1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements instcombine for ExtractElement, InsertElement and
12 //===----------------------------------------------------------------------===//
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
39 #include "llvm/Transforms/InstCombine/InstCombiner.h"
46 using namespace PatternMatch
;
48 #define DEBUG_TYPE "instcombine"
50 STATISTIC(NumAggregateReconstructionsSimplified
,
51 "Number of aggregate reconstructions turned into reuse of the "
52 "original aggregate");
54 /// Return true if the value is cheaper to scalarize than it is to leave as a
55 /// vector operation. If the extract index \p EI is a constant integer then
56 /// some operations may be cheap to scalarize.
58 /// FIXME: It's possible to create more instructions than previously existed.
59 static bool cheapToScalarize(Value
*V
, Value
*EI
) {
60 ConstantInt
*CEI
= dyn_cast
<ConstantInt
>(EI
);
62 // If we can pick a scalar constant value out of a vector, that is free.
63 if (auto *C
= dyn_cast
<Constant
>(V
))
64 return CEI
|| C
->getSplatValue();
66 if (CEI
&& match(V
, m_Intrinsic
<Intrinsic::experimental_stepvector
>())) {
67 ElementCount EC
= cast
<VectorType
>(V
->getType())->getElementCount();
68 // Index needs to be lower than the minimum size of the vector, because
69 // for scalable vector, the vector size is known at run time.
70 return CEI
->getValue().ult(EC
.getKnownMinValue());
73 // An insertelement to the same constant index as our extract will simplify
74 // to the scalar inserted element. An insertelement to a different constant
75 // index is irrelevant to our extract.
76 if (match(V
, m_InsertElt(m_Value(), m_Value(), m_ConstantInt())))
79 if (match(V
, m_OneUse(m_Load(m_Value()))))
82 if (match(V
, m_OneUse(m_UnOp())))
86 if (match(V
, m_OneUse(m_BinOp(m_Value(V0
), m_Value(V1
)))))
87 if (cheapToScalarize(V0
, EI
) || cheapToScalarize(V1
, EI
))
90 CmpInst::Predicate UnusedPred
;
91 if (match(V
, m_OneUse(m_Cmp(UnusedPred
, m_Value(V0
), m_Value(V1
)))))
92 if (cheapToScalarize(V0
, EI
) || cheapToScalarize(V1
, EI
))
98 // If we have a PHI node with a vector type that is only used to feed
99 // itself and be an operand of extractelement at a constant location,
100 // try to replace the PHI of the vector type with a PHI of a scalar type.
101 Instruction
*InstCombinerImpl::scalarizePHI(ExtractElementInst
&EI
,
103 SmallVector
<Instruction
*, 2> Extracts
;
104 // The users we want the PHI to have are:
105 // 1) The EI ExtractElement (we already know this)
106 // 2) Possibly more ExtractElements with the same index.
107 // 3) Another operand, which will feed back into the PHI.
108 Instruction
*PHIUser
= nullptr;
109 for (auto U
: PN
->users()) {
110 if (ExtractElementInst
*EU
= dyn_cast
<ExtractElementInst
>(U
)) {
111 if (EI
.getIndexOperand() == EU
->getIndexOperand())
112 Extracts
.push_back(EU
);
115 } else if (!PHIUser
) {
116 PHIUser
= cast
<Instruction
>(U
);
125 // Verify that this PHI user has one use, which is the PHI itself,
126 // and that it is a binary operation which is cheap to scalarize.
127 // otherwise return nullptr.
128 if (!PHIUser
->hasOneUse() || !(PHIUser
->user_back() == PN
) ||
129 !(isa
<BinaryOperator
>(PHIUser
)) ||
130 !cheapToScalarize(PHIUser
, EI
.getIndexOperand()))
133 // Create a scalar PHI node that will replace the vector PHI node
134 // just before the current PHI node.
135 PHINode
*scalarPHI
= cast
<PHINode
>(InsertNewInstWith(
136 PHINode::Create(EI
.getType(), PN
->getNumIncomingValues(), ""), *PN
));
137 // Scalarize each PHI operand.
138 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
139 Value
*PHIInVal
= PN
->getIncomingValue(i
);
140 BasicBlock
*inBB
= PN
->getIncomingBlock(i
);
141 Value
*Elt
= EI
.getIndexOperand();
142 // If the operand is the PHI induction variable:
143 if (PHIInVal
== PHIUser
) {
144 // Scalarize the binary operation. Its first operand is the
145 // scalar PHI, and the second operand is extracted from the other
147 BinaryOperator
*B0
= cast
<BinaryOperator
>(PHIUser
);
148 unsigned opId
= (B0
->getOperand(0) == PN
) ? 1 : 0;
149 Value
*Op
= InsertNewInstWith(
150 ExtractElementInst::Create(B0
->getOperand(opId
), Elt
,
151 B0
->getOperand(opId
)->getName() + ".Elt"),
153 Value
*newPHIUser
= InsertNewInstWith(
154 BinaryOperator::CreateWithCopiedFlags(B0
->getOpcode(),
155 scalarPHI
, Op
, B0
), *B0
);
156 scalarPHI
->addIncoming(newPHIUser
, inBB
);
158 // Scalarize PHI input:
159 Instruction
*newEI
= ExtractElementInst::Create(PHIInVal
, Elt
, "");
160 // Insert the new instruction into the predecessor basic block.
161 Instruction
*pos
= dyn_cast
<Instruction
>(PHIInVal
);
162 BasicBlock::iterator InsertPos
;
163 if (pos
&& !isa
<PHINode
>(pos
)) {
164 InsertPos
= ++pos
->getIterator();
166 InsertPos
= inBB
->getFirstInsertionPt();
169 InsertNewInstWith(newEI
, *InsertPos
);
171 scalarPHI
->addIncoming(newEI
, inBB
);
175 for (auto E
: Extracts
)
176 replaceInstUsesWith(*E
, scalarPHI
);
181 static Instruction
*foldBitcastExtElt(ExtractElementInst
&Ext
,
182 InstCombiner::BuilderTy
&Builder
,
186 if (!match(Ext
.getVectorOperand(), m_BitCast(m_Value(X
))) ||
187 !X
->getType()->isVectorTy() ||
188 !match(Ext
.getIndexOperand(), m_ConstantInt(ExtIndexC
)))
191 // If this extractelement is using a bitcast from a vector of the same number
192 // of elements, see if we can find the source element from the source vector:
193 // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
194 auto *SrcTy
= cast
<VectorType
>(X
->getType());
195 Type
*DestTy
= Ext
.getType();
196 ElementCount NumSrcElts
= SrcTy
->getElementCount();
197 ElementCount NumElts
=
198 cast
<VectorType
>(Ext
.getVectorOperandType())->getElementCount();
199 if (NumSrcElts
== NumElts
)
200 if (Value
*Elt
= findScalarElement(X
, ExtIndexC
))
201 return new BitCastInst(Elt
, DestTy
);
203 assert(NumSrcElts
.isScalable() == NumElts
.isScalable() &&
204 "Src and Dst must be the same sort of vector type");
206 // If the source elements are wider than the destination, try to shift and
207 // truncate a subset of scalar bits of an insert op.
208 if (NumSrcElts
.getKnownMinValue() < NumElts
.getKnownMinValue()) {
211 if (!match(X
, m_InsertElt(m_Value(), m_Value(Scalar
),
212 m_ConstantInt(InsIndexC
))))
215 // The extract must be from the subset of vector elements that we inserted
216 // into. Example: if we inserted element 1 of a <2 x i64> and we are
217 // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
218 // of elements 4-7 of the bitcasted vector.
219 unsigned NarrowingRatio
=
220 NumElts
.getKnownMinValue() / NumSrcElts
.getKnownMinValue();
221 if (ExtIndexC
/ NarrowingRatio
!= InsIndexC
)
224 // We are extracting part of the original scalar. How that scalar is
225 // inserted into the vector depends on the endian-ness. Example:
226 // Vector Byte Elt Index: 0 1 2 3 4 5 6 7
227 // +--+--+--+--+--+--+--+--+
228 // inselt <2 x i32> V, <i32> S, 1: |V0|V1|V2|V3|S0|S1|S2|S3|
229 // extelt <4 x i16> V', 3: | |S2|S3|
230 // +--+--+--+--+--+--+--+--+
231 // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
232 // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
233 // In this example, we must right-shift little-endian. Big-endian is just a
235 unsigned Chunk
= ExtIndexC
% NarrowingRatio
;
237 Chunk
= NarrowingRatio
- 1 - Chunk
;
239 // Bail out if this is an FP vector to FP vector sequence. That would take
240 // more instructions than we started with unless there is no shift, and it
241 // may not be handled as well in the backend.
242 bool NeedSrcBitcast
= SrcTy
->getScalarType()->isFloatingPointTy();
243 bool NeedDestBitcast
= DestTy
->isFloatingPointTy();
244 if (NeedSrcBitcast
&& NeedDestBitcast
)
247 unsigned SrcWidth
= SrcTy
->getScalarSizeInBits();
248 unsigned DestWidth
= DestTy
->getPrimitiveSizeInBits();
249 unsigned ShAmt
= Chunk
* DestWidth
;
251 // TODO: This limitation is more strict than necessary. We could sum the
252 // number of new instructions and subtract the number eliminated to know if
254 if (!X
->hasOneUse() || !Ext
.getVectorOperand()->hasOneUse())
255 if (NeedSrcBitcast
|| NeedDestBitcast
)
258 if (NeedSrcBitcast
) {
259 Type
*SrcIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), SrcWidth
);
260 Scalar
= Builder
.CreateBitCast(Scalar
, SrcIntTy
);
264 // Bail out if we could end with more instructions than we started with.
265 if (!Ext
.getVectorOperand()->hasOneUse())
267 Scalar
= Builder
.CreateLShr(Scalar
, ShAmt
);
270 if (NeedDestBitcast
) {
271 Type
*DestIntTy
= IntegerType::getIntNTy(Scalar
->getContext(), DestWidth
);
272 return new BitCastInst(Builder
.CreateTrunc(Scalar
, DestIntTy
), DestTy
);
274 return new TruncInst(Scalar
, DestTy
);
280 /// Find elements of V demanded by UserInstr.
281 static APInt
findDemandedEltsBySingleUser(Value
*V
, Instruction
*UserInstr
) {
282 unsigned VWidth
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
284 // Conservatively assume that all elements are needed.
285 APInt
UsedElts(APInt::getAllOnesValue(VWidth
));
287 switch (UserInstr
->getOpcode()) {
288 case Instruction::ExtractElement
: {
289 ExtractElementInst
*EEI
= cast
<ExtractElementInst
>(UserInstr
);
290 assert(EEI
->getVectorOperand() == V
);
291 ConstantInt
*EEIIndexC
= dyn_cast
<ConstantInt
>(EEI
->getIndexOperand());
292 if (EEIIndexC
&& EEIIndexC
->getValue().ult(VWidth
)) {
293 UsedElts
= APInt::getOneBitSet(VWidth
, EEIIndexC
->getZExtValue());
297 case Instruction::ShuffleVector
: {
298 ShuffleVectorInst
*Shuffle
= cast
<ShuffleVectorInst
>(UserInstr
);
299 unsigned MaskNumElts
=
300 cast
<FixedVectorType
>(UserInstr
->getType())->getNumElements();
302 UsedElts
= APInt(VWidth
, 0);
303 for (unsigned i
= 0; i
< MaskNumElts
; i
++) {
304 unsigned MaskVal
= Shuffle
->getMaskValue(i
);
305 if (MaskVal
== -1u || MaskVal
>= 2 * VWidth
)
307 if (Shuffle
->getOperand(0) == V
&& (MaskVal
< VWidth
))
308 UsedElts
.setBit(MaskVal
);
309 if (Shuffle
->getOperand(1) == V
&&
310 ((MaskVal
>= VWidth
) && (MaskVal
< 2 * VWidth
)))
311 UsedElts
.setBit(MaskVal
- VWidth
);
321 /// Find union of elements of V demanded by all its users.
322 /// If it is known by querying findDemandedEltsBySingleUser that
323 /// no user demands an element of V, then the corresponding bit
324 /// remains unset in the returned value.
325 static APInt
findDemandedEltsByAllUsers(Value
*V
) {
326 unsigned VWidth
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
328 APInt
UnionUsedElts(VWidth
, 0);
329 for (const Use
&U
: V
->uses()) {
330 if (Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser())) {
331 UnionUsedElts
|= findDemandedEltsBySingleUser(V
, I
);
333 UnionUsedElts
= APInt::getAllOnesValue(VWidth
);
337 if (UnionUsedElts
.isAllOnesValue())
341 return UnionUsedElts
;
344 Instruction
*InstCombinerImpl::visitExtractElementInst(ExtractElementInst
&EI
) {
345 Value
*SrcVec
= EI
.getVectorOperand();
346 Value
*Index
= EI
.getIndexOperand();
347 if (Value
*V
= SimplifyExtractElementInst(SrcVec
, Index
,
348 SQ
.getWithInstruction(&EI
)))
349 return replaceInstUsesWith(EI
, V
);
351 // If extracting a specified index from the vector, see if we can recursively
352 // find a previously computed scalar that was inserted into the vector.
353 auto *IndexC
= dyn_cast
<ConstantInt
>(Index
);
355 ElementCount EC
= EI
.getVectorOperandType()->getElementCount();
356 unsigned NumElts
= EC
.getKnownMinValue();
358 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(SrcVec
)) {
359 Intrinsic::ID IID
= II
->getIntrinsicID();
360 // Index needs to be lower than the minimum size of the vector, because
361 // for scalable vector, the vector size is known at run time.
362 if (IID
== Intrinsic::experimental_stepvector
&&
363 IndexC
->getValue().ult(NumElts
)) {
364 Type
*Ty
= EI
.getType();
365 unsigned BitWidth
= Ty
->getIntegerBitWidth();
367 // Return index when its value does not exceed the allowed limit
368 // for the element type of the vector, otherwise return undefined.
369 if (IndexC
->getValue().getActiveBits() <= BitWidth
)
370 Idx
= ConstantInt::get(Ty
, IndexC
->getValue().zextOrTrunc(BitWidth
));
372 Idx
= UndefValue::get(Ty
);
373 return replaceInstUsesWith(EI
, Idx
);
377 // InstSimplify should handle cases where the index is invalid.
378 // For fixed-length vector, it's invalid to extract out-of-range element.
379 if (!EC
.isScalable() && IndexC
->getValue().uge(NumElts
))
382 // This instruction only demands the single element from the input vector.
383 // Skip for scalable type, the number of elements is unknown at
385 if (!EC
.isScalable() && NumElts
!= 1) {
386 // If the input vector has a single use, simplify it based on this use
388 if (SrcVec
->hasOneUse()) {
389 APInt
UndefElts(NumElts
, 0);
390 APInt
DemandedElts(NumElts
, 0);
391 DemandedElts
.setBit(IndexC
->getZExtValue());
393 SimplifyDemandedVectorElts(SrcVec
, DemandedElts
, UndefElts
))
394 return replaceOperand(EI
, 0, V
);
396 // If the input vector has multiple uses, simplify it based on a union
397 // of all elements used.
398 APInt DemandedElts
= findDemandedEltsByAllUsers(SrcVec
);
399 if (!DemandedElts
.isAllOnesValue()) {
400 APInt
UndefElts(NumElts
, 0);
401 if (Value
*V
= SimplifyDemandedVectorElts(
402 SrcVec
, DemandedElts
, UndefElts
, 0 /* Depth */,
403 true /* AllowMultipleUsers */)) {
405 SrcVec
->replaceAllUsesWith(V
);
413 if (Instruction
*I
= foldBitcastExtElt(EI
, Builder
, DL
.isBigEndian()))
416 // If there's a vector PHI feeding a scalar use through this extractelement
417 // instruction, try to scalarize the PHI.
418 if (auto *Phi
= dyn_cast
<PHINode
>(SrcVec
))
419 if (Instruction
*ScalarPHI
= scalarizePHI(EI
, Phi
))
423 // TODO come up with a n-ary matcher that subsumes both unary and
426 if (match(SrcVec
, m_UnOp(UO
)) && cheapToScalarize(SrcVec
, Index
)) {
427 // extelt (unop X), Index --> unop (extelt X, Index)
428 Value
*X
= UO
->getOperand(0);
429 Value
*E
= Builder
.CreateExtractElement(X
, Index
);
430 return UnaryOperator::CreateWithCopiedFlags(UO
->getOpcode(), E
, UO
);
434 if (match(SrcVec
, m_BinOp(BO
)) && cheapToScalarize(SrcVec
, Index
)) {
435 // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
436 Value
*X
= BO
->getOperand(0), *Y
= BO
->getOperand(1);
437 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
438 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
439 return BinaryOperator::CreateWithCopiedFlags(BO
->getOpcode(), E0
, E1
, BO
);
443 CmpInst::Predicate Pred
;
444 if (match(SrcVec
, m_Cmp(Pred
, m_Value(X
), m_Value(Y
))) &&
445 cheapToScalarize(SrcVec
, Index
)) {
446 // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
447 Value
*E0
= Builder
.CreateExtractElement(X
, Index
);
448 Value
*E1
= Builder
.CreateExtractElement(Y
, Index
);
449 return CmpInst::Create(cast
<CmpInst
>(SrcVec
)->getOpcode(), Pred
, E0
, E1
);
452 if (auto *I
= dyn_cast
<Instruction
>(SrcVec
)) {
453 if (auto *IE
= dyn_cast
<InsertElementInst
>(I
)) {
454 // Extracting the inserted element?
455 if (IE
->getOperand(2) == Index
)
456 return replaceInstUsesWith(EI
, IE
->getOperand(1));
457 // If the inserted and extracted elements are constants, they must not
458 // be the same value, extract from the pre-inserted value instead.
459 if (isa
<Constant
>(IE
->getOperand(2)) && IndexC
)
460 return replaceOperand(EI
, 0, IE
->getOperand(0));
461 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
462 auto *VecType
= cast
<VectorType
>(GEP
->getType());
463 ElementCount EC
= VecType
->getElementCount();
464 uint64_t IdxVal
= IndexC
? IndexC
->getZExtValue() : 0;
465 if (IndexC
&& IdxVal
< EC
.getKnownMinValue() && GEP
->hasOneUse()) {
466 // Find out why we have a vector result - these are a few examples:
467 // 1. We have a scalar pointer and a vector of indices, or
468 // 2. We have a vector of pointers and a scalar index, or
469 // 3. We have a vector of pointers and a vector of indices, etc.
470 // Here we only consider combining when there is exactly one vector
471 // operand, since the optimization is less obviously a win due to
472 // needing more than one extractelements.
475 llvm::count_if(GEP
->operands(), [](const Value
*V
) {
476 return isa
<VectorType
>(V
->getType());
480 assert(VectorOps
== 1 && "Expected exactly one vector GEP operand!");
482 Value
*NewPtr
= GEP
->getPointerOperand();
483 if (isa
<VectorType
>(NewPtr
->getType()))
484 NewPtr
= Builder
.CreateExtractElement(NewPtr
, IndexC
);
486 SmallVector
<Value
*> NewOps
;
487 for (unsigned I
= 1; I
!= GEP
->getNumOperands(); ++I
) {
488 Value
*Op
= GEP
->getOperand(I
);
489 if (isa
<VectorType
>(Op
->getType()))
490 NewOps
.push_back(Builder
.CreateExtractElement(Op
, IndexC
));
492 NewOps
.push_back(Op
);
495 GetElementPtrInst
*NewGEP
= GetElementPtrInst::Create(
496 cast
<PointerType
>(NewPtr
->getType())->getElementType(), NewPtr
,
498 NewGEP
->setIsInBounds(GEP
->isInBounds());
502 } else if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(I
)) {
503 // If this is extracting an element from a shufflevector, figure out where
504 // it came from and extract from the appropriate input element instead.
505 // Restrict the following transformation to fixed-length vector.
506 if (isa
<FixedVectorType
>(SVI
->getType()) && isa
<ConstantInt
>(Index
)) {
508 SVI
->getMaskValue(cast
<ConstantInt
>(Index
)->getZExtValue());
510 unsigned LHSWidth
= cast
<FixedVectorType
>(SVI
->getOperand(0)->getType())
514 return replaceInstUsesWith(EI
, UndefValue::get(EI
.getType()));
515 if (SrcIdx
< (int)LHSWidth
)
516 Src
= SVI
->getOperand(0);
519 Src
= SVI
->getOperand(1);
521 Type
*Int32Ty
= Type::getInt32Ty(EI
.getContext());
522 return ExtractElementInst::Create(
523 Src
, ConstantInt::get(Int32Ty
, SrcIdx
, false));
525 } else if (auto *CI
= dyn_cast
<CastInst
>(I
)) {
526 // Canonicalize extractelement(cast) -> cast(extractelement).
527 // Bitcasts can change the number of vector elements, and they cost
529 if (CI
->hasOneUse() && (CI
->getOpcode() != Instruction::BitCast
)) {
530 Value
*EE
= Builder
.CreateExtractElement(CI
->getOperand(0), Index
);
531 return CastInst::Create(CI
->getOpcode(), EE
, EI
.getType());
538 /// If V is a shuffle of values that ONLY returns elements from either LHS or
539 /// RHS, return the shuffle mask and true. Otherwise, return false.
540 static bool collectSingleShuffleElements(Value
*V
, Value
*LHS
, Value
*RHS
,
541 SmallVectorImpl
<int> &Mask
) {
542 assert(LHS
->getType() == RHS
->getType() &&
543 "Invalid CollectSingleShuffleElements");
544 unsigned NumElts
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
546 if (match(V
, m_Undef())) {
547 Mask
.assign(NumElts
, -1);
552 for (unsigned i
= 0; i
!= NumElts
; ++i
)
558 for (unsigned i
= 0; i
!= NumElts
; ++i
)
559 Mask
.push_back(i
+ NumElts
);
563 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
564 // If this is an insert of an extract from some other vector, include it.
565 Value
*VecOp
= IEI
->getOperand(0);
566 Value
*ScalarOp
= IEI
->getOperand(1);
567 Value
*IdxOp
= IEI
->getOperand(2);
569 if (!isa
<ConstantInt
>(IdxOp
))
571 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
573 if (isa
<UndefValue
>(ScalarOp
)) { // inserting undef into vector.
574 // We can handle this if the vector we are inserting into is
576 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
577 // If so, update the mask to reflect the inserted undef.
578 Mask
[InsertedIdx
] = -1;
581 } else if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)){
582 if (isa
<ConstantInt
>(EI
->getOperand(1))) {
583 unsigned ExtractedIdx
=
584 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
585 unsigned NumLHSElts
=
586 cast
<FixedVectorType
>(LHS
->getType())->getNumElements();
588 // This must be extracting from either LHS or RHS.
589 if (EI
->getOperand(0) == LHS
|| EI
->getOperand(0) == RHS
) {
590 // We can handle this if the vector we are inserting into is
592 if (collectSingleShuffleElements(VecOp
, LHS
, RHS
, Mask
)) {
593 // If so, update the mask to reflect the inserted value.
594 if (EI
->getOperand(0) == LHS
) {
595 Mask
[InsertedIdx
% NumElts
] = ExtractedIdx
;
597 assert(EI
->getOperand(0) == RHS
);
598 Mask
[InsertedIdx
% NumElts
] = ExtractedIdx
+ NumLHSElts
;
610 /// If we have insertion into a vector that is wider than the vector that we
611 /// are extracting from, try to widen the source vector to allow a single
612 /// shufflevector to replace one or more insert/extract pairs.
613 static void replaceExtractElements(InsertElementInst
*InsElt
,
614 ExtractElementInst
*ExtElt
,
615 InstCombinerImpl
&IC
) {
616 auto *InsVecType
= cast
<FixedVectorType
>(InsElt
->getType());
617 auto *ExtVecType
= cast
<FixedVectorType
>(ExtElt
->getVectorOperandType());
618 unsigned NumInsElts
= InsVecType
->getNumElements();
619 unsigned NumExtElts
= ExtVecType
->getNumElements();
621 // The inserted-to vector must be wider than the extracted-from vector.
622 if (InsVecType
->getElementType() != ExtVecType
->getElementType() ||
623 NumExtElts
>= NumInsElts
)
626 // Create a shuffle mask to widen the extended-from vector using poison
627 // values. The mask selects all of the values of the original vector followed
628 // by as many poison values as needed to create a vector of the same length
629 // as the inserted-to vector.
630 SmallVector
<int, 16> ExtendMask
;
631 for (unsigned i
= 0; i
< NumExtElts
; ++i
)
632 ExtendMask
.push_back(i
);
633 for (unsigned i
= NumExtElts
; i
< NumInsElts
; ++i
)
634 ExtendMask
.push_back(-1);
636 Value
*ExtVecOp
= ExtElt
->getVectorOperand();
637 auto *ExtVecOpInst
= dyn_cast
<Instruction
>(ExtVecOp
);
638 BasicBlock
*InsertionBlock
= (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
639 ? ExtVecOpInst
->getParent()
640 : ExtElt
->getParent();
642 // TODO: This restriction matches the basic block check below when creating
643 // new extractelement instructions. If that limitation is removed, this one
644 // could also be removed. But for now, we just bail out to ensure that we
645 // will replace the extractelement instruction that is feeding our
646 // insertelement instruction. This allows the insertelement to then be
647 // replaced by a shufflevector. If the insertelement is not replaced, we can
648 // induce infinite looping because there's an optimization for extractelement
649 // that will delete our widening shuffle. This would trigger another attempt
650 // here to create that shuffle, and we spin forever.
651 if (InsertionBlock
!= InsElt
->getParent())
654 // TODO: This restriction matches the check in visitInsertElementInst() and
655 // prevents an infinite loop caused by not turning the extract/insert pair
656 // into a shuffle. We really should not need either check, but we're lacking
657 // folds for shufflevectors because we're afraid to generate shuffle masks
658 // that the backend can't handle.
659 if (InsElt
->hasOneUse() && isa
<InsertElementInst
>(InsElt
->user_back()))
663 new ShuffleVectorInst(ExtVecOp
, PoisonValue::get(ExtVecType
), ExtendMask
);
665 // Insert the new shuffle after the vector operand of the extract is defined
666 // (as long as it's not a PHI) or at the start of the basic block of the
667 // extract, so any subsequent extracts in the same basic block can use it.
668 // TODO: Insert before the earliest ExtractElementInst that is replaced.
669 if (ExtVecOpInst
&& !isa
<PHINode
>(ExtVecOpInst
))
670 WideVec
->insertAfter(ExtVecOpInst
);
672 IC
.InsertNewInstWith(WideVec
, *ExtElt
->getParent()->getFirstInsertionPt());
674 // Replace extracts from the original narrow vector with extracts from the new
676 for (User
*U
: ExtVecOp
->users()) {
677 ExtractElementInst
*OldExt
= dyn_cast
<ExtractElementInst
>(U
);
678 if (!OldExt
|| OldExt
->getParent() != WideVec
->getParent())
680 auto *NewExt
= ExtractElementInst::Create(WideVec
, OldExt
->getOperand(1));
681 NewExt
->insertAfter(OldExt
);
682 IC
.replaceInstUsesWith(*OldExt
, NewExt
);
686 /// We are building a shuffle to create V, which is a sequence of insertelement,
687 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
688 /// not rely on the second vector source. Return a std::pair containing the
689 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
690 /// parameter as required.
692 /// Note: we intentionally don't try to fold earlier shuffles since they have
693 /// often been chosen carefully to be efficiently implementable on the target.
694 using ShuffleOps
= std::pair
<Value
*, Value
*>;
696 static ShuffleOps
collectShuffleElements(Value
*V
, SmallVectorImpl
<int> &Mask
,
698 InstCombinerImpl
&IC
) {
699 assert(V
->getType()->isVectorTy() && "Invalid shuffle!");
700 unsigned NumElts
= cast
<FixedVectorType
>(V
->getType())->getNumElements();
702 if (match(V
, m_Undef())) {
703 Mask
.assign(NumElts
, -1);
704 return std::make_pair(
705 PermittedRHS
? UndefValue::get(PermittedRHS
->getType()) : V
, nullptr);
708 if (isa
<ConstantAggregateZero
>(V
)) {
709 Mask
.assign(NumElts
, 0);
710 return std::make_pair(V
, nullptr);
713 if (InsertElementInst
*IEI
= dyn_cast
<InsertElementInst
>(V
)) {
714 // If this is an insert of an extract from some other vector, include it.
715 Value
*VecOp
= IEI
->getOperand(0);
716 Value
*ScalarOp
= IEI
->getOperand(1);
717 Value
*IdxOp
= IEI
->getOperand(2);
719 if (ExtractElementInst
*EI
= dyn_cast
<ExtractElementInst
>(ScalarOp
)) {
720 if (isa
<ConstantInt
>(EI
->getOperand(1)) && isa
<ConstantInt
>(IdxOp
)) {
721 unsigned ExtractedIdx
=
722 cast
<ConstantInt
>(EI
->getOperand(1))->getZExtValue();
723 unsigned InsertedIdx
= cast
<ConstantInt
>(IdxOp
)->getZExtValue();
725 // Either the extracted from or inserted into vector must be RHSVec,
726 // otherwise we'd end up with a shuffle of three inputs.
727 if (EI
->getOperand(0) == PermittedRHS
|| PermittedRHS
== nullptr) {
728 Value
*RHS
= EI
->getOperand(0);
729 ShuffleOps LR
= collectShuffleElements(VecOp
, Mask
, RHS
, IC
);
730 assert(LR
.second
== nullptr || LR
.second
== RHS
);
732 if (LR
.first
->getType() != RHS
->getType()) {
733 // Although we are giving up for now, see if we can create extracts
734 // that match the inserts for another round of combining.
735 replaceExtractElements(IEI
, EI
, IC
);
737 // We tried our best, but we can't find anything compatible with RHS
738 // further up the chain. Return a trivial shuffle.
739 for (unsigned i
= 0; i
< NumElts
; ++i
)
741 return std::make_pair(V
, nullptr);
744 unsigned NumLHSElts
=
745 cast
<FixedVectorType
>(RHS
->getType())->getNumElements();
746 Mask
[InsertedIdx
% NumElts
] = NumLHSElts
+ ExtractedIdx
;
747 return std::make_pair(LR
.first
, RHS
);
750 if (VecOp
== PermittedRHS
) {
751 // We've gone as far as we can: anything on the other side of the
752 // extractelement will already have been converted into a shuffle.
753 unsigned NumLHSElts
=
754 cast
<FixedVectorType
>(EI
->getOperand(0)->getType())
756 for (unsigned i
= 0; i
!= NumElts
; ++i
)
757 Mask
.push_back(i
== InsertedIdx
? ExtractedIdx
: NumLHSElts
+ i
);
758 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
761 // If this insertelement is a chain that comes from exactly these two
762 // vectors, return the vector and the effective shuffle.
763 if (EI
->getOperand(0)->getType() == PermittedRHS
->getType() &&
764 collectSingleShuffleElements(IEI
, EI
->getOperand(0), PermittedRHS
,
766 return std::make_pair(EI
->getOperand(0), PermittedRHS
);
771 // Otherwise, we can't do anything fancy. Return an identity vector.
772 for (unsigned i
= 0; i
!= NumElts
; ++i
)
774 return std::make_pair(V
, nullptr);
777 /// Look for chain of insertvalue's that fully define an aggregate, and trace
778 /// back the values inserted, see if they are all were extractvalue'd from
779 /// the same source aggregate from the exact same element indexes.
780 /// If they were, just reuse the source aggregate.
781 /// This potentially deals with PHI indirections.
782 Instruction
*InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse(
783 InsertValueInst
&OrigIVI
) {
784 Type
*AggTy
= OrigIVI
.getType();
786 switch (AggTy
->getTypeID()) {
787 case Type::StructTyID
:
788 NumAggElts
= AggTy
->getStructNumElements();
790 case Type::ArrayTyID
:
791 NumAggElts
= AggTy
->getArrayNumElements();
794 llvm_unreachable("Unhandled aggregate type?");
797 // Arbitrary aggregate size cut-off. Motivation for limit of 2 is to be able
798 // to handle clang C++ exception struct (which is hardcoded as {i8*, i32}),
799 // FIXME: any interesting patterns to be caught with larger limit?
800 assert(NumAggElts
> 0 && "Aggregate should have elements.");
804 static constexpr auto NotFound
= None
;
805 static constexpr auto FoundMismatch
= nullptr;
807 // Try to find a value of each element of an aggregate.
808 // FIXME: deal with more complex, not one-dimensional, aggregate types
809 SmallVector
<Optional
<Instruction
*>, 2> AggElts(NumAggElts
, NotFound
);
811 // Do we know values for each element of the aggregate?
812 auto KnowAllElts
= [&AggElts
]() {
813 return all_of(AggElts
,
814 [](Optional
<Instruction
*> Elt
) { return Elt
!= NotFound
; });
819 // Arbitrary `insertvalue` visitation depth limit. Let's be okay with
820 // every element being overwritten twice, which should never happen.
821 static const int DepthLimit
= 2 * NumAggElts
;
823 // Recurse up the chain of `insertvalue` aggregate operands until either we've
824 // reconstructed full initializer or can't visit any more `insertvalue`'s.
825 for (InsertValueInst
*CurrIVI
= &OrigIVI
;
826 Depth
< DepthLimit
&& CurrIVI
&& !KnowAllElts();
827 CurrIVI
= dyn_cast
<InsertValueInst
>(CurrIVI
->getAggregateOperand()),
829 auto *InsertedValue
=
830 dyn_cast
<Instruction
>(CurrIVI
->getInsertedValueOperand());
832 return nullptr; // Inserted value must be produced by an instruction.
834 ArrayRef
<unsigned int> Indices
= CurrIVI
->getIndices();
836 // Don't bother with more than single-level aggregates.
837 if (Indices
.size() != 1)
838 return nullptr; // FIXME: deal with more complex aggregates?
840 // Now, we may have already previously recorded the value for this element
841 // of an aggregate. If we did, that means the CurrIVI will later be
842 // overwritten with the already-recorded value. But if not, let's record it!
843 Optional
<Instruction
*> &Elt
= AggElts
[Indices
.front()];
844 Elt
= Elt
.getValueOr(InsertedValue
);
846 // FIXME: should we handle chain-terminating undef base operand?
849 // Was that sufficient to deduce the full initializer for the aggregate?
851 return nullptr; // Give up then.
853 // We now want to find the source[s] of the aggregate elements we've found.
854 // And with "source" we mean the original aggregate[s] from which
855 // the inserted elements were extracted. This may require PHI translation.
857 enum class AggregateDescription
{
858 /// When analyzing the value that was inserted into an aggregate, we did
859 /// not manage to find defining `extractvalue` instruction to analyze.
861 /// When analyzing the value that was inserted into an aggregate, we did
862 /// manage to find defining `extractvalue` instruction[s], and everything
863 /// matched perfectly - aggregate type, element insertion/extraction index.
865 /// When analyzing the value that was inserted into an aggregate, we did
866 /// manage to find defining `extractvalue` instruction, but there was
867 /// a mismatch: either the source type from which the extraction was didn't
868 /// match the aggregate type into which the insertion was,
869 /// or the extraction/insertion channels mismatched,
870 /// or different elements had different source aggregates.
873 auto Describe
= [](Optional
<Value
*> SourceAggregate
) {
874 if (SourceAggregate
== NotFound
)
875 return AggregateDescription::NotFound
;
876 if (*SourceAggregate
== FoundMismatch
)
877 return AggregateDescription::FoundMismatch
;
878 return AggregateDescription::Found
;
881 // Given the value \p Elt that was being inserted into element \p EltIdx of an
882 // aggregate AggTy, see if \p Elt was originally defined by an
883 // appropriate extractvalue (same element index, same aggregate type).
884 // If found, return the source aggregate from which the extraction was.
885 // If \p PredBB is provided, does PHI translation of an \p Elt first.
886 auto FindSourceAggregate
=
887 [&](Instruction
*Elt
, unsigned EltIdx
, Optional
<BasicBlock
*> UseBB
,
888 Optional
<BasicBlock
*> PredBB
) -> Optional
<Value
*> {
889 // For now(?), only deal with, at most, a single level of PHI indirection.
891 Elt
= dyn_cast
<Instruction
>(Elt
->DoPHITranslation(*UseBB
, *PredBB
));
892 // FIXME: deal with multiple levels of PHI indirection?
894 // Did we find an extraction?
895 auto *EVI
= dyn_cast_or_null
<ExtractValueInst
>(Elt
);
899 Value
*SourceAggregate
= EVI
->getAggregateOperand();
901 // Is the extraction from the same type into which the insertion was?
902 if (SourceAggregate
->getType() != AggTy
)
903 return FoundMismatch
;
904 // And the element index doesn't change between extraction and insertion?
905 if (EVI
->getNumIndices() != 1 || EltIdx
!= EVI
->getIndices().front())
906 return FoundMismatch
;
908 return SourceAggregate
; // AggregateDescription::Found
911 // Given elements AggElts that were constructing an aggregate OrigIVI,
912 // see if we can find appropriate source aggregate for each of the elements,
913 // and see it's the same aggregate for each element. If so, return it.
914 auto FindCommonSourceAggregate
=
915 [&](Optional
<BasicBlock
*> UseBB
,
916 Optional
<BasicBlock
*> PredBB
) -> Optional
<Value
*> {
917 Optional
<Value
*> SourceAggregate
;
919 for (auto I
: enumerate(AggElts
)) {
920 assert(Describe(SourceAggregate
) != AggregateDescription::FoundMismatch
&&
921 "We don't store nullptr in SourceAggregate!");
922 assert((Describe(SourceAggregate
) == AggregateDescription::Found
) ==
924 "SourceAggregate should be valid after the the first element,");
926 // For this element, is there a plausible source aggregate?
927 // FIXME: we could special-case undef element, IFF we know that in the
928 // source aggregate said element isn't poison.
929 Optional
<Value
*> SourceAggregateForElement
=
930 FindSourceAggregate(*I
.value(), I
.index(), UseBB
, PredBB
);
932 // Okay, what have we found? Does that correlate with previous findings?
934 // Regardless of whether or not we have previously found source
935 // aggregate for previous elements (if any), if we didn't find one for
936 // this element, passthrough whatever we have just found.
937 if (Describe(SourceAggregateForElement
) != AggregateDescription::Found
)
938 return SourceAggregateForElement
;
940 // Okay, we have found source aggregate for this element.
941 // Let's see what we already know from previous elements, if any.
942 switch (Describe(SourceAggregate
)) {
943 case AggregateDescription::NotFound
:
944 // This is apparently the first element that we have examined.
945 SourceAggregate
= SourceAggregateForElement
; // Record the aggregate!
946 continue; // Great, now look at next element.
947 case AggregateDescription::Found
:
948 // We have previously already successfully examined other elements.
949 // Is this the same source aggregate we've found for other elements?
950 if (*SourceAggregateForElement
!= *SourceAggregate
)
951 return FoundMismatch
;
952 continue; // Still the same aggregate, look at next element.
953 case AggregateDescription::FoundMismatch
:
954 llvm_unreachable("Can't happen. We would have early-exited then.");
958 assert(Describe(SourceAggregate
) == AggregateDescription::Found
&&
959 "Must be a valid Value");
960 return *SourceAggregate
;
963 Optional
<Value
*> SourceAggregate
;
965 // Can we find the source aggregate without looking at predecessors?
966 SourceAggregate
= FindCommonSourceAggregate(/*UseBB=*/None
, /*PredBB=*/None
);
967 if (Describe(SourceAggregate
) != AggregateDescription::NotFound
) {
968 if (Describe(SourceAggregate
) == AggregateDescription::FoundMismatch
)
969 return nullptr; // Conflicting source aggregates!
970 ++NumAggregateReconstructionsSimplified
;
971 return replaceInstUsesWith(OrigIVI
, *SourceAggregate
);
974 // Okay, apparently we need to look at predecessors.
976 // We should be smart about picking the "use" basic block, which will be the
977 // merge point for aggregate, where we'll insert the final PHI that will be
978 // used instead of OrigIVI. Basic block of OrigIVI is *not* the right choice.
979 // We should look in which blocks each of the AggElts is being defined,
980 // they all should be defined in the same basic block.
981 BasicBlock
*UseBB
= nullptr;
983 for (const Optional
<Instruction
*> &I
: AggElts
) {
984 BasicBlock
*BB
= (*I
)->getParent();
985 // If it's the first instruction we've encountered, record the basic block.
990 // Otherwise, this must be the same basic block we've seen previously.
995 // If *all* of the elements are basic-block-independent, meaning they are
996 // either function arguments, or constant expressions, then if we didn't
997 // handle them without predecessor-aware handling, we won't handle them now.
1001 // If we didn't manage to find source aggregate without looking at
1002 // predecessors, and there are no predecessors to look at, then we're done.
1003 if (pred_empty(UseBB
))
1006 // Arbitrary predecessor count limit.
1007 static const int PredCountLimit
= 64;
1009 // Cache the (non-uniqified!) list of predecessors in a vector,
1010 // checking the limit at the same time for efficiency.
1011 SmallVector
<BasicBlock
*, 4> Preds
; // May have duplicates!
1012 for (BasicBlock
*Pred
: predecessors(UseBB
)) {
1013 // Don't bother if there are too many predecessors.
1014 if (Preds
.size() >= PredCountLimit
) // FIXME: only count duplicates once?
1016 Preds
.emplace_back(Pred
);
1019 // For each predecessor, what is the source aggregate,
1020 // from which all the elements were originally extracted from?
1021 // Note that we want for the map to have stable iteration order!
1022 SmallDenseMap
<BasicBlock
*, Value
*, 4> SourceAggregates
;
1023 for (BasicBlock
*Pred
: Preds
) {
1024 std::pair
<decltype(SourceAggregates
)::iterator
, bool> IV
=
1025 SourceAggregates
.insert({Pred
, nullptr});
1026 // Did we already evaluate this predecessor?
1030 // Let's hope that when coming from predecessor Pred, all elements of the
1031 // aggregate produced by OrigIVI must have been originally extracted from
1032 // the same aggregate. Is that so? Can we find said original aggregate?
1033 SourceAggregate
= FindCommonSourceAggregate(UseBB
, Pred
);
1034 if (Describe(SourceAggregate
) != AggregateDescription::Found
)
1035 return nullptr; // Give up.
1036 IV
.first
->second
= *SourceAggregate
;
1039 // All good! Now we just need to thread the source aggregates here.
1040 // Note that we have to insert the new PHI here, ourselves, because we can't
1041 // rely on InstCombinerImpl::run() inserting it into the right basic block.
1042 // Note that the same block can be a predecessor more than once,
1043 // and we need to preserve that invariant for the PHI node.
1044 BuilderTy::InsertPointGuard
Guard(Builder
);
1045 Builder
.SetInsertPoint(UseBB
->getFirstNonPHI());
1047 Builder
.CreatePHI(AggTy
, Preds
.size(), OrigIVI
.getName() + ".merged");
1048 for (BasicBlock
*Pred
: Preds
)
1049 PHI
->addIncoming(SourceAggregates
[Pred
], Pred
);
1051 ++NumAggregateReconstructionsSimplified
;
1052 return replaceInstUsesWith(OrigIVI
, PHI
);
1055 /// Try to find redundant insertvalue instructions, like the following ones:
1056 /// %0 = insertvalue { i8, i32 } undef, i8 %x, 0
1057 /// %1 = insertvalue { i8, i32 } %0, i8 %y, 0
1058 /// Here the second instruction inserts values at the same indices, as the
1059 /// first one, making the first one redundant.
1060 /// It should be transformed to:
1061 /// %0 = insertvalue { i8, i32 } undef, i8 %y, 0
1062 Instruction
*InstCombinerImpl::visitInsertValueInst(InsertValueInst
&I
) {
1063 bool IsRedundant
= false;
1064 ArrayRef
<unsigned int> FirstIndices
= I
.getIndices();
1066 // If there is a chain of insertvalue instructions (each of them except the
1067 // last one has only one use and it's another insertvalue insn from this
1068 // chain), check if any of the 'children' uses the same indices as the first
1069 // instruction. In this case, the first one is redundant.
1072 while (V
->hasOneUse() && Depth
< 10) {
1073 User
*U
= V
->user_back();
1074 auto UserInsInst
= dyn_cast
<InsertValueInst
>(U
);
1075 if (!UserInsInst
|| U
->getOperand(0) != V
)
1077 if (UserInsInst
->getIndices() == FirstIndices
) {
1086 return replaceInstUsesWith(I
, I
.getOperand(0));
1088 if (Instruction
*NewI
= foldAggregateConstructionIntoAggregateReuse(I
))
1094 static bool isShuffleEquivalentToSelect(ShuffleVectorInst
&Shuf
) {
1095 // Can not analyze scalable type, the number of elements is not a compile-time
1097 if (isa
<ScalableVectorType
>(Shuf
.getOperand(0)->getType()))
1100 int MaskSize
= Shuf
.getShuffleMask().size();
1102 cast
<FixedVectorType
>(Shuf
.getOperand(0)->getType())->getNumElements();
1104 // A vector select does not change the size of the operands.
1105 if (MaskSize
!= VecSize
)
1108 // Each mask element must be undefined or choose a vector element from one of
1109 // the source operands without crossing vector lanes.
1110 for (int i
= 0; i
!= MaskSize
; ++i
) {
1111 int Elt
= Shuf
.getMaskValue(i
);
1112 if (Elt
!= -1 && Elt
!= i
&& Elt
!= i
+ VecSize
)
1119 /// Turn a chain of inserts that splats a value into an insert + shuffle:
1120 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
1121 /// shufflevector(insertelt(X, %k, 0), poison, zero)
1122 static Instruction
*foldInsSequenceIntoSplat(InsertElementInst
&InsElt
) {
1123 // We are interested in the last insert in a chain. So if this insert has a
1124 // single user and that user is an insert, bail.
1125 if (InsElt
.hasOneUse() && isa
<InsertElementInst
>(InsElt
.user_back()))
1128 VectorType
*VecTy
= InsElt
.getType();
1129 // Can not handle scalable type, the number of elements is not a compile-time
1131 if (isa
<ScalableVectorType
>(VecTy
))
1133 unsigned NumElements
= cast
<FixedVectorType
>(VecTy
)->getNumElements();
1135 // Do not try to do this for a one-element vector, since that's a nop,
1136 // and will cause an inf-loop.
1137 if (NumElements
== 1)
1140 Value
*SplatVal
= InsElt
.getOperand(1);
1141 InsertElementInst
*CurrIE
= &InsElt
;
1142 SmallBitVector
ElementPresent(NumElements
, false);
1143 InsertElementInst
*FirstIE
= nullptr;
1145 // Walk the chain backwards, keeping track of which indices we inserted into,
1146 // until we hit something that isn't an insert of the splatted value.
1148 auto *Idx
= dyn_cast
<ConstantInt
>(CurrIE
->getOperand(2));
1149 if (!Idx
|| CurrIE
->getOperand(1) != SplatVal
)
1152 auto *NextIE
= dyn_cast
<InsertElementInst
>(CurrIE
->getOperand(0));
1153 // Check none of the intermediate steps have any additional uses, except
1154 // for the root insertelement instruction, which can be re-used, if it
1155 // inserts at position 0.
1156 if (CurrIE
!= &InsElt
&&
1157 (!CurrIE
->hasOneUse() && (NextIE
!= nullptr || !Idx
->isZero())))
1160 ElementPresent
[Idx
->getZExtValue()] = true;
1165 // If this is just a single insertelement (not a sequence), we are done.
1166 if (FirstIE
== &InsElt
)
1169 // If we are not inserting into an undef vector, make sure we've seen an
1170 // insert into every element.
1171 // TODO: If the base vector is not undef, it might be better to create a splat
1172 // and then a select-shuffle (blend) with the base vector.
1173 if (!match(FirstIE
->getOperand(0), m_Undef()))
1174 if (!ElementPresent
.all())
1177 // Create the insert + shuffle.
1178 Type
*Int32Ty
= Type::getInt32Ty(InsElt
.getContext());
1179 PoisonValue
*PoisonVec
= PoisonValue::get(VecTy
);
1180 Constant
*Zero
= ConstantInt::get(Int32Ty
, 0);
1181 if (!cast
<ConstantInt
>(FirstIE
->getOperand(2))->isZero())
1182 FirstIE
= InsertElementInst::Create(PoisonVec
, SplatVal
, Zero
, "", &InsElt
);
1184 // Splat from element 0, but replace absent elements with undef in the mask.
1185 SmallVector
<int, 16> Mask(NumElements
, 0);
1186 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1187 if (!ElementPresent
[i
])
1190 return new ShuffleVectorInst(FirstIE
, PoisonVec
, Mask
);
1193 /// Try to fold an insert element into an existing splat shuffle by changing
1194 /// the shuffle's mask to include the index of this insert element.
1195 static Instruction
*foldInsEltIntoSplat(InsertElementInst
&InsElt
) {
1196 // Check if the vector operand of this insert is a canonical splat shuffle.
1197 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
1198 if (!Shuf
|| !Shuf
->isZeroEltSplat())
1201 // Bail out early if shuffle is scalable type. The number of elements in
1202 // shuffle mask is unknown at compile-time.
1203 if (isa
<ScalableVectorType
>(Shuf
->getType()))
1206 // Check for a constant insertion index.
1208 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
1211 // Check if the splat shuffle's input is the same as this insert's scalar op.
1212 Value
*X
= InsElt
.getOperand(1);
1213 Value
*Op0
= Shuf
->getOperand(0);
1214 if (!match(Op0
, m_InsertElt(m_Undef(), m_Specific(X
), m_ZeroInt())))
1217 // Replace the shuffle mask element at the index of this insert with a zero.
1219 // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
1220 // --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
1221 unsigned NumMaskElts
=
1222 cast
<FixedVectorType
>(Shuf
->getType())->getNumElements();
1223 SmallVector
<int, 16> NewMask(NumMaskElts
);
1224 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
1225 NewMask
[i
] = i
== IdxC
? 0 : Shuf
->getMaskValue(i
);
1227 return new ShuffleVectorInst(Op0
, UndefValue::get(Op0
->getType()), NewMask
);
1230 /// Try to fold an extract+insert element into an existing identity shuffle by
1231 /// changing the shuffle's mask to include the index of this insert element.
1232 static Instruction
*foldInsEltIntoIdentityShuffle(InsertElementInst
&InsElt
) {
1233 // Check if the vector operand of this insert is an identity shuffle.
1234 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0));
1235 if (!Shuf
|| !match(Shuf
->getOperand(1), m_Undef()) ||
1236 !(Shuf
->isIdentityWithExtract() || Shuf
->isIdentityWithPadding()))
1239 // Bail out early if shuffle is scalable type. The number of elements in
1240 // shuffle mask is unknown at compile-time.
1241 if (isa
<ScalableVectorType
>(Shuf
->getType()))
1244 // Check for a constant insertion index.
1246 if (!match(InsElt
.getOperand(2), m_ConstantInt(IdxC
)))
1249 // Check if this insert's scalar op is extracted from the identity shuffle's
1251 Value
*Scalar
= InsElt
.getOperand(1);
1252 Value
*X
= Shuf
->getOperand(0);
1253 if (!match(Scalar
, m_ExtractElt(m_Specific(X
), m_SpecificInt(IdxC
))))
1256 // Replace the shuffle mask element at the index of this extract+insert with
1257 // that same index value.
1259 // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
1260 unsigned NumMaskElts
=
1261 cast
<FixedVectorType
>(Shuf
->getType())->getNumElements();
1262 SmallVector
<int, 16> NewMask(NumMaskElts
);
1263 ArrayRef
<int> OldMask
= Shuf
->getShuffleMask();
1264 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
1266 // All mask elements besides the inserted element remain the same.
1267 NewMask
[i
] = OldMask
[i
];
1268 } else if (OldMask
[i
] == (int)IdxC
) {
1269 // If the mask element was already set, there's nothing to do
1270 // (demanded elements analysis may unset it later).
1273 assert(OldMask
[i
] == UndefMaskElem
&&
1274 "Unexpected shuffle mask element for identity shuffle");
1279 return new ShuffleVectorInst(X
, Shuf
->getOperand(1), NewMask
);
1282 /// If we have an insertelement instruction feeding into another insertelement
1283 /// and the 2nd is inserting a constant into the vector, canonicalize that
1284 /// constant insertion before the insertion of a variable:
1286 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
1287 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
1289 /// This has the potential of eliminating the 2nd insertelement instruction
1290 /// via constant folding of the scalar constant into a vector constant.
1291 static Instruction
*hoistInsEltConst(InsertElementInst
&InsElt2
,
1292 InstCombiner::BuilderTy
&Builder
) {
1293 auto *InsElt1
= dyn_cast
<InsertElementInst
>(InsElt2
.getOperand(0));
1294 if (!InsElt1
|| !InsElt1
->hasOneUse())
1299 ConstantInt
*IdxC1
, *IdxC2
;
1300 if (match(InsElt1
->getOperand(0), m_Value(X
)) &&
1301 match(InsElt1
->getOperand(1), m_Value(Y
)) && !isa
<Constant
>(Y
) &&
1302 match(InsElt1
->getOperand(2), m_ConstantInt(IdxC1
)) &&
1303 match(InsElt2
.getOperand(1), m_Constant(ScalarC
)) &&
1304 match(InsElt2
.getOperand(2), m_ConstantInt(IdxC2
)) && IdxC1
!= IdxC2
) {
1305 Value
*NewInsElt1
= Builder
.CreateInsertElement(X
, ScalarC
, IdxC2
);
1306 return InsertElementInst::Create(NewInsElt1
, Y
, IdxC1
);
1312 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
1313 /// --> shufflevector X, CVec', Mask'
1314 static Instruction
*foldConstantInsEltIntoShuffle(InsertElementInst
&InsElt
) {
1315 auto *Inst
= dyn_cast
<Instruction
>(InsElt
.getOperand(0));
1316 // Bail out if the parent has more than one use. In that case, we'd be
1317 // replacing the insertelt with a shuffle, and that's not a clear win.
1318 if (!Inst
|| !Inst
->hasOneUse())
1320 if (auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(InsElt
.getOperand(0))) {
1321 // The shuffle must have a constant vector operand. The insertelt must have
1322 // a constant scalar being inserted at a constant position in the vector.
1323 Constant
*ShufConstVec
, *InsEltScalar
;
1324 uint64_t InsEltIndex
;
1325 if (!match(Shuf
->getOperand(1), m_Constant(ShufConstVec
)) ||
1326 !match(InsElt
.getOperand(1), m_Constant(InsEltScalar
)) ||
1327 !match(InsElt
.getOperand(2), m_ConstantInt(InsEltIndex
)))
1330 // Adding an element to an arbitrary shuffle could be expensive, but a
1331 // shuffle that selects elements from vectors without crossing lanes is
1333 // If we're just adding a constant into that shuffle, it will still be
1335 if (!isShuffleEquivalentToSelect(*Shuf
))
1338 // From the above 'select' check, we know that the mask has the same number
1339 // of elements as the vector input operands. We also know that each constant
1340 // input element is used in its lane and can not be used more than once by
1341 // the shuffle. Therefore, replace the constant in the shuffle's constant
1342 // vector with the insertelt constant. Replace the constant in the shuffle's
1343 // mask vector with the insertelt index plus the length of the vector
1344 // (because the constant vector operand of a shuffle is always the 2nd
1346 ArrayRef
<int> Mask
= Shuf
->getShuffleMask();
1347 unsigned NumElts
= Mask
.size();
1348 SmallVector
<Constant
*, 16> NewShufElts(NumElts
);
1349 SmallVector
<int, 16> NewMaskElts(NumElts
);
1350 for (unsigned I
= 0; I
!= NumElts
; ++I
) {
1351 if (I
== InsEltIndex
) {
1352 NewShufElts
[I
] = InsEltScalar
;
1353 NewMaskElts
[I
] = InsEltIndex
+ NumElts
;
1355 // Copy over the existing values.
1356 NewShufElts
[I
] = ShufConstVec
->getAggregateElement(I
);
1357 NewMaskElts
[I
] = Mask
[I
];
1361 // Create new operands for a shuffle that includes the constant of the
1362 // original insertelt. The old shuffle will be dead now.
1363 return new ShuffleVectorInst(Shuf
->getOperand(0),
1364 ConstantVector::get(NewShufElts
), NewMaskElts
);
1365 } else if (auto *IEI
= dyn_cast
<InsertElementInst
>(Inst
)) {
1366 // Transform sequences of insertelements ops with constant data/indexes into
1367 // a single shuffle op.
1368 // Can not handle scalable type, the number of elements needed to create
1369 // shuffle mask is not a compile-time constant.
1370 if (isa
<ScalableVectorType
>(InsElt
.getType()))
1373 cast
<FixedVectorType
>(InsElt
.getType())->getNumElements();
1375 uint64_t InsertIdx
[2];
1377 if (!match(InsElt
.getOperand(2), m_ConstantInt(InsertIdx
[0])) ||
1378 !match(InsElt
.getOperand(1), m_Constant(Val
[0])) ||
1379 !match(IEI
->getOperand(2), m_ConstantInt(InsertIdx
[1])) ||
1380 !match(IEI
->getOperand(1), m_Constant(Val
[1])))
1382 SmallVector
<Constant
*, 16> Values(NumElts
);
1383 SmallVector
<int, 16> Mask(NumElts
);
1384 auto ValI
= std::begin(Val
);
1385 // Generate new constant vector and mask.
1386 // We have 2 values/masks from the insertelements instructions. Insert them
1387 // into new value/mask vectors.
1388 for (uint64_t I
: InsertIdx
) {
1391 Mask
[I
] = NumElts
+ I
;
1395 // Remaining values are filled with 'undef' values.
1396 for (unsigned I
= 0; I
< NumElts
; ++I
) {
1398 Values
[I
] = UndefValue::get(InsElt
.getType()->getElementType());
1402 // Create new operands for a shuffle that includes the constant of the
1403 // original insertelt.
1404 return new ShuffleVectorInst(IEI
->getOperand(0),
1405 ConstantVector::get(Values
), Mask
);
1410 Instruction
*InstCombinerImpl::visitInsertElementInst(InsertElementInst
&IE
) {
1411 Value
*VecOp
= IE
.getOperand(0);
1412 Value
*ScalarOp
= IE
.getOperand(1);
1413 Value
*IdxOp
= IE
.getOperand(2);
1415 if (auto *V
= SimplifyInsertElementInst(
1416 VecOp
, ScalarOp
, IdxOp
, SQ
.getWithInstruction(&IE
)))
1417 return replaceInstUsesWith(IE
, V
);
1419 // If the scalar is bitcast and inserted into undef, do the insert in the
1420 // source type followed by bitcast.
1421 // TODO: Generalize for insert into any constant, not just undef?
1423 if (match(VecOp
, m_Undef()) &&
1424 match(ScalarOp
, m_OneUse(m_BitCast(m_Value(ScalarSrc
)))) &&
1425 (ScalarSrc
->getType()->isIntegerTy() ||
1426 ScalarSrc
->getType()->isFloatingPointTy())) {
1427 // inselt undef, (bitcast ScalarSrc), IdxOp -->
1428 // bitcast (inselt undef, ScalarSrc, IdxOp)
1429 Type
*ScalarTy
= ScalarSrc
->getType();
1430 Type
*VecTy
= VectorType::get(ScalarTy
, IE
.getType()->getElementCount());
1431 UndefValue
*NewUndef
= UndefValue::get(VecTy
);
1432 Value
*NewInsElt
= Builder
.CreateInsertElement(NewUndef
, ScalarSrc
, IdxOp
);
1433 return new BitCastInst(NewInsElt
, IE
.getType());
1436 // If the vector and scalar are both bitcast from the same element type, do
1437 // the insert in that source type followed by bitcast.
1439 if (match(VecOp
, m_BitCast(m_Value(VecSrc
))) &&
1440 match(ScalarOp
, m_BitCast(m_Value(ScalarSrc
))) &&
1441 (VecOp
->hasOneUse() || ScalarOp
->hasOneUse()) &&
1442 VecSrc
->getType()->isVectorTy() && !ScalarSrc
->getType()->isVectorTy() &&
1443 cast
<VectorType
>(VecSrc
->getType())->getElementType() ==
1444 ScalarSrc
->getType()) {
1445 // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1446 // bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1447 Value
*NewInsElt
= Builder
.CreateInsertElement(VecSrc
, ScalarSrc
, IdxOp
);
1448 return new BitCastInst(NewInsElt
, IE
.getType());
1451 // If the inserted element was extracted from some other fixed-length vector
1452 // and both indexes are valid constants, try to turn this into a shuffle.
1453 // Can not handle scalable vector type, the number of elements needed to
1454 // create shuffle mask is not a compile-time constant.
1455 uint64_t InsertedIdx
, ExtractedIdx
;
1457 if (isa
<FixedVectorType
>(IE
.getType()) &&
1458 match(IdxOp
, m_ConstantInt(InsertedIdx
)) &&
1460 m_ExtractElt(m_Value(ExtVecOp
), m_ConstantInt(ExtractedIdx
))) &&
1461 isa
<FixedVectorType
>(ExtVecOp
->getType()) &&
1463 cast
<FixedVectorType
>(ExtVecOp
->getType())->getNumElements()) {
1464 // TODO: Looking at the user(s) to determine if this insert is a
1465 // fold-to-shuffle opportunity does not match the usual instcombine
1466 // constraints. We should decide if the transform is worthy based only
1467 // on this instruction and its operands, but that may not work currently.
1469 // Here, we are trying to avoid creating shuffles before reaching
1470 // the end of a chain of extract-insert pairs. This is complicated because
1471 // we do not generally form arbitrary shuffle masks in instcombine
1472 // (because those may codegen poorly), but collectShuffleElements() does
1475 // The rules for determining what is an acceptable target-independent
1476 // shuffle mask are fuzzy because they evolve based on the backend's
1477 // capabilities and real-world impact.
1478 auto isShuffleRootCandidate
= [](InsertElementInst
&Insert
) {
1479 if (!Insert
.hasOneUse())
1481 auto *InsertUser
= dyn_cast
<InsertElementInst
>(Insert
.user_back());
1487 // Try to form a shuffle from a chain of extract-insert ops.
1488 if (isShuffleRootCandidate(IE
)) {
1489 SmallVector
<int, 16> Mask
;
1490 ShuffleOps LR
= collectShuffleElements(&IE
, Mask
, nullptr, *this);
1492 // The proposed shuffle may be trivial, in which case we shouldn't
1493 // perform the combine.
1494 if (LR
.first
!= &IE
&& LR
.second
!= &IE
) {
1495 // We now have a shuffle of LHS, RHS, Mask.
1496 if (LR
.second
== nullptr)
1497 LR
.second
= UndefValue::get(LR
.first
->getType());
1498 return new ShuffleVectorInst(LR
.first
, LR
.second
, Mask
);
1503 if (auto VecTy
= dyn_cast
<FixedVectorType
>(VecOp
->getType())) {
1504 unsigned VWidth
= VecTy
->getNumElements();
1505 APInt
UndefElts(VWidth
, 0);
1506 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
1507 if (Value
*V
= SimplifyDemandedVectorElts(&IE
, AllOnesEltMask
, UndefElts
)) {
1509 return replaceInstUsesWith(IE
, V
);
1514 if (Instruction
*Shuf
= foldConstantInsEltIntoShuffle(IE
))
1517 if (Instruction
*NewInsElt
= hoistInsEltConst(IE
, Builder
))
1520 if (Instruction
*Broadcast
= foldInsSequenceIntoSplat(IE
))
1523 if (Instruction
*Splat
= foldInsEltIntoSplat(IE
))
1526 if (Instruction
*IdentityShuf
= foldInsEltIntoIdentityShuffle(IE
))
1527 return IdentityShuf
;
1532 /// Return true if we can evaluate the specified expression tree if the vector
1533 /// elements were shuffled in a different order.
1534 static bool canEvaluateShuffled(Value
*V
, ArrayRef
<int> Mask
,
1535 unsigned Depth
= 5) {
1536 // We can always reorder the elements of a constant.
1537 if (isa
<Constant
>(V
))
1540 // We won't reorder vector arguments. No IPO here.
1541 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1542 if (!I
) return false;
1544 // Two users may expect different orders of the elements. Don't try it.
1545 if (!I
->hasOneUse())
1548 if (Depth
== 0) return false;
1550 switch (I
->getOpcode()) {
1551 case Instruction::UDiv
:
1552 case Instruction::SDiv
:
1553 case Instruction::URem
:
1554 case Instruction::SRem
:
1555 // Propagating an undefined shuffle mask element to integer div/rem is not
1556 // allowed because those opcodes can create immediate undefined behavior
1557 // from an undefined element in an operand.
1558 if (llvm::is_contained(Mask
, -1))
1561 case Instruction::Add
:
1562 case Instruction::FAdd
:
1563 case Instruction::Sub
:
1564 case Instruction::FSub
:
1565 case Instruction::Mul
:
1566 case Instruction::FMul
:
1567 case Instruction::FDiv
:
1568 case Instruction::FRem
:
1569 case Instruction::Shl
:
1570 case Instruction::LShr
:
1571 case Instruction::AShr
:
1572 case Instruction::And
:
1573 case Instruction::Or
:
1574 case Instruction::Xor
:
1575 case Instruction::ICmp
:
1576 case Instruction::FCmp
:
1577 case Instruction::Trunc
:
1578 case Instruction::ZExt
:
1579 case Instruction::SExt
:
1580 case Instruction::FPToUI
:
1581 case Instruction::FPToSI
:
1582 case Instruction::UIToFP
:
1583 case Instruction::SIToFP
:
1584 case Instruction::FPTrunc
:
1585 case Instruction::FPExt
:
1586 case Instruction::GetElementPtr
: {
1587 // Bail out if we would create longer vector ops. We could allow creating
1588 // longer vector ops, but that may result in more expensive codegen.
1589 Type
*ITy
= I
->getType();
1590 if (ITy
->isVectorTy() &&
1591 Mask
.size() > cast
<FixedVectorType
>(ITy
)->getNumElements())
1593 for (Value
*Operand
: I
->operands()) {
1594 if (!canEvaluateShuffled(Operand
, Mask
, Depth
- 1))
1599 case Instruction::InsertElement
: {
1600 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
->getOperand(2));
1601 if (!CI
) return false;
1602 int ElementNumber
= CI
->getLimitedValue();
1604 // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1605 // can't put an element into multiple indices.
1606 bool SeenOnce
= false;
1607 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
1608 if (Mask
[i
] == ElementNumber
) {
1614 return canEvaluateShuffled(I
->getOperand(0), Mask
, Depth
- 1);
1620 /// Rebuild a new instruction just like 'I' but with the new operands given.
1621 /// In the event of type mismatch, the type of the operands is correct.
1622 static Value
*buildNew(Instruction
*I
, ArrayRef
<Value
*> NewOps
) {
1623 // We don't want to use the IRBuilder here because we want the replacement
1624 // instructions to appear next to 'I', not the builder's insertion point.
1625 switch (I
->getOpcode()) {
1626 case Instruction::Add
:
1627 case Instruction::FAdd
:
1628 case Instruction::Sub
:
1629 case Instruction::FSub
:
1630 case Instruction::Mul
:
1631 case Instruction::FMul
:
1632 case Instruction::UDiv
:
1633 case Instruction::SDiv
:
1634 case Instruction::FDiv
:
1635 case Instruction::URem
:
1636 case Instruction::SRem
:
1637 case Instruction::FRem
:
1638 case Instruction::Shl
:
1639 case Instruction::LShr
:
1640 case Instruction::AShr
:
1641 case Instruction::And
:
1642 case Instruction::Or
:
1643 case Instruction::Xor
: {
1644 BinaryOperator
*BO
= cast
<BinaryOperator
>(I
);
1645 assert(NewOps
.size() == 2 && "binary operator with #ops != 2");
1646 BinaryOperator
*New
=
1647 BinaryOperator::Create(cast
<BinaryOperator
>(I
)->getOpcode(),
1648 NewOps
[0], NewOps
[1], "", BO
);
1649 if (isa
<OverflowingBinaryOperator
>(BO
)) {
1650 New
->setHasNoUnsignedWrap(BO
->hasNoUnsignedWrap());
1651 New
->setHasNoSignedWrap(BO
->hasNoSignedWrap());
1653 if (isa
<PossiblyExactOperator
>(BO
)) {
1654 New
->setIsExact(BO
->isExact());
1656 if (isa
<FPMathOperator
>(BO
))
1657 New
->copyFastMathFlags(I
);
1660 case Instruction::ICmp
:
1661 assert(NewOps
.size() == 2 && "icmp with #ops != 2");
1662 return new ICmpInst(I
, cast
<ICmpInst
>(I
)->getPredicate(),
1663 NewOps
[0], NewOps
[1]);
1664 case Instruction::FCmp
:
1665 assert(NewOps
.size() == 2 && "fcmp with #ops != 2");
1666 return new FCmpInst(I
, cast
<FCmpInst
>(I
)->getPredicate(),
1667 NewOps
[0], NewOps
[1]);
1668 case Instruction::Trunc
:
1669 case Instruction::ZExt
:
1670 case Instruction::SExt
:
1671 case Instruction::FPToUI
:
1672 case Instruction::FPToSI
:
1673 case Instruction::UIToFP
:
1674 case Instruction::SIToFP
:
1675 case Instruction::FPTrunc
:
1676 case Instruction::FPExt
: {
1677 // It's possible that the mask has a different number of elements from
1678 // the original cast. We recompute the destination type to match the mask.
1679 Type
*DestTy
= VectorType::get(
1680 I
->getType()->getScalarType(),
1681 cast
<VectorType
>(NewOps
[0]->getType())->getElementCount());
1682 assert(NewOps
.size() == 1 && "cast with #ops != 1");
1683 return CastInst::Create(cast
<CastInst
>(I
)->getOpcode(), NewOps
[0], DestTy
,
1686 case Instruction::GetElementPtr
: {
1687 Value
*Ptr
= NewOps
[0];
1688 ArrayRef
<Value
*> Idx
= NewOps
.slice(1);
1689 GetElementPtrInst
*GEP
= GetElementPtrInst::Create(
1690 cast
<GetElementPtrInst
>(I
)->getSourceElementType(), Ptr
, Idx
, "", I
);
1691 GEP
->setIsInBounds(cast
<GetElementPtrInst
>(I
)->isInBounds());
1695 llvm_unreachable("failed to rebuild vector instructions");
1698 static Value
*evaluateInDifferentElementOrder(Value
*V
, ArrayRef
<int> Mask
) {
1699 // Mask.size() does not need to be equal to the number of vector elements.
1701 assert(V
->getType()->isVectorTy() && "can't reorder non-vector elements");
1702 Type
*EltTy
= V
->getType()->getScalarType();
1703 Type
*I32Ty
= IntegerType::getInt32Ty(V
->getContext());
1704 if (match(V
, m_Undef()))
1705 return UndefValue::get(FixedVectorType::get(EltTy
, Mask
.size()));
1707 if (isa
<ConstantAggregateZero
>(V
))
1708 return ConstantAggregateZero::get(FixedVectorType::get(EltTy
, Mask
.size()));
1710 if (Constant
*C
= dyn_cast
<Constant
>(V
))
1711 return ConstantExpr::getShuffleVector(C
, PoisonValue::get(C
->getType()),
1714 Instruction
*I
= cast
<Instruction
>(V
);
1715 switch (I
->getOpcode()) {
1716 case Instruction::Add
:
1717 case Instruction::FAdd
:
1718 case Instruction::Sub
:
1719 case Instruction::FSub
:
1720 case Instruction::Mul
:
1721 case Instruction::FMul
:
1722 case Instruction::UDiv
:
1723 case Instruction::SDiv
:
1724 case Instruction::FDiv
:
1725 case Instruction::URem
:
1726 case Instruction::SRem
:
1727 case Instruction::FRem
:
1728 case Instruction::Shl
:
1729 case Instruction::LShr
:
1730 case Instruction::AShr
:
1731 case Instruction::And
:
1732 case Instruction::Or
:
1733 case Instruction::Xor
:
1734 case Instruction::ICmp
:
1735 case Instruction::FCmp
:
1736 case Instruction::Trunc
:
1737 case Instruction::ZExt
:
1738 case Instruction::SExt
:
1739 case Instruction::FPToUI
:
1740 case Instruction::FPToSI
:
1741 case Instruction::UIToFP
:
1742 case Instruction::SIToFP
:
1743 case Instruction::FPTrunc
:
1744 case Instruction::FPExt
:
1745 case Instruction::Select
:
1746 case Instruction::GetElementPtr
: {
1747 SmallVector
<Value
*, 8> NewOps
;
1750 cast
<FixedVectorType
>(I
->getType())->getNumElements());
1751 for (int i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
1753 // Recursively call evaluateInDifferentElementOrder on vector arguments
1754 // as well. E.g. GetElementPtr may have scalar operands even if the
1755 // return value is a vector, so we need to examine the operand type.
1756 if (I
->getOperand(i
)->getType()->isVectorTy())
1757 V
= evaluateInDifferentElementOrder(I
->getOperand(i
), Mask
);
1759 V
= I
->getOperand(i
);
1760 NewOps
.push_back(V
);
1761 NeedsRebuild
|= (V
!= I
->getOperand(i
));
1764 return buildNew(I
, NewOps
);
1768 case Instruction::InsertElement
: {
1769 int Element
= cast
<ConstantInt
>(I
->getOperand(2))->getLimitedValue();
1771 // The insertelement was inserting at Element. Figure out which element
1772 // that becomes after shuffling. The answer is guaranteed to be unique
1773 // by CanEvaluateShuffled.
1776 for (int e
= Mask
.size(); Index
!= e
; ++Index
) {
1777 if (Mask
[Index
] == Element
) {
1783 // If element is not in Mask, no need to handle the operand 1 (element to
1784 // be inserted). Just evaluate values in operand 0 according to Mask.
1786 return evaluateInDifferentElementOrder(I
->getOperand(0), Mask
);
1788 Value
*V
= evaluateInDifferentElementOrder(I
->getOperand(0), Mask
);
1789 return InsertElementInst::Create(V
, I
->getOperand(1),
1790 ConstantInt::get(I32Ty
, Index
), "", I
);
1793 llvm_unreachable("failed to reorder elements of vector instruction!");
1796 // Returns true if the shuffle is extracting a contiguous range of values from
1797 // LHS, for example:
1798 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1799 // Input: |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1800 // Shuffles to: |EE|FF|GG|HH|
1802 static bool isShuffleExtractingFromLHS(ShuffleVectorInst
&SVI
,
1803 ArrayRef
<int> Mask
) {
1805 cast
<FixedVectorType
>(SVI
.getOperand(0)->getType())->getNumElements();
1806 unsigned MaskElems
= Mask
.size();
1807 unsigned BegIdx
= Mask
.front();
1808 unsigned EndIdx
= Mask
.back();
1809 if (BegIdx
> EndIdx
|| EndIdx
>= LHSElems
|| EndIdx
- BegIdx
!= MaskElems
- 1)
1811 for (unsigned I
= 0; I
!= MaskElems
; ++I
)
1812 if (static_cast<unsigned>(Mask
[I
]) != BegIdx
+ I
)
1817 /// These are the ingredients in an alternate form binary operator as described
1820 BinaryOperator::BinaryOps Opcode
;
1823 BinopElts(BinaryOperator::BinaryOps Opc
= (BinaryOperator::BinaryOps
)0,
1824 Value
*V0
= nullptr, Value
*V1
= nullptr) :
1825 Opcode(Opc
), Op0(V0
), Op1(V1
) {}
1826 operator bool() const { return Opcode
!= 0; }
1829 /// Binops may be transformed into binops with different opcodes and operands.
1830 /// Reverse the usual canonicalization to enable folds with the non-canonical
1831 /// form of the binop. If a transform is possible, return the elements of the
1832 /// new binop. If not, return invalid elements.
1833 static BinopElts
getAlternateBinop(BinaryOperator
*BO
, const DataLayout
&DL
) {
1834 Value
*BO0
= BO
->getOperand(0), *BO1
= BO
->getOperand(1);
1835 Type
*Ty
= BO
->getType();
1836 switch (BO
->getOpcode()) {
1837 case Instruction::Shl
: {
1838 // shl X, C --> mul X, (1 << C)
1840 if (match(BO1
, m_Constant(C
))) {
1841 Constant
*ShlOne
= ConstantExpr::getShl(ConstantInt::get(Ty
, 1), C
);
1842 return { Instruction::Mul
, BO0
, ShlOne
};
1846 case Instruction::Or
: {
1847 // or X, C --> add X, C (when X and C have no common bits set)
1849 if (match(BO1
, m_APInt(C
)) && MaskedValueIsZero(BO0
, *C
, DL
))
1850 return { Instruction::Add
, BO0
, BO1
};
1859 static Instruction
*foldSelectShuffleWith1Binop(ShuffleVectorInst
&Shuf
) {
1860 assert(Shuf
.isSelect() && "Must have select-equivalent shuffle");
1862 // Are we shuffling together some value and that same value after it has been
1863 // modified by a binop with a constant?
1864 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1867 if (match(Op0
, m_BinOp(m_Specific(Op1
), m_Constant(C
))))
1869 else if (match(Op1
, m_BinOp(m_Specific(Op0
), m_Constant(C
))))
1874 // The identity constant for a binop leaves a variable operand unchanged. For
1875 // a vector, this is a splat of something like 0, -1, or 1.
1876 // If there's no identity constant for this binop, we're done.
1877 auto *BO
= cast
<BinaryOperator
>(Op0IsBinop
? Op0
: Op1
);
1878 BinaryOperator::BinaryOps BOpcode
= BO
->getOpcode();
1879 Constant
*IdC
= ConstantExpr::getBinOpIdentity(BOpcode
, Shuf
.getType(), true);
1883 // Shuffle identity constants into the lanes that return the original value.
1884 // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1885 // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1886 // The existing binop constant vector remains in the same operand position.
1887 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
1888 Constant
*NewC
= Op0IsBinop
? ConstantExpr::getShuffleVector(C
, IdC
, Mask
) :
1889 ConstantExpr::getShuffleVector(IdC
, C
, Mask
);
1891 bool MightCreatePoisonOrUB
=
1892 is_contained(Mask
, UndefMaskElem
) &&
1893 (Instruction::isIntDivRem(BOpcode
) || Instruction::isShift(BOpcode
));
1894 if (MightCreatePoisonOrUB
)
1895 NewC
= InstCombiner::getSafeVectorConstantForBinop(BOpcode
, NewC
, true);
1897 // shuf (bop X, C), X, M --> bop X, C'
1898 // shuf X, (bop X, C), M --> bop X, C'
1899 Value
*X
= Op0IsBinop
? Op1
: Op0
;
1900 Instruction
*NewBO
= BinaryOperator::Create(BOpcode
, X
, NewC
);
1901 NewBO
->copyIRFlags(BO
);
1903 // An undef shuffle mask element may propagate as an undef constant element in
1904 // the new binop. That would produce poison where the original code might not.
1905 // If we already made a safe constant, then there's no danger.
1906 if (is_contained(Mask
, UndefMaskElem
) && !MightCreatePoisonOrUB
)
1907 NewBO
->dropPoisonGeneratingFlags();
1911 /// If we have an insert of a scalar to a non-zero element of an undefined
1912 /// vector and then shuffle that value, that's the same as inserting to the zero
1913 /// element and shuffling. Splatting from the zero element is recognized as the
1914 /// canonical form of splat.
1915 static Instruction
*canonicalizeInsertSplat(ShuffleVectorInst
&Shuf
,
1916 InstCombiner::BuilderTy
&Builder
) {
1917 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
1918 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
1922 // Match a shuffle that is a splat to a non-zero element.
1923 if (!match(Op0
, m_OneUse(m_InsertElt(m_Undef(), m_Value(X
),
1924 m_ConstantInt(IndexC
)))) ||
1925 !match(Op1
, m_Undef()) || match(Mask
, m_ZeroMask()) || IndexC
== 0)
1928 // Insert into element 0 of an undef vector.
1929 UndefValue
*UndefVec
= UndefValue::get(Shuf
.getType());
1930 Constant
*Zero
= Builder
.getInt32(0);
1931 Value
*NewIns
= Builder
.CreateInsertElement(UndefVec
, X
, Zero
);
1933 // Splat from element 0. Any mask element that is undefined remains undefined.
1935 // shuf (inselt undef, X, 2), undef, <2,2,undef>
1936 // --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1937 unsigned NumMaskElts
=
1938 cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
1939 SmallVector
<int, 16> NewMask(NumMaskElts
, 0);
1940 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
)
1941 if (Mask
[i
] == UndefMaskElem
)
1942 NewMask
[i
] = Mask
[i
];
1944 return new ShuffleVectorInst(NewIns
, UndefVec
, NewMask
);
1947 /// Try to fold shuffles that are the equivalent of a vector select.
1948 static Instruction
*foldSelectShuffle(ShuffleVectorInst
&Shuf
,
1949 InstCombiner::BuilderTy
&Builder
,
1950 const DataLayout
&DL
) {
1951 if (!Shuf
.isSelect())
1954 // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
1955 // Commuting undef to operand 0 conflicts with another canonicalization.
1956 unsigned NumElts
= cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
1957 if (!match(Shuf
.getOperand(1), m_Undef()) &&
1958 Shuf
.getMaskValue(0) >= (int)NumElts
) {
1959 // TODO: Can we assert that both operands of a shuffle-select are not undef
1960 // (otherwise, it would have been folded by instsimplify?
1965 if (Instruction
*I
= foldSelectShuffleWith1Binop(Shuf
))
1968 BinaryOperator
*B0
, *B1
;
1969 if (!match(Shuf
.getOperand(0), m_BinOp(B0
)) ||
1970 !match(Shuf
.getOperand(1), m_BinOp(B1
)))
1975 bool ConstantsAreOp1
;
1976 if (match(B0
, m_BinOp(m_Value(X
), m_Constant(C0
))) &&
1977 match(B1
, m_BinOp(m_Value(Y
), m_Constant(C1
))))
1978 ConstantsAreOp1
= true;
1979 else if (match(B0
, m_BinOp(m_Constant(C0
), m_Value(X
))) &&
1980 match(B1
, m_BinOp(m_Constant(C1
), m_Value(Y
))))
1981 ConstantsAreOp1
= false;
1985 // We need matching binops to fold the lanes together.
1986 BinaryOperator::BinaryOps Opc0
= B0
->getOpcode();
1987 BinaryOperator::BinaryOps Opc1
= B1
->getOpcode();
1988 bool DropNSW
= false;
1989 if (ConstantsAreOp1
&& Opc0
!= Opc1
) {
1990 // TODO: We drop "nsw" if shift is converted into multiply because it may
1991 // not be correct when the shift amount is BitWidth - 1. We could examine
1992 // each vector element to determine if it is safe to keep that flag.
1993 if (Opc0
== Instruction::Shl
|| Opc1
== Instruction::Shl
)
1995 if (BinopElts AltB0
= getAlternateBinop(B0
, DL
)) {
1996 assert(isa
<Constant
>(AltB0
.Op1
) && "Expecting constant with alt binop");
1997 Opc0
= AltB0
.Opcode
;
1998 C0
= cast
<Constant
>(AltB0
.Op1
);
1999 } else if (BinopElts AltB1
= getAlternateBinop(B1
, DL
)) {
2000 assert(isa
<Constant
>(AltB1
.Op1
) && "Expecting constant with alt binop");
2001 Opc1
= AltB1
.Opcode
;
2002 C1
= cast
<Constant
>(AltB1
.Op1
);
2009 // The opcodes must be the same. Use a new name to make that clear.
2010 BinaryOperator::BinaryOps BOpc
= Opc0
;
2012 // Select the constant elements needed for the single binop.
2013 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2014 Constant
*NewC
= ConstantExpr::getShuffleVector(C0
, C1
, Mask
);
2016 // We are moving a binop after a shuffle. When a shuffle has an undefined
2017 // mask element, the result is undefined, but it is not poison or undefined
2018 // behavior. That is not necessarily true for div/rem/shift.
2019 bool MightCreatePoisonOrUB
=
2020 is_contained(Mask
, UndefMaskElem
) &&
2021 (Instruction::isIntDivRem(BOpc
) || Instruction::isShift(BOpc
));
2022 if (MightCreatePoisonOrUB
)
2023 NewC
= InstCombiner::getSafeVectorConstantForBinop(BOpc
, NewC
,
2028 // Remove a binop and the shuffle by rearranging the constant:
2029 // shuffle (op V, C0), (op V, C1), M --> op V, C'
2030 // shuffle (op C0, V), (op C1, V), M --> op C', V
2033 // If there are 2 different variable operands, we must create a new shuffle
2034 // (select) first, so check uses to ensure that we don't end up with more
2035 // instructions than we started with.
2036 if (!B0
->hasOneUse() && !B1
->hasOneUse())
2039 // If we use the original shuffle mask and op1 is *variable*, we would be
2040 // putting an undef into operand 1 of div/rem/shift. This is either UB or
2041 // poison. We do not have to guard against UB when *constants* are op1
2042 // because safe constants guarantee that we do not overflow sdiv/srem (and
2043 // there's no danger for other opcodes).
2044 // TODO: To allow this case, create a new shuffle mask with no undefs.
2045 if (MightCreatePoisonOrUB
&& !ConstantsAreOp1
)
2048 // Note: In general, we do not create new shuffles in InstCombine because we
2049 // do not know if a target can lower an arbitrary shuffle optimally. In this
2050 // case, the shuffle uses the existing mask, so there is no additional risk.
2052 // Select the variable vectors first, then perform the binop:
2053 // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
2054 // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
2055 V
= Builder
.CreateShuffleVector(X
, Y
, Mask
);
2058 Instruction
*NewBO
= ConstantsAreOp1
? BinaryOperator::Create(BOpc
, V
, NewC
) :
2059 BinaryOperator::Create(BOpc
, NewC
, V
);
2061 // Flags are intersected from the 2 source binops. But there are 2 exceptions:
2062 // 1. If we changed an opcode, poison conditions might have changed.
2063 // 2. If the shuffle had undef mask elements, the new binop might have undefs
2064 // where the original code did not. But if we already made a safe constant,
2065 // then there's no danger.
2066 NewBO
->copyIRFlags(B0
);
2067 NewBO
->andIRFlags(B1
);
2069 NewBO
->setHasNoSignedWrap(false);
2070 if (is_contained(Mask
, UndefMaskElem
) && !MightCreatePoisonOrUB
)
2071 NewBO
->dropPoisonGeneratingFlags();
2075 /// Convert a narrowing shuffle of a bitcasted vector into a vector truncate.
2076 /// Example (little endian):
2077 /// shuf (bitcast <4 x i16> X to <8 x i8>), <0, 2, 4, 6> --> trunc X to <4 x i8>
2078 static Instruction
*foldTruncShuffle(ShuffleVectorInst
&Shuf
,
2080 // This must be a bitcasted shuffle of 1 vector integer operand.
2081 Type
*DestType
= Shuf
.getType();
2083 if (!match(Shuf
.getOperand(0), m_BitCast(m_Value(X
))) ||
2084 !match(Shuf
.getOperand(1), m_Undef()) || !DestType
->isIntOrIntVectorTy())
2087 // The source type must have the same number of elements as the shuffle,
2088 // and the source element type must be larger than the shuffle element type.
2089 Type
*SrcType
= X
->getType();
2090 if (!SrcType
->isVectorTy() || !SrcType
->isIntOrIntVectorTy() ||
2091 cast
<FixedVectorType
>(SrcType
)->getNumElements() !=
2092 cast
<FixedVectorType
>(DestType
)->getNumElements() ||
2093 SrcType
->getScalarSizeInBits() % DestType
->getScalarSizeInBits() != 0)
2096 assert(Shuf
.changesLength() && !Shuf
.increasesLength() &&
2097 "Expected a shuffle that decreases length");
2099 // Last, check that the mask chooses the correct low bits for each narrow
2100 // element in the result.
2101 uint64_t TruncRatio
=
2102 SrcType
->getScalarSizeInBits() / DestType
->getScalarSizeInBits();
2103 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2104 for (unsigned i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
2105 if (Mask
[i
] == UndefMaskElem
)
2107 uint64_t LSBIndex
= IsBigEndian
? (i
+ 1) * TruncRatio
- 1 : i
* TruncRatio
;
2108 assert(LSBIndex
<= INT32_MAX
&& "Overflowed 32-bits");
2109 if (Mask
[i
] != (int)LSBIndex
)
2113 return new TruncInst(X
, DestType
);
2116 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
2117 /// narrowing (concatenating with undef and extracting back to the original
2118 /// length). This allows replacing the wide select with a narrow select.
2119 static Instruction
*narrowVectorSelect(ShuffleVectorInst
&Shuf
,
2120 InstCombiner::BuilderTy
&Builder
) {
2121 // This must be a narrowing identity shuffle. It extracts the 1st N elements
2122 // of the 1st vector operand of a shuffle.
2123 if (!match(Shuf
.getOperand(1), m_Undef()) || !Shuf
.isIdentityWithExtract())
2126 // The vector being shuffled must be a vector select that we can eliminate.
2127 // TODO: The one-use requirement could be eased if X and/or Y are constants.
2128 Value
*Cond
, *X
, *Y
;
2129 if (!match(Shuf
.getOperand(0),
2130 m_OneUse(m_Select(m_Value(Cond
), m_Value(X
), m_Value(Y
)))))
2133 // We need a narrow condition value. It must be extended with undef elements
2134 // and have the same number of elements as this shuffle.
2135 unsigned NarrowNumElts
=
2136 cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
2138 if (!match(Cond
, m_OneUse(m_Shuffle(m_Value(NarrowCond
), m_Undef()))) ||
2139 cast
<FixedVectorType
>(NarrowCond
->getType())->getNumElements() !=
2141 !cast
<ShuffleVectorInst
>(Cond
)->isIdentityWithPadding())
2144 // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
2145 // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
2146 Value
*NarrowX
= Builder
.CreateShuffleVector(X
, Shuf
.getShuffleMask());
2147 Value
*NarrowY
= Builder
.CreateShuffleVector(Y
, Shuf
.getShuffleMask());
2148 return SelectInst::Create(NarrowCond
, NarrowX
, NarrowY
);
2151 /// Try to fold an extract subvector operation.
2152 static Instruction
*foldIdentityExtractShuffle(ShuffleVectorInst
&Shuf
) {
2153 Value
*Op0
= Shuf
.getOperand(0), *Op1
= Shuf
.getOperand(1);
2154 if (!Shuf
.isIdentityWithExtract() || !match(Op1
, m_Undef()))
2157 // Check if we are extracting all bits of an inserted scalar:
2158 // extract-subvec (bitcast (inselt ?, X, 0) --> bitcast X to subvec type
2160 if (match(Op0
, m_BitCast(m_InsertElt(m_Value(), m_Value(X
), m_Zero()))) &&
2161 X
->getType()->getPrimitiveSizeInBits() ==
2162 Shuf
.getType()->getPrimitiveSizeInBits())
2163 return new BitCastInst(X
, Shuf
.getType());
2165 // Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
2168 if (!match(Op0
, m_Shuffle(m_Value(X
), m_Value(Y
), m_Mask(Mask
))))
2171 // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
2172 // then combining may result in worse codegen.
2173 if (!Op0
->hasOneUse())
2176 // We are extracting a subvector from a shuffle. Remove excess elements from
2177 // the 1st shuffle mask to eliminate the extract.
2179 // This transform is conservatively limited to identity extracts because we do
2180 // not allow arbitrary shuffle mask creation as a target-independent transform
2181 // (because we can't guarantee that will lower efficiently).
2183 // If the extracting shuffle has an undef mask element, it transfers to the
2184 // new shuffle mask. Otherwise, copy the original mask element. Example:
2185 // shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
2186 // shuf X, Y, <C0, undef, C2, undef>
2187 unsigned NumElts
= cast
<FixedVectorType
>(Shuf
.getType())->getNumElements();
2188 SmallVector
<int, 16> NewMask(NumElts
);
2189 assert(NumElts
< Mask
.size() &&
2190 "Identity with extract must have less elements than its inputs");
2192 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2193 int ExtractMaskElt
= Shuf
.getMaskValue(i
);
2194 int MaskElt
= Mask
[i
];
2195 NewMask
[i
] = ExtractMaskElt
== UndefMaskElem
? ExtractMaskElt
: MaskElt
;
2197 return new ShuffleVectorInst(X
, Y
, NewMask
);
2200 /// Try to replace a shuffle with an insertelement or try to replace a shuffle
2201 /// operand with the operand of an insertelement.
2202 static Instruction
*foldShuffleWithInsert(ShuffleVectorInst
&Shuf
,
2203 InstCombinerImpl
&IC
) {
2204 Value
*V0
= Shuf
.getOperand(0), *V1
= Shuf
.getOperand(1);
2205 SmallVector
<int, 16> Mask
;
2206 Shuf
.getShuffleMask(Mask
);
2208 // The shuffle must not change vector sizes.
2209 // TODO: This restriction could be removed if the insert has only one use
2210 // (because the transform would require a new length-changing shuffle).
2211 int NumElts
= Mask
.size();
2212 if (NumElts
!= (int)(cast
<FixedVectorType
>(V0
->getType())->getNumElements()))
2215 // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
2216 // not be able to handle it there if the insertelement has >1 use.
2217 // If the shuffle has an insertelement operand but does not choose the
2218 // inserted scalar element from that value, then we can replace that shuffle
2219 // operand with the source vector of the insertelement.
2222 if (match(V0
, m_InsertElt(m_Value(X
), m_Value(), m_ConstantInt(IdxC
)))) {
2223 // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
2224 if (!is_contained(Mask
, (int)IdxC
))
2225 return IC
.replaceOperand(Shuf
, 0, X
);
2227 if (match(V1
, m_InsertElt(m_Value(X
), m_Value(), m_ConstantInt(IdxC
)))) {
2228 // Offset the index constant by the vector width because we are checking for
2229 // accesses to the 2nd vector input of the shuffle.
2231 // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
2232 if (!is_contained(Mask
, (int)IdxC
))
2233 return IC
.replaceOperand(Shuf
, 1, X
);
2236 // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
2237 auto isShufflingScalarIntoOp1
= [&](Value
*&Scalar
, ConstantInt
*&IndexC
) {
2238 // We need an insertelement with a constant index.
2239 if (!match(V0
, m_InsertElt(m_Value(), m_Value(Scalar
),
2240 m_ConstantInt(IndexC
))))
2243 // Test the shuffle mask to see if it splices the inserted scalar into the
2244 // operand 1 vector of the shuffle.
2245 int NewInsIndex
= -1;
2246 for (int i
= 0; i
!= NumElts
; ++i
) {
2247 // Ignore undef mask elements.
2251 // The shuffle takes elements of operand 1 without lane changes.
2252 if (Mask
[i
] == NumElts
+ i
)
2255 // The shuffle must choose the inserted scalar exactly once.
2256 if (NewInsIndex
!= -1 || Mask
[i
] != IndexC
->getSExtValue())
2259 // The shuffle is placing the inserted scalar into element i.
2263 assert(NewInsIndex
!= -1 && "Did not fold shuffle with unused operand?");
2265 // Index is updated to the potentially translated insertion lane.
2266 IndexC
= ConstantInt::get(IndexC
->getType(), NewInsIndex
);
2270 // If the shuffle is unnecessary, insert the scalar operand directly into
2271 // operand 1 of the shuffle. Example:
2272 // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
2274 ConstantInt
*IndexC
;
2275 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
2276 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
2278 // Try again after commuting shuffle. Example:
2279 // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
2280 // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
2282 ShuffleVectorInst::commuteShuffleMask(Mask
, NumElts
);
2283 if (isShufflingScalarIntoOp1(Scalar
, IndexC
))
2284 return InsertElementInst::Create(V1
, Scalar
, IndexC
);
2289 static Instruction
*foldIdentityPaddedShuffles(ShuffleVectorInst
&Shuf
) {
2290 // Match the operands as identity with padding (also known as concatenation
2291 // with undef) shuffles of the same source type. The backend is expected to
2292 // recreate these concatenations from a shuffle of narrow operands.
2293 auto *Shuffle0
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(0));
2294 auto *Shuffle1
= dyn_cast
<ShuffleVectorInst
>(Shuf
.getOperand(1));
2295 if (!Shuffle0
|| !Shuffle0
->isIdentityWithPadding() ||
2296 !Shuffle1
|| !Shuffle1
->isIdentityWithPadding())
2299 // We limit this transform to power-of-2 types because we expect that the
2300 // backend can convert the simplified IR patterns to identical nodes as the
2302 // TODO: If we can verify the same behavior for arbitrary types, the
2303 // power-of-2 checks can be removed.
2304 Value
*X
= Shuffle0
->getOperand(0);
2305 Value
*Y
= Shuffle1
->getOperand(0);
2306 if (X
->getType() != Y
->getType() ||
2307 !isPowerOf2_32(cast
<FixedVectorType
>(Shuf
.getType())->getNumElements()) ||
2309 cast
<FixedVectorType
>(Shuffle0
->getType())->getNumElements()) ||
2310 !isPowerOf2_32(cast
<FixedVectorType
>(X
->getType())->getNumElements()) ||
2311 match(X
, m_Undef()) || match(Y
, m_Undef()))
2313 assert(match(Shuffle0
->getOperand(1), m_Undef()) &&
2314 match(Shuffle1
->getOperand(1), m_Undef()) &&
2315 "Unexpected operand for identity shuffle");
2317 // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
2318 // operands directly by adjusting the shuffle mask to account for the narrower
2320 // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
2321 int NarrowElts
= cast
<FixedVectorType
>(X
->getType())->getNumElements();
2322 int WideElts
= cast
<FixedVectorType
>(Shuffle0
->getType())->getNumElements();
2323 assert(WideElts
> NarrowElts
&& "Unexpected types for identity with padding");
2325 ArrayRef
<int> Mask
= Shuf
.getShuffleMask();
2326 SmallVector
<int, 16> NewMask(Mask
.size(), -1);
2327 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
2331 // If this shuffle is choosing an undef element from 1 of the sources, that
2332 // element is undef.
2333 if (Mask
[i
] < WideElts
) {
2334 if (Shuffle0
->getMaskValue(Mask
[i
]) == -1)
2337 if (Shuffle1
->getMaskValue(Mask
[i
] - WideElts
) == -1)
2341 // If this shuffle is choosing from the 1st narrow op, the mask element is
2342 // the same. If this shuffle is choosing from the 2nd narrow op, the mask
2343 // element is offset down to adjust for the narrow vector widths.
2344 if (Mask
[i
] < WideElts
) {
2345 assert(Mask
[i
] < NarrowElts
&& "Unexpected shuffle mask");
2346 NewMask
[i
] = Mask
[i
];
2348 assert(Mask
[i
] < (WideElts
+ NarrowElts
) && "Unexpected shuffle mask");
2349 NewMask
[i
] = Mask
[i
] - (WideElts
- NarrowElts
);
2352 return new ShuffleVectorInst(X
, Y
, NewMask
);
2355 Instruction
*InstCombinerImpl::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
2356 Value
*LHS
= SVI
.getOperand(0);
2357 Value
*RHS
= SVI
.getOperand(1);
2358 SimplifyQuery ShufQuery
= SQ
.getWithInstruction(&SVI
);
2359 if (auto *V
= SimplifyShuffleVectorInst(LHS
, RHS
, SVI
.getShuffleMask(),
2360 SVI
.getType(), ShufQuery
))
2361 return replaceInstUsesWith(SVI
, V
);
2363 // Bail out for scalable vectors
2364 if (isa
<ScalableVectorType
>(LHS
->getType()))
2367 unsigned VWidth
= cast
<FixedVectorType
>(SVI
.getType())->getNumElements();
2368 unsigned LHSWidth
= cast
<FixedVectorType
>(LHS
->getType())->getNumElements();
2370 // shuffle (bitcast X), (bitcast Y), Mask --> bitcast (shuffle X, Y, Mask)
2372 // if X and Y are of the same (vector) type, and the element size is not
2373 // changed by the bitcasts, we can distribute the bitcasts through the
2374 // shuffle, hopefully reducing the number of instructions. We make sure that
2375 // at least one bitcast only has one use, so we don't *increase* the number of
2376 // instructions here.
2378 if (match(LHS
, m_BitCast(m_Value(X
))) && match(RHS
, m_BitCast(m_Value(Y
))) &&
2379 X
->getType()->isVectorTy() && X
->getType() == Y
->getType() &&
2380 X
->getType()->getScalarSizeInBits() ==
2381 SVI
.getType()->getScalarSizeInBits() &&
2382 (LHS
->hasOneUse() || RHS
->hasOneUse())) {
2383 Value
*V
= Builder
.CreateShuffleVector(X
, Y
, SVI
.getShuffleMask(),
2384 SVI
.getName() + ".uncasted");
2385 return new BitCastInst(V
, SVI
.getType());
2388 ArrayRef
<int> Mask
= SVI
.getShuffleMask();
2389 Type
*Int32Ty
= Type::getInt32Ty(SVI
.getContext());
2391 // Peek through a bitcasted shuffle operand by scaling the mask. If the
2392 // simulated shuffle can simplify, then this shuffle is unnecessary:
2393 // shuf (bitcast X), undef, Mask --> bitcast X'
2394 // TODO: This could be extended to allow length-changing shuffles.
2395 // The transform might also be obsoleted if we allowed canonicalization
2396 // of bitcasted shuffles.
2397 if (match(LHS
, m_BitCast(m_Value(X
))) && match(RHS
, m_Undef()) &&
2398 X
->getType()->isVectorTy() && VWidth
== LHSWidth
) {
2399 // Try to create a scaled mask constant.
2400 auto *XType
= cast
<FixedVectorType
>(X
->getType());
2401 unsigned XNumElts
= XType
->getNumElements();
2402 SmallVector
<int, 16> ScaledMask
;
2403 if (XNumElts
>= VWidth
) {
2404 assert(XNumElts
% VWidth
== 0 && "Unexpected vector bitcast");
2405 narrowShuffleMaskElts(XNumElts
/ VWidth
, Mask
, ScaledMask
);
2407 assert(VWidth
% XNumElts
== 0 && "Unexpected vector bitcast");
2408 if (!widenShuffleMaskElts(VWidth
/ XNumElts
, Mask
, ScaledMask
))
2411 if (!ScaledMask
.empty()) {
2412 // If the shuffled source vector simplifies, cast that value to this
2414 if (auto *V
= SimplifyShuffleVectorInst(X
, UndefValue::get(XType
),
2415 ScaledMask
, XType
, ShufQuery
))
2416 return BitCastInst::Create(Instruction::BitCast
, V
, SVI
.getType());
2420 // shuffle x, x, mask --> shuffle x, undef, mask'
2422 assert(!match(RHS
, m_Undef()) &&
2423 "Shuffle with 2 undef ops not simplified?");
2424 // Remap any references to RHS to use LHS.
2425 SmallVector
<int, 16> Elts
;
2426 for (unsigned i
= 0; i
!= VWidth
; ++i
) {
2427 // Propagate undef elements or force mask to LHS.
2429 Elts
.push_back(UndefMaskElem
);
2431 Elts
.push_back(Mask
[i
] % LHSWidth
);
2433 return new ShuffleVectorInst(LHS
, UndefValue::get(RHS
->getType()), Elts
);
2436 // shuffle undef, x, mask --> shuffle x, undef, mask'
2437 if (match(LHS
, m_Undef())) {
2442 if (Instruction
*I
= canonicalizeInsertSplat(SVI
, Builder
))
2445 if (Instruction
*I
= foldSelectShuffle(SVI
, Builder
, DL
))
2448 if (Instruction
*I
= foldTruncShuffle(SVI
, DL
.isBigEndian()))
2451 if (Instruction
*I
= narrowVectorSelect(SVI
, Builder
))
2454 APInt
UndefElts(VWidth
, 0);
2455 APInt
AllOnesEltMask(APInt::getAllOnesValue(VWidth
));
2456 if (Value
*V
= SimplifyDemandedVectorElts(&SVI
, AllOnesEltMask
, UndefElts
)) {
2458 return replaceInstUsesWith(SVI
, V
);
2462 if (Instruction
*I
= foldIdentityExtractShuffle(SVI
))
2465 // These transforms have the potential to lose undef knowledge, so they are
2466 // intentionally placed after SimplifyDemandedVectorElts().
2467 if (Instruction
*I
= foldShuffleWithInsert(SVI
, *this))
2469 if (Instruction
*I
= foldIdentityPaddedShuffles(SVI
))
2472 if (match(RHS
, m_Undef()) && canEvaluateShuffled(LHS
, Mask
)) {
2473 Value
*V
= evaluateInDifferentElementOrder(LHS
, Mask
);
2474 return replaceInstUsesWith(SVI
, V
);
2477 // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
2478 // a non-vector type. We can instead bitcast the original vector followed by
2479 // an extract of the desired element:
2481 // %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
2482 // <4 x i32> <i32 0, i32 1, i32 2, i32 3>
2483 // %1 = bitcast <4 x i8> %sroa to i32
2485 // %bc = bitcast <16 x i8> %in to <4 x i32>
2486 // %ext = extractelement <4 x i32> %bc, i32 0
2488 // If the shuffle is extracting a contiguous range of values from the input
2489 // vector then each use which is a bitcast of the extracted size can be
2490 // replaced. This will work if the vector types are compatible, and the begin
2491 // index is aligned to a value in the casted vector type. If the begin index
2492 // isn't aligned then we can shuffle the original vector (keeping the same
2493 // vector type) before extracting.
2495 // This code will bail out if the target type is fundamentally incompatible
2496 // with vectors of the source type.
2498 // Example of <16 x i8>, target type i32:
2499 // Index range [4,8): v-----------v Will work.
2500 // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
2501 // <16 x i8>: | | | | | | | | | | | | | | | | |
2502 // <4 x i32>: | | | | |
2503 // +-----------+-----------+-----------+-----------+
2504 // Index range [6,10): ^-----------^ Needs an extra shuffle.
2505 // Target type i40: ^--------------^ Won't work, bail.
2506 bool MadeChange
= false;
2507 if (isShuffleExtractingFromLHS(SVI
, Mask
)) {
2509 unsigned MaskElems
= Mask
.size();
2510 auto *SrcTy
= cast
<FixedVectorType
>(V
->getType());
2511 unsigned VecBitWidth
= SrcTy
->getPrimitiveSizeInBits().getFixedSize();
2512 unsigned SrcElemBitWidth
= DL
.getTypeSizeInBits(SrcTy
->getElementType());
2513 assert(SrcElemBitWidth
&& "vector elements must have a bitwidth");
2514 unsigned SrcNumElems
= SrcTy
->getNumElements();
2515 SmallVector
<BitCastInst
*, 8> BCs
;
2516 DenseMap
<Type
*, Value
*> NewBCs
;
2517 for (User
*U
: SVI
.users())
2518 if (BitCastInst
*BC
= dyn_cast
<BitCastInst
>(U
))
2519 if (!BC
->use_empty())
2520 // Only visit bitcasts that weren't previously handled.
2522 for (BitCastInst
*BC
: BCs
) {
2523 unsigned BegIdx
= Mask
.front();
2524 Type
*TgtTy
= BC
->getDestTy();
2525 unsigned TgtElemBitWidth
= DL
.getTypeSizeInBits(TgtTy
);
2526 if (!TgtElemBitWidth
)
2528 unsigned TgtNumElems
= VecBitWidth
/ TgtElemBitWidth
;
2529 bool VecBitWidthsEqual
= VecBitWidth
== TgtNumElems
* TgtElemBitWidth
;
2530 bool BegIsAligned
= 0 == ((SrcElemBitWidth
* BegIdx
) % TgtElemBitWidth
);
2531 if (!VecBitWidthsEqual
)
2533 if (!VectorType::isValidElementType(TgtTy
))
2535 auto *CastSrcTy
= FixedVectorType::get(TgtTy
, TgtNumElems
);
2536 if (!BegIsAligned
) {
2537 // Shuffle the input so [0,NumElements) contains the output, and
2538 // [NumElems,SrcNumElems) is undef.
2539 SmallVector
<int, 16> ShuffleMask(SrcNumElems
, -1);
2540 for (unsigned I
= 0, E
= MaskElems
, Idx
= BegIdx
; I
!= E
; ++Idx
, ++I
)
2541 ShuffleMask
[I
] = Idx
;
2542 V
= Builder
.CreateShuffleVector(V
, ShuffleMask
,
2543 SVI
.getName() + ".extract");
2546 unsigned SrcElemsPerTgtElem
= TgtElemBitWidth
/ SrcElemBitWidth
;
2547 assert(SrcElemsPerTgtElem
);
2548 BegIdx
/= SrcElemsPerTgtElem
;
2549 bool BCAlreadyExists
= NewBCs
.find(CastSrcTy
) != NewBCs
.end();
2553 : Builder
.CreateBitCast(V
, CastSrcTy
, SVI
.getName() + ".bc");
2554 if (!BCAlreadyExists
)
2555 NewBCs
[CastSrcTy
] = NewBC
;
2556 auto *Ext
= Builder
.CreateExtractElement(
2557 NewBC
, ConstantInt::get(Int32Ty
, BegIdx
), SVI
.getName() + ".extract");
2558 // The shufflevector isn't being replaced: the bitcast that used it
2559 // is. InstCombine will visit the newly-created instructions.
2560 replaceInstUsesWith(*BC
, Ext
);
2565 // If the LHS is a shufflevector itself, see if we can combine it with this
2566 // one without producing an unusual shuffle.
2567 // Cases that might be simplified:
2569 // x1=shuffle(v1,v2,mask1)
2570 // x=shuffle(x1,undef,mask)
2572 // x=shuffle(v1,undef,newMask)
2573 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2575 // x1=shuffle(v1,undef,mask1)
2576 // x=shuffle(x1,x2,mask)
2577 // where v1.size() == mask1.size()
2579 // x=shuffle(v1,x2,newMask)
2580 // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2582 // x2=shuffle(v2,undef,mask2)
2583 // x=shuffle(x1,x2,mask)
2584 // where v2.size() == mask2.size()
2586 // x=shuffle(x1,v2,newMask)
2587 // newMask[i] = (mask[i] < x1.size())
2588 // ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2590 // x1=shuffle(v1,undef,mask1)
2591 // x2=shuffle(v2,undef,mask2)
2592 // x=shuffle(x1,x2,mask)
2593 // where v1.size() == v2.size()
2595 // x=shuffle(v1,v2,newMask)
2596 // newMask[i] = (mask[i] < x1.size())
2597 // ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2599 // Here we are really conservative:
2600 // we are absolutely afraid of producing a shuffle mask not in the input
2601 // program, because the code gen may not be smart enough to turn a merged
2602 // shuffle into two specific shuffles: it may produce worse code. As such,
2603 // we only merge two shuffles if the result is either a splat or one of the
2604 // input shuffle masks. In this case, merging the shuffles just removes
2605 // one instruction, which we know is safe. This is good for things like
2606 // turning: (splat(splat)) -> splat, or
2607 // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2608 ShuffleVectorInst
* LHSShuffle
= dyn_cast
<ShuffleVectorInst
>(LHS
);
2609 ShuffleVectorInst
* RHSShuffle
= dyn_cast
<ShuffleVectorInst
>(RHS
);
2611 if (!match(LHSShuffle
->getOperand(1), m_Undef()) && !match(RHS
, m_Undef()))
2612 LHSShuffle
= nullptr;
2614 if (!match(RHSShuffle
->getOperand(1), m_Undef()))
2615 RHSShuffle
= nullptr;
2616 if (!LHSShuffle
&& !RHSShuffle
)
2617 return MadeChange
? &SVI
: nullptr;
2619 Value
* LHSOp0
= nullptr;
2620 Value
* LHSOp1
= nullptr;
2621 Value
* RHSOp0
= nullptr;
2622 unsigned LHSOp0Width
= 0;
2623 unsigned RHSOp0Width
= 0;
2625 LHSOp0
= LHSShuffle
->getOperand(0);
2626 LHSOp1
= LHSShuffle
->getOperand(1);
2627 LHSOp0Width
= cast
<FixedVectorType
>(LHSOp0
->getType())->getNumElements();
2630 RHSOp0
= RHSShuffle
->getOperand(0);
2631 RHSOp0Width
= cast
<FixedVectorType
>(RHSOp0
->getType())->getNumElements();
2633 Value
* newLHS
= LHS
;
2634 Value
* newRHS
= RHS
;
2637 if (match(RHS
, m_Undef())) {
2642 else if (LHSOp0Width
== LHSWidth
) {
2647 if (RHSShuffle
&& RHSOp0Width
== LHSWidth
) {
2651 if (LHSOp0
== RHSOp0
) {
2656 if (newLHS
== LHS
&& newRHS
== RHS
)
2657 return MadeChange
? &SVI
: nullptr;
2659 ArrayRef
<int> LHSMask
;
2660 ArrayRef
<int> RHSMask
;
2662 LHSMask
= LHSShuffle
->getShuffleMask();
2663 if (RHSShuffle
&& newRHS
!= RHS
)
2664 RHSMask
= RHSShuffle
->getShuffleMask();
2666 unsigned newLHSWidth
= (newLHS
!= LHS
) ? LHSOp0Width
: LHSWidth
;
2667 SmallVector
<int, 16> newMask
;
2668 bool isSplat
= true;
2670 // Create a new mask for the new ShuffleVectorInst so that the new
2671 // ShuffleVectorInst is equivalent to the original one.
2672 for (unsigned i
= 0; i
< VWidth
; ++i
) {
2675 // This element is an undef value.
2677 } else if (Mask
[i
] < (int)LHSWidth
) {
2678 // This element is from left hand side vector operand.
2680 // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2681 // new mask value for the element.
2682 if (newLHS
!= LHS
) {
2683 eltMask
= LHSMask
[Mask
[i
]];
2684 // If the value selected is an undef value, explicitly specify it
2685 // with a -1 mask value.
2686 if (eltMask
>= (int)LHSOp0Width
&& isa
<UndefValue
>(LHSOp1
))
2691 // This element is from right hand side vector operand
2693 // If the value selected is an undef value, explicitly specify it
2694 // with a -1 mask value. (case 1)
2695 if (match(RHS
, m_Undef()))
2697 // If RHS is going to be replaced (case 3 or 4), calculate the
2698 // new mask value for the element.
2699 else if (newRHS
!= RHS
) {
2700 eltMask
= RHSMask
[Mask
[i
]-LHSWidth
];
2701 // If the value selected is an undef value, explicitly specify it
2702 // with a -1 mask value.
2703 if (eltMask
>= (int)RHSOp0Width
) {
2704 assert(match(RHSShuffle
->getOperand(1), m_Undef()) &&
2705 "should have been check above");
2709 eltMask
= Mask
[i
]-LHSWidth
;
2711 // If LHS's width is changed, shift the mask value accordingly.
2712 // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2713 // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2714 // If newRHS == newLHS, we want to remap any references from newRHS to
2715 // newLHS so that we can properly identify splats that may occur due to
2716 // obfuscation across the two vectors.
2717 if (eltMask
>= 0 && newRHS
!= nullptr && newLHS
!= newRHS
)
2718 eltMask
+= newLHSWidth
;
2721 // Check if this could still be a splat.
2723 if (SplatElt
>= 0 && SplatElt
!= eltMask
)
2728 newMask
.push_back(eltMask
);
2731 // If the result mask is equal to one of the original shuffle masks,
2732 // or is a splat, do the replacement.
2733 if (isSplat
|| newMask
== LHSMask
|| newMask
== RHSMask
|| newMask
== Mask
) {
2735 newRHS
= UndefValue::get(newLHS
->getType());
2736 return new ShuffleVectorInst(newLHS
, newRHS
, newMask
);
2739 return MadeChange
? &SVI
: nullptr;