[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / AddressSanitizer.cpp
blobd03538a76244ed4345bfa6e99adb4e6be1fa8ee4
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 // FIXME: This sanitizer does not yet handle scalable vectors
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/BinaryFormat/MachO.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCSectionMachO.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/ScopedPrinter.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/ModuleUtils.h"
80 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstddef>
84 #include <cstdint>
85 #include <iomanip>
86 #include <limits>
87 #include <memory>
88 #include <sstream>
89 #include <string>
90 #include <tuple>
92 using namespace llvm;
94 #define DEBUG_TYPE "asan"
96 static const uint64_t kDefaultShadowScale = 3;
97 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
99 static const uint64_t kDynamicShadowSentinel =
100 std::numeric_limits<uint64_t>::max();
101 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
103 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
107 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
108 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
109 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
110 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
111 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
112 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
113 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
114 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
115 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
116 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
117 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
118 static const uint64_t kEmscriptenShadowOffset = 0;
120 // The shadow memory space is dynamically allocated.
121 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
123 static const size_t kMinStackMallocSize = 1 << 6; // 64B
124 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
125 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
126 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
128 const char kAsanModuleCtorName[] = "asan.module_ctor";
129 const char kAsanModuleDtorName[] = "asan.module_dtor";
130 static const uint64_t kAsanCtorAndDtorPriority = 1;
131 // On Emscripten, the system needs more than one priorities for constructors.
132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
133 const char kAsanReportErrorTemplate[] = "__asan_report_";
134 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
135 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
136 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
137 const char kAsanUnregisterImageGlobalsName[] =
138 "__asan_unregister_image_globals";
139 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
140 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
141 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
142 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
143 const char kAsanInitName[] = "__asan_init";
144 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
145 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
146 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
147 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
148 static const int kMaxAsanStackMallocSizeClass = 10;
149 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
150 const char kAsanStackMallocAlwaysNameTemplate[] =
151 "__asan_stack_malloc_always_";
152 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
153 const char kAsanGenPrefix[] = "___asan_gen_";
154 const char kODRGenPrefix[] = "__odr_asan_gen_";
155 const char kSanCovGenPrefix[] = "__sancov_gen_";
156 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
157 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
158 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
160 // ASan version script has __asan_* wildcard. Triple underscore prevents a
161 // linker (gold) warning about attempting to export a local symbol.
162 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
164 const char kAsanOptionDetectUseAfterReturn[] =
165 "__asan_option_detect_stack_use_after_return";
167 const char kAsanShadowMemoryDynamicAddress[] =
168 "__asan_shadow_memory_dynamic_address";
170 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
171 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
173 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
174 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
177 static const size_t kNumberOfAccessSizes = 5;
179 static const unsigned kAllocaRzSize = 32;
181 // Command-line flags.
183 static cl::opt<bool> ClEnableKasan(
184 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
185 cl::Hidden, cl::init(false));
187 static cl::opt<bool> ClRecover(
188 "asan-recover",
189 cl::desc("Enable recovery mode (continue-after-error)."),
190 cl::Hidden, cl::init(false));
192 static cl::opt<bool> ClInsertVersionCheck(
193 "asan-guard-against-version-mismatch",
194 cl::desc("Guard against compiler/runtime version mismatch."),
195 cl::Hidden, cl::init(true));
197 // This flag may need to be replaced with -f[no-]asan-reads.
198 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
199 cl::desc("instrument read instructions"),
200 cl::Hidden, cl::init(true));
202 static cl::opt<bool> ClInstrumentWrites(
203 "asan-instrument-writes", cl::desc("instrument write instructions"),
204 cl::Hidden, cl::init(true));
206 static cl::opt<bool> ClInstrumentAtomics(
207 "asan-instrument-atomics",
208 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
209 cl::init(true));
211 static cl::opt<bool>
212 ClInstrumentByval("asan-instrument-byval",
213 cl::desc("instrument byval call arguments"), cl::Hidden,
214 cl::init(true));
216 static cl::opt<bool> ClAlwaysSlowPath(
217 "asan-always-slow-path",
218 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
219 cl::init(false));
221 static cl::opt<bool> ClForceDynamicShadow(
222 "asan-force-dynamic-shadow",
223 cl::desc("Load shadow address into a local variable for each function"),
224 cl::Hidden, cl::init(false));
226 static cl::opt<bool>
227 ClWithIfunc("asan-with-ifunc",
228 cl::desc("Access dynamic shadow through an ifunc global on "
229 "platforms that support this"),
230 cl::Hidden, cl::init(true));
232 static cl::opt<bool> ClWithIfuncSuppressRemat(
233 "asan-with-ifunc-suppress-remat",
234 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
235 "it through inline asm in prologue."),
236 cl::Hidden, cl::init(true));
238 // This flag limits the number of instructions to be instrumented
239 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
240 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
241 // set it to 10000.
242 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
243 "asan-max-ins-per-bb", cl::init(10000),
244 cl::desc("maximal number of instructions to instrument in any given BB"),
245 cl::Hidden);
247 // This flag may need to be replaced with -f[no]asan-stack.
248 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
249 cl::Hidden, cl::init(true));
250 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
251 "asan-max-inline-poisoning-size",
252 cl::desc(
253 "Inline shadow poisoning for blocks up to the given size in bytes."),
254 cl::Hidden, cl::init(64));
256 static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
257 "asan-use-after-return",
258 cl::desc("Sets the mode of detection for stack-use-after-return."),
259 cl::values(
260 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",
261 "Never detect stack use after return."),
262 clEnumValN(
263 AsanDetectStackUseAfterReturnMode::Runtime, "runtime",
264 "Detect stack use after return if "
265 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
266 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",
267 "Always detect stack use after return.")),
268 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
270 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
271 cl::desc("Create redzones for byval "
272 "arguments (extra copy "
273 "required)"), cl::Hidden,
274 cl::init(true));
276 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
277 cl::desc("Check stack-use-after-scope"),
278 cl::Hidden, cl::init(false));
280 // This flag may need to be replaced with -f[no]asan-globals.
281 static cl::opt<bool> ClGlobals("asan-globals",
282 cl::desc("Handle global objects"), cl::Hidden,
283 cl::init(true));
285 static cl::opt<bool> ClInitializers("asan-initialization-order",
286 cl::desc("Handle C++ initializer order"),
287 cl::Hidden, cl::init(true));
289 static cl::opt<bool> ClInvalidPointerPairs(
290 "asan-detect-invalid-pointer-pair",
291 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
292 cl::init(false));
294 static cl::opt<bool> ClInvalidPointerCmp(
295 "asan-detect-invalid-pointer-cmp",
296 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
297 cl::init(false));
299 static cl::opt<bool> ClInvalidPointerSub(
300 "asan-detect-invalid-pointer-sub",
301 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
302 cl::init(false));
304 static cl::opt<unsigned> ClRealignStack(
305 "asan-realign-stack",
306 cl::desc("Realign stack to the value of this flag (power of two)"),
307 cl::Hidden, cl::init(32));
309 static cl::opt<int> ClInstrumentationWithCallsThreshold(
310 "asan-instrumentation-with-call-threshold",
311 cl::desc(
312 "If the function being instrumented contains more than "
313 "this number of memory accesses, use callbacks instead of "
314 "inline checks (-1 means never use callbacks)."),
315 cl::Hidden, cl::init(7000));
317 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
318 "asan-memory-access-callback-prefix",
319 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
320 cl::init("__asan_"));
322 static cl::opt<bool>
323 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
324 cl::desc("instrument dynamic allocas"),
325 cl::Hidden, cl::init(true));
327 static cl::opt<bool> ClSkipPromotableAllocas(
328 "asan-skip-promotable-allocas",
329 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
330 cl::init(true));
332 // These flags allow to change the shadow mapping.
333 // The shadow mapping looks like
334 // Shadow = (Mem >> scale) + offset
336 static cl::opt<int> ClMappingScale("asan-mapping-scale",
337 cl::desc("scale of asan shadow mapping"),
338 cl::Hidden, cl::init(0));
340 static cl::opt<uint64_t>
341 ClMappingOffset("asan-mapping-offset",
342 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
343 cl::Hidden, cl::init(0));
345 // Optimization flags. Not user visible, used mostly for testing
346 // and benchmarking the tool.
348 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
349 cl::Hidden, cl::init(true));
351 static cl::opt<bool> ClOptSameTemp(
352 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
353 cl::Hidden, cl::init(true));
355 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
356 cl::desc("Don't instrument scalar globals"),
357 cl::Hidden, cl::init(true));
359 static cl::opt<bool> ClOptStack(
360 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
361 cl::Hidden, cl::init(false));
363 static cl::opt<bool> ClDynamicAllocaStack(
364 "asan-stack-dynamic-alloca",
365 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
366 cl::init(true));
368 static cl::opt<uint32_t> ClForceExperiment(
369 "asan-force-experiment",
370 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
371 cl::init(0));
373 static cl::opt<bool>
374 ClUsePrivateAlias("asan-use-private-alias",
375 cl::desc("Use private aliases for global variables"),
376 cl::Hidden, cl::init(false));
378 static cl::opt<bool>
379 ClUseOdrIndicator("asan-use-odr-indicator",
380 cl::desc("Use odr indicators to improve ODR reporting"),
381 cl::Hidden, cl::init(false));
383 static cl::opt<bool>
384 ClUseGlobalsGC("asan-globals-live-support",
385 cl::desc("Use linker features to support dead "
386 "code stripping of globals"),
387 cl::Hidden, cl::init(true));
389 // This is on by default even though there is a bug in gold:
390 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
391 static cl::opt<bool>
392 ClWithComdat("asan-with-comdat",
393 cl::desc("Place ASan constructors in comdat sections"),
394 cl::Hidden, cl::init(true));
396 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
397 "asan-destructor-kind",
398 cl::desc("Sets the ASan destructor kind. The default is to use the value "
399 "provided to the pass constructor"),
400 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
401 clEnumValN(AsanDtorKind::Global, "global",
402 "Use global destructors")),
403 cl::init(AsanDtorKind::Invalid), cl::Hidden);
405 // Debug flags.
407 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
408 cl::init(0));
410 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
411 cl::Hidden, cl::init(0));
413 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
414 cl::desc("Debug func"));
416 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
417 cl::Hidden, cl::init(-1));
419 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
420 cl::Hidden, cl::init(-1));
422 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
423 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
424 STATISTIC(NumOptimizedAccessesToGlobalVar,
425 "Number of optimized accesses to global vars");
426 STATISTIC(NumOptimizedAccessesToStackVar,
427 "Number of optimized accesses to stack vars");
429 namespace {
431 /// This struct defines the shadow mapping using the rule:
432 /// shadow = (mem >> Scale) ADD-or-OR Offset.
433 /// If InGlobal is true, then
434 /// extern char __asan_shadow[];
435 /// shadow = (mem >> Scale) + &__asan_shadow
436 struct ShadowMapping {
437 int Scale;
438 uint64_t Offset;
439 bool OrShadowOffset;
440 bool InGlobal;
443 } // end anonymous namespace
445 static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
446 bool IsKasan) {
447 bool IsAndroid = TargetTriple.isAndroid();
448 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
449 bool IsMacOS = TargetTriple.isMacOSX();
450 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
451 bool IsNetBSD = TargetTriple.isOSNetBSD();
452 bool IsPS4CPU = TargetTriple.isPS4CPU();
453 bool IsLinux = TargetTriple.isOSLinux();
454 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
455 TargetTriple.getArch() == Triple::ppc64le;
456 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
457 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
458 bool IsMIPS32 = TargetTriple.isMIPS32();
459 bool IsMIPS64 = TargetTriple.isMIPS64();
460 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
461 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
462 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
463 bool IsWindows = TargetTriple.isOSWindows();
464 bool IsFuchsia = TargetTriple.isOSFuchsia();
465 bool IsEmscripten = TargetTriple.isOSEmscripten();
466 bool IsAMDGPU = TargetTriple.isAMDGPU();
468 ShadowMapping Mapping;
470 Mapping.Scale = kDefaultShadowScale;
471 if (ClMappingScale.getNumOccurrences() > 0) {
472 Mapping.Scale = ClMappingScale;
475 if (LongSize == 32) {
476 if (IsAndroid)
477 Mapping.Offset = kDynamicShadowSentinel;
478 else if (IsMIPS32)
479 Mapping.Offset = kMIPS32_ShadowOffset32;
480 else if (IsFreeBSD)
481 Mapping.Offset = kFreeBSD_ShadowOffset32;
482 else if (IsNetBSD)
483 Mapping.Offset = kNetBSD_ShadowOffset32;
484 else if (IsIOS)
485 Mapping.Offset = kDynamicShadowSentinel;
486 else if (IsWindows)
487 Mapping.Offset = kWindowsShadowOffset32;
488 else if (IsEmscripten)
489 Mapping.Offset = kEmscriptenShadowOffset;
490 else
491 Mapping.Offset = kDefaultShadowOffset32;
492 } else { // LongSize == 64
493 // Fuchsia is always PIE, which means that the beginning of the address
494 // space is always available.
495 if (IsFuchsia)
496 Mapping.Offset = 0;
497 else if (IsPPC64)
498 Mapping.Offset = kPPC64_ShadowOffset64;
499 else if (IsSystemZ)
500 Mapping.Offset = kSystemZ_ShadowOffset64;
501 else if (IsFreeBSD && !IsMIPS64) {
502 if (IsKasan)
503 Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
504 else
505 Mapping.Offset = kFreeBSD_ShadowOffset64;
506 } else if (IsNetBSD) {
507 if (IsKasan)
508 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
509 else
510 Mapping.Offset = kNetBSD_ShadowOffset64;
511 } else if (IsPS4CPU)
512 Mapping.Offset = kPS4CPU_ShadowOffset64;
513 else if (IsLinux && IsX86_64) {
514 if (IsKasan)
515 Mapping.Offset = kLinuxKasan_ShadowOffset64;
516 else
517 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
518 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
519 } else if (IsWindows && IsX86_64) {
520 Mapping.Offset = kWindowsShadowOffset64;
521 } else if (IsMIPS64)
522 Mapping.Offset = kMIPS64_ShadowOffset64;
523 else if (IsIOS)
524 Mapping.Offset = kDynamicShadowSentinel;
525 else if (IsMacOS && IsAArch64)
526 Mapping.Offset = kDynamicShadowSentinel;
527 else if (IsAArch64)
528 Mapping.Offset = kAArch64_ShadowOffset64;
529 else if (IsRISCV64)
530 Mapping.Offset = kRISCV64_ShadowOffset64;
531 else if (IsAMDGPU)
532 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
533 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
534 else
535 Mapping.Offset = kDefaultShadowOffset64;
538 if (ClForceDynamicShadow) {
539 Mapping.Offset = kDynamicShadowSentinel;
542 if (ClMappingOffset.getNumOccurrences() > 0) {
543 Mapping.Offset = ClMappingOffset;
546 // OR-ing shadow offset if more efficient (at least on x86) if the offset
547 // is a power of two, but on ppc64 we have to use add since the shadow
548 // offset is not necessary 1/8-th of the address space. On SystemZ,
549 // we could OR the constant in a single instruction, but it's more
550 // efficient to load it once and use indexed addressing.
551 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
552 !IsRISCV64 &&
553 !(Mapping.Offset & (Mapping.Offset - 1)) &&
554 Mapping.Offset != kDynamicShadowSentinel;
555 bool IsAndroidWithIfuncSupport =
556 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
557 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
559 return Mapping;
562 namespace llvm {
563 void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
564 bool IsKasan, uint64_t *ShadowBase,
565 int *MappingScale, bool *OrShadowOffset) {
566 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
567 *ShadowBase = Mapping.Offset;
568 *MappingScale = Mapping.Scale;
569 *OrShadowOffset = Mapping.OrShadowOffset;
571 } // namespace llvm
573 static uint64_t getRedzoneSizeForScale(int MappingScale) {
574 // Redzone used for stack and globals is at least 32 bytes.
575 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
576 return std::max(32U, 1U << MappingScale);
579 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
580 if (TargetTriple.isOSEmscripten()) {
581 return kAsanEmscriptenCtorAndDtorPriority;
582 } else {
583 return kAsanCtorAndDtorPriority;
587 namespace {
589 /// Module analysis for getting various metadata about the module.
590 class ASanGlobalsMetadataWrapperPass : public ModulePass {
591 public:
592 static char ID;
594 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
595 initializeASanGlobalsMetadataWrapperPassPass(
596 *PassRegistry::getPassRegistry());
599 bool runOnModule(Module &M) override {
600 GlobalsMD = GlobalsMetadata(M);
601 return false;
604 StringRef getPassName() const override {
605 return "ASanGlobalsMetadataWrapperPass";
608 void getAnalysisUsage(AnalysisUsage &AU) const override {
609 AU.setPreservesAll();
612 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
614 private:
615 GlobalsMetadata GlobalsMD;
618 char ASanGlobalsMetadataWrapperPass::ID = 0;
620 /// AddressSanitizer: instrument the code in module to find memory bugs.
621 struct AddressSanitizer {
622 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
623 bool CompileKernel = false, bool Recover = false,
624 bool UseAfterScope = false,
625 AsanDetectStackUseAfterReturnMode UseAfterReturn =
626 AsanDetectStackUseAfterReturnMode::Runtime)
627 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
628 : CompileKernel),
629 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
630 UseAfterScope(UseAfterScope || ClUseAfterScope),
631 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
632 : UseAfterReturn),
633 GlobalsMD(*GlobalsMD) {
634 C = &(M.getContext());
635 LongSize = M.getDataLayout().getPointerSizeInBits();
636 IntptrTy = Type::getIntNTy(*C, LongSize);
637 TargetTriple = Triple(M.getTargetTriple());
639 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
641 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid);
644 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
645 uint64_t ArraySize = 1;
646 if (AI.isArrayAllocation()) {
647 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
648 assert(CI && "non-constant array size");
649 ArraySize = CI->getZExtValue();
651 Type *Ty = AI.getAllocatedType();
652 uint64_t SizeInBytes =
653 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
654 return SizeInBytes * ArraySize;
657 /// Check if we want (and can) handle this alloca.
658 bool isInterestingAlloca(const AllocaInst &AI);
660 bool ignoreAccess(Value *Ptr);
661 void getInterestingMemoryOperands(
662 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
664 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
665 InterestingMemoryOperand &O, bool UseCalls,
666 const DataLayout &DL);
667 void instrumentPointerComparisonOrSubtraction(Instruction *I);
668 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
669 Value *Addr, uint32_t TypeSize, bool IsWrite,
670 Value *SizeArgument, bool UseCalls, uint32_t Exp);
671 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
672 Instruction *InsertBefore, Value *Addr,
673 uint32_t TypeSize, bool IsWrite,
674 Value *SizeArgument);
675 void instrumentUnusualSizeOrAlignment(Instruction *I,
676 Instruction *InsertBefore, Value *Addr,
677 uint32_t TypeSize, bool IsWrite,
678 Value *SizeArgument, bool UseCalls,
679 uint32_t Exp);
680 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
681 Value *ShadowValue, uint32_t TypeSize);
682 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
683 bool IsWrite, size_t AccessSizeIndex,
684 Value *SizeArgument, uint32_t Exp);
685 void instrumentMemIntrinsic(MemIntrinsic *MI);
686 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
687 bool suppressInstrumentationSiteForDebug(int &Instrumented);
688 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
689 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
690 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
691 void markEscapedLocalAllocas(Function &F);
693 private:
694 friend struct FunctionStackPoisoner;
696 void initializeCallbacks(Module &M);
698 bool LooksLikeCodeInBug11395(Instruction *I);
699 bool GlobalIsLinkerInitialized(GlobalVariable *G);
700 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
701 uint64_t TypeSize) const;
703 /// Helper to cleanup per-function state.
704 struct FunctionStateRAII {
705 AddressSanitizer *Pass;
707 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
708 assert(Pass->ProcessedAllocas.empty() &&
709 "last pass forgot to clear cache");
710 assert(!Pass->LocalDynamicShadow);
713 ~FunctionStateRAII() {
714 Pass->LocalDynamicShadow = nullptr;
715 Pass->ProcessedAllocas.clear();
719 LLVMContext *C;
720 Triple TargetTriple;
721 int LongSize;
722 bool CompileKernel;
723 bool Recover;
724 bool UseAfterScope;
725 AsanDetectStackUseAfterReturnMode UseAfterReturn;
726 Type *IntptrTy;
727 ShadowMapping Mapping;
728 FunctionCallee AsanHandleNoReturnFunc;
729 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
730 Constant *AsanShadowGlobal;
732 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
733 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
734 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
736 // These arrays is indexed by AccessIsWrite and Experiment.
737 FunctionCallee AsanErrorCallbackSized[2][2];
738 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
740 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
741 Value *LocalDynamicShadow = nullptr;
742 const GlobalsMetadata &GlobalsMD;
743 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
745 FunctionCallee AMDGPUAddressShared;
746 FunctionCallee AMDGPUAddressPrivate;
749 class AddressSanitizerLegacyPass : public FunctionPass {
750 public:
751 static char ID;
753 explicit AddressSanitizerLegacyPass(
754 bool CompileKernel = false, bool Recover = false,
755 bool UseAfterScope = false,
756 AsanDetectStackUseAfterReturnMode UseAfterReturn =
757 AsanDetectStackUseAfterReturnMode::Runtime)
758 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
759 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {
760 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
763 StringRef getPassName() const override {
764 return "AddressSanitizerFunctionPass";
767 void getAnalysisUsage(AnalysisUsage &AU) const override {
768 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
769 AU.addRequired<TargetLibraryInfoWrapperPass>();
772 bool runOnFunction(Function &F) override {
773 GlobalsMetadata &GlobalsMD =
774 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
775 const TargetLibraryInfo *TLI =
776 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
777 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
778 UseAfterScope, UseAfterReturn);
779 return ASan.instrumentFunction(F, TLI);
782 private:
783 bool CompileKernel;
784 bool Recover;
785 bool UseAfterScope;
786 AsanDetectStackUseAfterReturnMode UseAfterReturn;
789 class ModuleAddressSanitizer {
790 public:
791 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
792 bool CompileKernel = false, bool Recover = false,
793 bool UseGlobalsGC = true, bool UseOdrIndicator = false,
794 AsanDtorKind DestructorKind = AsanDtorKind::Global)
795 : GlobalsMD(*GlobalsMD),
796 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
797 : CompileKernel),
798 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
799 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
800 // Enable aliases as they should have no downside with ODR indicators.
801 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
802 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
803 // Not a typo: ClWithComdat is almost completely pointless without
804 // ClUseGlobalsGC (because then it only works on modules without
805 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
806 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
807 // argument is designed as workaround. Therefore, disable both
808 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
809 // do globals-gc.
810 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
811 DestructorKind(DestructorKind) {
812 C = &(M.getContext());
813 int LongSize = M.getDataLayout().getPointerSizeInBits();
814 IntptrTy = Type::getIntNTy(*C, LongSize);
815 TargetTriple = Triple(M.getTargetTriple());
816 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
818 if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
819 this->DestructorKind = ClOverrideDestructorKind;
820 assert(this->DestructorKind != AsanDtorKind::Invalid);
823 bool instrumentModule(Module &);
825 private:
826 void initializeCallbacks(Module &M);
828 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
829 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
830 ArrayRef<GlobalVariable *> ExtendedGlobals,
831 ArrayRef<Constant *> MetadataInitializers);
832 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
833 ArrayRef<GlobalVariable *> ExtendedGlobals,
834 ArrayRef<Constant *> MetadataInitializers,
835 const std::string &UniqueModuleId);
836 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
837 ArrayRef<GlobalVariable *> ExtendedGlobals,
838 ArrayRef<Constant *> MetadataInitializers);
839 void
840 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
841 ArrayRef<GlobalVariable *> ExtendedGlobals,
842 ArrayRef<Constant *> MetadataInitializers);
844 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
845 StringRef OriginalName);
846 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
847 StringRef InternalSuffix);
848 Instruction *CreateAsanModuleDtor(Module &M);
850 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
851 bool shouldInstrumentGlobal(GlobalVariable *G) const;
852 bool ShouldUseMachOGlobalsSection() const;
853 StringRef getGlobalMetadataSection() const;
854 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
855 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
856 uint64_t getMinRedzoneSizeForGlobal() const {
857 return getRedzoneSizeForScale(Mapping.Scale);
859 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
860 int GetAsanVersion(const Module &M) const;
862 const GlobalsMetadata &GlobalsMD;
863 bool CompileKernel;
864 bool Recover;
865 bool UseGlobalsGC;
866 bool UsePrivateAlias;
867 bool UseOdrIndicator;
868 bool UseCtorComdat;
869 AsanDtorKind DestructorKind;
870 Type *IntptrTy;
871 LLVMContext *C;
872 Triple TargetTriple;
873 ShadowMapping Mapping;
874 FunctionCallee AsanPoisonGlobals;
875 FunctionCallee AsanUnpoisonGlobals;
876 FunctionCallee AsanRegisterGlobals;
877 FunctionCallee AsanUnregisterGlobals;
878 FunctionCallee AsanRegisterImageGlobals;
879 FunctionCallee AsanUnregisterImageGlobals;
880 FunctionCallee AsanRegisterElfGlobals;
881 FunctionCallee AsanUnregisterElfGlobals;
883 Function *AsanCtorFunction = nullptr;
884 Function *AsanDtorFunction = nullptr;
887 class ModuleAddressSanitizerLegacyPass : public ModulePass {
888 public:
889 static char ID;
891 explicit ModuleAddressSanitizerLegacyPass(
892 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
893 bool UseOdrIndicator = false,
894 AsanDtorKind DestructorKind = AsanDtorKind::Global)
895 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
896 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
897 DestructorKind(DestructorKind) {
898 initializeModuleAddressSanitizerLegacyPassPass(
899 *PassRegistry::getPassRegistry());
902 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
904 void getAnalysisUsage(AnalysisUsage &AU) const override {
905 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
908 bool runOnModule(Module &M) override {
909 GlobalsMetadata &GlobalsMD =
910 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
911 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
912 UseGlobalGC, UseOdrIndicator,
913 DestructorKind);
914 return ASanModule.instrumentModule(M);
917 private:
918 bool CompileKernel;
919 bool Recover;
920 bool UseGlobalGC;
921 bool UseOdrIndicator;
922 AsanDtorKind DestructorKind;
925 // Stack poisoning does not play well with exception handling.
926 // When an exception is thrown, we essentially bypass the code
927 // that unpoisones the stack. This is why the run-time library has
928 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
929 // stack in the interceptor. This however does not work inside the
930 // actual function which catches the exception. Most likely because the
931 // compiler hoists the load of the shadow value somewhere too high.
932 // This causes asan to report a non-existing bug on 453.povray.
933 // It sounds like an LLVM bug.
934 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
935 Function &F;
936 AddressSanitizer &ASan;
937 DIBuilder DIB;
938 LLVMContext *C;
939 Type *IntptrTy;
940 Type *IntptrPtrTy;
941 ShadowMapping Mapping;
943 SmallVector<AllocaInst *, 16> AllocaVec;
944 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
945 SmallVector<Instruction *, 8> RetVec;
947 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
948 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
949 FunctionCallee AsanSetShadowFunc[0x100] = {};
950 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
951 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
953 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
954 struct AllocaPoisonCall {
955 IntrinsicInst *InsBefore;
956 AllocaInst *AI;
957 uint64_t Size;
958 bool DoPoison;
960 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
961 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
962 bool HasUntracedLifetimeIntrinsic = false;
964 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
965 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
966 AllocaInst *DynamicAllocaLayout = nullptr;
967 IntrinsicInst *LocalEscapeCall = nullptr;
969 bool HasInlineAsm = false;
970 bool HasReturnsTwiceCall = false;
971 bool PoisonStack;
973 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
974 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
975 C(ASan.C), IntptrTy(ASan.IntptrTy),
976 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
977 PoisonStack(ClStack &&
978 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
980 bool runOnFunction() {
981 if (!PoisonStack)
982 return false;
984 if (ClRedzoneByvalArgs)
985 copyArgsPassedByValToAllocas();
987 // Collect alloca, ret, lifetime instructions etc.
988 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
990 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
992 initializeCallbacks(*F.getParent());
994 if (HasUntracedLifetimeIntrinsic) {
995 // If there are lifetime intrinsics which couldn't be traced back to an
996 // alloca, we may not know exactly when a variable enters scope, and
997 // therefore should "fail safe" by not poisoning them.
998 StaticAllocaPoisonCallVec.clear();
999 DynamicAllocaPoisonCallVec.clear();
1002 processDynamicAllocas();
1003 processStaticAllocas();
1005 if (ClDebugStack) {
1006 LLVM_DEBUG(dbgs() << F);
1008 return true;
1011 // Arguments marked with the "byval" attribute are implicitly copied without
1012 // using an alloca instruction. To produce redzones for those arguments, we
1013 // copy them a second time into memory allocated with an alloca instruction.
1014 void copyArgsPassedByValToAllocas();
1016 // Finds all Alloca instructions and puts
1017 // poisoned red zones around all of them.
1018 // Then unpoison everything back before the function returns.
1019 void processStaticAllocas();
1020 void processDynamicAllocas();
1022 void createDynamicAllocasInitStorage();
1024 // ----------------------- Visitors.
1025 /// Collect all Ret instructions, or the musttail call instruction if it
1026 /// precedes the return instruction.
1027 void visitReturnInst(ReturnInst &RI) {
1028 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1029 RetVec.push_back(CI);
1030 else
1031 RetVec.push_back(&RI);
1034 /// Collect all Resume instructions.
1035 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1037 /// Collect all CatchReturnInst instructions.
1038 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1040 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1041 Value *SavedStack) {
1042 IRBuilder<> IRB(InstBefore);
1043 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1044 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1045 // need to adjust extracted SP to compute the address of the most recent
1046 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1047 // this purpose.
1048 if (!isa<ReturnInst>(InstBefore)) {
1049 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1050 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1051 {IntptrTy});
1053 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1055 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1056 DynamicAreaOffset);
1059 IRB.CreateCall(
1060 AsanAllocasUnpoisonFunc,
1061 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1064 // Unpoison dynamic allocas redzones.
1065 void unpoisonDynamicAllocas() {
1066 for (Instruction *Ret : RetVec)
1067 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1069 for (Instruction *StackRestoreInst : StackRestoreVec)
1070 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1071 StackRestoreInst->getOperand(0));
1074 // Deploy and poison redzones around dynamic alloca call. To do this, we
1075 // should replace this call with another one with changed parameters and
1076 // replace all its uses with new address, so
1077 // addr = alloca type, old_size, align
1078 // is replaced by
1079 // new_size = (old_size + additional_size) * sizeof(type)
1080 // tmp = alloca i8, new_size, max(align, 32)
1081 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1082 // Additional_size is added to make new memory allocation contain not only
1083 // requested memory, but also left, partial and right redzones.
1084 void handleDynamicAllocaCall(AllocaInst *AI);
1086 /// Collect Alloca instructions we want (and can) handle.
1087 void visitAllocaInst(AllocaInst &AI) {
1088 if (!ASan.isInterestingAlloca(AI)) {
1089 if (AI.isStaticAlloca()) {
1090 // Skip over allocas that are present *before* the first instrumented
1091 // alloca, we don't want to move those around.
1092 if (AllocaVec.empty())
1093 return;
1095 StaticAllocasToMoveUp.push_back(&AI);
1097 return;
1100 if (!AI.isStaticAlloca())
1101 DynamicAllocaVec.push_back(&AI);
1102 else
1103 AllocaVec.push_back(&AI);
1106 /// Collect lifetime intrinsic calls to check for use-after-scope
1107 /// errors.
1108 void visitIntrinsicInst(IntrinsicInst &II) {
1109 Intrinsic::ID ID = II.getIntrinsicID();
1110 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1111 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1112 if (!ASan.UseAfterScope)
1113 return;
1114 if (!II.isLifetimeStartOrEnd())
1115 return;
1116 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1117 auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1118 // If size argument is undefined, don't do anything.
1119 if (Size->isMinusOne()) return;
1120 // Check that size doesn't saturate uint64_t and can
1121 // be stored in IntptrTy.
1122 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1123 if (SizeValue == ~0ULL ||
1124 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1125 return;
1126 // Find alloca instruction that corresponds to llvm.lifetime argument.
1127 // Currently we can only handle lifetime markers pointing to the
1128 // beginning of the alloca.
1129 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1130 if (!AI) {
1131 HasUntracedLifetimeIntrinsic = true;
1132 return;
1134 // We're interested only in allocas we can handle.
1135 if (!ASan.isInterestingAlloca(*AI))
1136 return;
1137 bool DoPoison = (ID == Intrinsic::lifetime_end);
1138 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1139 if (AI->isStaticAlloca())
1140 StaticAllocaPoisonCallVec.push_back(APC);
1141 else if (ClInstrumentDynamicAllocas)
1142 DynamicAllocaPoisonCallVec.push_back(APC);
1145 void visitCallBase(CallBase &CB) {
1146 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1147 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1148 HasReturnsTwiceCall |= CI->canReturnTwice();
1152 // ---------------------- Helpers.
1153 void initializeCallbacks(Module &M);
1155 // Copies bytes from ShadowBytes into shadow memory for indexes where
1156 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1157 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1158 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1159 IRBuilder<> &IRB, Value *ShadowBase);
1160 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1161 size_t Begin, size_t End, IRBuilder<> &IRB,
1162 Value *ShadowBase);
1163 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1164 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1165 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1167 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1169 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1170 bool Dynamic);
1171 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1172 Instruction *ThenTerm, Value *ValueIfFalse);
1175 } // end anonymous namespace
1177 void LocationMetadata::parse(MDNode *MDN) {
1178 assert(MDN->getNumOperands() == 3);
1179 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1180 Filename = DIFilename->getString();
1181 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1182 ColumnNo =
1183 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1186 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1187 // we want to sanitize instead and reading this metadata on each pass over a
1188 // function instead of reading module level metadata at first.
1189 GlobalsMetadata::GlobalsMetadata(Module &M) {
1190 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1191 if (!Globals)
1192 return;
1193 for (auto MDN : Globals->operands()) {
1194 // Metadata node contains the global and the fields of "Entry".
1195 assert(MDN->getNumOperands() == 5);
1196 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1197 // The optimizer may optimize away a global entirely.
1198 if (!V)
1199 continue;
1200 auto *StrippedV = V->stripPointerCasts();
1201 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1202 if (!GV)
1203 continue;
1204 // We can already have an entry for GV if it was merged with another
1205 // global.
1206 Entry &E = Entries[GV];
1207 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1208 E.SourceLoc.parse(Loc);
1209 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1210 E.Name = Name->getString();
1211 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1212 E.IsDynInit |= IsDynInit->isOne();
1213 ConstantInt *IsExcluded =
1214 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1215 E.IsExcluded |= IsExcluded->isOne();
1219 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1221 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1222 ModuleAnalysisManager &AM) {
1223 return GlobalsMetadata(M);
1226 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1227 AnalysisManager<Function> &AM) {
1228 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1229 Module &M = *F.getParent();
1230 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1231 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1232 AddressSanitizer Sanitizer(M, R, Options.CompileKernel, Options.Recover,
1233 Options.UseAfterScope, Options.UseAfterReturn);
1234 if (Sanitizer.instrumentFunction(F, TLI))
1235 return PreservedAnalyses::none();
1236 return PreservedAnalyses::all();
1239 report_fatal_error(
1240 "The ASanGlobalsMetadataAnalysis is required to run before "
1241 "AddressSanitizer can run");
1242 return PreservedAnalyses::all();
1245 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1246 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator,
1247 AsanDtorKind DestructorKind)
1248 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1249 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1251 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1252 AnalysisManager<Module> &AM) {
1253 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1254 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1255 UseGlobalGC, UseOdrIndicator,
1256 DestructorKind);
1257 if (Sanitizer.instrumentModule(M))
1258 return PreservedAnalyses::none();
1259 return PreservedAnalyses::all();
1262 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1263 "Read metadata to mark which globals should be instrumented "
1264 "when running ASan.",
1265 false, true)
1267 char AddressSanitizerLegacyPass::ID = 0;
1269 INITIALIZE_PASS_BEGIN(
1270 AddressSanitizerLegacyPass, "asan",
1271 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1272 false)
1273 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1274 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1275 INITIALIZE_PASS_END(
1276 AddressSanitizerLegacyPass, "asan",
1277 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1278 false)
1280 FunctionPass *llvm::createAddressSanitizerFunctionPass(
1281 bool CompileKernel, bool Recover, bool UseAfterScope,
1282 AsanDetectStackUseAfterReturnMode UseAfterReturn) {
1283 assert(!CompileKernel || Recover);
1284 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope,
1285 UseAfterReturn);
1288 char ModuleAddressSanitizerLegacyPass::ID = 0;
1290 INITIALIZE_PASS(
1291 ModuleAddressSanitizerLegacyPass, "asan-module",
1292 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1293 "ModulePass",
1294 false, false)
1296 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1297 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1298 AsanDtorKind Destructor) {
1299 assert(!CompileKernel || Recover);
1300 return new ModuleAddressSanitizerLegacyPass(
1301 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1304 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1305 size_t Res = countTrailingZeros(TypeSize / 8);
1306 assert(Res < kNumberOfAccessSizes);
1307 return Res;
1310 /// Create a global describing a source location.
1311 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1312 LocationMetadata MD) {
1313 Constant *LocData[] = {
1314 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1315 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1316 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1318 auto LocStruct = ConstantStruct::getAnon(LocData);
1319 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1320 GlobalValue::PrivateLinkage, LocStruct,
1321 kAsanGenPrefix);
1322 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1323 return GV;
1326 /// Check if \p G has been created by a trusted compiler pass.
1327 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1328 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1329 if (G->getName().startswith("llvm."))
1330 return true;
1332 // Do not instrument asan globals.
1333 if (G->getName().startswith(kAsanGenPrefix) ||
1334 G->getName().startswith(kSanCovGenPrefix) ||
1335 G->getName().startswith(kODRGenPrefix))
1336 return true;
1338 // Do not instrument gcov counter arrays.
1339 if (G->getName() == "__llvm_gcov_ctr")
1340 return true;
1342 return false;
1345 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1346 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1347 unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1348 if (AddrSpace == 3 || AddrSpace == 5)
1349 return true;
1350 return false;
1353 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1354 // Shadow >> scale
1355 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1356 if (Mapping.Offset == 0) return Shadow;
1357 // (Shadow >> scale) | offset
1358 Value *ShadowBase;
1359 if (LocalDynamicShadow)
1360 ShadowBase = LocalDynamicShadow;
1361 else
1362 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1363 if (Mapping.OrShadowOffset)
1364 return IRB.CreateOr(Shadow, ShadowBase);
1365 else
1366 return IRB.CreateAdd(Shadow, ShadowBase);
1369 // Instrument memset/memmove/memcpy
1370 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1371 IRBuilder<> IRB(MI);
1372 if (isa<MemTransferInst>(MI)) {
1373 IRB.CreateCall(
1374 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1375 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1376 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1377 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1378 } else if (isa<MemSetInst>(MI)) {
1379 IRB.CreateCall(
1380 AsanMemset,
1381 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1382 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1383 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1385 MI->eraseFromParent();
1388 /// Check if we want (and can) handle this alloca.
1389 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1390 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1392 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1393 return PreviouslySeenAllocaInfo->getSecond();
1395 bool IsInteresting =
1396 (AI.getAllocatedType()->isSized() &&
1397 // alloca() may be called with 0 size, ignore it.
1398 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1399 // We are only interested in allocas not promotable to registers.
1400 // Promotable allocas are common under -O0.
1401 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1402 // inalloca allocas are not treated as static, and we don't want
1403 // dynamic alloca instrumentation for them as well.
1404 !AI.isUsedWithInAlloca() &&
1405 // swifterror allocas are register promoted by ISel
1406 !AI.isSwiftError());
1408 ProcessedAllocas[&AI] = IsInteresting;
1409 return IsInteresting;
1412 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1413 // Instrument acesses from different address spaces only for AMDGPU.
1414 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1415 if (PtrTy->getPointerAddressSpace() != 0 &&
1416 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1417 return true;
1419 // Ignore swifterror addresses.
1420 // swifterror memory addresses are mem2reg promoted by instruction
1421 // selection. As such they cannot have regular uses like an instrumentation
1422 // function and it makes no sense to track them as memory.
1423 if (Ptr->isSwiftError())
1424 return true;
1426 // Treat memory accesses to promotable allocas as non-interesting since they
1427 // will not cause memory violations. This greatly speeds up the instrumented
1428 // executable at -O0.
1429 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1430 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1431 return true;
1433 return false;
1436 void AddressSanitizer::getInterestingMemoryOperands(
1437 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1438 // Skip memory accesses inserted by another instrumentation.
1439 if (I->hasMetadata("nosanitize"))
1440 return;
1442 // Do not instrument the load fetching the dynamic shadow address.
1443 if (LocalDynamicShadow == I)
1444 return;
1446 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1447 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1448 return;
1449 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1450 LI->getType(), LI->getAlign());
1451 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1452 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1453 return;
1454 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1455 SI->getValueOperand()->getType(), SI->getAlign());
1456 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1457 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1458 return;
1459 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1460 RMW->getValOperand()->getType(), None);
1461 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1462 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1463 return;
1464 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1465 XCHG->getCompareOperand()->getType(), None);
1466 } else if (auto CI = dyn_cast<CallInst>(I)) {
1467 auto *F = CI->getCalledFunction();
1468 if (F && (F->getName().startswith("llvm.masked.load.") ||
1469 F->getName().startswith("llvm.masked.store."))) {
1470 bool IsWrite = F->getName().startswith("llvm.masked.store.");
1471 // Masked store has an initial operand for the value.
1472 unsigned OpOffset = IsWrite ? 1 : 0;
1473 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1474 return;
1476 auto BasePtr = CI->getOperand(OpOffset);
1477 if (ignoreAccess(BasePtr))
1478 return;
1479 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1480 MaybeAlign Alignment = Align(1);
1481 // Otherwise no alignment guarantees. We probably got Undef.
1482 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1483 Alignment = Op->getMaybeAlignValue();
1484 Value *Mask = CI->getOperand(2 + OpOffset);
1485 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1486 } else {
1487 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1488 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1489 ignoreAccess(CI->getArgOperand(ArgNo)))
1490 continue;
1491 Type *Ty = CI->getParamByValType(ArgNo);
1492 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1498 static bool isPointerOperand(Value *V) {
1499 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1502 // This is a rough heuristic; it may cause both false positives and
1503 // false negatives. The proper implementation requires cooperation with
1504 // the frontend.
1505 static bool isInterestingPointerComparison(Instruction *I) {
1506 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1507 if (!Cmp->isRelational())
1508 return false;
1509 } else {
1510 return false;
1512 return isPointerOperand(I->getOperand(0)) &&
1513 isPointerOperand(I->getOperand(1));
1516 // This is a rough heuristic; it may cause both false positives and
1517 // false negatives. The proper implementation requires cooperation with
1518 // the frontend.
1519 static bool isInterestingPointerSubtraction(Instruction *I) {
1520 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1521 if (BO->getOpcode() != Instruction::Sub)
1522 return false;
1523 } else {
1524 return false;
1526 return isPointerOperand(I->getOperand(0)) &&
1527 isPointerOperand(I->getOperand(1));
1530 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1531 // If a global variable does not have dynamic initialization we don't
1532 // have to instrument it. However, if a global does not have initializer
1533 // at all, we assume it has dynamic initializer (in other TU).
1535 // FIXME: Metadata should be attched directly to the global directly instead
1536 // of being added to llvm.asan.globals.
1537 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1540 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1541 Instruction *I) {
1542 IRBuilder<> IRB(I);
1543 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1544 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1545 for (Value *&i : Param) {
1546 if (i->getType()->isPointerTy())
1547 i = IRB.CreatePointerCast(i, IntptrTy);
1549 IRB.CreateCall(F, Param);
1552 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1553 Instruction *InsertBefore, Value *Addr,
1554 MaybeAlign Alignment, unsigned Granularity,
1555 uint32_t TypeSize, bool IsWrite,
1556 Value *SizeArgument, bool UseCalls,
1557 uint32_t Exp) {
1558 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1559 // if the data is properly aligned.
1560 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1561 TypeSize == 128) &&
1562 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1563 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1564 nullptr, UseCalls, Exp);
1565 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1566 IsWrite, nullptr, UseCalls, Exp);
1569 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1570 const DataLayout &DL, Type *IntptrTy,
1571 Value *Mask, Instruction *I,
1572 Value *Addr, MaybeAlign Alignment,
1573 unsigned Granularity, uint32_t TypeSize,
1574 bool IsWrite, Value *SizeArgument,
1575 bool UseCalls, uint32_t Exp) {
1576 auto *VTy = cast<FixedVectorType>(
1577 cast<PointerType>(Addr->getType())->getElementType());
1578 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1579 unsigned Num = VTy->getNumElements();
1580 auto Zero = ConstantInt::get(IntptrTy, 0);
1581 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1582 Value *InstrumentedAddress = nullptr;
1583 Instruction *InsertBefore = I;
1584 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1585 // dyn_cast as we might get UndefValue
1586 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1587 if (Masked->isZero())
1588 // Mask is constant false, so no instrumentation needed.
1589 continue;
1590 // If we have a true or undef value, fall through to doInstrumentAddress
1591 // with InsertBefore == I
1593 } else {
1594 IRBuilder<> IRB(I);
1595 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1596 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1597 InsertBefore = ThenTerm;
1600 IRBuilder<> IRB(InsertBefore);
1601 InstrumentedAddress =
1602 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1603 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1604 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1605 UseCalls, Exp);
1609 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1610 InterestingMemoryOperand &O, bool UseCalls,
1611 const DataLayout &DL) {
1612 Value *Addr = O.getPtr();
1614 // Optimization experiments.
1615 // The experiments can be used to evaluate potential optimizations that remove
1616 // instrumentation (assess false negatives). Instead of completely removing
1617 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1618 // experiments that want to remove instrumentation of this instruction).
1619 // If Exp is non-zero, this pass will emit special calls into runtime
1620 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1621 // make runtime terminate the program in a special way (with a different
1622 // exit status). Then you run the new compiler on a buggy corpus, collect
1623 // the special terminations (ideally, you don't see them at all -- no false
1624 // negatives) and make the decision on the optimization.
1625 uint32_t Exp = ClForceExperiment;
1627 if (ClOpt && ClOptGlobals) {
1628 // If initialization order checking is disabled, a simple access to a
1629 // dynamically initialized global is always valid.
1630 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1631 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1632 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1633 NumOptimizedAccessesToGlobalVar++;
1634 return;
1638 if (ClOpt && ClOptStack) {
1639 // A direct inbounds access to a stack variable is always valid.
1640 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1641 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1642 NumOptimizedAccessesToStackVar++;
1643 return;
1647 if (O.IsWrite)
1648 NumInstrumentedWrites++;
1649 else
1650 NumInstrumentedReads++;
1652 unsigned Granularity = 1 << Mapping.Scale;
1653 if (O.MaybeMask) {
1654 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1655 Addr, O.Alignment, Granularity, O.TypeSize,
1656 O.IsWrite, nullptr, UseCalls, Exp);
1657 } else {
1658 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1659 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1660 Exp);
1664 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1665 Value *Addr, bool IsWrite,
1666 size_t AccessSizeIndex,
1667 Value *SizeArgument,
1668 uint32_t Exp) {
1669 IRBuilder<> IRB(InsertBefore);
1670 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1671 CallInst *Call = nullptr;
1672 if (SizeArgument) {
1673 if (Exp == 0)
1674 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1675 {Addr, SizeArgument});
1676 else
1677 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1678 {Addr, SizeArgument, ExpVal});
1679 } else {
1680 if (Exp == 0)
1681 Call =
1682 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1683 else
1684 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1685 {Addr, ExpVal});
1688 Call->setCannotMerge();
1689 return Call;
1692 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1693 Value *ShadowValue,
1694 uint32_t TypeSize) {
1695 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1696 // Addr & (Granularity - 1)
1697 Value *LastAccessedByte =
1698 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1699 // (Addr & (Granularity - 1)) + size - 1
1700 if (TypeSize / 8 > 1)
1701 LastAccessedByte = IRB.CreateAdd(
1702 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1703 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1704 LastAccessedByte =
1705 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1706 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1707 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1710 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1711 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1712 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1713 // Do not instrument unsupported addrspaces.
1714 if (isUnsupportedAMDGPUAddrspace(Addr))
1715 return nullptr;
1716 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1717 // Follow host instrumentation for global and constant addresses.
1718 if (PtrTy->getPointerAddressSpace() != 0)
1719 return InsertBefore;
1720 // Instrument generic addresses in supported addressspaces.
1721 IRBuilder<> IRB(InsertBefore);
1722 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1723 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1724 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1725 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1726 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1727 Value *AddrSpaceZeroLanding =
1728 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1729 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1730 return InsertBefore;
1733 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1734 Instruction *InsertBefore, Value *Addr,
1735 uint32_t TypeSize, bool IsWrite,
1736 Value *SizeArgument, bool UseCalls,
1737 uint32_t Exp) {
1738 if (TargetTriple.isAMDGPU()) {
1739 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1740 TypeSize, IsWrite, SizeArgument);
1741 if (!InsertBefore)
1742 return;
1745 IRBuilder<> IRB(InsertBefore);
1746 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1747 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1749 if (UseCalls) {
1750 if (Exp == 0)
1751 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1752 AddrLong);
1753 else
1754 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1755 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1756 return;
1759 Type *ShadowTy =
1760 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1761 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1762 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1763 Value *CmpVal = Constant::getNullValue(ShadowTy);
1764 Value *ShadowValue =
1765 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1767 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1768 size_t Granularity = 1ULL << Mapping.Scale;
1769 Instruction *CrashTerm = nullptr;
1771 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1772 // We use branch weights for the slow path check, to indicate that the slow
1773 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1774 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1775 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1776 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1777 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1778 IRB.SetInsertPoint(CheckTerm);
1779 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1780 if (Recover) {
1781 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1782 } else {
1783 BasicBlock *CrashBlock =
1784 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1785 CrashTerm = new UnreachableInst(*C, CrashBlock);
1786 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1787 ReplaceInstWithInst(CheckTerm, NewTerm);
1789 } else {
1790 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1793 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1794 AccessSizeIndex, SizeArgument, Exp);
1795 Crash->setDebugLoc(OrigIns->getDebugLoc());
1798 // Instrument unusual size or unusual alignment.
1799 // We can not do it with a single check, so we do 1-byte check for the first
1800 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1801 // to report the actual access size.
1802 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1803 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1804 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1805 IRBuilder<> IRB(InsertBefore);
1806 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1807 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1808 if (UseCalls) {
1809 if (Exp == 0)
1810 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1811 {AddrLong, Size});
1812 else
1813 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1814 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1815 } else {
1816 Value *LastByte = IRB.CreateIntToPtr(
1817 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1818 Addr->getType());
1819 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1820 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1824 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1825 GlobalValue *ModuleName) {
1826 // Set up the arguments to our poison/unpoison functions.
1827 IRBuilder<> IRB(&GlobalInit.front(),
1828 GlobalInit.front().getFirstInsertionPt());
1830 // Add a call to poison all external globals before the given function starts.
1831 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1832 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1834 // Add calls to unpoison all globals before each return instruction.
1835 for (auto &BB : GlobalInit.getBasicBlockList())
1836 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1837 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1840 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1841 Module &M, GlobalValue *ModuleName) {
1842 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1843 if (!GV)
1844 return;
1846 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1847 if (!CA)
1848 return;
1850 for (Use &OP : CA->operands()) {
1851 if (isa<ConstantAggregateZero>(OP)) continue;
1852 ConstantStruct *CS = cast<ConstantStruct>(OP);
1854 // Must have a function or null ptr.
1855 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1856 if (F->getName() == kAsanModuleCtorName) continue;
1857 auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1858 // Don't instrument CTORs that will run before asan.module_ctor.
1859 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1860 continue;
1861 poisonOneInitializer(*F, ModuleName);
1866 const GlobalVariable *
1867 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1868 // In case this function should be expanded to include rules that do not just
1869 // apply when CompileKernel is true, either guard all existing rules with an
1870 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1871 // should also apply to user space.
1872 assert(CompileKernel && "Only expecting to be called when compiling kernel");
1874 const Constant *C = GA.getAliasee();
1876 // When compiling the kernel, globals that are aliased by symbols prefixed
1877 // by "__" are special and cannot be padded with a redzone.
1878 if (GA.getName().startswith("__"))
1879 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1881 return nullptr;
1884 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1885 Type *Ty = G->getValueType();
1886 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1888 // FIXME: Metadata should be attched directly to the global directly instead
1889 // of being added to llvm.asan.globals.
1890 if (GlobalsMD.get(G).IsExcluded) return false;
1891 if (!Ty->isSized()) return false;
1892 if (!G->hasInitializer()) return false;
1893 // Globals in address space 1 and 4 are supported for AMDGPU.
1894 if (G->getAddressSpace() &&
1895 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1896 return false;
1897 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1898 // Two problems with thread-locals:
1899 // - The address of the main thread's copy can't be computed at link-time.
1900 // - Need to poison all copies, not just the main thread's one.
1901 if (G->isThreadLocal()) return false;
1902 // For now, just ignore this Global if the alignment is large.
1903 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1905 // For non-COFF targets, only instrument globals known to be defined by this
1906 // TU.
1907 // FIXME: We can instrument comdat globals on ELF if we are using the
1908 // GC-friendly metadata scheme.
1909 if (!TargetTriple.isOSBinFormatCOFF()) {
1910 if (!G->hasExactDefinition() || G->hasComdat())
1911 return false;
1912 } else {
1913 // On COFF, don't instrument non-ODR linkages.
1914 if (G->isInterposable())
1915 return false;
1918 // If a comdat is present, it must have a selection kind that implies ODR
1919 // semantics: no duplicates, any, or exact match.
1920 if (Comdat *C = G->getComdat()) {
1921 switch (C->getSelectionKind()) {
1922 case Comdat::Any:
1923 case Comdat::ExactMatch:
1924 case Comdat::NoDeduplicate:
1925 break;
1926 case Comdat::Largest:
1927 case Comdat::SameSize:
1928 return false;
1932 if (G->hasSection()) {
1933 // The kernel uses explicit sections for mostly special global variables
1934 // that we should not instrument. E.g. the kernel may rely on their layout
1935 // without redzones, or remove them at link time ("discard.*"), etc.
1936 if (CompileKernel)
1937 return false;
1939 StringRef Section = G->getSection();
1941 // Globals from llvm.metadata aren't emitted, do not instrument them.
1942 if (Section == "llvm.metadata") return false;
1943 // Do not instrument globals from special LLVM sections.
1944 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1946 // Do not instrument function pointers to initialization and termination
1947 // routines: dynamic linker will not properly handle redzones.
1948 if (Section.startswith(".preinit_array") ||
1949 Section.startswith(".init_array") ||
1950 Section.startswith(".fini_array")) {
1951 return false;
1954 // Do not instrument user-defined sections (with names resembling
1955 // valid C identifiers)
1956 if (TargetTriple.isOSBinFormatELF()) {
1957 if (llvm::all_of(Section,
1958 [](char c) { return llvm::isAlnum(c) || c == '_'; }))
1959 return false;
1962 // On COFF, if the section name contains '$', it is highly likely that the
1963 // user is using section sorting to create an array of globals similar to
1964 // the way initialization callbacks are registered in .init_array and
1965 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1966 // to such globals is counterproductive, because the intent is that they
1967 // will form an array, and out-of-bounds accesses are expected.
1968 // See https://github.com/google/sanitizers/issues/305
1969 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1970 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1971 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1972 << *G << "\n");
1973 return false;
1976 if (TargetTriple.isOSBinFormatMachO()) {
1977 StringRef ParsedSegment, ParsedSection;
1978 unsigned TAA = 0, StubSize = 0;
1979 bool TAAParsed;
1980 cantFail(MCSectionMachO::ParseSectionSpecifier(
1981 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
1983 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1984 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1985 // them.
1986 if (ParsedSegment == "__OBJC" ||
1987 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1988 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1989 return false;
1991 // See https://github.com/google/sanitizers/issues/32
1992 // Constant CFString instances are compiled in the following way:
1993 // -- the string buffer is emitted into
1994 // __TEXT,__cstring,cstring_literals
1995 // -- the constant NSConstantString structure referencing that buffer
1996 // is placed into __DATA,__cfstring
1997 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1998 // Moreover, it causes the linker to crash on OS X 10.7
1999 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2000 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2001 return false;
2003 // The linker merges the contents of cstring_literals and removes the
2004 // trailing zeroes.
2005 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2006 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2007 return false;
2012 if (CompileKernel) {
2013 // Globals that prefixed by "__" are special and cannot be padded with a
2014 // redzone.
2015 if (G->getName().startswith("__"))
2016 return false;
2019 return true;
2022 // On Mach-O platforms, we emit global metadata in a separate section of the
2023 // binary in order to allow the linker to properly dead strip. This is only
2024 // supported on recent versions of ld64.
2025 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2026 if (!TargetTriple.isOSBinFormatMachO())
2027 return false;
2029 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2030 return true;
2031 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2032 return true;
2033 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2034 return true;
2036 return false;
2039 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2040 switch (TargetTriple.getObjectFormat()) {
2041 case Triple::COFF: return ".ASAN$GL";
2042 case Triple::ELF: return "asan_globals";
2043 case Triple::MachO: return "__DATA,__asan_globals,regular";
2044 case Triple::Wasm:
2045 case Triple::GOFF:
2046 case Triple::XCOFF:
2047 report_fatal_error(
2048 "ModuleAddressSanitizer not implemented for object file format");
2049 case Triple::UnknownObjectFormat:
2050 break;
2052 llvm_unreachable("unsupported object format");
2055 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2056 IRBuilder<> IRB(*C);
2058 // Declare our poisoning and unpoisoning functions.
2059 AsanPoisonGlobals =
2060 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2061 AsanUnpoisonGlobals =
2062 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2064 // Declare functions that register/unregister globals.
2065 AsanRegisterGlobals = M.getOrInsertFunction(
2066 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2067 AsanUnregisterGlobals = M.getOrInsertFunction(
2068 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2070 // Declare the functions that find globals in a shared object and then invoke
2071 // the (un)register function on them.
2072 AsanRegisterImageGlobals = M.getOrInsertFunction(
2073 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2074 AsanUnregisterImageGlobals = M.getOrInsertFunction(
2075 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2077 AsanRegisterElfGlobals =
2078 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2079 IntptrTy, IntptrTy, IntptrTy);
2080 AsanUnregisterElfGlobals =
2081 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2082 IntptrTy, IntptrTy, IntptrTy);
2085 // Put the metadata and the instrumented global in the same group. This ensures
2086 // that the metadata is discarded if the instrumented global is discarded.
2087 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2088 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2089 Module &M = *G->getParent();
2090 Comdat *C = G->getComdat();
2091 if (!C) {
2092 if (!G->hasName()) {
2093 // If G is unnamed, it must be internal. Give it an artificial name
2094 // so we can put it in a comdat.
2095 assert(G->hasLocalLinkage());
2096 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2099 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2100 std::string Name = std::string(G->getName());
2101 Name += InternalSuffix;
2102 C = M.getOrInsertComdat(Name);
2103 } else {
2104 C = M.getOrInsertComdat(G->getName());
2107 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2108 // linkage to internal linkage so that a symbol table entry is emitted. This
2109 // is necessary in order to create the comdat group.
2110 if (TargetTriple.isOSBinFormatCOFF()) {
2111 C->setSelectionKind(Comdat::NoDeduplicate);
2112 if (G->hasPrivateLinkage())
2113 G->setLinkage(GlobalValue::InternalLinkage);
2115 G->setComdat(C);
2118 assert(G->hasComdat());
2119 Metadata->setComdat(G->getComdat());
2122 // Create a separate metadata global and put it in the appropriate ASan
2123 // global registration section.
2124 GlobalVariable *
2125 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2126 StringRef OriginalName) {
2127 auto Linkage = TargetTriple.isOSBinFormatMachO()
2128 ? GlobalVariable::InternalLinkage
2129 : GlobalVariable::PrivateLinkage;
2130 GlobalVariable *Metadata = new GlobalVariable(
2131 M, Initializer->getType(), false, Linkage, Initializer,
2132 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2133 Metadata->setSection(getGlobalMetadataSection());
2134 return Metadata;
2137 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2138 AsanDtorFunction = Function::createWithDefaultAttr(
2139 FunctionType::get(Type::getVoidTy(*C), false),
2140 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2141 AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2142 // Ensure Dtor cannot be discarded, even if in a comdat.
2143 appendToUsed(M, {AsanDtorFunction});
2144 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2146 return ReturnInst::Create(*C, AsanDtorBB);
2149 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2150 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2151 ArrayRef<Constant *> MetadataInitializers) {
2152 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2153 auto &DL = M.getDataLayout();
2155 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2156 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2157 Constant *Initializer = MetadataInitializers[i];
2158 GlobalVariable *G = ExtendedGlobals[i];
2159 GlobalVariable *Metadata =
2160 CreateMetadataGlobal(M, Initializer, G->getName());
2161 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2162 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2163 MetadataGlobals[i] = Metadata;
2165 // The MSVC linker always inserts padding when linking incrementally. We
2166 // cope with that by aligning each struct to its size, which must be a power
2167 // of two.
2168 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2169 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2170 "global metadata will not be padded appropriately");
2171 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2173 SetComdatForGlobalMetadata(G, Metadata, "");
2176 // Update llvm.compiler.used, adding the new metadata globals. This is
2177 // needed so that during LTO these variables stay alive.
2178 if (!MetadataGlobals.empty())
2179 appendToCompilerUsed(M, MetadataGlobals);
2182 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2183 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2184 ArrayRef<Constant *> MetadataInitializers,
2185 const std::string &UniqueModuleId) {
2186 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2188 // Putting globals in a comdat changes the semantic and potentially cause
2189 // false negative odr violations at link time. If odr indicators are used, we
2190 // keep the comdat sections, as link time odr violations will be dectected on
2191 // the odr indicator symbols.
2192 bool UseComdatForGlobalsGC = UseOdrIndicator;
2194 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2195 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2196 GlobalVariable *G = ExtendedGlobals[i];
2197 GlobalVariable *Metadata =
2198 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2199 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2200 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2201 MetadataGlobals[i] = Metadata;
2203 if (UseComdatForGlobalsGC)
2204 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2207 // Update llvm.compiler.used, adding the new metadata globals. This is
2208 // needed so that during LTO these variables stay alive.
2209 if (!MetadataGlobals.empty())
2210 appendToCompilerUsed(M, MetadataGlobals);
2212 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2213 // to look up the loaded image that contains it. Second, we can store in it
2214 // whether registration has already occurred, to prevent duplicate
2215 // registration.
2217 // Common linkage ensures that there is only one global per shared library.
2218 GlobalVariable *RegisteredFlag = new GlobalVariable(
2219 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2220 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2221 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2223 // Create start and stop symbols.
2224 GlobalVariable *StartELFMetadata = new GlobalVariable(
2225 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2226 "__start_" + getGlobalMetadataSection());
2227 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2228 GlobalVariable *StopELFMetadata = new GlobalVariable(
2229 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2230 "__stop_" + getGlobalMetadataSection());
2231 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2233 // Create a call to register the globals with the runtime.
2234 IRB.CreateCall(AsanRegisterElfGlobals,
2235 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2236 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2237 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2239 // We also need to unregister globals at the end, e.g., when a shared library
2240 // gets closed.
2241 if (DestructorKind != AsanDtorKind::None) {
2242 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2243 IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2244 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2245 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2246 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2250 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2251 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2252 ArrayRef<Constant *> MetadataInitializers) {
2253 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2255 // On recent Mach-O platforms, use a structure which binds the liveness of
2256 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2257 // created to be added to llvm.compiler.used
2258 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2259 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2261 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2262 Constant *Initializer = MetadataInitializers[i];
2263 GlobalVariable *G = ExtendedGlobals[i];
2264 GlobalVariable *Metadata =
2265 CreateMetadataGlobal(M, Initializer, G->getName());
2267 // On recent Mach-O platforms, we emit the global metadata in a way that
2268 // allows the linker to properly strip dead globals.
2269 auto LivenessBinder =
2270 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2271 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2272 GlobalVariable *Liveness = new GlobalVariable(
2273 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2274 Twine("__asan_binder_") + G->getName());
2275 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2276 LivenessGlobals[i] = Liveness;
2279 // Update llvm.compiler.used, adding the new liveness globals. This is
2280 // needed so that during LTO these variables stay alive. The alternative
2281 // would be to have the linker handling the LTO symbols, but libLTO
2282 // current API does not expose access to the section for each symbol.
2283 if (!LivenessGlobals.empty())
2284 appendToCompilerUsed(M, LivenessGlobals);
2286 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2287 // to look up the loaded image that contains it. Second, we can store in it
2288 // whether registration has already occurred, to prevent duplicate
2289 // registration.
2291 // common linkage ensures that there is only one global per shared library.
2292 GlobalVariable *RegisteredFlag = new GlobalVariable(
2293 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2294 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2295 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2297 IRB.CreateCall(AsanRegisterImageGlobals,
2298 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2300 // We also need to unregister globals at the end, e.g., when a shared library
2301 // gets closed.
2302 if (DestructorKind != AsanDtorKind::None) {
2303 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2304 IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2305 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2309 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2310 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2311 ArrayRef<Constant *> MetadataInitializers) {
2312 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2313 unsigned N = ExtendedGlobals.size();
2314 assert(N > 0);
2316 // On platforms that don't have a custom metadata section, we emit an array
2317 // of global metadata structures.
2318 ArrayType *ArrayOfGlobalStructTy =
2319 ArrayType::get(MetadataInitializers[0]->getType(), N);
2320 auto AllGlobals = new GlobalVariable(
2321 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2322 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2323 if (Mapping.Scale > 3)
2324 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2326 IRB.CreateCall(AsanRegisterGlobals,
2327 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2328 ConstantInt::get(IntptrTy, N)});
2330 // We also need to unregister globals at the end, e.g., when a shared library
2331 // gets closed.
2332 if (DestructorKind != AsanDtorKind::None) {
2333 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2334 IrbDtor.CreateCall(AsanUnregisterGlobals,
2335 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2336 ConstantInt::get(IntptrTy, N)});
2340 // This function replaces all global variables with new variables that have
2341 // trailing redzones. It also creates a function that poisons
2342 // redzones and inserts this function into llvm.global_ctors.
2343 // Sets *CtorComdat to true if the global registration code emitted into the
2344 // asan constructor is comdat-compatible.
2345 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2346 bool *CtorComdat) {
2347 *CtorComdat = false;
2349 // Build set of globals that are aliased by some GA, where
2350 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2351 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2352 if (CompileKernel) {
2353 for (auto &GA : M.aliases()) {
2354 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2355 AliasedGlobalExclusions.insert(GV);
2359 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2360 for (auto &G : M.globals()) {
2361 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2362 GlobalsToChange.push_back(&G);
2365 size_t n = GlobalsToChange.size();
2366 if (n == 0) {
2367 *CtorComdat = true;
2368 return false;
2371 auto &DL = M.getDataLayout();
2373 // A global is described by a structure
2374 // size_t beg;
2375 // size_t size;
2376 // size_t size_with_redzone;
2377 // const char *name;
2378 // const char *module_name;
2379 // size_t has_dynamic_init;
2380 // void *source_location;
2381 // size_t odr_indicator;
2382 // We initialize an array of such structures and pass it to a run-time call.
2383 StructType *GlobalStructTy =
2384 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2385 IntptrTy, IntptrTy, IntptrTy);
2386 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2387 SmallVector<Constant *, 16> Initializers(n);
2389 bool HasDynamicallyInitializedGlobals = false;
2391 // We shouldn't merge same module names, as this string serves as unique
2392 // module ID in runtime.
2393 GlobalVariable *ModuleName = createPrivateGlobalForString(
2394 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2396 for (size_t i = 0; i < n; i++) {
2397 GlobalVariable *G = GlobalsToChange[i];
2399 // FIXME: Metadata should be attched directly to the global directly instead
2400 // of being added to llvm.asan.globals.
2401 auto MD = GlobalsMD.get(G);
2402 StringRef NameForGlobal = G->getName();
2403 // Create string holding the global name (use global name from metadata
2404 // if it's available, otherwise just write the name of global variable).
2405 GlobalVariable *Name = createPrivateGlobalForString(
2406 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2407 /*AllowMerging*/ true, kAsanGenPrefix);
2409 Type *Ty = G->getValueType();
2410 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2411 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2412 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2414 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2415 Constant *NewInitializer = ConstantStruct::get(
2416 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2418 // Create a new global variable with enough space for a redzone.
2419 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2420 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2421 Linkage = GlobalValue::InternalLinkage;
2422 GlobalVariable *NewGlobal = new GlobalVariable(
2423 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2424 G->getThreadLocalMode(), G->getAddressSpace());
2425 NewGlobal->copyAttributesFrom(G);
2426 NewGlobal->setComdat(G->getComdat());
2427 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2428 // Don't fold globals with redzones. ODR violation detector and redzone
2429 // poisoning implicitly creates a dependence on the global's address, so it
2430 // is no longer valid for it to be marked unnamed_addr.
2431 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2433 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2434 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2435 G->isConstant()) {
2436 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2437 if (Seq && Seq->isCString())
2438 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2441 // Transfer the debug info and type metadata. The payload starts at offset
2442 // zero so we can copy the metadata over as is.
2443 NewGlobal->copyMetadata(G, 0);
2445 Value *Indices2[2];
2446 Indices2[0] = IRB.getInt32(0);
2447 Indices2[1] = IRB.getInt32(0);
2449 G->replaceAllUsesWith(
2450 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2451 NewGlobal->takeName(G);
2452 G->eraseFromParent();
2453 NewGlobals[i] = NewGlobal;
2455 Constant *SourceLoc;
2456 if (!MD.SourceLoc.empty()) {
2457 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2458 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2459 } else {
2460 SourceLoc = ConstantInt::get(IntptrTy, 0);
2463 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2464 GlobalValue *InstrumentedGlobal = NewGlobal;
2466 bool CanUsePrivateAliases =
2467 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2468 TargetTriple.isOSBinFormatWasm();
2469 if (CanUsePrivateAliases && UsePrivateAlias) {
2470 // Create local alias for NewGlobal to avoid crash on ODR between
2471 // instrumented and non-instrumented libraries.
2472 InstrumentedGlobal =
2473 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2476 // ODR should not happen for local linkage.
2477 if (NewGlobal->hasLocalLinkage()) {
2478 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2479 IRB.getInt8PtrTy());
2480 } else if (UseOdrIndicator) {
2481 // With local aliases, we need to provide another externally visible
2482 // symbol __odr_asan_XXX to detect ODR violation.
2483 auto *ODRIndicatorSym =
2484 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2485 Constant::getNullValue(IRB.getInt8Ty()),
2486 kODRGenPrefix + NameForGlobal, nullptr,
2487 NewGlobal->getThreadLocalMode());
2489 // Set meaningful attributes for indicator symbol.
2490 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2491 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2492 ODRIndicatorSym->setAlignment(Align(1));
2493 ODRIndicator = ODRIndicatorSym;
2496 Constant *Initializer = ConstantStruct::get(
2497 GlobalStructTy,
2498 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2499 ConstantInt::get(IntptrTy, SizeInBytes),
2500 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2501 ConstantExpr::getPointerCast(Name, IntptrTy),
2502 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2503 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2504 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2506 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2508 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2510 Initializers[i] = Initializer;
2513 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2514 // ConstantMerge'ing them.
2515 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2516 for (size_t i = 0; i < n; i++) {
2517 GlobalVariable *G = NewGlobals[i];
2518 if (G->getName().empty()) continue;
2519 GlobalsToAddToUsedList.push_back(G);
2521 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2523 std::string ELFUniqueModuleId =
2524 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2525 : "";
2527 if (!ELFUniqueModuleId.empty()) {
2528 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2529 *CtorComdat = true;
2530 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2531 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2532 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2533 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2534 } else {
2535 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2538 // Create calls for poisoning before initializers run and unpoisoning after.
2539 if (HasDynamicallyInitializedGlobals)
2540 createInitializerPoisonCalls(M, ModuleName);
2542 LLVM_DEBUG(dbgs() << M);
2543 return true;
2546 uint64_t
2547 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2548 constexpr uint64_t kMaxRZ = 1 << 18;
2549 const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2551 uint64_t RZ = 0;
2552 if (SizeInBytes <= MinRZ / 2) {
2553 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2554 // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2555 // half of MinRZ.
2556 RZ = MinRZ - SizeInBytes;
2557 } else {
2558 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2559 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2561 // Round up to multiple of MinRZ.
2562 if (SizeInBytes % MinRZ)
2563 RZ += MinRZ - (SizeInBytes % MinRZ);
2566 assert((RZ + SizeInBytes) % MinRZ == 0);
2568 return RZ;
2571 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2572 int LongSize = M.getDataLayout().getPointerSizeInBits();
2573 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2574 int Version = 8;
2575 // 32-bit Android is one version ahead because of the switch to dynamic
2576 // shadow.
2577 Version += (LongSize == 32 && isAndroid);
2578 return Version;
2581 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2582 initializeCallbacks(M);
2584 // Create a module constructor. A destructor is created lazily because not all
2585 // platforms, and not all modules need it.
2586 if (CompileKernel) {
2587 // The kernel always builds with its own runtime, and therefore does not
2588 // need the init and version check calls.
2589 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2590 } else {
2591 std::string AsanVersion = std::to_string(GetAsanVersion(M));
2592 std::string VersionCheckName =
2593 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2594 std::tie(AsanCtorFunction, std::ignore) =
2595 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2596 kAsanInitName, /*InitArgTypes=*/{},
2597 /*InitArgs=*/{}, VersionCheckName);
2600 bool CtorComdat = true;
2601 if (ClGlobals) {
2602 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2603 InstrumentGlobals(IRB, M, &CtorComdat);
2606 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2608 // Put the constructor and destructor in comdat if both
2609 // (1) global instrumentation is not TU-specific
2610 // (2) target is ELF.
2611 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2612 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2613 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2614 if (AsanDtorFunction) {
2615 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2616 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2618 } else {
2619 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2620 if (AsanDtorFunction)
2621 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2624 return true;
2627 void AddressSanitizer::initializeCallbacks(Module &M) {
2628 IRBuilder<> IRB(*C);
2629 // Create __asan_report* callbacks.
2630 // IsWrite, TypeSize and Exp are encoded in the function name.
2631 for (int Exp = 0; Exp < 2; Exp++) {
2632 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2633 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2634 const std::string ExpStr = Exp ? "exp_" : "";
2635 const std::string EndingStr = Recover ? "_noabort" : "";
2637 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2638 SmallVector<Type *, 2> Args1{1, IntptrTy};
2639 if (Exp) {
2640 Type *ExpType = Type::getInt32Ty(*C);
2641 Args2.push_back(ExpType);
2642 Args1.push_back(ExpType);
2644 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2645 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2646 FunctionType::get(IRB.getVoidTy(), Args2, false));
2648 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2649 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2650 FunctionType::get(IRB.getVoidTy(), Args2, false));
2652 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2653 AccessSizeIndex++) {
2654 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2655 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2656 M.getOrInsertFunction(
2657 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2658 FunctionType::get(IRB.getVoidTy(), Args1, false));
2660 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2661 M.getOrInsertFunction(
2662 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2663 FunctionType::get(IRB.getVoidTy(), Args1, false));
2668 const std::string MemIntrinCallbackPrefix =
2669 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2670 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2671 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2672 IRB.getInt8PtrTy(), IntptrTy);
2673 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2674 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2675 IRB.getInt8PtrTy(), IntptrTy);
2676 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2677 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2678 IRB.getInt32Ty(), IntptrTy);
2680 AsanHandleNoReturnFunc =
2681 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2683 AsanPtrCmpFunction =
2684 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2685 AsanPtrSubFunction =
2686 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2687 if (Mapping.InGlobal)
2688 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2689 ArrayType::get(IRB.getInt8Ty(), 0));
2691 AMDGPUAddressShared = M.getOrInsertFunction(
2692 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2693 AMDGPUAddressPrivate = M.getOrInsertFunction(
2694 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2697 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2698 // For each NSObject descendant having a +load method, this method is invoked
2699 // by the ObjC runtime before any of the static constructors is called.
2700 // Therefore we need to instrument such methods with a call to __asan_init
2701 // at the beginning in order to initialize our runtime before any access to
2702 // the shadow memory.
2703 // We cannot just ignore these methods, because they may call other
2704 // instrumented functions.
2705 if (F.getName().find(" load]") != std::string::npos) {
2706 FunctionCallee AsanInitFunction =
2707 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2708 IRBuilder<> IRB(&F.front(), F.front().begin());
2709 IRB.CreateCall(AsanInitFunction, {});
2710 return true;
2712 return false;
2715 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2716 // Generate code only when dynamic addressing is needed.
2717 if (Mapping.Offset != kDynamicShadowSentinel)
2718 return false;
2720 IRBuilder<> IRB(&F.front().front());
2721 if (Mapping.InGlobal) {
2722 if (ClWithIfuncSuppressRemat) {
2723 // An empty inline asm with input reg == output reg.
2724 // An opaque pointer-to-int cast, basically.
2725 InlineAsm *Asm = InlineAsm::get(
2726 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2727 StringRef(""), StringRef("=r,0"),
2728 /*hasSideEffects=*/false);
2729 LocalDynamicShadow =
2730 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2731 } else {
2732 LocalDynamicShadow =
2733 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2735 } else {
2736 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2737 kAsanShadowMemoryDynamicAddress, IntptrTy);
2738 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2740 return true;
2743 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2744 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2745 // to it as uninteresting. This assumes we haven't started processing allocas
2746 // yet. This check is done up front because iterating the use list in
2747 // isInterestingAlloca would be algorithmically slower.
2748 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2750 // Try to get the declaration of llvm.localescape. If it's not in the module,
2751 // we can exit early.
2752 if (!F.getParent()->getFunction("llvm.localescape")) return;
2754 // Look for a call to llvm.localescape call in the entry block. It can't be in
2755 // any other block.
2756 for (Instruction &I : F.getEntryBlock()) {
2757 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2758 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2759 // We found a call. Mark all the allocas passed in as uninteresting.
2760 for (Value *Arg : II->arg_operands()) {
2761 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2762 assert(AI && AI->isStaticAlloca() &&
2763 "non-static alloca arg to localescape");
2764 ProcessedAllocas[AI] = false;
2766 break;
2771 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2772 bool ShouldInstrument =
2773 ClDebugMin < 0 || ClDebugMax < 0 ||
2774 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2775 Instrumented++;
2776 return !ShouldInstrument;
2779 bool AddressSanitizer::instrumentFunction(Function &F,
2780 const TargetLibraryInfo *TLI) {
2781 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2782 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2783 if (F.getName().startswith("__asan_")) return false;
2785 bool FunctionModified = false;
2787 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2788 // This function needs to be called even if the function body is not
2789 // instrumented.
2790 if (maybeInsertAsanInitAtFunctionEntry(F))
2791 FunctionModified = true;
2793 // Leave if the function doesn't need instrumentation.
2794 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2796 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2798 initializeCallbacks(*F.getParent());
2800 FunctionStateRAII CleanupObj(this);
2802 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2804 // We can't instrument allocas used with llvm.localescape. Only static allocas
2805 // can be passed to that intrinsic.
2806 markEscapedLocalAllocas(F);
2808 // We want to instrument every address only once per basic block (unless there
2809 // are calls between uses).
2810 SmallPtrSet<Value *, 16> TempsToInstrument;
2811 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2812 SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2813 SmallVector<Instruction *, 8> NoReturnCalls;
2814 SmallVector<BasicBlock *, 16> AllBlocks;
2815 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2816 int NumAllocas = 0;
2818 // Fill the set of memory operations to instrument.
2819 for (auto &BB : F) {
2820 AllBlocks.push_back(&BB);
2821 TempsToInstrument.clear();
2822 int NumInsnsPerBB = 0;
2823 for (auto &Inst : BB) {
2824 if (LooksLikeCodeInBug11395(&Inst)) return false;
2825 SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2826 getInterestingMemoryOperands(&Inst, InterestingOperands);
2828 if (!InterestingOperands.empty()) {
2829 for (auto &Operand : InterestingOperands) {
2830 if (ClOpt && ClOptSameTemp) {
2831 Value *Ptr = Operand.getPtr();
2832 // If we have a mask, skip instrumentation if we've already
2833 // instrumented the full object. But don't add to TempsToInstrument
2834 // because we might get another load/store with a different mask.
2835 if (Operand.MaybeMask) {
2836 if (TempsToInstrument.count(Ptr))
2837 continue; // We've seen this (whole) temp in the current BB.
2838 } else {
2839 if (!TempsToInstrument.insert(Ptr).second)
2840 continue; // We've seen this temp in the current BB.
2843 OperandsToInstrument.push_back(Operand);
2844 NumInsnsPerBB++;
2846 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2847 isInterestingPointerComparison(&Inst)) ||
2848 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2849 isInterestingPointerSubtraction(&Inst))) {
2850 PointerComparisonsOrSubtracts.push_back(&Inst);
2851 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2852 // ok, take it.
2853 IntrinToInstrument.push_back(MI);
2854 NumInsnsPerBB++;
2855 } else {
2856 if (isa<AllocaInst>(Inst)) NumAllocas++;
2857 if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2858 // A call inside BB.
2859 TempsToInstrument.clear();
2860 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2861 NoReturnCalls.push_back(CB);
2863 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2864 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2866 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2870 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2871 OperandsToInstrument.size() + IntrinToInstrument.size() >
2872 (unsigned)ClInstrumentationWithCallsThreshold);
2873 const DataLayout &DL = F.getParent()->getDataLayout();
2874 ObjectSizeOpts ObjSizeOpts;
2875 ObjSizeOpts.RoundToAlign = true;
2876 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2878 // Instrument.
2879 int NumInstrumented = 0;
2880 for (auto &Operand : OperandsToInstrument) {
2881 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2882 instrumentMop(ObjSizeVis, Operand, UseCalls,
2883 F.getParent()->getDataLayout());
2884 FunctionModified = true;
2886 for (auto Inst : IntrinToInstrument) {
2887 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2888 instrumentMemIntrinsic(Inst);
2889 FunctionModified = true;
2892 FunctionStackPoisoner FSP(F, *this);
2893 bool ChangedStack = FSP.runOnFunction();
2895 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2896 // See e.g. https://github.com/google/sanitizers/issues/37
2897 for (auto CI : NoReturnCalls) {
2898 IRBuilder<> IRB(CI);
2899 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2902 for (auto Inst : PointerComparisonsOrSubtracts) {
2903 instrumentPointerComparisonOrSubtraction(Inst);
2904 FunctionModified = true;
2907 if (ChangedStack || !NoReturnCalls.empty())
2908 FunctionModified = true;
2910 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2911 << F << "\n");
2913 return FunctionModified;
2916 // Workaround for bug 11395: we don't want to instrument stack in functions
2917 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2918 // FIXME: remove once the bug 11395 is fixed.
2919 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2920 if (LongSize != 32) return false;
2921 CallInst *CI = dyn_cast<CallInst>(I);
2922 if (!CI || !CI->isInlineAsm()) return false;
2923 if (CI->getNumArgOperands() <= 5) return false;
2924 // We have inline assembly with quite a few arguments.
2925 return true;
2928 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2929 IRBuilder<> IRB(*C);
2930 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
2931 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
2932 const char *MallocNameTemplate =
2933 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
2934 ? kAsanStackMallocAlwaysNameTemplate
2935 : kAsanStackMallocNameTemplate;
2936 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
2937 std::string Suffix = itostr(Index);
2938 AsanStackMallocFunc[Index] = M.getOrInsertFunction(
2939 MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2940 AsanStackFreeFunc[Index] =
2941 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2942 IRB.getVoidTy(), IntptrTy, IntptrTy);
2945 if (ASan.UseAfterScope) {
2946 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2947 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2948 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2949 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2952 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2953 std::ostringstream Name;
2954 Name << kAsanSetShadowPrefix;
2955 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2956 AsanSetShadowFunc[Val] =
2957 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2960 AsanAllocaPoisonFunc = M.getOrInsertFunction(
2961 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2962 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2963 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2966 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2967 ArrayRef<uint8_t> ShadowBytes,
2968 size_t Begin, size_t End,
2969 IRBuilder<> &IRB,
2970 Value *ShadowBase) {
2971 if (Begin >= End)
2972 return;
2974 const size_t LargestStoreSizeInBytes =
2975 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2977 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2979 // Poison given range in shadow using larges store size with out leading and
2980 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2981 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2982 // middle of a store.
2983 for (size_t i = Begin; i < End;) {
2984 if (!ShadowMask[i]) {
2985 assert(!ShadowBytes[i]);
2986 ++i;
2987 continue;
2990 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2991 // Fit store size into the range.
2992 while (StoreSizeInBytes > End - i)
2993 StoreSizeInBytes /= 2;
2995 // Minimize store size by trimming trailing zeros.
2996 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2997 while (j <= StoreSizeInBytes / 2)
2998 StoreSizeInBytes /= 2;
3001 uint64_t Val = 0;
3002 for (size_t j = 0; j < StoreSizeInBytes; j++) {
3003 if (IsLittleEndian)
3004 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3005 else
3006 Val = (Val << 8) | ShadowBytes[i + j];
3009 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3010 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3011 IRB.CreateAlignedStore(
3012 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3013 Align(1));
3015 i += StoreSizeInBytes;
3019 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3020 ArrayRef<uint8_t> ShadowBytes,
3021 IRBuilder<> &IRB, Value *ShadowBase) {
3022 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3025 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3026 ArrayRef<uint8_t> ShadowBytes,
3027 size_t Begin, size_t End,
3028 IRBuilder<> &IRB, Value *ShadowBase) {
3029 assert(ShadowMask.size() == ShadowBytes.size());
3030 size_t Done = Begin;
3031 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3032 if (!ShadowMask[i]) {
3033 assert(!ShadowBytes[i]);
3034 continue;
3036 uint8_t Val = ShadowBytes[i];
3037 if (!AsanSetShadowFunc[Val])
3038 continue;
3040 // Skip same values.
3041 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3044 if (j - i >= ClMaxInlinePoisoningSize) {
3045 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3046 IRB.CreateCall(AsanSetShadowFunc[Val],
3047 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3048 ConstantInt::get(IntptrTy, j - i)});
3049 Done = j;
3053 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3056 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3057 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3058 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3059 assert(LocalStackSize <= kMaxStackMallocSize);
3060 uint64_t MaxSize = kMinStackMallocSize;
3061 for (int i = 0;; i++, MaxSize *= 2)
3062 if (LocalStackSize <= MaxSize) return i;
3063 llvm_unreachable("impossible LocalStackSize");
3066 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3067 Instruction *CopyInsertPoint = &F.front().front();
3068 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3069 // Insert after the dynamic shadow location is determined
3070 CopyInsertPoint = CopyInsertPoint->getNextNode();
3071 assert(CopyInsertPoint);
3073 IRBuilder<> IRB(CopyInsertPoint);
3074 const DataLayout &DL = F.getParent()->getDataLayout();
3075 for (Argument &Arg : F.args()) {
3076 if (Arg.hasByValAttr()) {
3077 Type *Ty = Arg.getParamByValType();
3078 const Align Alignment =
3079 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3081 AllocaInst *AI = IRB.CreateAlloca(
3082 Ty, nullptr,
3083 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3084 ".byval");
3085 AI->setAlignment(Alignment);
3086 Arg.replaceAllUsesWith(AI);
3088 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3089 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3094 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3095 Value *ValueIfTrue,
3096 Instruction *ThenTerm,
3097 Value *ValueIfFalse) {
3098 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3099 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3100 PHI->addIncoming(ValueIfFalse, CondBlock);
3101 BasicBlock *ThenBlock = ThenTerm->getParent();
3102 PHI->addIncoming(ValueIfTrue, ThenBlock);
3103 return PHI;
3106 Value *FunctionStackPoisoner::createAllocaForLayout(
3107 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3108 AllocaInst *Alloca;
3109 if (Dynamic) {
3110 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3111 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3112 "MyAlloca");
3113 } else {
3114 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3115 nullptr, "MyAlloca");
3116 assert(Alloca->isStaticAlloca());
3118 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3119 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3120 Alloca->setAlignment(Align(FrameAlignment));
3121 return IRB.CreatePointerCast(Alloca, IntptrTy);
3124 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3125 BasicBlock &FirstBB = *F.begin();
3126 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3127 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3128 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3129 DynamicAllocaLayout->setAlignment(Align(32));
3132 void FunctionStackPoisoner::processDynamicAllocas() {
3133 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3134 assert(DynamicAllocaPoisonCallVec.empty());
3135 return;
3138 // Insert poison calls for lifetime intrinsics for dynamic allocas.
3139 for (const auto &APC : DynamicAllocaPoisonCallVec) {
3140 assert(APC.InsBefore);
3141 assert(APC.AI);
3142 assert(ASan.isInterestingAlloca(*APC.AI));
3143 assert(!APC.AI->isStaticAlloca());
3145 IRBuilder<> IRB(APC.InsBefore);
3146 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3147 // Dynamic allocas will be unpoisoned unconditionally below in
3148 // unpoisonDynamicAllocas.
3149 // Flag that we need unpoison static allocas.
3152 // Handle dynamic allocas.
3153 createDynamicAllocasInitStorage();
3154 for (auto &AI : DynamicAllocaVec)
3155 handleDynamicAllocaCall(AI);
3156 unpoisonDynamicAllocas();
3159 /// Collect instructions in the entry block after \p InsBefore which initialize
3160 /// permanent storage for a function argument. These instructions must remain in
3161 /// the entry block so that uninitialized values do not appear in backtraces. An
3162 /// added benefit is that this conserves spill slots. This does not move stores
3163 /// before instrumented / "interesting" allocas.
3164 static void findStoresToUninstrumentedArgAllocas(
3165 AddressSanitizer &ASan, Instruction &InsBefore,
3166 SmallVectorImpl<Instruction *> &InitInsts) {
3167 Instruction *Start = InsBefore.getNextNonDebugInstruction();
3168 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3169 // Argument initialization looks like:
3170 // 1) store <Argument>, <Alloca> OR
3171 // 2) <CastArgument> = cast <Argument> to ...
3172 // store <CastArgument> to <Alloca>
3173 // Do not consider any other kind of instruction.
3175 // Note: This covers all known cases, but may not be exhaustive. An
3176 // alternative to pattern-matching stores is to DFS over all Argument uses:
3177 // this might be more general, but is probably much more complicated.
3178 if (isa<AllocaInst>(It) || isa<CastInst>(It))
3179 continue;
3180 if (auto *Store = dyn_cast<StoreInst>(It)) {
3181 // The store destination must be an alloca that isn't interesting for
3182 // ASan to instrument. These are moved up before InsBefore, and they're
3183 // not interesting because allocas for arguments can be mem2reg'd.
3184 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3185 if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3186 continue;
3188 Value *Val = Store->getValueOperand();
3189 bool IsDirectArgInit = isa<Argument>(Val);
3190 bool IsArgInitViaCast =
3191 isa<CastInst>(Val) &&
3192 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3193 // Check that the cast appears directly before the store. Otherwise
3194 // moving the cast before InsBefore may break the IR.
3195 Val == It->getPrevNonDebugInstruction();
3196 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3197 if (!IsArgInit)
3198 continue;
3200 if (IsArgInitViaCast)
3201 InitInsts.push_back(cast<Instruction>(Val));
3202 InitInsts.push_back(Store);
3203 continue;
3206 // Do not reorder past unknown instructions: argument initialization should
3207 // only involve casts and stores.
3208 return;
3212 void FunctionStackPoisoner::processStaticAllocas() {
3213 if (AllocaVec.empty()) {
3214 assert(StaticAllocaPoisonCallVec.empty());
3215 return;
3218 int StackMallocIdx = -1;
3219 DebugLoc EntryDebugLocation;
3220 if (auto SP = F.getSubprogram())
3221 EntryDebugLocation =
3222 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3224 Instruction *InsBefore = AllocaVec[0];
3225 IRBuilder<> IRB(InsBefore);
3227 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3228 // debug info is broken, because only entry-block allocas are treated as
3229 // regular stack slots.
3230 auto InsBeforeB = InsBefore->getParent();
3231 assert(InsBeforeB == &F.getEntryBlock());
3232 for (auto *AI : StaticAllocasToMoveUp)
3233 if (AI->getParent() == InsBeforeB)
3234 AI->moveBefore(InsBefore);
3236 // Move stores of arguments into entry-block allocas as well. This prevents
3237 // extra stack slots from being generated (to house the argument values until
3238 // they can be stored into the allocas). This also prevents uninitialized
3239 // values from being shown in backtraces.
3240 SmallVector<Instruction *, 8> ArgInitInsts;
3241 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3242 for (Instruction *ArgInitInst : ArgInitInsts)
3243 ArgInitInst->moveBefore(InsBefore);
3245 // If we have a call to llvm.localescape, keep it in the entry block.
3246 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3248 SmallVector<ASanStackVariableDescription, 16> SVD;
3249 SVD.reserve(AllocaVec.size());
3250 for (AllocaInst *AI : AllocaVec) {
3251 ASanStackVariableDescription D = {AI->getName().data(),
3252 ASan.getAllocaSizeInBytes(*AI),
3254 AI->getAlignment(),
3258 SVD.push_back(D);
3261 // Minimal header size (left redzone) is 4 pointers,
3262 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3263 size_t Granularity = 1ULL << Mapping.Scale;
3264 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3265 const ASanStackFrameLayout &L =
3266 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3268 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3269 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3270 for (auto &Desc : SVD)
3271 AllocaToSVDMap[Desc.AI] = &Desc;
3273 // Update SVD with information from lifetime intrinsics.
3274 for (const auto &APC : StaticAllocaPoisonCallVec) {
3275 assert(APC.InsBefore);
3276 assert(APC.AI);
3277 assert(ASan.isInterestingAlloca(*APC.AI));
3278 assert(APC.AI->isStaticAlloca());
3280 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3281 Desc.LifetimeSize = Desc.Size;
3282 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3283 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3284 if (LifetimeLoc->getFile() == FnLoc->getFile())
3285 if (unsigned Line = LifetimeLoc->getLine())
3286 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3291 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3292 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3293 uint64_t LocalStackSize = L.FrameSize;
3294 bool DoStackMalloc =
3295 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3296 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3297 bool DoDynamicAlloca = ClDynamicAllocaStack;
3298 // Don't do dynamic alloca or stack malloc if:
3299 // 1) There is inline asm: too often it makes assumptions on which registers
3300 // are available.
3301 // 2) There is a returns_twice call (typically setjmp), which is
3302 // optimization-hostile, and doesn't play well with introduced indirect
3303 // register-relative calculation of local variable addresses.
3304 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3305 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3307 Value *StaticAlloca =
3308 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3310 Value *FakeStack;
3311 Value *LocalStackBase;
3312 Value *LocalStackBaseAlloca;
3313 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3315 if (DoStackMalloc) {
3316 LocalStackBaseAlloca =
3317 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3318 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3319 // void *FakeStack = __asan_option_detect_stack_use_after_return
3320 // ? __asan_stack_malloc_N(LocalStackSize)
3321 // : nullptr;
3322 // void *LocalStackBase = (FakeStack) ? FakeStack :
3323 // alloca(LocalStackSize);
3324 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3325 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3326 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3327 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3328 Constant::getNullValue(IRB.getInt32Ty()));
3329 Instruction *Term =
3330 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3331 IRBuilder<> IRBIf(Term);
3332 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3333 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3334 Value *FakeStackValue =
3335 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3336 ConstantInt::get(IntptrTy, LocalStackSize));
3337 IRB.SetInsertPoint(InsBefore);
3338 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3339 ConstantInt::get(IntptrTy, 0));
3340 } else {
3341 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3342 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3343 // void *LocalStackBase = (FakeStack) ? FakeStack :
3344 // alloca(LocalStackSize);
3345 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3346 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3347 ConstantInt::get(IntptrTy, LocalStackSize));
3349 Value *NoFakeStack =
3350 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3351 Instruction *Term =
3352 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3353 IRBuilder<> IRBIf(Term);
3354 Value *AllocaValue =
3355 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3357 IRB.SetInsertPoint(InsBefore);
3358 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3359 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3360 DIExprFlags |= DIExpression::DerefBefore;
3361 } else {
3362 // void *FakeStack = nullptr;
3363 // void *LocalStackBase = alloca(LocalStackSize);
3364 FakeStack = ConstantInt::get(IntptrTy, 0);
3365 LocalStackBase =
3366 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3367 LocalStackBaseAlloca = LocalStackBase;
3370 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3371 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3372 // later passes and can result in dropped variable coverage in debug info.
3373 Value *LocalStackBaseAllocaPtr =
3374 isa<PtrToIntInst>(LocalStackBaseAlloca)
3375 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3376 : LocalStackBaseAlloca;
3377 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3378 "Variable descriptions relative to ASan stack base will be dropped");
3380 // Replace Alloca instructions with base+offset.
3381 for (const auto &Desc : SVD) {
3382 AllocaInst *AI = Desc.AI;
3383 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3384 Desc.Offset);
3385 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3386 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3387 AI->getType());
3388 AI->replaceAllUsesWith(NewAllocaPtr);
3391 // The left-most redzone has enough space for at least 4 pointers.
3392 // Write the Magic value to redzone[0].
3393 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3394 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3395 BasePlus0);
3396 // Write the frame description constant to redzone[1].
3397 Value *BasePlus1 = IRB.CreateIntToPtr(
3398 IRB.CreateAdd(LocalStackBase,
3399 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3400 IntptrPtrTy);
3401 GlobalVariable *StackDescriptionGlobal =
3402 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3403 /*AllowMerging*/ true, kAsanGenPrefix);
3404 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3405 IRB.CreateStore(Description, BasePlus1);
3406 // Write the PC to redzone[2].
3407 Value *BasePlus2 = IRB.CreateIntToPtr(
3408 IRB.CreateAdd(LocalStackBase,
3409 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3410 IntptrPtrTy);
3411 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3413 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3415 // Poison the stack red zones at the entry.
3416 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3417 // As mask we must use most poisoned case: red zones and after scope.
3418 // As bytes we can use either the same or just red zones only.
3419 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3421 if (!StaticAllocaPoisonCallVec.empty()) {
3422 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3424 // Poison static allocas near lifetime intrinsics.
3425 for (const auto &APC : StaticAllocaPoisonCallVec) {
3426 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3427 assert(Desc.Offset % L.Granularity == 0);
3428 size_t Begin = Desc.Offset / L.Granularity;
3429 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3431 IRBuilder<> IRB(APC.InsBefore);
3432 copyToShadow(ShadowAfterScope,
3433 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3434 IRB, ShadowBase);
3438 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3439 SmallVector<uint8_t, 64> ShadowAfterReturn;
3441 // (Un)poison the stack before all ret instructions.
3442 for (Instruction *Ret : RetVec) {
3443 IRBuilder<> IRBRet(Ret);
3444 // Mark the current frame as retired.
3445 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3446 BasePlus0);
3447 if (DoStackMalloc) {
3448 assert(StackMallocIdx >= 0);
3449 // if FakeStack != 0 // LocalStackBase == FakeStack
3450 // // In use-after-return mode, poison the whole stack frame.
3451 // if StackMallocIdx <= 4
3452 // // For small sizes inline the whole thing:
3453 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3454 // **SavedFlagPtr(FakeStack) = 0
3455 // else
3456 // __asan_stack_free_N(FakeStack, LocalStackSize)
3457 // else
3458 // <This is not a fake stack; unpoison the redzones>
3459 Value *Cmp =
3460 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3461 Instruction *ThenTerm, *ElseTerm;
3462 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3464 IRBuilder<> IRBPoison(ThenTerm);
3465 if (StackMallocIdx <= 4) {
3466 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3467 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3468 kAsanStackUseAfterReturnMagic);
3469 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3470 ShadowBase);
3471 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3472 FakeStack,
3473 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3474 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3475 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3476 IRBPoison.CreateStore(
3477 Constant::getNullValue(IRBPoison.getInt8Ty()),
3478 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3479 } else {
3480 // For larger frames call __asan_stack_free_*.
3481 IRBPoison.CreateCall(
3482 AsanStackFreeFunc[StackMallocIdx],
3483 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3486 IRBuilder<> IRBElse(ElseTerm);
3487 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3488 } else {
3489 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3493 // We are done. Remove the old unused alloca instructions.
3494 for (auto AI : AllocaVec) AI->eraseFromParent();
3497 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3498 IRBuilder<> &IRB, bool DoPoison) {
3499 // For now just insert the call to ASan runtime.
3500 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3501 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3502 IRB.CreateCall(
3503 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3504 {AddrArg, SizeArg});
3507 // Handling llvm.lifetime intrinsics for a given %alloca:
3508 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3509 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3510 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3511 // could be poisoned by previous llvm.lifetime.end instruction, as the
3512 // variable may go in and out of scope several times, e.g. in loops).
3513 // (3) if we poisoned at least one %alloca in a function,
3514 // unpoison the whole stack frame at function exit.
3515 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3516 IRBuilder<> IRB(AI);
3518 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3519 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3521 Value *Zero = Constant::getNullValue(IntptrTy);
3522 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3523 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3525 // Since we need to extend alloca with additional memory to locate
3526 // redzones, and OldSize is number of allocated blocks with
3527 // ElementSize size, get allocated memory size in bytes by
3528 // OldSize * ElementSize.
3529 const unsigned ElementSize =
3530 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3531 Value *OldSize =
3532 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3533 ConstantInt::get(IntptrTy, ElementSize));
3535 // PartialSize = OldSize % 32
3536 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3538 // Misalign = kAllocaRzSize - PartialSize;
3539 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3541 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3542 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3543 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3545 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3546 // Alignment is added to locate left redzone, PartialPadding for possible
3547 // partial redzone and kAllocaRzSize for right redzone respectively.
3548 Value *AdditionalChunkSize = IRB.CreateAdd(
3549 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3551 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3553 // Insert new alloca with new NewSize and Alignment params.
3554 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3555 NewAlloca->setAlignment(Align(Alignment));
3557 // NewAddress = Address + Alignment
3558 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3559 ConstantInt::get(IntptrTy, Alignment));
3561 // Insert __asan_alloca_poison call for new created alloca.
3562 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3564 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3565 // for unpoisoning stuff.
3566 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3568 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3570 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3571 AI->replaceAllUsesWith(NewAddressPtr);
3573 // We are done. Erase old alloca from parent.
3574 AI->eraseFromParent();
3577 // isSafeAccess returns true if Addr is always inbounds with respect to its
3578 // base object. For example, it is a field access or an array access with
3579 // constant inbounds index.
3580 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3581 Value *Addr, uint64_t TypeSize) const {
3582 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3583 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3584 uint64_t Size = SizeOffset.first.getZExtValue();
3585 int64_t Offset = SizeOffset.second.getSExtValue();
3586 // Three checks are required to ensure safety:
3587 // . Offset >= 0 (since the offset is given from the base ptr)
3588 // . Size >= Offset (unsigned)
3589 // . Size - Offset >= NeededSize (unsigned)
3590 return Offset >= 0 && Size >= uint64_t(Offset) &&
3591 Size - uint64_t(Offset) >= TypeSize / 8;