== i
);
1379 // Try to transform shuffle with constant vector and single element from
1380 // this constant vector to single insertelement instruction.
1381 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1382 // insertelement V, C[ci], ci-n
1384 cast
<FixedVectorType
>(Shuffle
->getType())->getNumElements()) {
1385 Value
*Op
= nullptr;
1386 Constant
*Value
= nullptr;
1389 // Find constant vector with the single element in shuffle (LHS or RHS).
1390 if (LHSIdx
< OpWidth
&& RHSUniform
) {
1391 if (auto *CV
= dyn_cast
<ConstantVector
>(Shuffle
->getOperand(0))) {
1392 Op
= Shuffle
->getOperand(1);
1393 Value
= CV
->getOperand(LHSValIdx
);
1397 if (RHSIdx
< OpWidth
&& LHSUniform
) {
1398 if (auto *CV
= dyn_cast
<ConstantVector
>(Shuffle
->getOperand(1))) {
1399 Op
= Shuffle
->getOperand(0);
1400 Value
= CV
->getOperand(RHSValIdx
);
1404 // Found constant vector with single element - convert to insertelement.
1406 Instruction
*New
= InsertElementInst::Create(
1407 Op
, Value
, ConstantInt::get(Type::getInt32Ty(I
->getContext()), Idx
),
1408 Shuffle
->getName());
1409 InsertNewInstWith(New
, *Shuffle
);
1414 // Add additional discovered undefs.
1415 SmallVector
<int, 16> Elts
;
1416 for (unsigned i
= 0; i
< VWidth
; ++i
) {
1418 Elts
.push_back(UndefMaskElem
);
1420 Elts
.push_back(Shuffle
->getMaskValue(i
));
1422 Shuffle
->setShuffleMask(Elts
);
1427 case Instruction::Select
: {
1428 // If this is a vector select, try to transform the select condition based
1429 // on the current demanded elements.
1430 SelectInst
*Sel
= cast
<SelectInst
>(I
);
1431 if (Sel
->getCondition()->getType()->isVectorTy()) {
1432 // TODO: We are not doing anything with UndefElts based on this call.
1433 // It is overwritten below based on the other select operands. If an
1434 // element of the select condition is known undef, then we are free to
1435 // choose the output value from either arm of the select. If we know that
1436 // one of those values is undef, then the output can be undef.
1437 simplifyAndSetOp(I
, 0, DemandedElts
, UndefElts
);
1440 // Next, see if we can transform the arms of the select.
1441 APInt
DemandedLHS(DemandedElts
), DemandedRHS(DemandedElts
);
1442 if (auto *CV
= dyn_cast
<ConstantVector
>(Sel
->getCondition())) {
1443 for (unsigned i
= 0; i
< VWidth
; i
++) {
1444 // isNullValue() always returns false when called on a ConstantExpr.
1445 // Skip constant expressions to avoid propagating incorrect information.
1446 Constant
*CElt
= CV
->getAggregateElement(i
);
1447 if (isa
<ConstantExpr
>(CElt
))
1449 // TODO: If a select condition element is undef, we can demand from
1450 // either side. If one side is known undef, choosing that side would
1452 if (CElt
->isNullValue())
1453 DemandedLHS
.clearBit(i
);
1455 DemandedRHS
.clearBit(i
);
1459 simplifyAndSetOp(I
, 1, DemandedLHS
, UndefElts2
);
1460 simplifyAndSetOp(I
, 2, DemandedRHS
, UndefElts3
);
1462 // Output elements are undefined if the element from each arm is undefined.
1463 // TODO: This can be improved. See comment in select condition handling.
1464 UndefElts
= UndefElts2
& UndefElts3
;
1467 case Instruction::BitCast
: {
1468 // Vector->vector casts only.
1469 VectorType
*VTy
= dyn_cast
<VectorType
>(I
->getOperand(0)->getType());
1471 unsigned InVWidth
= cast
<FixedVectorType
>(VTy
)->getNumElements();
1472 APInt
InputDemandedElts(InVWidth
, 0);
1473 UndefElts2
= APInt(InVWidth
, 0);
1476 if (VWidth
== InVWidth
) {
1477 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1478 // elements as are demanded of us.
1480 InputDemandedElts
= DemandedElts
;
1481 } else if ((VWidth
% InVWidth
) == 0) {
1482 // If the number of elements in the output is a multiple of the number of
1483 // elements in the input then an input element is live if any of the
1484 // corresponding output elements are live.
1485 Ratio
= VWidth
/ InVWidth
;
1486 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
)
1487 if (DemandedElts
[OutIdx
])
1488 InputDemandedElts
.setBit(OutIdx
/ Ratio
);
1489 } else if ((InVWidth
% VWidth
) == 0) {
1490 // If the number of elements in the input is a multiple of the number of
1491 // elements in the output then an input element is live if the
1492 // corresponding output element is live.
1493 Ratio
= InVWidth
/ VWidth
;
1494 for (unsigned InIdx
= 0; InIdx
!= InVWidth
; ++InIdx
)
1495 if (DemandedElts
[InIdx
/ Ratio
])
1496 InputDemandedElts
.setBit(InIdx
);
1498 // Unsupported so far.
1502 simplifyAndSetOp(I
, 0, InputDemandedElts
, UndefElts2
);
1504 if (VWidth
== InVWidth
) {
1505 UndefElts
= UndefElts2
;
1506 } else if ((VWidth
% InVWidth
) == 0) {
1507 // If the number of elements in the output is a multiple of the number of
1508 // elements in the input then an output element is undef if the
1509 // corresponding input element is undef.
1510 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
)
1511 if (UndefElts2
[OutIdx
/ Ratio
])
1512 UndefElts
.setBit(OutIdx
);
1513 } else if ((InVWidth
% VWidth
) == 0) {
1514 // If the number of elements in the input is a multiple of the number of
1515 // elements in the output then an output element is undef if all of the
1516 // corresponding input elements are undef.
1517 for (unsigned OutIdx
= 0; OutIdx
!= VWidth
; ++OutIdx
) {
1518 APInt SubUndef
= UndefElts2
.lshr(OutIdx
* Ratio
).zextOrTrunc(Ratio
);
1519 if (SubUndef
.countPopulation() == Ratio
)
1520 UndefElts
.setBit(OutIdx
);
1523 llvm_unreachable("Unimp");
1527 case Instruction::FPTrunc
:
1528 case Instruction::FPExt
:
1529 simplifyAndSetOp(I
, 0, DemandedElts
, UndefElts
);
1532 case Instruction::Call
: {
1533 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
);
1535 switch (II
->getIntrinsicID()) {
1536 case Intrinsic::masked_gather
: // fallthrough
1537 case Intrinsic::masked_load
: {
1538 // Subtlety: If we load from a pointer, the pointer must be valid
1539 // regardless of whether the element is demanded. Doing otherwise risks
1540 // segfaults which didn't exist in the original program.
1541 APInt
DemandedPtrs(APInt::getAllOnesValue(VWidth
)),
1542 DemandedPassThrough(DemandedElts
);
1543 if (auto *CV
= dyn_cast
<ConstantVector
>(II
->getOperand(2)))
1544 for (unsigned i
= 0; i
< VWidth
; i
++) {
1545 Constant
*CElt
= CV
->getAggregateElement(i
);
1546 if (CElt
->isNullValue())
1547 DemandedPtrs
.clearBit(i
);
1548 else if (CElt
->isAllOnesValue())
1549 DemandedPassThrough
.clearBit(i
);
1551 if (II
->getIntrinsicID() == Intrinsic::masked_gather
)
1552 simplifyAndSetOp(II
, 0, DemandedPtrs
, UndefElts2
);
1553 simplifyAndSetOp(II
, 3, DemandedPassThrough
, UndefElts3
);
1555 // Output elements are undefined if the element from both sources are.
1556 // TODO: can strengthen via mask as well.
1557 UndefElts
= UndefElts2
& UndefElts3
;
1561 // Handle target specific intrinsics
1562 Optional
<Value
*> V
= targetSimplifyDemandedVectorEltsIntrinsic(
1563 *II
, DemandedElts
, UndefElts
, UndefElts2
, UndefElts3
,
1566 return V
.getValue();
1569 } // switch on IntrinsicID
1572 } // switch on Opcode
1574 // TODO: We bail completely on integer div/rem and shifts because they have
1575 // UB/poison potential, but that should be refined.
1577 if (match(I
, m_BinOp(BO
)) && !BO
->isIntDivRem() && !BO
->isShift()) {
1578 simplifyAndSetOp(I
, 0, DemandedElts
, UndefElts
);
1579 simplifyAndSetOp(I
, 1, DemandedElts
, UndefElts2
);
1581 // Any change to an instruction with potential poison must clear those flags
1582 // because we can not guarantee those constraints now. Other analysis may
1583 // determine that it is safe to re-apply the flags.
1585 BO
->dropPoisonGeneratingFlags();
1587 // Output elements are undefined if both are undefined. Consider things
1588 // like undef & 0. The result is known zero, not undef.
1589 UndefElts
&= UndefElts2
;
1592 // If we've proven all of the lanes undef, return an undef value.
1593 // TODO: Intersect w/demanded lanes
1594 if (UndefElts
.isAllOnesValue())
1595 return UndefValue::get(I
->getType());;
1597 return MadeChange
? I
: nullptr;