1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
13 // FIXME: This sanitizer does not yet handle scalable vectors
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/BinaryFormat/MachO.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCSectionMachO.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/ScopedPrinter.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/ModuleUtils.h"
80 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
94 #define DEBUG_TYPE "asan"
96 static const uint64_t kDefaultShadowScale
= 3;
97 static const uint64_t kDefaultShadowOffset32
= 1ULL << 29;
98 static const uint64_t kDefaultShadowOffset64
= 1ULL << 44;
99 static const uint64_t kDynamicShadowSentinel
=
100 std::numeric_limits
<uint64_t>::max();
101 static const uint64_t kSmallX86_64ShadowOffsetBase
= 0x7FFFFFFF; // < 2G.
102 static const uint64_t kSmallX86_64ShadowOffsetAlignMask
= ~0xFFFULL
;
103 static const uint64_t kLinuxKasan_ShadowOffset64
= 0xdffffc0000000000;
104 static const uint64_t kPPC64_ShadowOffset64
= 1ULL << 44;
105 static const uint64_t kSystemZ_ShadowOffset64
= 1ULL << 52;
106 static const uint64_t kMIPS32_ShadowOffset32
= 0x0aaa0000;
107 static const uint64_t kMIPS64_ShadowOffset64
= 1ULL << 37;
108 static const uint64_t kAArch64_ShadowOffset64
= 1ULL << 36;
109 static const uint64_t kRISCV64_ShadowOffset64
= 0xd55550000;
110 static const uint64_t kFreeBSD_ShadowOffset32
= 1ULL << 30;
111 static const uint64_t kFreeBSD_ShadowOffset64
= 1ULL << 46;
112 static const uint64_t kFreeBSDKasan_ShadowOffset64
= 0xdffff7c000000000;
113 static const uint64_t kNetBSD_ShadowOffset32
= 1ULL << 30;
114 static const uint64_t kNetBSD_ShadowOffset64
= 1ULL << 46;
115 static const uint64_t kNetBSDKasan_ShadowOffset64
= 0xdfff900000000000;
116 static const uint64_t kPS4CPU_ShadowOffset64
= 1ULL << 40;
117 static const uint64_t kWindowsShadowOffset32
= 3ULL << 28;
118 static const uint64_t kEmscriptenShadowOffset
= 0;
120 // The shadow memory space is dynamically allocated.
121 static const uint64_t kWindowsShadowOffset64
= kDynamicShadowSentinel
;
123 static const size_t kMinStackMallocSize
= 1 << 6; // 64B
124 static const size_t kMaxStackMallocSize
= 1 << 16; // 64K
125 static const uintptr_t kCurrentStackFrameMagic
= 0x41B58AB3;
126 static const uintptr_t kRetiredStackFrameMagic
= 0x45E0360E;
128 const char kAsanModuleCtorName
[] = "asan.module_ctor";
129 const char kAsanModuleDtorName
[] = "asan.module_dtor";
130 static const uint64_t kAsanCtorAndDtorPriority
= 1;
131 // On Emscripten, the system needs more than one priorities for constructors.
132 static const uint64_t kAsanEmscriptenCtorAndDtorPriority
= 50;
133 const char kAsanReportErrorTemplate
[] = "__asan_report_";
134 const char kAsanRegisterGlobalsName
[] = "__asan_register_globals";
135 const char kAsanUnregisterGlobalsName
[] = "__asan_unregister_globals";
136 const char kAsanRegisterImageGlobalsName
[] = "__asan_register_image_globals";
137 const char kAsanUnregisterImageGlobalsName
[] =
138 "__asan_unregister_image_globals";
139 const char kAsanRegisterElfGlobalsName
[] = "__asan_register_elf_globals";
140 const char kAsanUnregisterElfGlobalsName
[] = "__asan_unregister_elf_globals";
141 const char kAsanPoisonGlobalsName
[] = "__asan_before_dynamic_init";
142 const char kAsanUnpoisonGlobalsName
[] = "__asan_after_dynamic_init";
143 const char kAsanInitName
[] = "__asan_init";
144 const char kAsanVersionCheckNamePrefix
[] = "__asan_version_mismatch_check_v";
145 const char kAsanPtrCmp
[] = "__sanitizer_ptr_cmp";
146 const char kAsanPtrSub
[] = "__sanitizer_ptr_sub";
147 const char kAsanHandleNoReturnName
[] = "__asan_handle_no_return";
148 static const int kMaxAsanStackMallocSizeClass
= 10;
149 const char kAsanStackMallocNameTemplate
[] = "__asan_stack_malloc_";
150 const char kAsanStackMallocAlwaysNameTemplate
[] =
151 "__asan_stack_malloc_always_";
152 const char kAsanStackFreeNameTemplate
[] = "__asan_stack_free_";
153 const char kAsanGenPrefix
[] = "___asan_gen_";
154 const char kODRGenPrefix
[] = "__odr_asan_gen_";
155 const char kSanCovGenPrefix
[] = "__sancov_gen_";
156 const char kAsanSetShadowPrefix
[] = "__asan_set_shadow_";
157 const char kAsanPoisonStackMemoryName
[] = "__asan_poison_stack_memory";
158 const char kAsanUnpoisonStackMemoryName
[] = "__asan_unpoison_stack_memory";
160 // ASan version script has __asan_* wildcard. Triple underscore prevents a
161 // linker (gold) warning about attempting to export a local symbol.
162 const char kAsanGlobalsRegisteredFlagName
[] = "___asan_globals_registered";
164 const char kAsanOptionDetectUseAfterReturn
[] =
165 "__asan_option_detect_stack_use_after_return";
167 const char kAsanShadowMemoryDynamicAddress
[] =
168 "__asan_shadow_memory_dynamic_address";
170 const char kAsanAllocaPoison
[] = "__asan_alloca_poison";
171 const char kAsanAllocasUnpoison
[] = "__asan_allocas_unpoison";
173 const char kAMDGPUAddressSharedName
[] = "llvm.amdgcn.is.shared";
174 const char kAMDGPUAddressPrivateName
[] = "llvm.amdgcn.is.private";
176 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
177 static const size_t kNumberOfAccessSizes
= 5;
179 static const unsigned kAllocaRzSize
= 32;
181 // Command-line flags.
183 static cl::opt
<bool> ClEnableKasan(
184 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
185 cl::Hidden
, cl::init(false));
187 static cl::opt
<bool> ClRecover(
189 cl::desc("Enable recovery mode (continue-after-error)."),
190 cl::Hidden
, cl::init(false));
192 static cl::opt
<bool> ClInsertVersionCheck(
193 "asan-guard-against-version-mismatch",
194 cl::desc("Guard against compiler/runtime version mismatch."),
195 cl::Hidden
, cl::init(true));
197 // This flag may need to be replaced with -f[no-]asan-reads.
198 static cl::opt
<bool> ClInstrumentReads("asan-instrument-reads",
199 cl::desc("instrument read instructions"),
200 cl::Hidden
, cl::init(true));
202 static cl::opt
<bool> ClInstrumentWrites(
203 "asan-instrument-writes", cl::desc("instrument write instructions"),
204 cl::Hidden
, cl::init(true));
206 static cl::opt
<bool> ClInstrumentAtomics(
207 "asan-instrument-atomics",
208 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden
,
212 ClInstrumentByval("asan-instrument-byval",
213 cl::desc("instrument byval call arguments"), cl::Hidden
,
216 static cl::opt
<bool> ClAlwaysSlowPath(
217 "asan-always-slow-path",
218 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden
,
221 static cl::opt
<bool> ClForceDynamicShadow(
222 "asan-force-dynamic-shadow",
223 cl::desc("Load shadow address into a local variable for each function"),
224 cl::Hidden
, cl::init(false));
227 ClWithIfunc("asan-with-ifunc",
228 cl::desc("Access dynamic shadow through an ifunc global on "
229 "platforms that support this"),
230 cl::Hidden
, cl::init(true));
232 static cl::opt
<bool> ClWithIfuncSuppressRemat(
233 "asan-with-ifunc-suppress-remat",
234 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
235 "it through inline asm in prologue."),
236 cl::Hidden
, cl::init(true));
238 // This flag limits the number of instructions to be instrumented
239 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
240 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
242 static cl::opt
<int> ClMaxInsnsToInstrumentPerBB(
243 "asan-max-ins-per-bb", cl::init(10000),
244 cl::desc("maximal number of instructions to instrument in any given BB"),
247 // This flag may need to be replaced with -f[no]asan-stack.
248 static cl::opt
<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
249 cl::Hidden
, cl::init(true));
250 static cl::opt
<uint32_t> ClMaxInlinePoisoningSize(
251 "asan-max-inline-poisoning-size",
253 "Inline shadow poisoning for blocks up to the given size in bytes."),
254 cl::Hidden
, cl::init(64));
256 static cl::opt
<AsanDetectStackUseAfterReturnMode
> ClUseAfterReturn(
257 "asan-use-after-return",
258 cl::desc("Sets the mode of detection for stack-use-after-return."),
260 clEnumValN(AsanDetectStackUseAfterReturnMode::Never
, "never",
261 "Never detect stack use after return."),
263 AsanDetectStackUseAfterReturnMode::Runtime
, "runtime",
264 "Detect stack use after return if "
265 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."),
266 clEnumValN(AsanDetectStackUseAfterReturnMode::Always
, "always",
267 "Always detect stack use after return.")),
268 cl::Hidden
, cl::init(AsanDetectStackUseAfterReturnMode::Runtime
));
270 static cl::opt
<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
271 cl::desc("Create redzones for byval "
272 "arguments (extra copy "
273 "required)"), cl::Hidden
,
276 static cl::opt
<bool> ClUseAfterScope("asan-use-after-scope",
277 cl::desc("Check stack-use-after-scope"),
278 cl::Hidden
, cl::init(false));
280 // This flag may need to be replaced with -f[no]asan-globals.
281 static cl::opt
<bool> ClGlobals("asan-globals",
282 cl::desc("Handle global objects"), cl::Hidden
,
285 static cl::opt
<bool> ClInitializers("asan-initialization-order",
286 cl::desc("Handle C++ initializer order"),
287 cl::Hidden
, cl::init(true));
289 static cl::opt
<bool> ClInvalidPointerPairs(
290 "asan-detect-invalid-pointer-pair",
291 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden
,
294 static cl::opt
<bool> ClInvalidPointerCmp(
295 "asan-detect-invalid-pointer-cmp",
296 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden
,
299 static cl::opt
<bool> ClInvalidPointerSub(
300 "asan-detect-invalid-pointer-sub",
301 cl::desc("Instrument - operations with pointer operands"), cl::Hidden
,
304 static cl::opt
<unsigned> ClRealignStack(
305 "asan-realign-stack",
306 cl::desc("Realign stack to the value of this flag (power of two)"),
307 cl::Hidden
, cl::init(32));
309 static cl::opt
<int> ClInstrumentationWithCallsThreshold(
310 "asan-instrumentation-with-call-threshold",
312 "If the function being instrumented contains more than "
313 "this number of memory accesses, use callbacks instead of "
314 "inline checks (-1 means never use callbacks)."),
315 cl::Hidden
, cl::init(7000));
317 static cl::opt
<std::string
> ClMemoryAccessCallbackPrefix(
318 "asan-memory-access-callback-prefix",
319 cl::desc("Prefix for memory access callbacks"), cl::Hidden
,
320 cl::init("__asan_"));
323 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
324 cl::desc("instrument dynamic allocas"),
325 cl::Hidden
, cl::init(true));
327 static cl::opt
<bool> ClSkipPromotableAllocas(
328 "asan-skip-promotable-allocas",
329 cl::desc("Do not instrument promotable allocas"), cl::Hidden
,
332 // These flags allow to change the shadow mapping.
333 // The shadow mapping looks like
334 // Shadow = (Mem >> scale) + offset
336 static cl::opt
<int> ClMappingScale("asan-mapping-scale",
337 cl::desc("scale of asan shadow mapping"),
338 cl::Hidden
, cl::init(0));
340 static cl::opt
<uint64_t>
341 ClMappingOffset("asan-mapping-offset",
342 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
343 cl::Hidden
, cl::init(0));
345 // Optimization flags. Not user visible, used mostly for testing
346 // and benchmarking the tool.
348 static cl::opt
<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
349 cl::Hidden
, cl::init(true));
351 static cl::opt
<bool> ClOptSameTemp(
352 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
353 cl::Hidden
, cl::init(true));
355 static cl::opt
<bool> ClOptGlobals("asan-opt-globals",
356 cl::desc("Don't instrument scalar globals"),
357 cl::Hidden
, cl::init(true));
359 static cl::opt
<bool> ClOptStack(
360 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
361 cl::Hidden
, cl::init(false));
363 static cl::opt
<bool> ClDynamicAllocaStack(
364 "asan-stack-dynamic-alloca",
365 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden
,
368 static cl::opt
<uint32_t> ClForceExperiment(
369 "asan-force-experiment",
370 cl::desc("Force optimization experiment (for testing)"), cl::Hidden
,
374 ClUsePrivateAlias("asan-use-private-alias",
375 cl::desc("Use private aliases for global variables"),
376 cl::Hidden
, cl::init(false));
379 ClUseOdrIndicator("asan-use-odr-indicator",
380 cl::desc("Use odr indicators to improve ODR reporting"),
381 cl::Hidden
, cl::init(false));
384 ClUseGlobalsGC("asan-globals-live-support",
385 cl::desc("Use linker features to support dead "
386 "code stripping of globals"),
387 cl::Hidden
, cl::init(true));
389 // This is on by default even though there is a bug in gold:
390 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
392 ClWithComdat("asan-with-comdat",
393 cl::desc("Place ASan constructors in comdat sections"),
394 cl::Hidden
, cl::init(true));
396 static cl::opt
<AsanDtorKind
> ClOverrideDestructorKind(
397 "asan-destructor-kind",
398 cl::desc("Sets the ASan destructor kind. The default is to use the value "
399 "provided to the pass constructor"),
400 cl::values(clEnumValN(AsanDtorKind::None
, "none", "No destructors"),
401 clEnumValN(AsanDtorKind::Global
, "global",
402 "Use global destructors")),
403 cl::init(AsanDtorKind::Invalid
), cl::Hidden
);
407 static cl::opt
<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden
,
410 static cl::opt
<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
411 cl::Hidden
, cl::init(0));
413 static cl::opt
<std::string
> ClDebugFunc("asan-debug-func", cl::Hidden
,
414 cl::desc("Debug func"));
416 static cl::opt
<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
417 cl::Hidden
, cl::init(-1));
419 static cl::opt
<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
420 cl::Hidden
, cl::init(-1));
422 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
423 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
424 STATISTIC(NumOptimizedAccessesToGlobalVar
,
425 "Number of optimized accesses to global vars");
426 STATISTIC(NumOptimizedAccessesToStackVar
,
427 "Number of optimized accesses to stack vars");
431 /// This struct defines the shadow mapping using the rule:
432 /// shadow = (mem >> Scale) ADD-or-OR Offset.
433 /// If InGlobal is true, then
434 /// extern char __asan_shadow[];
435 /// shadow = (mem >> Scale) + &__asan_shadow
436 struct ShadowMapping
{
443 } // end anonymous namespace
445 static ShadowMapping
getShadowMapping(const Triple
&TargetTriple
, int LongSize
,
447 bool IsAndroid
= TargetTriple
.isAndroid();
448 bool IsIOS
= TargetTriple
.isiOS() || TargetTriple
.isWatchOS();
449 bool IsMacOS
= TargetTriple
.isMacOSX();
450 bool IsFreeBSD
= TargetTriple
.isOSFreeBSD();
451 bool IsNetBSD
= TargetTriple
.isOSNetBSD();
452 bool IsPS4CPU
= TargetTriple
.isPS4CPU();
453 bool IsLinux
= TargetTriple
.isOSLinux();
454 bool IsPPC64
= TargetTriple
.getArch() == Triple::ppc64
||
455 TargetTriple
.getArch() == Triple::ppc64le
;
456 bool IsSystemZ
= TargetTriple
.getArch() == Triple::systemz
;
457 bool IsX86_64
= TargetTriple
.getArch() == Triple::x86_64
;
458 bool IsMIPS32
= TargetTriple
.isMIPS32();
459 bool IsMIPS64
= TargetTriple
.isMIPS64();
460 bool IsArmOrThumb
= TargetTriple
.isARM() || TargetTriple
.isThumb();
461 bool IsAArch64
= TargetTriple
.getArch() == Triple::aarch64
;
462 bool IsRISCV64
= TargetTriple
.getArch() == Triple::riscv64
;
463 bool IsWindows
= TargetTriple
.isOSWindows();
464 bool IsFuchsia
= TargetTriple
.isOSFuchsia();
465 bool IsEmscripten
= TargetTriple
.isOSEmscripten();
466 bool IsAMDGPU
= TargetTriple
.isAMDGPU();
468 ShadowMapping Mapping
;
470 Mapping
.Scale
= kDefaultShadowScale
;
471 if (ClMappingScale
.getNumOccurrences() > 0) {
472 Mapping
.Scale
= ClMappingScale
;
475 if (LongSize
== 32) {
477 Mapping
.Offset
= kDynamicShadowSentinel
;
479 Mapping
.Offset
= kMIPS32_ShadowOffset32
;
481 Mapping
.Offset
= kFreeBSD_ShadowOffset32
;
483 Mapping
.Offset
= kNetBSD_ShadowOffset32
;
485 Mapping
.Offset
= kDynamicShadowSentinel
;
487 Mapping
.Offset
= kWindowsShadowOffset32
;
488 else if (IsEmscripten
)
489 Mapping
.Offset
= kEmscriptenShadowOffset
;
491 Mapping
.Offset
= kDefaultShadowOffset32
;
492 } else { // LongSize == 64
493 // Fuchsia is always PIE, which means that the beginning of the address
494 // space is always available.
498 Mapping
.Offset
= kPPC64_ShadowOffset64
;
500 Mapping
.Offset
= kSystemZ_ShadowOffset64
;
501 else if (IsFreeBSD
&& !IsMIPS64
) {
503 Mapping
.Offset
= kFreeBSDKasan_ShadowOffset64
;
505 Mapping
.Offset
= kFreeBSD_ShadowOffset64
;
506 } else if (IsNetBSD
) {
508 Mapping
.Offset
= kNetBSDKasan_ShadowOffset64
;
510 Mapping
.Offset
= kNetBSD_ShadowOffset64
;
512 Mapping
.Offset
= kPS4CPU_ShadowOffset64
;
513 else if (IsLinux
&& IsX86_64
) {
515 Mapping
.Offset
= kLinuxKasan_ShadowOffset64
;
517 Mapping
.Offset
= (kSmallX86_64ShadowOffsetBase
&
518 (kSmallX86_64ShadowOffsetAlignMask
<< Mapping
.Scale
));
519 } else if (IsWindows
&& IsX86_64
) {
520 Mapping
.Offset
= kWindowsShadowOffset64
;
522 Mapping
.Offset
= kMIPS64_ShadowOffset64
;
524 Mapping
.Offset
= kDynamicShadowSentinel
;
525 else if (IsMacOS
&& IsAArch64
)
526 Mapping
.Offset
= kDynamicShadowSentinel
;
528 Mapping
.Offset
= kAArch64_ShadowOffset64
;
530 Mapping
.Offset
= kRISCV64_ShadowOffset64
;
532 Mapping
.Offset
= (kSmallX86_64ShadowOffsetBase
&
533 (kSmallX86_64ShadowOffsetAlignMask
<< Mapping
.Scale
));
535 Mapping
.Offset
= kDefaultShadowOffset64
;
538 if (ClForceDynamicShadow
) {
539 Mapping
.Offset
= kDynamicShadowSentinel
;
542 if (ClMappingOffset
.getNumOccurrences() > 0) {
543 Mapping
.Offset
= ClMappingOffset
;
546 // OR-ing shadow offset if more efficient (at least on x86) if the offset
547 // is a power of two, but on ppc64 we have to use add since the shadow
548 // offset is not necessary 1/8-th of the address space. On SystemZ,
549 // we could OR the constant in a single instruction, but it's more
550 // efficient to load it once and use indexed addressing.
551 Mapping
.OrShadowOffset
= !IsAArch64
&& !IsPPC64
&& !IsSystemZ
&& !IsPS4CPU
&&
553 !(Mapping
.Offset
& (Mapping
.Offset
- 1)) &&
554 Mapping
.Offset
!= kDynamicShadowSentinel
;
555 bool IsAndroidWithIfuncSupport
=
556 IsAndroid
&& !TargetTriple
.isAndroidVersionLT(21);
557 Mapping
.InGlobal
= ClWithIfunc
&& IsAndroidWithIfuncSupport
&& IsArmOrThumb
;
563 void getAddressSanitizerParams(const Triple
&TargetTriple
, int LongSize
,
564 bool IsKasan
, uint64_t *ShadowBase
,
565 int *MappingScale
, bool *OrShadowOffset
) {
566 auto Mapping
= getShadowMapping(TargetTriple
, LongSize
, IsKasan
);
567 *ShadowBase
= Mapping
.Offset
;
568 *MappingScale
= Mapping
.Scale
;
569 *OrShadowOffset
= Mapping
.OrShadowOffset
;
573 static uint64_t getRedzoneSizeForScale(int MappingScale
) {
574 // Redzone used for stack and globals is at least 32 bytes.
575 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
576 return std::max(32U, 1U << MappingScale
);
579 static uint64_t GetCtorAndDtorPriority(Triple
&TargetTriple
) {
580 if (TargetTriple
.isOSEmscripten()) {
581 return kAsanEmscriptenCtorAndDtorPriority
;
583 return kAsanCtorAndDtorPriority
;
589 /// Module analysis for getting various metadata about the module.
590 class ASanGlobalsMetadataWrapperPass
: public ModulePass
{
594 ASanGlobalsMetadataWrapperPass() : ModulePass(ID
) {
595 initializeASanGlobalsMetadataWrapperPassPass(
596 *PassRegistry::getPassRegistry());
599 bool runOnModule(Module
&M
) override
{
600 GlobalsMD
= GlobalsMetadata(M
);
604 StringRef
getPassName() const override
{
605 return "ASanGlobalsMetadataWrapperPass";
608 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
609 AU
.setPreservesAll();
612 GlobalsMetadata
&getGlobalsMD() { return GlobalsMD
; }
615 GlobalsMetadata GlobalsMD
;
618 char ASanGlobalsMetadataWrapperPass::ID
= 0;
620 /// AddressSanitizer: instrument the code in module to find memory bugs.
621 struct AddressSanitizer
{
622 AddressSanitizer(Module
&M
, const GlobalsMetadata
*GlobalsMD
,
623 bool CompileKernel
= false, bool Recover
= false,
624 bool UseAfterScope
= false,
625 AsanDetectStackUseAfterReturnMode UseAfterReturn
=
626 AsanDetectStackUseAfterReturnMode::Runtime
)
627 : CompileKernel(ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
629 Recover(ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
),
630 UseAfterScope(UseAfterScope
|| ClUseAfterScope
),
631 UseAfterReturn(ClUseAfterReturn
.getNumOccurrences() ? ClUseAfterReturn
633 GlobalsMD(*GlobalsMD
) {
634 C
= &(M
.getContext());
635 LongSize
= M
.getDataLayout().getPointerSizeInBits();
636 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
637 TargetTriple
= Triple(M
.getTargetTriple());
639 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
641 assert(this->UseAfterReturn
!= AsanDetectStackUseAfterReturnMode::Invalid
);
644 uint64_t getAllocaSizeInBytes(const AllocaInst
&AI
) const {
645 uint64_t ArraySize
= 1;
646 if (AI
.isArrayAllocation()) {
647 const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(AI
.getArraySize());
648 assert(CI
&& "non-constant array size");
649 ArraySize
= CI
->getZExtValue();
651 Type
*Ty
= AI
.getAllocatedType();
652 uint64_t SizeInBytes
=
653 AI
.getModule()->getDataLayout().getTypeAllocSize(Ty
);
654 return SizeInBytes
* ArraySize
;
657 /// Check if we want (and can) handle this alloca.
658 bool isInterestingAlloca(const AllocaInst
&AI
);
660 bool ignoreAccess(Value
*Ptr
);
661 void getInterestingMemoryOperands(
662 Instruction
*I
, SmallVectorImpl
<InterestingMemoryOperand
> &Interesting
);
664 void instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
,
665 InterestingMemoryOperand
&O
, bool UseCalls
,
666 const DataLayout
&DL
);
667 void instrumentPointerComparisonOrSubtraction(Instruction
*I
);
668 void instrumentAddress(Instruction
*OrigIns
, Instruction
*InsertBefore
,
669 Value
*Addr
, uint32_t TypeSize
, bool IsWrite
,
670 Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
);
671 Instruction
*instrumentAMDGPUAddress(Instruction
*OrigIns
,
672 Instruction
*InsertBefore
, Value
*Addr
,
673 uint32_t TypeSize
, bool IsWrite
,
674 Value
*SizeArgument
);
675 void instrumentUnusualSizeOrAlignment(Instruction
*I
,
676 Instruction
*InsertBefore
, Value
*Addr
,
677 uint32_t TypeSize
, bool IsWrite
,
678 Value
*SizeArgument
, bool UseCalls
,
680 Value
*createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
681 Value
*ShadowValue
, uint32_t TypeSize
);
682 Instruction
*generateCrashCode(Instruction
*InsertBefore
, Value
*Addr
,
683 bool IsWrite
, size_t AccessSizeIndex
,
684 Value
*SizeArgument
, uint32_t Exp
);
685 void instrumentMemIntrinsic(MemIntrinsic
*MI
);
686 Value
*memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
);
687 bool suppressInstrumentationSiteForDebug(int &Instrumented
);
688 bool instrumentFunction(Function
&F
, const TargetLibraryInfo
*TLI
);
689 bool maybeInsertAsanInitAtFunctionEntry(Function
&F
);
690 bool maybeInsertDynamicShadowAtFunctionEntry(Function
&F
);
691 void markEscapedLocalAllocas(Function
&F
);
694 friend struct FunctionStackPoisoner
;
696 void initializeCallbacks(Module
&M
);
698 bool LooksLikeCodeInBug11395(Instruction
*I
);
699 bool GlobalIsLinkerInitialized(GlobalVariable
*G
);
700 bool isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
, Value
*Addr
,
701 uint64_t TypeSize
) const;
703 /// Helper to cleanup per-function state.
704 struct FunctionStateRAII
{
705 AddressSanitizer
*Pass
;
707 FunctionStateRAII(AddressSanitizer
*Pass
) : Pass(Pass
) {
708 assert(Pass
->ProcessedAllocas
.empty() &&
709 "last pass forgot to clear cache");
710 assert(!Pass
->LocalDynamicShadow
);
713 ~FunctionStateRAII() {
714 Pass
->LocalDynamicShadow
= nullptr;
715 Pass
->ProcessedAllocas
.clear();
725 AsanDetectStackUseAfterReturnMode UseAfterReturn
;
727 ShadowMapping Mapping
;
728 FunctionCallee AsanHandleNoReturnFunc
;
729 FunctionCallee AsanPtrCmpFunction
, AsanPtrSubFunction
;
730 Constant
*AsanShadowGlobal
;
732 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
733 FunctionCallee AsanErrorCallback
[2][2][kNumberOfAccessSizes
];
734 FunctionCallee AsanMemoryAccessCallback
[2][2][kNumberOfAccessSizes
];
736 // These arrays is indexed by AccessIsWrite and Experiment.
737 FunctionCallee AsanErrorCallbackSized
[2][2];
738 FunctionCallee AsanMemoryAccessCallbackSized
[2][2];
740 FunctionCallee AsanMemmove
, AsanMemcpy
, AsanMemset
;
741 Value
*LocalDynamicShadow
= nullptr;
742 const GlobalsMetadata
&GlobalsMD
;
743 DenseMap
<const AllocaInst
*, bool> ProcessedAllocas
;
745 FunctionCallee AMDGPUAddressShared
;
746 FunctionCallee AMDGPUAddressPrivate
;
749 class AddressSanitizerLegacyPass
: public FunctionPass
{
753 explicit AddressSanitizerLegacyPass(
754 bool CompileKernel
= false, bool Recover
= false,
755 bool UseAfterScope
= false,
756 AsanDetectStackUseAfterReturnMode UseAfterReturn
=
757 AsanDetectStackUseAfterReturnMode::Runtime
)
758 : FunctionPass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
759 UseAfterScope(UseAfterScope
), UseAfterReturn(UseAfterReturn
) {
760 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
763 StringRef
getPassName() const override
{
764 return "AddressSanitizerFunctionPass";
767 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
768 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
769 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
772 bool runOnFunction(Function
&F
) override
{
773 GlobalsMetadata
&GlobalsMD
=
774 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
775 const TargetLibraryInfo
*TLI
=
776 &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
777 AddressSanitizer
ASan(*F
.getParent(), &GlobalsMD
, CompileKernel
, Recover
,
778 UseAfterScope
, UseAfterReturn
);
779 return ASan
.instrumentFunction(F
, TLI
);
786 AsanDetectStackUseAfterReturnMode UseAfterReturn
;
789 class ModuleAddressSanitizer
{
791 ModuleAddressSanitizer(Module
&M
, const GlobalsMetadata
*GlobalsMD
,
792 bool CompileKernel
= false, bool Recover
= false,
793 bool UseGlobalsGC
= true, bool UseOdrIndicator
= false,
794 AsanDtorKind DestructorKind
= AsanDtorKind::Global
)
795 : GlobalsMD(*GlobalsMD
),
796 CompileKernel(ClEnableKasan
.getNumOccurrences() > 0 ? ClEnableKasan
798 Recover(ClRecover
.getNumOccurrences() > 0 ? ClRecover
: Recover
),
799 UseGlobalsGC(UseGlobalsGC
&& ClUseGlobalsGC
&& !this->CompileKernel
),
800 // Enable aliases as they should have no downside with ODR indicators.
801 UsePrivateAlias(UseOdrIndicator
|| ClUsePrivateAlias
),
802 UseOdrIndicator(UseOdrIndicator
|| ClUseOdrIndicator
),
803 // Not a typo: ClWithComdat is almost completely pointless without
804 // ClUseGlobalsGC (because then it only works on modules without
805 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
806 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
807 // argument is designed as workaround. Therefore, disable both
808 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
810 UseCtorComdat(UseGlobalsGC
&& ClWithComdat
&& !this->CompileKernel
),
811 DestructorKind(DestructorKind
) {
812 C
= &(M
.getContext());
813 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
814 IntptrTy
= Type::getIntNTy(*C
, LongSize
);
815 TargetTriple
= Triple(M
.getTargetTriple());
816 Mapping
= getShadowMapping(TargetTriple
, LongSize
, this->CompileKernel
);
818 if (ClOverrideDestructorKind
!= AsanDtorKind::Invalid
)
819 this->DestructorKind
= ClOverrideDestructorKind
;
820 assert(this->DestructorKind
!= AsanDtorKind::Invalid
);
823 bool instrumentModule(Module
&);
826 void initializeCallbacks(Module
&M
);
828 bool InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
, bool *CtorComdat
);
829 void InstrumentGlobalsCOFF(IRBuilder
<> &IRB
, Module
&M
,
830 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
831 ArrayRef
<Constant
*> MetadataInitializers
);
832 void InstrumentGlobalsELF(IRBuilder
<> &IRB
, Module
&M
,
833 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
834 ArrayRef
<Constant
*> MetadataInitializers
,
835 const std::string
&UniqueModuleId
);
836 void InstrumentGlobalsMachO(IRBuilder
<> &IRB
, Module
&M
,
837 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
838 ArrayRef
<Constant
*> MetadataInitializers
);
840 InstrumentGlobalsWithMetadataArray(IRBuilder
<> &IRB
, Module
&M
,
841 ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
842 ArrayRef
<Constant
*> MetadataInitializers
);
844 GlobalVariable
*CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
845 StringRef OriginalName
);
846 void SetComdatForGlobalMetadata(GlobalVariable
*G
, GlobalVariable
*Metadata
,
847 StringRef InternalSuffix
);
848 Instruction
*CreateAsanModuleDtor(Module
&M
);
850 const GlobalVariable
*getExcludedAliasedGlobal(const GlobalAlias
&GA
) const;
851 bool shouldInstrumentGlobal(GlobalVariable
*G
) const;
852 bool ShouldUseMachOGlobalsSection() const;
853 StringRef
getGlobalMetadataSection() const;
854 void poisonOneInitializer(Function
&GlobalInit
, GlobalValue
*ModuleName
);
855 void createInitializerPoisonCalls(Module
&M
, GlobalValue
*ModuleName
);
856 uint64_t getMinRedzoneSizeForGlobal() const {
857 return getRedzoneSizeForScale(Mapping
.Scale
);
859 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes
) const;
860 int GetAsanVersion(const Module
&M
) const;
862 const GlobalsMetadata
&GlobalsMD
;
866 bool UsePrivateAlias
;
867 bool UseOdrIndicator
;
869 AsanDtorKind DestructorKind
;
873 ShadowMapping Mapping
;
874 FunctionCallee AsanPoisonGlobals
;
875 FunctionCallee AsanUnpoisonGlobals
;
876 FunctionCallee AsanRegisterGlobals
;
877 FunctionCallee AsanUnregisterGlobals
;
878 FunctionCallee AsanRegisterImageGlobals
;
879 FunctionCallee AsanUnregisterImageGlobals
;
880 FunctionCallee AsanRegisterElfGlobals
;
881 FunctionCallee AsanUnregisterElfGlobals
;
883 Function
*AsanCtorFunction
= nullptr;
884 Function
*AsanDtorFunction
= nullptr;
887 class ModuleAddressSanitizerLegacyPass
: public ModulePass
{
891 explicit ModuleAddressSanitizerLegacyPass(
892 bool CompileKernel
= false, bool Recover
= false, bool UseGlobalGC
= true,
893 bool UseOdrIndicator
= false,
894 AsanDtorKind DestructorKind
= AsanDtorKind::Global
)
895 : ModulePass(ID
), CompileKernel(CompileKernel
), Recover(Recover
),
896 UseGlobalGC(UseGlobalGC
), UseOdrIndicator(UseOdrIndicator
),
897 DestructorKind(DestructorKind
) {
898 initializeModuleAddressSanitizerLegacyPassPass(
899 *PassRegistry::getPassRegistry());
902 StringRef
getPassName() const override
{ return "ModuleAddressSanitizer"; }
904 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
905 AU
.addRequired
<ASanGlobalsMetadataWrapperPass
>();
908 bool runOnModule(Module
&M
) override
{
909 GlobalsMetadata
&GlobalsMD
=
910 getAnalysis
<ASanGlobalsMetadataWrapperPass
>().getGlobalsMD();
911 ModuleAddressSanitizer
ASanModule(M
, &GlobalsMD
, CompileKernel
, Recover
,
912 UseGlobalGC
, UseOdrIndicator
,
914 return ASanModule
.instrumentModule(M
);
921 bool UseOdrIndicator
;
922 AsanDtorKind DestructorKind
;
925 // Stack poisoning does not play well with exception handling.
926 // When an exception is thrown, we essentially bypass the code
927 // that unpoisones the stack. This is why the run-time library has
928 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
929 // stack in the interceptor. This however does not work inside the
930 // actual function which catches the exception. Most likely because the
931 // compiler hoists the load of the shadow value somewhere too high.
932 // This causes asan to report a non-existing bug on 453.povray.
933 // It sounds like an LLVM bug.
934 struct FunctionStackPoisoner
: public InstVisitor
<FunctionStackPoisoner
> {
936 AddressSanitizer
&ASan
;
941 ShadowMapping Mapping
;
943 SmallVector
<AllocaInst
*, 16> AllocaVec
;
944 SmallVector
<AllocaInst
*, 16> StaticAllocasToMoveUp
;
945 SmallVector
<Instruction
*, 8> RetVec
;
947 FunctionCallee AsanStackMallocFunc
[kMaxAsanStackMallocSizeClass
+ 1],
948 AsanStackFreeFunc
[kMaxAsanStackMallocSizeClass
+ 1];
949 FunctionCallee AsanSetShadowFunc
[0x100] = {};
950 FunctionCallee AsanPoisonStackMemoryFunc
, AsanUnpoisonStackMemoryFunc
;
951 FunctionCallee AsanAllocaPoisonFunc
, AsanAllocasUnpoisonFunc
;
953 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
954 struct AllocaPoisonCall
{
955 IntrinsicInst
*InsBefore
;
960 SmallVector
<AllocaPoisonCall
, 8> DynamicAllocaPoisonCallVec
;
961 SmallVector
<AllocaPoisonCall
, 8> StaticAllocaPoisonCallVec
;
962 bool HasUntracedLifetimeIntrinsic
= false;
964 SmallVector
<AllocaInst
*, 1> DynamicAllocaVec
;
965 SmallVector
<IntrinsicInst
*, 1> StackRestoreVec
;
966 AllocaInst
*DynamicAllocaLayout
= nullptr;
967 IntrinsicInst
*LocalEscapeCall
= nullptr;
969 bool HasInlineAsm
= false;
970 bool HasReturnsTwiceCall
= false;
973 FunctionStackPoisoner(Function
&F
, AddressSanitizer
&ASan
)
974 : F(F
), ASan(ASan
), DIB(*F
.getParent(), /*AllowUnresolved*/ false),
975 C(ASan
.C
), IntptrTy(ASan
.IntptrTy
),
976 IntptrPtrTy(PointerType::get(IntptrTy
, 0)), Mapping(ASan
.Mapping
),
977 PoisonStack(ClStack
&&
978 !Triple(F
.getParent()->getTargetTriple()).isAMDGPU()) {}
980 bool runOnFunction() {
984 if (ClRedzoneByvalArgs
)
985 copyArgsPassedByValToAllocas();
987 // Collect alloca, ret, lifetime instructions etc.
988 for (BasicBlock
*BB
: depth_first(&F
.getEntryBlock())) visit(*BB
);
990 if (AllocaVec
.empty() && DynamicAllocaVec
.empty()) return false;
992 initializeCallbacks(*F
.getParent());
994 if (HasUntracedLifetimeIntrinsic
) {
995 // If there are lifetime intrinsics which couldn't be traced back to an
996 // alloca, we may not know exactly when a variable enters scope, and
997 // therefore should "fail safe" by not poisoning them.
998 StaticAllocaPoisonCallVec
.clear();
999 DynamicAllocaPoisonCallVec
.clear();
1002 processDynamicAllocas();
1003 processStaticAllocas();
1006 LLVM_DEBUG(dbgs() << F
);
1011 // Arguments marked with the "byval" attribute are implicitly copied without
1012 // using an alloca instruction. To produce redzones for those arguments, we
1013 // copy them a second time into memory allocated with an alloca instruction.
1014 void copyArgsPassedByValToAllocas();
1016 // Finds all Alloca instructions and puts
1017 // poisoned red zones around all of them.
1018 // Then unpoison everything back before the function returns.
1019 void processStaticAllocas();
1020 void processDynamicAllocas();
1022 void createDynamicAllocasInitStorage();
1024 // ----------------------- Visitors.
1025 /// Collect all Ret instructions, or the musttail call instruction if it
1026 /// precedes the return instruction.
1027 void visitReturnInst(ReturnInst
&RI
) {
1028 if (CallInst
*CI
= RI
.getParent()->getTerminatingMustTailCall())
1029 RetVec
.push_back(CI
);
1031 RetVec
.push_back(&RI
);
1034 /// Collect all Resume instructions.
1035 void visitResumeInst(ResumeInst
&RI
) { RetVec
.push_back(&RI
); }
1037 /// Collect all CatchReturnInst instructions.
1038 void visitCleanupReturnInst(CleanupReturnInst
&CRI
) { RetVec
.push_back(&CRI
); }
1040 void unpoisonDynamicAllocasBeforeInst(Instruction
*InstBefore
,
1041 Value
*SavedStack
) {
1042 IRBuilder
<> IRB(InstBefore
);
1043 Value
*DynamicAreaPtr
= IRB
.CreatePtrToInt(SavedStack
, IntptrTy
);
1044 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1045 // need to adjust extracted SP to compute the address of the most recent
1046 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1048 if (!isa
<ReturnInst
>(InstBefore
)) {
1049 Function
*DynamicAreaOffsetFunc
= Intrinsic::getDeclaration(
1050 InstBefore
->getModule(), Intrinsic::get_dynamic_area_offset
,
1053 Value
*DynamicAreaOffset
= IRB
.CreateCall(DynamicAreaOffsetFunc
, {});
1055 DynamicAreaPtr
= IRB
.CreateAdd(IRB
.CreatePtrToInt(SavedStack
, IntptrTy
),
1060 AsanAllocasUnpoisonFunc
,
1061 {IRB
.CreateLoad(IntptrTy
, DynamicAllocaLayout
), DynamicAreaPtr
});
1064 // Unpoison dynamic allocas redzones.
1065 void unpoisonDynamicAllocas() {
1066 for (Instruction
*Ret
: RetVec
)
1067 unpoisonDynamicAllocasBeforeInst(Ret
, DynamicAllocaLayout
);
1069 for (Instruction
*StackRestoreInst
: StackRestoreVec
)
1070 unpoisonDynamicAllocasBeforeInst(StackRestoreInst
,
1071 StackRestoreInst
->getOperand(0));
1074 // Deploy and poison redzones around dynamic alloca call. To do this, we
1075 // should replace this call with another one with changed parameters and
1076 // replace all its uses with new address, so
1077 // addr = alloca type, old_size, align
1079 // new_size = (old_size + additional_size) * sizeof(type)
1080 // tmp = alloca i8, new_size, max(align, 32)
1081 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1082 // Additional_size is added to make new memory allocation contain not only
1083 // requested memory, but also left, partial and right redzones.
1084 void handleDynamicAllocaCall(AllocaInst
*AI
);
1086 /// Collect Alloca instructions we want (and can) handle.
1087 void visitAllocaInst(AllocaInst
&AI
) {
1088 if (!ASan
.isInterestingAlloca(AI
)) {
1089 if (AI
.isStaticAlloca()) {
1090 // Skip over allocas that are present *before* the first instrumented
1091 // alloca, we don't want to move those around.
1092 if (AllocaVec
.empty())
1095 StaticAllocasToMoveUp
.push_back(&AI
);
1100 if (!AI
.isStaticAlloca())
1101 DynamicAllocaVec
.push_back(&AI
);
1103 AllocaVec
.push_back(&AI
);
1106 /// Collect lifetime intrinsic calls to check for use-after-scope
1108 void visitIntrinsicInst(IntrinsicInst
&II
) {
1109 Intrinsic::ID ID
= II
.getIntrinsicID();
1110 if (ID
== Intrinsic::stackrestore
) StackRestoreVec
.push_back(&II
);
1111 if (ID
== Intrinsic::localescape
) LocalEscapeCall
= &II
;
1112 if (!ASan
.UseAfterScope
)
1114 if (!II
.isLifetimeStartOrEnd())
1116 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1117 auto *Size
= cast
<ConstantInt
>(II
.getArgOperand(0));
1118 // If size argument is undefined, don't do anything.
1119 if (Size
->isMinusOne()) return;
1120 // Check that size doesn't saturate uint64_t and can
1121 // be stored in IntptrTy.
1122 const uint64_t SizeValue
= Size
->getValue().getLimitedValue();
1123 if (SizeValue
== ~0ULL ||
1124 !ConstantInt::isValueValidForType(IntptrTy
, SizeValue
))
1126 // Find alloca instruction that corresponds to llvm.lifetime argument.
1127 // Currently we can only handle lifetime markers pointing to the
1128 // beginning of the alloca.
1129 AllocaInst
*AI
= findAllocaForValue(II
.getArgOperand(1), true);
1131 HasUntracedLifetimeIntrinsic
= true;
1134 // We're interested only in allocas we can handle.
1135 if (!ASan
.isInterestingAlloca(*AI
))
1137 bool DoPoison
= (ID
== Intrinsic::lifetime_end
);
1138 AllocaPoisonCall APC
= {&II
, AI
, SizeValue
, DoPoison
};
1139 if (AI
->isStaticAlloca())
1140 StaticAllocaPoisonCallVec
.push_back(APC
);
1141 else if (ClInstrumentDynamicAllocas
)
1142 DynamicAllocaPoisonCallVec
.push_back(APC
);
1145 void visitCallBase(CallBase
&CB
) {
1146 if (CallInst
*CI
= dyn_cast
<CallInst
>(&CB
)) {
1147 HasInlineAsm
|= CI
->isInlineAsm() && &CB
!= ASan
.LocalDynamicShadow
;
1148 HasReturnsTwiceCall
|= CI
->canReturnTwice();
1152 // ---------------------- Helpers.
1153 void initializeCallbacks(Module
&M
);
1155 // Copies bytes from ShadowBytes into shadow memory for indexes where
1156 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1157 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1158 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1159 IRBuilder
<> &IRB
, Value
*ShadowBase
);
1160 void copyToShadow(ArrayRef
<uint8_t> ShadowMask
, ArrayRef
<uint8_t> ShadowBytes
,
1161 size_t Begin
, size_t End
, IRBuilder
<> &IRB
,
1163 void copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
1164 ArrayRef
<uint8_t> ShadowBytes
, size_t Begin
,
1165 size_t End
, IRBuilder
<> &IRB
, Value
*ShadowBase
);
1167 void poisonAlloca(Value
*V
, uint64_t Size
, IRBuilder
<> &IRB
, bool DoPoison
);
1169 Value
*createAllocaForLayout(IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
,
1171 PHINode
*createPHI(IRBuilder
<> &IRB
, Value
*Cond
, Value
*ValueIfTrue
,
1172 Instruction
*ThenTerm
, Value
*ValueIfFalse
);
1175 } // end anonymous namespace
1177 void LocationMetadata::parse(MDNode
*MDN
) {
1178 assert(MDN
->getNumOperands() == 3);
1179 MDString
*DIFilename
= cast
<MDString
>(MDN
->getOperand(0));
1180 Filename
= DIFilename
->getString();
1181 LineNo
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(1))->getLimitedValue();
1183 mdconst::extract
<ConstantInt
>(MDN
->getOperand(2))->getLimitedValue();
1186 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1187 // we want to sanitize instead and reading this metadata on each pass over a
1188 // function instead of reading module level metadata at first.
1189 GlobalsMetadata::GlobalsMetadata(Module
&M
) {
1190 NamedMDNode
*Globals
= M
.getNamedMetadata("llvm.asan.globals");
1193 for (auto MDN
: Globals
->operands()) {
1194 // Metadata node contains the global and the fields of "Entry".
1195 assert(MDN
->getNumOperands() == 5);
1196 auto *V
= mdconst::extract_or_null
<Constant
>(MDN
->getOperand(0));
1197 // The optimizer may optimize away a global entirely.
1200 auto *StrippedV
= V
->stripPointerCasts();
1201 auto *GV
= dyn_cast
<GlobalVariable
>(StrippedV
);
1204 // We can already have an entry for GV if it was merged with another
1206 Entry
&E
= Entries
[GV
];
1207 if (auto *Loc
= cast_or_null
<MDNode
>(MDN
->getOperand(1)))
1208 E
.SourceLoc
.parse(Loc
);
1209 if (auto *Name
= cast_or_null
<MDString
>(MDN
->getOperand(2)))
1210 E
.Name
= Name
->getString();
1211 ConstantInt
*IsDynInit
= mdconst::extract
<ConstantInt
>(MDN
->getOperand(3));
1212 E
.IsDynInit
|= IsDynInit
->isOne();
1213 ConstantInt
*IsExcluded
=
1214 mdconst::extract
<ConstantInt
>(MDN
->getOperand(4));
1215 E
.IsExcluded
|= IsExcluded
->isOne();
1219 AnalysisKey
ASanGlobalsMetadataAnalysis::Key
;
1221 GlobalsMetadata
ASanGlobalsMetadataAnalysis::run(Module
&M
,
1222 ModuleAnalysisManager
&AM
) {
1223 return GlobalsMetadata(M
);
1226 PreservedAnalyses
AddressSanitizerPass::run(Function
&F
,
1227 AnalysisManager
<Function
> &AM
) {
1228 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
1229 Module
&M
= *F
.getParent();
1230 if (auto *R
= MAMProxy
.getCachedResult
<ASanGlobalsMetadataAnalysis
>(M
)) {
1231 const TargetLibraryInfo
*TLI
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
1232 AddressSanitizer
Sanitizer(M
, R
, Options
.CompileKernel
, Options
.Recover
,
1233 Options
.UseAfterScope
, Options
.UseAfterReturn
);
1234 if (Sanitizer
.instrumentFunction(F
, TLI
))
1235 return PreservedAnalyses::none();
1236 return PreservedAnalyses::all();
1240 "The ASanGlobalsMetadataAnalysis is required to run before "
1241 "AddressSanitizer can run");
1242 return PreservedAnalyses::all();
1245 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1246 bool CompileKernel
, bool Recover
, bool UseGlobalGC
, bool UseOdrIndicator
,
1247 AsanDtorKind DestructorKind
)
1248 : CompileKernel(CompileKernel
), Recover(Recover
), UseGlobalGC(UseGlobalGC
),
1249 UseOdrIndicator(UseOdrIndicator
), DestructorKind(DestructorKind
) {}
1251 PreservedAnalyses
ModuleAddressSanitizerPass::run(Module
&M
,
1252 AnalysisManager
<Module
> &AM
) {
1253 GlobalsMetadata
&GlobalsMD
= AM
.getResult
<ASanGlobalsMetadataAnalysis
>(M
);
1254 ModuleAddressSanitizer
Sanitizer(M
, &GlobalsMD
, CompileKernel
, Recover
,
1255 UseGlobalGC
, UseOdrIndicator
,
1257 if (Sanitizer
.instrumentModule(M
))
1258 return PreservedAnalyses::none();
1259 return PreservedAnalyses::all();
1262 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass
, "asan-globals-md",
1263 "Read metadata to mark which globals should be instrumented "
1264 "when running ASan.",
1267 char AddressSanitizerLegacyPass::ID
= 0;
1269 INITIALIZE_PASS_BEGIN(
1270 AddressSanitizerLegacyPass
, "asan",
1271 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1273 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass
)
1274 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
1275 INITIALIZE_PASS_END(
1276 AddressSanitizerLegacyPass
, "asan",
1277 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1280 FunctionPass
*llvm::createAddressSanitizerFunctionPass(
1281 bool CompileKernel
, bool Recover
, bool UseAfterScope
,
1282 AsanDetectStackUseAfterReturnMode UseAfterReturn
) {
1283 assert(!CompileKernel
|| Recover
);
1284 return new AddressSanitizerLegacyPass(CompileKernel
, Recover
, UseAfterScope
,
1288 char ModuleAddressSanitizerLegacyPass::ID
= 0;
1291 ModuleAddressSanitizerLegacyPass
, "asan-module",
1292 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1296 ModulePass
*llvm::createModuleAddressSanitizerLegacyPassPass(
1297 bool CompileKernel
, bool Recover
, bool UseGlobalsGC
, bool UseOdrIndicator
,
1298 AsanDtorKind Destructor
) {
1299 assert(!CompileKernel
|| Recover
);
1300 return new ModuleAddressSanitizerLegacyPass(
1301 CompileKernel
, Recover
, UseGlobalsGC
, UseOdrIndicator
, Destructor
);
1304 static size_t TypeSizeToSizeIndex(uint32_t TypeSize
) {
1305 size_t Res
= countTrailingZeros(TypeSize
/ 8);
1306 assert(Res
< kNumberOfAccessSizes
);
1310 /// Create a global describing a source location.
1311 static GlobalVariable
*createPrivateGlobalForSourceLoc(Module
&M
,
1312 LocationMetadata MD
) {
1313 Constant
*LocData
[] = {
1314 createPrivateGlobalForString(M
, MD
.Filename
, true, kAsanGenPrefix
),
1315 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.LineNo
),
1316 ConstantInt::get(Type::getInt32Ty(M
.getContext()), MD
.ColumnNo
),
1318 auto LocStruct
= ConstantStruct::getAnon(LocData
);
1319 auto GV
= new GlobalVariable(M
, LocStruct
->getType(), true,
1320 GlobalValue::PrivateLinkage
, LocStruct
,
1322 GV
->setUnnamedAddr(GlobalValue::UnnamedAddr::Global
);
1326 /// Check if \p G has been created by a trusted compiler pass.
1327 static bool GlobalWasGeneratedByCompiler(GlobalVariable
*G
) {
1328 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1329 if (G
->getName().startswith("llvm."))
1332 // Do not instrument asan globals.
1333 if (G
->getName().startswith(kAsanGenPrefix
) ||
1334 G
->getName().startswith(kSanCovGenPrefix
) ||
1335 G
->getName().startswith(kODRGenPrefix
))
1338 // Do not instrument gcov counter arrays.
1339 if (G
->getName() == "__llvm_gcov_ctr")
1345 static bool isUnsupportedAMDGPUAddrspace(Value
*Addr
) {
1346 Type
*PtrTy
= cast
<PointerType
>(Addr
->getType()->getScalarType());
1347 unsigned int AddrSpace
= PtrTy
->getPointerAddressSpace();
1348 if (AddrSpace
== 3 || AddrSpace
== 5)
1353 Value
*AddressSanitizer::memToShadow(Value
*Shadow
, IRBuilder
<> &IRB
) {
1355 Shadow
= IRB
.CreateLShr(Shadow
, Mapping
.Scale
);
1356 if (Mapping
.Offset
== 0) return Shadow
;
1357 // (Shadow >> scale) | offset
1359 if (LocalDynamicShadow
)
1360 ShadowBase
= LocalDynamicShadow
;
1362 ShadowBase
= ConstantInt::get(IntptrTy
, Mapping
.Offset
);
1363 if (Mapping
.OrShadowOffset
)
1364 return IRB
.CreateOr(Shadow
, ShadowBase
);
1366 return IRB
.CreateAdd(Shadow
, ShadowBase
);
1369 // Instrument memset/memmove/memcpy
1370 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic
*MI
) {
1371 IRBuilder
<> IRB(MI
);
1372 if (isa
<MemTransferInst
>(MI
)) {
1374 isa
<MemMoveInst
>(MI
) ? AsanMemmove
: AsanMemcpy
,
1375 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1376 IRB
.CreatePointerCast(MI
->getOperand(1), IRB
.getInt8PtrTy()),
1377 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1378 } else if (isa
<MemSetInst
>(MI
)) {
1381 {IRB
.CreatePointerCast(MI
->getOperand(0), IRB
.getInt8PtrTy()),
1382 IRB
.CreateIntCast(MI
->getOperand(1), IRB
.getInt32Ty(), false),
1383 IRB
.CreateIntCast(MI
->getOperand(2), IntptrTy
, false)});
1385 MI
->eraseFromParent();
1388 /// Check if we want (and can) handle this alloca.
1389 bool AddressSanitizer::isInterestingAlloca(const AllocaInst
&AI
) {
1390 auto PreviouslySeenAllocaInfo
= ProcessedAllocas
.find(&AI
);
1392 if (PreviouslySeenAllocaInfo
!= ProcessedAllocas
.end())
1393 return PreviouslySeenAllocaInfo
->getSecond();
1395 bool IsInteresting
=
1396 (AI
.getAllocatedType()->isSized() &&
1397 // alloca() may be called with 0 size, ignore it.
1398 ((!AI
.isStaticAlloca()) || getAllocaSizeInBytes(AI
) > 0) &&
1399 // We are only interested in allocas not promotable to registers.
1400 // Promotable allocas are common under -O0.
1401 (!ClSkipPromotableAllocas
|| !isAllocaPromotable(&AI
)) &&
1402 // inalloca allocas are not treated as static, and we don't want
1403 // dynamic alloca instrumentation for them as well.
1404 !AI
.isUsedWithInAlloca() &&
1405 // swifterror allocas are register promoted by ISel
1406 !AI
.isSwiftError());
1408 ProcessedAllocas
[&AI
] = IsInteresting
;
1409 return IsInteresting
;
1412 bool AddressSanitizer::ignoreAccess(Value
*Ptr
) {
1413 // Instrument acesses from different address spaces only for AMDGPU.
1414 Type
*PtrTy
= cast
<PointerType
>(Ptr
->getType()->getScalarType());
1415 if (PtrTy
->getPointerAddressSpace() != 0 &&
1416 !(TargetTriple
.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr
)))
1419 // Ignore swifterror addresses.
1420 // swifterror memory addresses are mem2reg promoted by instruction
1421 // selection. As such they cannot have regular uses like an instrumentation
1422 // function and it makes no sense to track them as memory.
1423 if (Ptr
->isSwiftError())
1426 // Treat memory accesses to promotable allocas as non-interesting since they
1427 // will not cause memory violations. This greatly speeds up the instrumented
1428 // executable at -O0.
1429 if (auto AI
= dyn_cast_or_null
<AllocaInst
>(Ptr
))
1430 if (ClSkipPromotableAllocas
&& !isInterestingAlloca(*AI
))
1436 void AddressSanitizer::getInterestingMemoryOperands(
1437 Instruction
*I
, SmallVectorImpl
<InterestingMemoryOperand
> &Interesting
) {
1438 // Skip memory accesses inserted by another instrumentation.
1439 if (I
->hasMetadata("nosanitize"))
1442 // Do not instrument the load fetching the dynamic shadow address.
1443 if (LocalDynamicShadow
== I
)
1446 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
1447 if (!ClInstrumentReads
|| ignoreAccess(LI
->getPointerOperand()))
1449 Interesting
.emplace_back(I
, LI
->getPointerOperandIndex(), false,
1450 LI
->getType(), LI
->getAlign());
1451 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
1452 if (!ClInstrumentWrites
|| ignoreAccess(SI
->getPointerOperand()))
1454 Interesting
.emplace_back(I
, SI
->getPointerOperandIndex(), true,
1455 SI
->getValueOperand()->getType(), SI
->getAlign());
1456 } else if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
1457 if (!ClInstrumentAtomics
|| ignoreAccess(RMW
->getPointerOperand()))
1459 Interesting
.emplace_back(I
, RMW
->getPointerOperandIndex(), true,
1460 RMW
->getValOperand()->getType(), None
);
1461 } else if (AtomicCmpXchgInst
*XCHG
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
1462 if (!ClInstrumentAtomics
|| ignoreAccess(XCHG
->getPointerOperand()))
1464 Interesting
.emplace_back(I
, XCHG
->getPointerOperandIndex(), true,
1465 XCHG
->getCompareOperand()->getType(), None
);
1466 } else if (auto CI
= dyn_cast
<CallInst
>(I
)) {
1467 auto *F
= CI
->getCalledFunction();
1468 if (F
&& (F
->getName().startswith("llvm.masked.load.") ||
1469 F
->getName().startswith("llvm.masked.store."))) {
1470 bool IsWrite
= F
->getName().startswith("llvm.masked.store.");
1471 // Masked store has an initial operand for the value.
1472 unsigned OpOffset
= IsWrite
? 1 : 0;
1473 if (IsWrite
? !ClInstrumentWrites
: !ClInstrumentReads
)
1476 auto BasePtr
= CI
->getOperand(OpOffset
);
1477 if (ignoreAccess(BasePtr
))
1479 auto Ty
= cast
<PointerType
>(BasePtr
->getType())->getElementType();
1480 MaybeAlign Alignment
= Align(1);
1481 // Otherwise no alignment guarantees. We probably got Undef.
1482 if (auto *Op
= dyn_cast
<ConstantInt
>(CI
->getOperand(1 + OpOffset
)))
1483 Alignment
= Op
->getMaybeAlignValue();
1484 Value
*Mask
= CI
->getOperand(2 + OpOffset
);
1485 Interesting
.emplace_back(I
, OpOffset
, IsWrite
, Ty
, Alignment
, Mask
);
1487 for (unsigned ArgNo
= 0; ArgNo
< CI
->getNumArgOperands(); ArgNo
++) {
1488 if (!ClInstrumentByval
|| !CI
->isByValArgument(ArgNo
) ||
1489 ignoreAccess(CI
->getArgOperand(ArgNo
)))
1491 Type
*Ty
= CI
->getParamByValType(ArgNo
);
1492 Interesting
.emplace_back(I
, ArgNo
, false, Ty
, Align(1));
1498 static bool isPointerOperand(Value
*V
) {
1499 return V
->getType()->isPointerTy() || isa
<PtrToIntInst
>(V
);
1502 // This is a rough heuristic; it may cause both false positives and
1503 // false negatives. The proper implementation requires cooperation with
1505 static bool isInterestingPointerComparison(Instruction
*I
) {
1506 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(I
)) {
1507 if (!Cmp
->isRelational())
1512 return isPointerOperand(I
->getOperand(0)) &&
1513 isPointerOperand(I
->getOperand(1));
1516 // This is a rough heuristic; it may cause both false positives and
1517 // false negatives. The proper implementation requires cooperation with
1519 static bool isInterestingPointerSubtraction(Instruction
*I
) {
1520 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
1521 if (BO
->getOpcode() != Instruction::Sub
)
1526 return isPointerOperand(I
->getOperand(0)) &&
1527 isPointerOperand(I
->getOperand(1));
1530 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable
*G
) {
1531 // If a global variable does not have dynamic initialization we don't
1532 // have to instrument it. However, if a global does not have initializer
1533 // at all, we assume it has dynamic initializer (in other TU).
1535 // FIXME: Metadata should be attched directly to the global directly instead
1536 // of being added to llvm.asan.globals.
1537 return G
->hasInitializer() && !GlobalsMD
.get(G
).IsDynInit
;
1540 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1543 FunctionCallee F
= isa
<ICmpInst
>(I
) ? AsanPtrCmpFunction
: AsanPtrSubFunction
;
1544 Value
*Param
[2] = {I
->getOperand(0), I
->getOperand(1)};
1545 for (Value
*&i
: Param
) {
1546 if (i
->getType()->isPointerTy())
1547 i
= IRB
.CreatePointerCast(i
, IntptrTy
);
1549 IRB
.CreateCall(F
, Param
);
1552 static void doInstrumentAddress(AddressSanitizer
*Pass
, Instruction
*I
,
1553 Instruction
*InsertBefore
, Value
*Addr
,
1554 MaybeAlign Alignment
, unsigned Granularity
,
1555 uint32_t TypeSize
, bool IsWrite
,
1556 Value
*SizeArgument
, bool UseCalls
,
1558 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1559 // if the data is properly aligned.
1560 if ((TypeSize
== 8 || TypeSize
== 16 || TypeSize
== 32 || TypeSize
== 64 ||
1562 (!Alignment
|| *Alignment
>= Granularity
|| *Alignment
>= TypeSize
/ 8))
1563 return Pass
->instrumentAddress(I
, InsertBefore
, Addr
, TypeSize
, IsWrite
,
1564 nullptr, UseCalls
, Exp
);
1565 Pass
->instrumentUnusualSizeOrAlignment(I
, InsertBefore
, Addr
, TypeSize
,
1566 IsWrite
, nullptr, UseCalls
, Exp
);
1569 static void instrumentMaskedLoadOrStore(AddressSanitizer
*Pass
,
1570 const DataLayout
&DL
, Type
*IntptrTy
,
1571 Value
*Mask
, Instruction
*I
,
1572 Value
*Addr
, MaybeAlign Alignment
,
1573 unsigned Granularity
, uint32_t TypeSize
,
1574 bool IsWrite
, Value
*SizeArgument
,
1575 bool UseCalls
, uint32_t Exp
) {
1576 auto *VTy
= cast
<FixedVectorType
>(
1577 cast
<PointerType
>(Addr
->getType())->getElementType());
1578 uint64_t ElemTypeSize
= DL
.getTypeStoreSizeInBits(VTy
->getScalarType());
1579 unsigned Num
= VTy
->getNumElements();
1580 auto Zero
= ConstantInt::get(IntptrTy
, 0);
1581 for (unsigned Idx
= 0; Idx
< Num
; ++Idx
) {
1582 Value
*InstrumentedAddress
= nullptr;
1583 Instruction
*InsertBefore
= I
;
1584 if (auto *Vector
= dyn_cast
<ConstantVector
>(Mask
)) {
1585 // dyn_cast as we might get UndefValue
1586 if (auto *Masked
= dyn_cast
<ConstantInt
>(Vector
->getOperand(Idx
))) {
1587 if (Masked
->isZero())
1588 // Mask is constant false, so no instrumentation needed.
1590 // If we have a true or undef value, fall through to doInstrumentAddress
1591 // with InsertBefore == I
1595 Value
*MaskElem
= IRB
.CreateExtractElement(Mask
, Idx
);
1596 Instruction
*ThenTerm
= SplitBlockAndInsertIfThen(MaskElem
, I
, false);
1597 InsertBefore
= ThenTerm
;
1600 IRBuilder
<> IRB(InsertBefore
);
1601 InstrumentedAddress
=
1602 IRB
.CreateGEP(VTy
, Addr
, {Zero
, ConstantInt::get(IntptrTy
, Idx
)});
1603 doInstrumentAddress(Pass
, I
, InsertBefore
, InstrumentedAddress
, Alignment
,
1604 Granularity
, ElemTypeSize
, IsWrite
, SizeArgument
,
1609 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor
&ObjSizeVis
,
1610 InterestingMemoryOperand
&O
, bool UseCalls
,
1611 const DataLayout
&DL
) {
1612 Value
*Addr
= O
.getPtr();
1614 // Optimization experiments.
1615 // The experiments can be used to evaluate potential optimizations that remove
1616 // instrumentation (assess false negatives). Instead of completely removing
1617 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1618 // experiments that want to remove instrumentation of this instruction).
1619 // If Exp is non-zero, this pass will emit special calls into runtime
1620 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1621 // make runtime terminate the program in a special way (with a different
1622 // exit status). Then you run the new compiler on a buggy corpus, collect
1623 // the special terminations (ideally, you don't see them at all -- no false
1624 // negatives) and make the decision on the optimization.
1625 uint32_t Exp
= ClForceExperiment
;
1627 if (ClOpt
&& ClOptGlobals
) {
1628 // If initialization order checking is disabled, a simple access to a
1629 // dynamically initialized global is always valid.
1630 GlobalVariable
*G
= dyn_cast
<GlobalVariable
>(getUnderlyingObject(Addr
));
1631 if (G
&& (!ClInitializers
|| GlobalIsLinkerInitialized(G
)) &&
1632 isSafeAccess(ObjSizeVis
, Addr
, O
.TypeSize
)) {
1633 NumOptimizedAccessesToGlobalVar
++;
1638 if (ClOpt
&& ClOptStack
) {
1639 // A direct inbounds access to a stack variable is always valid.
1640 if (isa
<AllocaInst
>(getUnderlyingObject(Addr
)) &&
1641 isSafeAccess(ObjSizeVis
, Addr
, O
.TypeSize
)) {
1642 NumOptimizedAccessesToStackVar
++;
1648 NumInstrumentedWrites
++;
1650 NumInstrumentedReads
++;
1652 unsigned Granularity
= 1 << Mapping
.Scale
;
1654 instrumentMaskedLoadOrStore(this, DL
, IntptrTy
, O
.MaybeMask
, O
.getInsn(),
1655 Addr
, O
.Alignment
, Granularity
, O
.TypeSize
,
1656 O
.IsWrite
, nullptr, UseCalls
, Exp
);
1658 doInstrumentAddress(this, O
.getInsn(), O
.getInsn(), Addr
, O
.Alignment
,
1659 Granularity
, O
.TypeSize
, O
.IsWrite
, nullptr, UseCalls
,
1664 Instruction
*AddressSanitizer::generateCrashCode(Instruction
*InsertBefore
,
1665 Value
*Addr
, bool IsWrite
,
1666 size_t AccessSizeIndex
,
1667 Value
*SizeArgument
,
1669 IRBuilder
<> IRB(InsertBefore
);
1670 Value
*ExpVal
= Exp
== 0 ? nullptr : ConstantInt::get(IRB
.getInt32Ty(), Exp
);
1671 CallInst
*Call
= nullptr;
1674 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][0],
1675 {Addr
, SizeArgument
});
1677 Call
= IRB
.CreateCall(AsanErrorCallbackSized
[IsWrite
][1],
1678 {Addr
, SizeArgument
, ExpVal
});
1682 IRB
.CreateCall(AsanErrorCallback
[IsWrite
][0][AccessSizeIndex
], Addr
);
1684 Call
= IRB
.CreateCall(AsanErrorCallback
[IsWrite
][1][AccessSizeIndex
],
1688 Call
->setCannotMerge();
1692 Value
*AddressSanitizer::createSlowPathCmp(IRBuilder
<> &IRB
, Value
*AddrLong
,
1694 uint32_t TypeSize
) {
1695 size_t Granularity
= static_cast<size_t>(1) << Mapping
.Scale
;
1696 // Addr & (Granularity - 1)
1697 Value
*LastAccessedByte
=
1698 IRB
.CreateAnd(AddrLong
, ConstantInt::get(IntptrTy
, Granularity
- 1));
1699 // (Addr & (Granularity - 1)) + size - 1
1700 if (TypeSize
/ 8 > 1)
1701 LastAccessedByte
= IRB
.CreateAdd(
1702 LastAccessedByte
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1));
1703 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1705 IRB
.CreateIntCast(LastAccessedByte
, ShadowValue
->getType(), false);
1706 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1707 return IRB
.CreateICmpSGE(LastAccessedByte
, ShadowValue
);
1710 Instruction
*AddressSanitizer::instrumentAMDGPUAddress(
1711 Instruction
*OrigIns
, Instruction
*InsertBefore
, Value
*Addr
,
1712 uint32_t TypeSize
, bool IsWrite
, Value
*SizeArgument
) {
1713 // Do not instrument unsupported addrspaces.
1714 if (isUnsupportedAMDGPUAddrspace(Addr
))
1716 Type
*PtrTy
= cast
<PointerType
>(Addr
->getType()->getScalarType());
1717 // Follow host instrumentation for global and constant addresses.
1718 if (PtrTy
->getPointerAddressSpace() != 0)
1719 return InsertBefore
;
1720 // Instrument generic addresses in supported addressspaces.
1721 IRBuilder
<> IRB(InsertBefore
);
1722 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy());
1723 Value
*IsShared
= IRB
.CreateCall(AMDGPUAddressShared
, {AddrLong
});
1724 Value
*IsPrivate
= IRB
.CreateCall(AMDGPUAddressPrivate
, {AddrLong
});
1725 Value
*IsSharedOrPrivate
= IRB
.CreateOr(IsShared
, IsPrivate
);
1726 Value
*Cmp
= IRB
.CreateICmpNE(IRB
.getTrue(), IsSharedOrPrivate
);
1727 Value
*AddrSpaceZeroLanding
=
1728 SplitBlockAndInsertIfThen(Cmp
, InsertBefore
, false);
1729 InsertBefore
= cast
<Instruction
>(AddrSpaceZeroLanding
);
1730 return InsertBefore
;
1733 void AddressSanitizer::instrumentAddress(Instruction
*OrigIns
,
1734 Instruction
*InsertBefore
, Value
*Addr
,
1735 uint32_t TypeSize
, bool IsWrite
,
1736 Value
*SizeArgument
, bool UseCalls
,
1738 if (TargetTriple
.isAMDGPU()) {
1739 InsertBefore
= instrumentAMDGPUAddress(OrigIns
, InsertBefore
, Addr
,
1740 TypeSize
, IsWrite
, SizeArgument
);
1745 IRBuilder
<> IRB(InsertBefore
);
1746 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1747 size_t AccessSizeIndex
= TypeSizeToSizeIndex(TypeSize
);
1751 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][0][AccessSizeIndex
],
1754 IRB
.CreateCall(AsanMemoryAccessCallback
[IsWrite
][1][AccessSizeIndex
],
1755 {AddrLong
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1760 IntegerType::get(*C
, std::max(8U, TypeSize
>> Mapping
.Scale
));
1761 Type
*ShadowPtrTy
= PointerType::get(ShadowTy
, 0);
1762 Value
*ShadowPtr
= memToShadow(AddrLong
, IRB
);
1763 Value
*CmpVal
= Constant::getNullValue(ShadowTy
);
1764 Value
*ShadowValue
=
1765 IRB
.CreateLoad(ShadowTy
, IRB
.CreateIntToPtr(ShadowPtr
, ShadowPtrTy
));
1767 Value
*Cmp
= IRB
.CreateICmpNE(ShadowValue
, CmpVal
);
1768 size_t Granularity
= 1ULL << Mapping
.Scale
;
1769 Instruction
*CrashTerm
= nullptr;
1771 if (ClAlwaysSlowPath
|| (TypeSize
< 8 * Granularity
)) {
1772 // We use branch weights for the slow path check, to indicate that the slow
1773 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1774 Instruction
*CheckTerm
= SplitBlockAndInsertIfThen(
1775 Cmp
, InsertBefore
, false, MDBuilder(*C
).createBranchWeights(1, 100000));
1776 assert(cast
<BranchInst
>(CheckTerm
)->isUnconditional());
1777 BasicBlock
*NextBB
= CheckTerm
->getSuccessor(0);
1778 IRB
.SetInsertPoint(CheckTerm
);
1779 Value
*Cmp2
= createSlowPathCmp(IRB
, AddrLong
, ShadowValue
, TypeSize
);
1781 CrashTerm
= SplitBlockAndInsertIfThen(Cmp2
, CheckTerm
, false);
1783 BasicBlock
*CrashBlock
=
1784 BasicBlock::Create(*C
, "", NextBB
->getParent(), NextBB
);
1785 CrashTerm
= new UnreachableInst(*C
, CrashBlock
);
1786 BranchInst
*NewTerm
= BranchInst::Create(CrashBlock
, NextBB
, Cmp2
);
1787 ReplaceInstWithInst(CheckTerm
, NewTerm
);
1790 CrashTerm
= SplitBlockAndInsertIfThen(Cmp
, InsertBefore
, !Recover
);
1793 Instruction
*Crash
= generateCrashCode(CrashTerm
, AddrLong
, IsWrite
,
1794 AccessSizeIndex
, SizeArgument
, Exp
);
1795 Crash
->setDebugLoc(OrigIns
->getDebugLoc());
1798 // Instrument unusual size or unusual alignment.
1799 // We can not do it with a single check, so we do 1-byte check for the first
1800 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1801 // to report the actual access size.
1802 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1803 Instruction
*I
, Instruction
*InsertBefore
, Value
*Addr
, uint32_t TypeSize
,
1804 bool IsWrite
, Value
*SizeArgument
, bool UseCalls
, uint32_t Exp
) {
1805 IRBuilder
<> IRB(InsertBefore
);
1806 Value
*Size
= ConstantInt::get(IntptrTy
, TypeSize
/ 8);
1807 Value
*AddrLong
= IRB
.CreatePointerCast(Addr
, IntptrTy
);
1810 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][0],
1813 IRB
.CreateCall(AsanMemoryAccessCallbackSized
[IsWrite
][1],
1814 {AddrLong
, Size
, ConstantInt::get(IRB
.getInt32Ty(), Exp
)});
1816 Value
*LastByte
= IRB
.CreateIntToPtr(
1817 IRB
.CreateAdd(AddrLong
, ConstantInt::get(IntptrTy
, TypeSize
/ 8 - 1)),
1819 instrumentAddress(I
, InsertBefore
, Addr
, 8, IsWrite
, Size
, false, Exp
);
1820 instrumentAddress(I
, InsertBefore
, LastByte
, 8, IsWrite
, Size
, false, Exp
);
1824 void ModuleAddressSanitizer::poisonOneInitializer(Function
&GlobalInit
,
1825 GlobalValue
*ModuleName
) {
1826 // Set up the arguments to our poison/unpoison functions.
1827 IRBuilder
<> IRB(&GlobalInit
.front(),
1828 GlobalInit
.front().getFirstInsertionPt());
1830 // Add a call to poison all external globals before the given function starts.
1831 Value
*ModuleNameAddr
= ConstantExpr::getPointerCast(ModuleName
, IntptrTy
);
1832 IRB
.CreateCall(AsanPoisonGlobals
, ModuleNameAddr
);
1834 // Add calls to unpoison all globals before each return instruction.
1835 for (auto &BB
: GlobalInit
.getBasicBlockList())
1836 if (ReturnInst
*RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator()))
1837 CallInst::Create(AsanUnpoisonGlobals
, "", RI
);
1840 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1841 Module
&M
, GlobalValue
*ModuleName
) {
1842 GlobalVariable
*GV
= M
.getGlobalVariable("llvm.global_ctors");
1846 ConstantArray
*CA
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
1850 for (Use
&OP
: CA
->operands()) {
1851 if (isa
<ConstantAggregateZero
>(OP
)) continue;
1852 ConstantStruct
*CS
= cast
<ConstantStruct
>(OP
);
1854 // Must have a function or null ptr.
1855 if (Function
*F
= dyn_cast
<Function
>(CS
->getOperand(1))) {
1856 if (F
->getName() == kAsanModuleCtorName
) continue;
1857 auto *Priority
= cast
<ConstantInt
>(CS
->getOperand(0));
1858 // Don't instrument CTORs that will run before asan.module_ctor.
1859 if (Priority
->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple
))
1861 poisonOneInitializer(*F
, ModuleName
);
1866 const GlobalVariable
*
1867 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias
&GA
) const {
1868 // In case this function should be expanded to include rules that do not just
1869 // apply when CompileKernel is true, either guard all existing rules with an
1870 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1871 // should also apply to user space.
1872 assert(CompileKernel
&& "Only expecting to be called when compiling kernel");
1874 const Constant
*C
= GA
.getAliasee();
1876 // When compiling the kernel, globals that are aliased by symbols prefixed
1877 // by "__" are special and cannot be padded with a redzone.
1878 if (GA
.getName().startswith("__"))
1879 return dyn_cast
<GlobalVariable
>(C
->stripPointerCastsAndAliases());
1884 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable
*G
) const {
1885 Type
*Ty
= G
->getValueType();
1886 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G
<< "\n");
1888 // FIXME: Metadata should be attched directly to the global directly instead
1889 // of being added to llvm.asan.globals.
1890 if (GlobalsMD
.get(G
).IsExcluded
) return false;
1891 if (!Ty
->isSized()) return false;
1892 if (!G
->hasInitializer()) return false;
1893 // Globals in address space 1 and 4 are supported for AMDGPU.
1894 if (G
->getAddressSpace() &&
1895 !(TargetTriple
.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G
)))
1897 if (GlobalWasGeneratedByCompiler(G
)) return false; // Our own globals.
1898 // Two problems with thread-locals:
1899 // - The address of the main thread's copy can't be computed at link-time.
1900 // - Need to poison all copies, not just the main thread's one.
1901 if (G
->isThreadLocal()) return false;
1902 // For now, just ignore this Global if the alignment is large.
1903 if (G
->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1905 // For non-COFF targets, only instrument globals known to be defined by this
1907 // FIXME: We can instrument comdat globals on ELF if we are using the
1908 // GC-friendly metadata scheme.
1909 if (!TargetTriple
.isOSBinFormatCOFF()) {
1910 if (!G
->hasExactDefinition() || G
->hasComdat())
1913 // On COFF, don't instrument non-ODR linkages.
1914 if (G
->isInterposable())
1918 // If a comdat is present, it must have a selection kind that implies ODR
1919 // semantics: no duplicates, any, or exact match.
1920 if (Comdat
*C
= G
->getComdat()) {
1921 switch (C
->getSelectionKind()) {
1923 case Comdat::ExactMatch
:
1924 case Comdat::NoDeduplicate
:
1926 case Comdat::Largest
:
1927 case Comdat::SameSize
:
1932 if (G
->hasSection()) {
1933 // The kernel uses explicit sections for mostly special global variables
1934 // that we should not instrument. E.g. the kernel may rely on their layout
1935 // without redzones, or remove them at link time ("discard.*"), etc.
1939 StringRef Section
= G
->getSection();
1941 // Globals from llvm.metadata aren't emitted, do not instrument them.
1942 if (Section
== "llvm.metadata") return false;
1943 // Do not instrument globals from special LLVM sections.
1944 if (Section
.find("__llvm") != StringRef::npos
|| Section
.find("__LLVM") != StringRef::npos
) return false;
1946 // Do not instrument function pointers to initialization and termination
1947 // routines: dynamic linker will not properly handle redzones.
1948 if (Section
.startswith(".preinit_array") ||
1949 Section
.startswith(".init_array") ||
1950 Section
.startswith(".fini_array")) {
1954 // Do not instrument user-defined sections (with names resembling
1955 // valid C identifiers)
1956 if (TargetTriple
.isOSBinFormatELF()) {
1957 if (llvm::all_of(Section
,
1958 [](char c
) { return llvm::isAlnum(c
) || c
== '_'; }))
1962 // On COFF, if the section name contains '$', it is highly likely that the
1963 // user is using section sorting to create an array of globals similar to
1964 // the way initialization callbacks are registered in .init_array and
1965 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1966 // to such globals is counterproductive, because the intent is that they
1967 // will form an array, and out-of-bounds accesses are expected.
1968 // See https://github.com/google/sanitizers/issues/305
1969 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1970 if (TargetTriple
.isOSBinFormatCOFF() && Section
.contains('$')) {
1971 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1976 if (TargetTriple
.isOSBinFormatMachO()) {
1977 StringRef ParsedSegment
, ParsedSection
;
1978 unsigned TAA
= 0, StubSize
= 0;
1980 cantFail(MCSectionMachO::ParseSectionSpecifier(
1981 Section
, ParsedSegment
, ParsedSection
, TAA
, TAAParsed
, StubSize
));
1983 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1984 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1986 if (ParsedSegment
== "__OBJC" ||
1987 (ParsedSegment
== "__DATA" && ParsedSection
.startswith("__objc_"))) {
1988 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G
<< "\n");
1991 // See https://github.com/google/sanitizers/issues/32
1992 // Constant CFString instances are compiled in the following way:
1993 // -- the string buffer is emitted into
1994 // __TEXT,__cstring,cstring_literals
1995 // -- the constant NSConstantString structure referencing that buffer
1996 // is placed into __DATA,__cfstring
1997 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1998 // Moreover, it causes the linker to crash on OS X 10.7
1999 if (ParsedSegment
== "__DATA" && ParsedSection
== "__cfstring") {
2000 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G
<< "\n");
2003 // The linker merges the contents of cstring_literals and removes the
2005 if (ParsedSegment
== "__TEXT" && (TAA
& MachO::S_CSTRING_LITERALS
)) {
2006 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G
<< "\n");
2012 if (CompileKernel
) {
2013 // Globals that prefixed by "__" are special and cannot be padded with a
2015 if (G
->getName().startswith("__"))
2022 // On Mach-O platforms, we emit global metadata in a separate section of the
2023 // binary in order to allow the linker to properly dead strip. This is only
2024 // supported on recent versions of ld64.
2025 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2026 if (!TargetTriple
.isOSBinFormatMachO())
2029 if (TargetTriple
.isMacOSX() && !TargetTriple
.isMacOSXVersionLT(10, 11))
2031 if (TargetTriple
.isiOS() /* or tvOS */ && !TargetTriple
.isOSVersionLT(9))
2033 if (TargetTriple
.isWatchOS() && !TargetTriple
.isOSVersionLT(2))
2039 StringRef
ModuleAddressSanitizer::getGlobalMetadataSection() const {
2040 switch (TargetTriple
.getObjectFormat()) {
2041 case Triple::COFF
: return ".ASAN$GL";
2042 case Triple::ELF
: return "asan_globals";
2043 case Triple::MachO
: return "__DATA,__asan_globals,regular";
2048 "ModuleAddressSanitizer not implemented for object file format");
2049 case Triple::UnknownObjectFormat
:
2052 llvm_unreachable("unsupported object format");
2055 void ModuleAddressSanitizer::initializeCallbacks(Module
&M
) {
2056 IRBuilder
<> IRB(*C
);
2058 // Declare our poisoning and unpoisoning functions.
2060 M
.getOrInsertFunction(kAsanPoisonGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
2061 AsanUnpoisonGlobals
=
2062 M
.getOrInsertFunction(kAsanUnpoisonGlobalsName
, IRB
.getVoidTy());
2064 // Declare functions that register/unregister globals.
2065 AsanRegisterGlobals
= M
.getOrInsertFunction(
2066 kAsanRegisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2067 AsanUnregisterGlobals
= M
.getOrInsertFunction(
2068 kAsanUnregisterGlobalsName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2070 // Declare the functions that find globals in a shared object and then invoke
2071 // the (un)register function on them.
2072 AsanRegisterImageGlobals
= M
.getOrInsertFunction(
2073 kAsanRegisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
2074 AsanUnregisterImageGlobals
= M
.getOrInsertFunction(
2075 kAsanUnregisterImageGlobalsName
, IRB
.getVoidTy(), IntptrTy
);
2077 AsanRegisterElfGlobals
=
2078 M
.getOrInsertFunction(kAsanRegisterElfGlobalsName
, IRB
.getVoidTy(),
2079 IntptrTy
, IntptrTy
, IntptrTy
);
2080 AsanUnregisterElfGlobals
=
2081 M
.getOrInsertFunction(kAsanUnregisterElfGlobalsName
, IRB
.getVoidTy(),
2082 IntptrTy
, IntptrTy
, IntptrTy
);
2085 // Put the metadata and the instrumented global in the same group. This ensures
2086 // that the metadata is discarded if the instrumented global is discarded.
2087 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2088 GlobalVariable
*G
, GlobalVariable
*Metadata
, StringRef InternalSuffix
) {
2089 Module
&M
= *G
->getParent();
2090 Comdat
*C
= G
->getComdat();
2092 if (!G
->hasName()) {
2093 // If G is unnamed, it must be internal. Give it an artificial name
2094 // so we can put it in a comdat.
2095 assert(G
->hasLocalLinkage());
2096 G
->setName(Twine(kAsanGenPrefix
) + "_anon_global");
2099 if (!InternalSuffix
.empty() && G
->hasLocalLinkage()) {
2100 std::string Name
= std::string(G
->getName());
2101 Name
+= InternalSuffix
;
2102 C
= M
.getOrInsertComdat(Name
);
2104 C
= M
.getOrInsertComdat(G
->getName());
2107 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2108 // linkage to internal linkage so that a symbol table entry is emitted. This
2109 // is necessary in order to create the comdat group.
2110 if (TargetTriple
.isOSBinFormatCOFF()) {
2111 C
->setSelectionKind(Comdat::NoDeduplicate
);
2112 if (G
->hasPrivateLinkage())
2113 G
->setLinkage(GlobalValue::InternalLinkage
);
2118 assert(G
->hasComdat());
2119 Metadata
->setComdat(G
->getComdat());
2122 // Create a separate metadata global and put it in the appropriate ASan
2123 // global registration section.
2125 ModuleAddressSanitizer::CreateMetadataGlobal(Module
&M
, Constant
*Initializer
,
2126 StringRef OriginalName
) {
2127 auto Linkage
= TargetTriple
.isOSBinFormatMachO()
2128 ? GlobalVariable::InternalLinkage
2129 : GlobalVariable::PrivateLinkage
;
2130 GlobalVariable
*Metadata
= new GlobalVariable(
2131 M
, Initializer
->getType(), false, Linkage
, Initializer
,
2132 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName
));
2133 Metadata
->setSection(getGlobalMetadataSection());
2137 Instruction
*ModuleAddressSanitizer::CreateAsanModuleDtor(Module
&M
) {
2138 AsanDtorFunction
= Function::createWithDefaultAttr(
2139 FunctionType::get(Type::getVoidTy(*C
), false),
2140 GlobalValue::InternalLinkage
, 0, kAsanModuleDtorName
, &M
);
2141 AsanDtorFunction
->addFnAttr(Attribute::NoUnwind
);
2142 // Ensure Dtor cannot be discarded, even if in a comdat.
2143 appendToUsed(M
, {AsanDtorFunction
});
2144 BasicBlock
*AsanDtorBB
= BasicBlock::Create(*C
, "", AsanDtorFunction
);
2146 return ReturnInst::Create(*C
, AsanDtorBB
);
2149 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2150 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2151 ArrayRef
<Constant
*> MetadataInitializers
) {
2152 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2153 auto &DL
= M
.getDataLayout();
2155 SmallVector
<GlobalValue
*, 16> MetadataGlobals(ExtendedGlobals
.size());
2156 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2157 Constant
*Initializer
= MetadataInitializers
[i
];
2158 GlobalVariable
*G
= ExtendedGlobals
[i
];
2159 GlobalVariable
*Metadata
=
2160 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2161 MDNode
*MD
= MDNode::get(M
.getContext(), ValueAsMetadata::get(G
));
2162 Metadata
->setMetadata(LLVMContext::MD_associated
, MD
);
2163 MetadataGlobals
[i
] = Metadata
;
2165 // The MSVC linker always inserts padding when linking incrementally. We
2166 // cope with that by aligning each struct to its size, which must be a power
2168 unsigned SizeOfGlobalStruct
= DL
.getTypeAllocSize(Initializer
->getType());
2169 assert(isPowerOf2_32(SizeOfGlobalStruct
) &&
2170 "global metadata will not be padded appropriately");
2171 Metadata
->setAlignment(assumeAligned(SizeOfGlobalStruct
));
2173 SetComdatForGlobalMetadata(G
, Metadata
, "");
2176 // Update llvm.compiler.used, adding the new metadata globals. This is
2177 // needed so that during LTO these variables stay alive.
2178 if (!MetadataGlobals
.empty())
2179 appendToCompilerUsed(M
, MetadataGlobals
);
2182 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2183 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2184 ArrayRef
<Constant
*> MetadataInitializers
,
2185 const std::string
&UniqueModuleId
) {
2186 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2188 // Putting globals in a comdat changes the semantic and potentially cause
2189 // false negative odr violations at link time. If odr indicators are used, we
2190 // keep the comdat sections, as link time odr violations will be dectected on
2191 // the odr indicator symbols.
2192 bool UseComdatForGlobalsGC
= UseOdrIndicator
;
2194 SmallVector
<GlobalValue
*, 16> MetadataGlobals(ExtendedGlobals
.size());
2195 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2196 GlobalVariable
*G
= ExtendedGlobals
[i
];
2197 GlobalVariable
*Metadata
=
2198 CreateMetadataGlobal(M
, MetadataInitializers
[i
], G
->getName());
2199 MDNode
*MD
= MDNode::get(M
.getContext(), ValueAsMetadata::get(G
));
2200 Metadata
->setMetadata(LLVMContext::MD_associated
, MD
);
2201 MetadataGlobals
[i
] = Metadata
;
2203 if (UseComdatForGlobalsGC
)
2204 SetComdatForGlobalMetadata(G
, Metadata
, UniqueModuleId
);
2207 // Update llvm.compiler.used, adding the new metadata globals. This is
2208 // needed so that during LTO these variables stay alive.
2209 if (!MetadataGlobals
.empty())
2210 appendToCompilerUsed(M
, MetadataGlobals
);
2212 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2213 // to look up the loaded image that contains it. Second, we can store in it
2214 // whether registration has already occurred, to prevent duplicate
2217 // Common linkage ensures that there is only one global per shared library.
2218 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2219 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2220 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2221 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2223 // Create start and stop symbols.
2224 GlobalVariable
*StartELFMetadata
= new GlobalVariable(
2225 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2226 "__start_" + getGlobalMetadataSection());
2227 StartELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2228 GlobalVariable
*StopELFMetadata
= new GlobalVariable(
2229 M
, IntptrTy
, false, GlobalVariable::ExternalWeakLinkage
, nullptr,
2230 "__stop_" + getGlobalMetadataSection());
2231 StopELFMetadata
->setVisibility(GlobalVariable::HiddenVisibility
);
2233 // Create a call to register the globals with the runtime.
2234 IRB
.CreateCall(AsanRegisterElfGlobals
,
2235 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2236 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2237 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2239 // We also need to unregister globals at the end, e.g., when a shared library
2241 if (DestructorKind
!= AsanDtorKind::None
) {
2242 IRBuilder
<> IrbDtor(CreateAsanModuleDtor(M
));
2243 IrbDtor
.CreateCall(AsanUnregisterElfGlobals
,
2244 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
),
2245 IRB
.CreatePointerCast(StartELFMetadata
, IntptrTy
),
2246 IRB
.CreatePointerCast(StopELFMetadata
, IntptrTy
)});
2250 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2251 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2252 ArrayRef
<Constant
*> MetadataInitializers
) {
2253 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2255 // On recent Mach-O platforms, use a structure which binds the liveness of
2256 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2257 // created to be added to llvm.compiler.used
2258 StructType
*LivenessTy
= StructType::get(IntptrTy
, IntptrTy
);
2259 SmallVector
<GlobalValue
*, 16> LivenessGlobals(ExtendedGlobals
.size());
2261 for (size_t i
= 0; i
< ExtendedGlobals
.size(); i
++) {
2262 Constant
*Initializer
= MetadataInitializers
[i
];
2263 GlobalVariable
*G
= ExtendedGlobals
[i
];
2264 GlobalVariable
*Metadata
=
2265 CreateMetadataGlobal(M
, Initializer
, G
->getName());
2267 // On recent Mach-O platforms, we emit the global metadata in a way that
2268 // allows the linker to properly strip dead globals.
2269 auto LivenessBinder
=
2270 ConstantStruct::get(LivenessTy
, Initializer
->getAggregateElement(0u),
2271 ConstantExpr::getPointerCast(Metadata
, IntptrTy
));
2272 GlobalVariable
*Liveness
= new GlobalVariable(
2273 M
, LivenessTy
, false, GlobalVariable::InternalLinkage
, LivenessBinder
,
2274 Twine("__asan_binder_") + G
->getName());
2275 Liveness
->setSection("__DATA,__asan_liveness,regular,live_support");
2276 LivenessGlobals
[i
] = Liveness
;
2279 // Update llvm.compiler.used, adding the new liveness globals. This is
2280 // needed so that during LTO these variables stay alive. The alternative
2281 // would be to have the linker handling the LTO symbols, but libLTO
2282 // current API does not expose access to the section for each symbol.
2283 if (!LivenessGlobals
.empty())
2284 appendToCompilerUsed(M
, LivenessGlobals
);
2286 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2287 // to look up the loaded image that contains it. Second, we can store in it
2288 // whether registration has already occurred, to prevent duplicate
2291 // common linkage ensures that there is only one global per shared library.
2292 GlobalVariable
*RegisteredFlag
= new GlobalVariable(
2293 M
, IntptrTy
, false, GlobalVariable::CommonLinkage
,
2294 ConstantInt::get(IntptrTy
, 0), kAsanGlobalsRegisteredFlagName
);
2295 RegisteredFlag
->setVisibility(GlobalVariable::HiddenVisibility
);
2297 IRB
.CreateCall(AsanRegisterImageGlobals
,
2298 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2300 // We also need to unregister globals at the end, e.g., when a shared library
2302 if (DestructorKind
!= AsanDtorKind::None
) {
2303 IRBuilder
<> IrbDtor(CreateAsanModuleDtor(M
));
2304 IrbDtor
.CreateCall(AsanUnregisterImageGlobals
,
2305 {IRB
.CreatePointerCast(RegisteredFlag
, IntptrTy
)});
2309 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2310 IRBuilder
<> &IRB
, Module
&M
, ArrayRef
<GlobalVariable
*> ExtendedGlobals
,
2311 ArrayRef
<Constant
*> MetadataInitializers
) {
2312 assert(ExtendedGlobals
.size() == MetadataInitializers
.size());
2313 unsigned N
= ExtendedGlobals
.size();
2316 // On platforms that don't have a custom metadata section, we emit an array
2317 // of global metadata structures.
2318 ArrayType
*ArrayOfGlobalStructTy
=
2319 ArrayType::get(MetadataInitializers
[0]->getType(), N
);
2320 auto AllGlobals
= new GlobalVariable(
2321 M
, ArrayOfGlobalStructTy
, false, GlobalVariable::InternalLinkage
,
2322 ConstantArray::get(ArrayOfGlobalStructTy
, MetadataInitializers
), "");
2323 if (Mapping
.Scale
> 3)
2324 AllGlobals
->setAlignment(Align(1ULL << Mapping
.Scale
));
2326 IRB
.CreateCall(AsanRegisterGlobals
,
2327 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2328 ConstantInt::get(IntptrTy
, N
)});
2330 // We also need to unregister globals at the end, e.g., when a shared library
2332 if (DestructorKind
!= AsanDtorKind::None
) {
2333 IRBuilder
<> IrbDtor(CreateAsanModuleDtor(M
));
2334 IrbDtor
.CreateCall(AsanUnregisterGlobals
,
2335 {IRB
.CreatePointerCast(AllGlobals
, IntptrTy
),
2336 ConstantInt::get(IntptrTy
, N
)});
2340 // This function replaces all global variables with new variables that have
2341 // trailing redzones. It also creates a function that poisons
2342 // redzones and inserts this function into llvm.global_ctors.
2343 // Sets *CtorComdat to true if the global registration code emitted into the
2344 // asan constructor is comdat-compatible.
2345 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder
<> &IRB
, Module
&M
,
2347 *CtorComdat
= false;
2349 // Build set of globals that are aliased by some GA, where
2350 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2351 SmallPtrSet
<const GlobalVariable
*, 16> AliasedGlobalExclusions
;
2352 if (CompileKernel
) {
2353 for (auto &GA
: M
.aliases()) {
2354 if (const GlobalVariable
*GV
= getExcludedAliasedGlobal(GA
))
2355 AliasedGlobalExclusions
.insert(GV
);
2359 SmallVector
<GlobalVariable
*, 16> GlobalsToChange
;
2360 for (auto &G
: M
.globals()) {
2361 if (!AliasedGlobalExclusions
.count(&G
) && shouldInstrumentGlobal(&G
))
2362 GlobalsToChange
.push_back(&G
);
2365 size_t n
= GlobalsToChange
.size();
2371 auto &DL
= M
.getDataLayout();
2373 // A global is described by a structure
2376 // size_t size_with_redzone;
2377 // const char *name;
2378 // const char *module_name;
2379 // size_t has_dynamic_init;
2380 // void *source_location;
2381 // size_t odr_indicator;
2382 // We initialize an array of such structures and pass it to a run-time call.
2383 StructType
*GlobalStructTy
=
2384 StructType::get(IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
, IntptrTy
,
2385 IntptrTy
, IntptrTy
, IntptrTy
);
2386 SmallVector
<GlobalVariable
*, 16> NewGlobals(n
);
2387 SmallVector
<Constant
*, 16> Initializers(n
);
2389 bool HasDynamicallyInitializedGlobals
= false;
2391 // We shouldn't merge same module names, as this string serves as unique
2392 // module ID in runtime.
2393 GlobalVariable
*ModuleName
= createPrivateGlobalForString(
2394 M
, M
.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix
);
2396 for (size_t i
= 0; i
< n
; i
++) {
2397 GlobalVariable
*G
= GlobalsToChange
[i
];
2399 // FIXME: Metadata should be attched directly to the global directly instead
2400 // of being added to llvm.asan.globals.
2401 auto MD
= GlobalsMD
.get(G
);
2402 StringRef NameForGlobal
= G
->getName();
2403 // Create string holding the global name (use global name from metadata
2404 // if it's available, otherwise just write the name of global variable).
2405 GlobalVariable
*Name
= createPrivateGlobalForString(
2406 M
, MD
.Name
.empty() ? NameForGlobal
: MD
.Name
,
2407 /*AllowMerging*/ true, kAsanGenPrefix
);
2409 Type
*Ty
= G
->getValueType();
2410 const uint64_t SizeInBytes
= DL
.getTypeAllocSize(Ty
);
2411 const uint64_t RightRedzoneSize
= getRedzoneSizeForGlobal(SizeInBytes
);
2412 Type
*RightRedZoneTy
= ArrayType::get(IRB
.getInt8Ty(), RightRedzoneSize
);
2414 StructType
*NewTy
= StructType::get(Ty
, RightRedZoneTy
);
2415 Constant
*NewInitializer
= ConstantStruct::get(
2416 NewTy
, G
->getInitializer(), Constant::getNullValue(RightRedZoneTy
));
2418 // Create a new global variable with enough space for a redzone.
2419 GlobalValue::LinkageTypes Linkage
= G
->getLinkage();
2420 if (G
->isConstant() && Linkage
== GlobalValue::PrivateLinkage
)
2421 Linkage
= GlobalValue::InternalLinkage
;
2422 GlobalVariable
*NewGlobal
= new GlobalVariable(
2423 M
, NewTy
, G
->isConstant(), Linkage
, NewInitializer
, "", G
,
2424 G
->getThreadLocalMode(), G
->getAddressSpace());
2425 NewGlobal
->copyAttributesFrom(G
);
2426 NewGlobal
->setComdat(G
->getComdat());
2427 NewGlobal
->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2428 // Don't fold globals with redzones. ODR violation detector and redzone
2429 // poisoning implicitly creates a dependence on the global's address, so it
2430 // is no longer valid for it to be marked unnamed_addr.
2431 NewGlobal
->setUnnamedAddr(GlobalValue::UnnamedAddr::None
);
2433 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2434 if (TargetTriple
.isOSBinFormatMachO() && !G
->hasSection() &&
2436 auto Seq
= dyn_cast
<ConstantDataSequential
>(G
->getInitializer());
2437 if (Seq
&& Seq
->isCString())
2438 NewGlobal
->setSection("__TEXT,__asan_cstring,regular");
2441 // Transfer the debug info and type metadata. The payload starts at offset
2442 // zero so we can copy the metadata over as is.
2443 NewGlobal
->copyMetadata(G
, 0);
2446 Indices2
[0] = IRB
.getInt32(0);
2447 Indices2
[1] = IRB
.getInt32(0);
2449 G
->replaceAllUsesWith(
2450 ConstantExpr::getGetElementPtr(NewTy
, NewGlobal
, Indices2
, true));
2451 NewGlobal
->takeName(G
);
2452 G
->eraseFromParent();
2453 NewGlobals
[i
] = NewGlobal
;
2455 Constant
*SourceLoc
;
2456 if (!MD
.SourceLoc
.empty()) {
2457 auto SourceLocGlobal
= createPrivateGlobalForSourceLoc(M
, MD
.SourceLoc
);
2458 SourceLoc
= ConstantExpr::getPointerCast(SourceLocGlobal
, IntptrTy
);
2460 SourceLoc
= ConstantInt::get(IntptrTy
, 0);
2463 Constant
*ODRIndicator
= ConstantExpr::getNullValue(IRB
.getInt8PtrTy());
2464 GlobalValue
*InstrumentedGlobal
= NewGlobal
;
2466 bool CanUsePrivateAliases
=
2467 TargetTriple
.isOSBinFormatELF() || TargetTriple
.isOSBinFormatMachO() ||
2468 TargetTriple
.isOSBinFormatWasm();
2469 if (CanUsePrivateAliases
&& UsePrivateAlias
) {
2470 // Create local alias for NewGlobal to avoid crash on ODR between
2471 // instrumented and non-instrumented libraries.
2472 InstrumentedGlobal
=
2473 GlobalAlias::create(GlobalValue::PrivateLinkage
, "", NewGlobal
);
2476 // ODR should not happen for local linkage.
2477 if (NewGlobal
->hasLocalLinkage()) {
2478 ODRIndicator
= ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy
, -1),
2479 IRB
.getInt8PtrTy());
2480 } else if (UseOdrIndicator
) {
2481 // With local aliases, we need to provide another externally visible
2482 // symbol __odr_asan_XXX to detect ODR violation.
2483 auto *ODRIndicatorSym
=
2484 new GlobalVariable(M
, IRB
.getInt8Ty(), false, Linkage
,
2485 Constant::getNullValue(IRB
.getInt8Ty()),
2486 kODRGenPrefix
+ NameForGlobal
, nullptr,
2487 NewGlobal
->getThreadLocalMode());
2489 // Set meaningful attributes for indicator symbol.
2490 ODRIndicatorSym
->setVisibility(NewGlobal
->getVisibility());
2491 ODRIndicatorSym
->setDLLStorageClass(NewGlobal
->getDLLStorageClass());
2492 ODRIndicatorSym
->setAlignment(Align(1));
2493 ODRIndicator
= ODRIndicatorSym
;
2496 Constant
*Initializer
= ConstantStruct::get(
2498 ConstantExpr::getPointerCast(InstrumentedGlobal
, IntptrTy
),
2499 ConstantInt::get(IntptrTy
, SizeInBytes
),
2500 ConstantInt::get(IntptrTy
, SizeInBytes
+ RightRedzoneSize
),
2501 ConstantExpr::getPointerCast(Name
, IntptrTy
),
2502 ConstantExpr::getPointerCast(ModuleName
, IntptrTy
),
2503 ConstantInt::get(IntptrTy
, MD
.IsDynInit
), SourceLoc
,
2504 ConstantExpr::getPointerCast(ODRIndicator
, IntptrTy
));
2506 if (ClInitializers
&& MD
.IsDynInit
) HasDynamicallyInitializedGlobals
= true;
2508 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal
<< "\n");
2510 Initializers
[i
] = Initializer
;
2513 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2514 // ConstantMerge'ing them.
2515 SmallVector
<GlobalValue
*, 16> GlobalsToAddToUsedList
;
2516 for (size_t i
= 0; i
< n
; i
++) {
2517 GlobalVariable
*G
= NewGlobals
[i
];
2518 if (G
->getName().empty()) continue;
2519 GlobalsToAddToUsedList
.push_back(G
);
2521 appendToCompilerUsed(M
, ArrayRef
<GlobalValue
*>(GlobalsToAddToUsedList
));
2523 std::string ELFUniqueModuleId
=
2524 (UseGlobalsGC
&& TargetTriple
.isOSBinFormatELF()) ? getUniqueModuleId(&M
)
2527 if (!ELFUniqueModuleId
.empty()) {
2528 InstrumentGlobalsELF(IRB
, M
, NewGlobals
, Initializers
, ELFUniqueModuleId
);
2530 } else if (UseGlobalsGC
&& TargetTriple
.isOSBinFormatCOFF()) {
2531 InstrumentGlobalsCOFF(IRB
, M
, NewGlobals
, Initializers
);
2532 } else if (UseGlobalsGC
&& ShouldUseMachOGlobalsSection()) {
2533 InstrumentGlobalsMachO(IRB
, M
, NewGlobals
, Initializers
);
2535 InstrumentGlobalsWithMetadataArray(IRB
, M
, NewGlobals
, Initializers
);
2538 // Create calls for poisoning before initializers run and unpoisoning after.
2539 if (HasDynamicallyInitializedGlobals
)
2540 createInitializerPoisonCalls(M
, ModuleName
);
2542 LLVM_DEBUG(dbgs() << M
);
2547 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes
) const {
2548 constexpr uint64_t kMaxRZ
= 1 << 18;
2549 const uint64_t MinRZ
= getMinRedzoneSizeForGlobal();
2552 if (SizeInBytes
<= MinRZ
/ 2) {
2553 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2554 // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2556 RZ
= MinRZ
- SizeInBytes
;
2558 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2559 RZ
= std::max(MinRZ
, std::min(kMaxRZ
, (SizeInBytes
/ MinRZ
/ 4) * MinRZ
));
2561 // Round up to multiple of MinRZ.
2562 if (SizeInBytes
% MinRZ
)
2563 RZ
+= MinRZ
- (SizeInBytes
% MinRZ
);
2566 assert((RZ
+ SizeInBytes
) % MinRZ
== 0);
2571 int ModuleAddressSanitizer::GetAsanVersion(const Module
&M
) const {
2572 int LongSize
= M
.getDataLayout().getPointerSizeInBits();
2573 bool isAndroid
= Triple(M
.getTargetTriple()).isAndroid();
2575 // 32-bit Android is one version ahead because of the switch to dynamic
2577 Version
+= (LongSize
== 32 && isAndroid
);
2581 bool ModuleAddressSanitizer::instrumentModule(Module
&M
) {
2582 initializeCallbacks(M
);
2584 // Create a module constructor. A destructor is created lazily because not all
2585 // platforms, and not all modules need it.
2586 if (CompileKernel
) {
2587 // The kernel always builds with its own runtime, and therefore does not
2588 // need the init and version check calls.
2589 AsanCtorFunction
= createSanitizerCtor(M
, kAsanModuleCtorName
);
2591 std::string AsanVersion
= std::to_string(GetAsanVersion(M
));
2592 std::string VersionCheckName
=
2593 ClInsertVersionCheck
? (kAsanVersionCheckNamePrefix
+ AsanVersion
) : "";
2594 std::tie(AsanCtorFunction
, std::ignore
) =
2595 createSanitizerCtorAndInitFunctions(M
, kAsanModuleCtorName
,
2596 kAsanInitName
, /*InitArgTypes=*/{},
2597 /*InitArgs=*/{}, VersionCheckName
);
2600 bool CtorComdat
= true;
2602 IRBuilder
<> IRB(AsanCtorFunction
->getEntryBlock().getTerminator());
2603 InstrumentGlobals(IRB
, M
, &CtorComdat
);
2606 const uint64_t Priority
= GetCtorAndDtorPriority(TargetTriple
);
2608 // Put the constructor and destructor in comdat if both
2609 // (1) global instrumentation is not TU-specific
2610 // (2) target is ELF.
2611 if (UseCtorComdat
&& TargetTriple
.isOSBinFormatELF() && CtorComdat
) {
2612 AsanCtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleCtorName
));
2613 appendToGlobalCtors(M
, AsanCtorFunction
, Priority
, AsanCtorFunction
);
2614 if (AsanDtorFunction
) {
2615 AsanDtorFunction
->setComdat(M
.getOrInsertComdat(kAsanModuleDtorName
));
2616 appendToGlobalDtors(M
, AsanDtorFunction
, Priority
, AsanDtorFunction
);
2619 appendToGlobalCtors(M
, AsanCtorFunction
, Priority
);
2620 if (AsanDtorFunction
)
2621 appendToGlobalDtors(M
, AsanDtorFunction
, Priority
);
2627 void AddressSanitizer::initializeCallbacks(Module
&M
) {
2628 IRBuilder
<> IRB(*C
);
2629 // Create __asan_report* callbacks.
2630 // IsWrite, TypeSize and Exp are encoded in the function name.
2631 for (int Exp
= 0; Exp
< 2; Exp
++) {
2632 for (size_t AccessIsWrite
= 0; AccessIsWrite
<= 1; AccessIsWrite
++) {
2633 const std::string TypeStr
= AccessIsWrite
? "store" : "load";
2634 const std::string ExpStr
= Exp
? "exp_" : "";
2635 const std::string EndingStr
= Recover
? "_noabort" : "";
2637 SmallVector
<Type
*, 3> Args2
= {IntptrTy
, IntptrTy
};
2638 SmallVector
<Type
*, 2> Args1
{1, IntptrTy
};
2640 Type
*ExpType
= Type::getInt32Ty(*C
);
2641 Args2
.push_back(ExpType
);
2642 Args1
.push_back(ExpType
);
2644 AsanErrorCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2645 kAsanReportErrorTemplate
+ ExpStr
+ TypeStr
+ "_n" + EndingStr
,
2646 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2648 AsanMemoryAccessCallbackSized
[AccessIsWrite
][Exp
] = M
.getOrInsertFunction(
2649 ClMemoryAccessCallbackPrefix
+ ExpStr
+ TypeStr
+ "N" + EndingStr
,
2650 FunctionType::get(IRB
.getVoidTy(), Args2
, false));
2652 for (size_t AccessSizeIndex
= 0; AccessSizeIndex
< kNumberOfAccessSizes
;
2653 AccessSizeIndex
++) {
2654 const std::string Suffix
= TypeStr
+ itostr(1ULL << AccessSizeIndex
);
2655 AsanErrorCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2656 M
.getOrInsertFunction(
2657 kAsanReportErrorTemplate
+ ExpStr
+ Suffix
+ EndingStr
,
2658 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2660 AsanMemoryAccessCallback
[AccessIsWrite
][Exp
][AccessSizeIndex
] =
2661 M
.getOrInsertFunction(
2662 ClMemoryAccessCallbackPrefix
+ ExpStr
+ Suffix
+ EndingStr
,
2663 FunctionType::get(IRB
.getVoidTy(), Args1
, false));
2668 const std::string MemIntrinCallbackPrefix
=
2669 CompileKernel
? std::string("") : ClMemoryAccessCallbackPrefix
;
2670 AsanMemmove
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memmove",
2671 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2672 IRB
.getInt8PtrTy(), IntptrTy
);
2673 AsanMemcpy
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memcpy",
2674 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2675 IRB
.getInt8PtrTy(), IntptrTy
);
2676 AsanMemset
= M
.getOrInsertFunction(MemIntrinCallbackPrefix
+ "memset",
2677 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(),
2678 IRB
.getInt32Ty(), IntptrTy
);
2680 AsanHandleNoReturnFunc
=
2681 M
.getOrInsertFunction(kAsanHandleNoReturnName
, IRB
.getVoidTy());
2683 AsanPtrCmpFunction
=
2684 M
.getOrInsertFunction(kAsanPtrCmp
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2685 AsanPtrSubFunction
=
2686 M
.getOrInsertFunction(kAsanPtrSub
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2687 if (Mapping
.InGlobal
)
2688 AsanShadowGlobal
= M
.getOrInsertGlobal("__asan_shadow",
2689 ArrayType::get(IRB
.getInt8Ty(), 0));
2691 AMDGPUAddressShared
= M
.getOrInsertFunction(
2692 kAMDGPUAddressSharedName
, IRB
.getInt1Ty(), IRB
.getInt8PtrTy());
2693 AMDGPUAddressPrivate
= M
.getOrInsertFunction(
2694 kAMDGPUAddressPrivateName
, IRB
.getInt1Ty(), IRB
.getInt8PtrTy());
2697 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function
&F
) {
2698 // For each NSObject descendant having a +load method, this method is invoked
2699 // by the ObjC runtime before any of the static constructors is called.
2700 // Therefore we need to instrument such methods with a call to __asan_init
2701 // at the beginning in order to initialize our runtime before any access to
2702 // the shadow memory.
2703 // We cannot just ignore these methods, because they may call other
2704 // instrumented functions.
2705 if (F
.getName().find(" load]") != std::string::npos
) {
2706 FunctionCallee AsanInitFunction
=
2707 declareSanitizerInitFunction(*F
.getParent(), kAsanInitName
, {});
2708 IRBuilder
<> IRB(&F
.front(), F
.front().begin());
2709 IRB
.CreateCall(AsanInitFunction
, {});
2715 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function
&F
) {
2716 // Generate code only when dynamic addressing is needed.
2717 if (Mapping
.Offset
!= kDynamicShadowSentinel
)
2720 IRBuilder
<> IRB(&F
.front().front());
2721 if (Mapping
.InGlobal
) {
2722 if (ClWithIfuncSuppressRemat
) {
2723 // An empty inline asm with input reg == output reg.
2724 // An opaque pointer-to-int cast, basically.
2725 InlineAsm
*Asm
= InlineAsm::get(
2726 FunctionType::get(IntptrTy
, {AsanShadowGlobal
->getType()}, false),
2727 StringRef(""), StringRef("=r,0"),
2728 /*hasSideEffects=*/false);
2729 LocalDynamicShadow
=
2730 IRB
.CreateCall(Asm
, {AsanShadowGlobal
}, ".asan.shadow");
2732 LocalDynamicShadow
=
2733 IRB
.CreatePointerCast(AsanShadowGlobal
, IntptrTy
, ".asan.shadow");
2736 Value
*GlobalDynamicAddress
= F
.getParent()->getOrInsertGlobal(
2737 kAsanShadowMemoryDynamicAddress
, IntptrTy
);
2738 LocalDynamicShadow
= IRB
.CreateLoad(IntptrTy
, GlobalDynamicAddress
);
2743 void AddressSanitizer::markEscapedLocalAllocas(Function
&F
) {
2744 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2745 // to it as uninteresting. This assumes we haven't started processing allocas
2746 // yet. This check is done up front because iterating the use list in
2747 // isInterestingAlloca would be algorithmically slower.
2748 assert(ProcessedAllocas
.empty() && "must process localescape before allocas");
2750 // Try to get the declaration of llvm.localescape. If it's not in the module,
2751 // we can exit early.
2752 if (!F
.getParent()->getFunction("llvm.localescape")) return;
2754 // Look for a call to llvm.localescape call in the entry block. It can't be in
2756 for (Instruction
&I
: F
.getEntryBlock()) {
2757 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(&I
);
2758 if (II
&& II
->getIntrinsicID() == Intrinsic::localescape
) {
2759 // We found a call. Mark all the allocas passed in as uninteresting.
2760 for (Value
*Arg
: II
->arg_operands()) {
2761 AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
2762 assert(AI
&& AI
->isStaticAlloca() &&
2763 "non-static alloca arg to localescape");
2764 ProcessedAllocas
[AI
] = false;
2771 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented
) {
2772 bool ShouldInstrument
=
2773 ClDebugMin
< 0 || ClDebugMax
< 0 ||
2774 (Instrumented
>= ClDebugMin
&& Instrumented
<= ClDebugMax
);
2776 return !ShouldInstrument
;
2779 bool AddressSanitizer::instrumentFunction(Function
&F
,
2780 const TargetLibraryInfo
*TLI
) {
2781 if (F
.getLinkage() == GlobalValue::AvailableExternallyLinkage
) return false;
2782 if (!ClDebugFunc
.empty() && ClDebugFunc
== F
.getName()) return false;
2783 if (F
.getName().startswith("__asan_")) return false;
2785 bool FunctionModified
= false;
2787 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2788 // This function needs to be called even if the function body is not
2790 if (maybeInsertAsanInitAtFunctionEntry(F
))
2791 FunctionModified
= true;
2793 // Leave if the function doesn't need instrumentation.
2794 if (!F
.hasFnAttribute(Attribute::SanitizeAddress
)) return FunctionModified
;
2796 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F
<< "\n");
2798 initializeCallbacks(*F
.getParent());
2800 FunctionStateRAII
CleanupObj(this);
2802 FunctionModified
|= maybeInsertDynamicShadowAtFunctionEntry(F
);
2804 // We can't instrument allocas used with llvm.localescape. Only static allocas
2805 // can be passed to that intrinsic.
2806 markEscapedLocalAllocas(F
);
2808 // We want to instrument every address only once per basic block (unless there
2809 // are calls between uses).
2810 SmallPtrSet
<Value
*, 16> TempsToInstrument
;
2811 SmallVector
<InterestingMemoryOperand
, 16> OperandsToInstrument
;
2812 SmallVector
<MemIntrinsic
*, 16> IntrinToInstrument
;
2813 SmallVector
<Instruction
*, 8> NoReturnCalls
;
2814 SmallVector
<BasicBlock
*, 16> AllBlocks
;
2815 SmallVector
<Instruction
*, 16> PointerComparisonsOrSubtracts
;
2818 // Fill the set of memory operations to instrument.
2819 for (auto &BB
: F
) {
2820 AllBlocks
.push_back(&BB
);
2821 TempsToInstrument
.clear();
2822 int NumInsnsPerBB
= 0;
2823 for (auto &Inst
: BB
) {
2824 if (LooksLikeCodeInBug11395(&Inst
)) return false;
2825 SmallVector
<InterestingMemoryOperand
, 1> InterestingOperands
;
2826 getInterestingMemoryOperands(&Inst
, InterestingOperands
);
2828 if (!InterestingOperands
.empty()) {
2829 for (auto &Operand
: InterestingOperands
) {
2830 if (ClOpt
&& ClOptSameTemp
) {
2831 Value
*Ptr
= Operand
.getPtr();
2832 // If we have a mask, skip instrumentation if we've already
2833 // instrumented the full object. But don't add to TempsToInstrument
2834 // because we might get another load/store with a different mask.
2835 if (Operand
.MaybeMask
) {
2836 if (TempsToInstrument
.count(Ptr
))
2837 continue; // We've seen this (whole) temp in the current BB.
2839 if (!TempsToInstrument
.insert(Ptr
).second
)
2840 continue; // We've seen this temp in the current BB.
2843 OperandsToInstrument
.push_back(Operand
);
2846 } else if (((ClInvalidPointerPairs
|| ClInvalidPointerCmp
) &&
2847 isInterestingPointerComparison(&Inst
)) ||
2848 ((ClInvalidPointerPairs
|| ClInvalidPointerSub
) &&
2849 isInterestingPointerSubtraction(&Inst
))) {
2850 PointerComparisonsOrSubtracts
.push_back(&Inst
);
2851 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(&Inst
)) {
2853 IntrinToInstrument
.push_back(MI
);
2856 if (isa
<AllocaInst
>(Inst
)) NumAllocas
++;
2857 if (auto *CB
= dyn_cast
<CallBase
>(&Inst
)) {
2858 // A call inside BB.
2859 TempsToInstrument
.clear();
2860 if (CB
->doesNotReturn() && !CB
->hasMetadata("nosanitize"))
2861 NoReturnCalls
.push_back(CB
);
2863 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
2864 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, TLI
);
2866 if (NumInsnsPerBB
>= ClMaxInsnsToInstrumentPerBB
) break;
2870 bool UseCalls
= (ClInstrumentationWithCallsThreshold
>= 0 &&
2871 OperandsToInstrument
.size() + IntrinToInstrument
.size() >
2872 (unsigned)ClInstrumentationWithCallsThreshold
);
2873 const DataLayout
&DL
= F
.getParent()->getDataLayout();
2874 ObjectSizeOpts ObjSizeOpts
;
2875 ObjSizeOpts
.RoundToAlign
= true;
2876 ObjectSizeOffsetVisitor
ObjSizeVis(DL
, TLI
, F
.getContext(), ObjSizeOpts
);
2879 int NumInstrumented
= 0;
2880 for (auto &Operand
: OperandsToInstrument
) {
2881 if (!suppressInstrumentationSiteForDebug(NumInstrumented
))
2882 instrumentMop(ObjSizeVis
, Operand
, UseCalls
,
2883 F
.getParent()->getDataLayout());
2884 FunctionModified
= true;
2886 for (auto Inst
: IntrinToInstrument
) {
2887 if (!suppressInstrumentationSiteForDebug(NumInstrumented
))
2888 instrumentMemIntrinsic(Inst
);
2889 FunctionModified
= true;
2892 FunctionStackPoisoner
FSP(F
, *this);
2893 bool ChangedStack
= FSP
.runOnFunction();
2895 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2896 // See e.g. https://github.com/google/sanitizers/issues/37
2897 for (auto CI
: NoReturnCalls
) {
2898 IRBuilder
<> IRB(CI
);
2899 IRB
.CreateCall(AsanHandleNoReturnFunc
, {});
2902 for (auto Inst
: PointerComparisonsOrSubtracts
) {
2903 instrumentPointerComparisonOrSubtraction(Inst
);
2904 FunctionModified
= true;
2907 if (ChangedStack
|| !NoReturnCalls
.empty())
2908 FunctionModified
= true;
2910 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified
<< " "
2913 return FunctionModified
;
2916 // Workaround for bug 11395: we don't want to instrument stack in functions
2917 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2918 // FIXME: remove once the bug 11395 is fixed.
2919 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction
*I
) {
2920 if (LongSize
!= 32) return false;
2921 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2922 if (!CI
|| !CI
->isInlineAsm()) return false;
2923 if (CI
->getNumArgOperands() <= 5) return false;
2924 // We have inline assembly with quite a few arguments.
2928 void FunctionStackPoisoner::initializeCallbacks(Module
&M
) {
2929 IRBuilder
<> IRB(*C
);
2930 if (ASan
.UseAfterReturn
== AsanDetectStackUseAfterReturnMode::Always
||
2931 ASan
.UseAfterReturn
== AsanDetectStackUseAfterReturnMode::Runtime
) {
2932 const char *MallocNameTemplate
=
2933 ASan
.UseAfterReturn
== AsanDetectStackUseAfterReturnMode::Always
2934 ? kAsanStackMallocAlwaysNameTemplate
2935 : kAsanStackMallocNameTemplate
;
2936 for (int Index
= 0; Index
<= kMaxAsanStackMallocSizeClass
; Index
++) {
2937 std::string Suffix
= itostr(Index
);
2938 AsanStackMallocFunc
[Index
] = M
.getOrInsertFunction(
2939 MallocNameTemplate
+ Suffix
, IntptrTy
, IntptrTy
);
2940 AsanStackFreeFunc
[Index
] =
2941 M
.getOrInsertFunction(kAsanStackFreeNameTemplate
+ Suffix
,
2942 IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2945 if (ASan
.UseAfterScope
) {
2946 AsanPoisonStackMemoryFunc
= M
.getOrInsertFunction(
2947 kAsanPoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2948 AsanUnpoisonStackMemoryFunc
= M
.getOrInsertFunction(
2949 kAsanUnpoisonStackMemoryName
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2952 for (size_t Val
: {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2953 std::ostringstream Name
;
2954 Name
<< kAsanSetShadowPrefix
;
2955 Name
<< std::setw(2) << std::setfill('0') << std::hex
<< Val
;
2956 AsanSetShadowFunc
[Val
] =
2957 M
.getOrInsertFunction(Name
.str(), IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2960 AsanAllocaPoisonFunc
= M
.getOrInsertFunction(
2961 kAsanAllocaPoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2962 AsanAllocasUnpoisonFunc
= M
.getOrInsertFunction(
2963 kAsanAllocasUnpoison
, IRB
.getVoidTy(), IntptrTy
, IntptrTy
);
2966 void FunctionStackPoisoner::copyToShadowInline(ArrayRef
<uint8_t> ShadowMask
,
2967 ArrayRef
<uint8_t> ShadowBytes
,
2968 size_t Begin
, size_t End
,
2970 Value
*ShadowBase
) {
2974 const size_t LargestStoreSizeInBytes
=
2975 std::min
<size_t>(sizeof(uint64_t), ASan
.LongSize
/ 8);
2977 const bool IsLittleEndian
= F
.getParent()->getDataLayout().isLittleEndian();
2979 // Poison given range in shadow using larges store size with out leading and
2980 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2981 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2982 // middle of a store.
2983 for (size_t i
= Begin
; i
< End
;) {
2984 if (!ShadowMask
[i
]) {
2985 assert(!ShadowBytes
[i
]);
2990 size_t StoreSizeInBytes
= LargestStoreSizeInBytes
;
2991 // Fit store size into the range.
2992 while (StoreSizeInBytes
> End
- i
)
2993 StoreSizeInBytes
/= 2;
2995 // Minimize store size by trimming trailing zeros.
2996 for (size_t j
= StoreSizeInBytes
- 1; j
&& !ShadowMask
[i
+ j
]; --j
) {
2997 while (j
<= StoreSizeInBytes
/ 2)
2998 StoreSizeInBytes
/= 2;
3002 for (size_t j
= 0; j
< StoreSizeInBytes
; j
++) {
3004 Val
|= (uint64_t)ShadowBytes
[i
+ j
] << (8 * j
);
3006 Val
= (Val
<< 8) | ShadowBytes
[i
+ j
];
3009 Value
*Ptr
= IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
));
3010 Value
*Poison
= IRB
.getIntN(StoreSizeInBytes
* 8, Val
);
3011 IRB
.CreateAlignedStore(
3012 Poison
, IRB
.CreateIntToPtr(Ptr
, Poison
->getType()->getPointerTo()),
3015 i
+= StoreSizeInBytes
;
3019 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
3020 ArrayRef
<uint8_t> ShadowBytes
,
3021 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
3022 copyToShadow(ShadowMask
, ShadowBytes
, 0, ShadowMask
.size(), IRB
, ShadowBase
);
3025 void FunctionStackPoisoner::copyToShadow(ArrayRef
<uint8_t> ShadowMask
,
3026 ArrayRef
<uint8_t> ShadowBytes
,
3027 size_t Begin
, size_t End
,
3028 IRBuilder
<> &IRB
, Value
*ShadowBase
) {
3029 assert(ShadowMask
.size() == ShadowBytes
.size());
3030 size_t Done
= Begin
;
3031 for (size_t i
= Begin
, j
= Begin
+ 1; i
< End
; i
= j
++) {
3032 if (!ShadowMask
[i
]) {
3033 assert(!ShadowBytes
[i
]);
3036 uint8_t Val
= ShadowBytes
[i
];
3037 if (!AsanSetShadowFunc
[Val
])
3040 // Skip same values.
3041 for (; j
< End
&& ShadowMask
[j
] && Val
== ShadowBytes
[j
]; ++j
) {
3044 if (j
- i
>= ClMaxInlinePoisoningSize
) {
3045 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, i
, IRB
, ShadowBase
);
3046 IRB
.CreateCall(AsanSetShadowFunc
[Val
],
3047 {IRB
.CreateAdd(ShadowBase
, ConstantInt::get(IntptrTy
, i
)),
3048 ConstantInt::get(IntptrTy
, j
- i
)});
3053 copyToShadowInline(ShadowMask
, ShadowBytes
, Done
, End
, IRB
, ShadowBase
);
3056 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3057 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3058 static int StackMallocSizeClass(uint64_t LocalStackSize
) {
3059 assert(LocalStackSize
<= kMaxStackMallocSize
);
3060 uint64_t MaxSize
= kMinStackMallocSize
;
3061 for (int i
= 0;; i
++, MaxSize
*= 2)
3062 if (LocalStackSize
<= MaxSize
) return i
;
3063 llvm_unreachable("impossible LocalStackSize");
3066 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3067 Instruction
*CopyInsertPoint
= &F
.front().front();
3068 if (CopyInsertPoint
== ASan
.LocalDynamicShadow
) {
3069 // Insert after the dynamic shadow location is determined
3070 CopyInsertPoint
= CopyInsertPoint
->getNextNode();
3071 assert(CopyInsertPoint
);
3073 IRBuilder
<> IRB(CopyInsertPoint
);
3074 const DataLayout
&DL
= F
.getParent()->getDataLayout();
3075 for (Argument
&Arg
: F
.args()) {
3076 if (Arg
.hasByValAttr()) {
3077 Type
*Ty
= Arg
.getParamByValType();
3078 const Align Alignment
=
3079 DL
.getValueOrABITypeAlignment(Arg
.getParamAlign(), Ty
);
3081 AllocaInst
*AI
= IRB
.CreateAlloca(
3083 (Arg
.hasName() ? Arg
.getName() : "Arg" + Twine(Arg
.getArgNo())) +
3085 AI
->setAlignment(Alignment
);
3086 Arg
.replaceAllUsesWith(AI
);
3088 uint64_t AllocSize
= DL
.getTypeAllocSize(Ty
);
3089 IRB
.CreateMemCpy(AI
, Alignment
, &Arg
, Alignment
, AllocSize
);
3094 PHINode
*FunctionStackPoisoner::createPHI(IRBuilder
<> &IRB
, Value
*Cond
,
3096 Instruction
*ThenTerm
,
3097 Value
*ValueIfFalse
) {
3098 PHINode
*PHI
= IRB
.CreatePHI(IntptrTy
, 2);
3099 BasicBlock
*CondBlock
= cast
<Instruction
>(Cond
)->getParent();
3100 PHI
->addIncoming(ValueIfFalse
, CondBlock
);
3101 BasicBlock
*ThenBlock
= ThenTerm
->getParent();
3102 PHI
->addIncoming(ValueIfTrue
, ThenBlock
);
3106 Value
*FunctionStackPoisoner::createAllocaForLayout(
3107 IRBuilder
<> &IRB
, const ASanStackFrameLayout
&L
, bool Dynamic
) {
3110 Alloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(),
3111 ConstantInt::get(IRB
.getInt64Ty(), L
.FrameSize
),
3114 Alloca
= IRB
.CreateAlloca(ArrayType::get(IRB
.getInt8Ty(), L
.FrameSize
),
3115 nullptr, "MyAlloca");
3116 assert(Alloca
->isStaticAlloca());
3118 assert((ClRealignStack
& (ClRealignStack
- 1)) == 0);
3119 size_t FrameAlignment
= std::max(L
.FrameAlignment
, (size_t)ClRealignStack
);
3120 Alloca
->setAlignment(Align(FrameAlignment
));
3121 return IRB
.CreatePointerCast(Alloca
, IntptrTy
);
3124 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3125 BasicBlock
&FirstBB
= *F
.begin();
3126 IRBuilder
<> IRB(dyn_cast
<Instruction
>(FirstBB
.begin()));
3127 DynamicAllocaLayout
= IRB
.CreateAlloca(IntptrTy
, nullptr);
3128 IRB
.CreateStore(Constant::getNullValue(IntptrTy
), DynamicAllocaLayout
);
3129 DynamicAllocaLayout
->setAlignment(Align(32));
3132 void FunctionStackPoisoner::processDynamicAllocas() {
3133 if (!ClInstrumentDynamicAllocas
|| DynamicAllocaVec
.empty()) {
3134 assert(DynamicAllocaPoisonCallVec
.empty());
3138 // Insert poison calls for lifetime intrinsics for dynamic allocas.
3139 for (const auto &APC
: DynamicAllocaPoisonCallVec
) {
3140 assert(APC
.InsBefore
);
3142 assert(ASan
.isInterestingAlloca(*APC
.AI
));
3143 assert(!APC
.AI
->isStaticAlloca());
3145 IRBuilder
<> IRB(APC
.InsBefore
);
3146 poisonAlloca(APC
.AI
, APC
.Size
, IRB
, APC
.DoPoison
);
3147 // Dynamic allocas will be unpoisoned unconditionally below in
3148 // unpoisonDynamicAllocas.
3149 // Flag that we need unpoison static allocas.
3152 // Handle dynamic allocas.
3153 createDynamicAllocasInitStorage();
3154 for (auto &AI
: DynamicAllocaVec
)
3155 handleDynamicAllocaCall(AI
);
3156 unpoisonDynamicAllocas();
3159 /// Collect instructions in the entry block after \p InsBefore which initialize
3160 /// permanent storage for a function argument. These instructions must remain in
3161 /// the entry block so that uninitialized values do not appear in backtraces. An
3162 /// added benefit is that this conserves spill slots. This does not move stores
3163 /// before instrumented / "interesting" allocas.
3164 static void findStoresToUninstrumentedArgAllocas(
3165 AddressSanitizer
&ASan
, Instruction
&InsBefore
,
3166 SmallVectorImpl
<Instruction
*> &InitInsts
) {
3167 Instruction
*Start
= InsBefore
.getNextNonDebugInstruction();
3168 for (Instruction
*It
= Start
; It
; It
= It
->getNextNonDebugInstruction()) {
3169 // Argument initialization looks like:
3170 // 1) store <Argument>, <Alloca> OR
3171 // 2) <CastArgument> = cast <Argument> to ...
3172 // store <CastArgument> to <Alloca>
3173 // Do not consider any other kind of instruction.
3175 // Note: This covers all known cases, but may not be exhaustive. An
3176 // alternative to pattern-matching stores is to DFS over all Argument uses:
3177 // this might be more general, but is probably much more complicated.
3178 if (isa
<AllocaInst
>(It
) || isa
<CastInst
>(It
))
3180 if (auto *Store
= dyn_cast
<StoreInst
>(It
)) {
3181 // The store destination must be an alloca that isn't interesting for
3182 // ASan to instrument. These are moved up before InsBefore, and they're
3183 // not interesting because allocas for arguments can be mem2reg'd.
3184 auto *Alloca
= dyn_cast
<AllocaInst
>(Store
->getPointerOperand());
3185 if (!Alloca
|| ASan
.isInterestingAlloca(*Alloca
))
3188 Value
*Val
= Store
->getValueOperand();
3189 bool IsDirectArgInit
= isa
<Argument
>(Val
);
3190 bool IsArgInitViaCast
=
3191 isa
<CastInst
>(Val
) &&
3192 isa
<Argument
>(cast
<CastInst
>(Val
)->getOperand(0)) &&
3193 // Check that the cast appears directly before the store. Otherwise
3194 // moving the cast before InsBefore may break the IR.
3195 Val
== It
->getPrevNonDebugInstruction();
3196 bool IsArgInit
= IsDirectArgInit
|| IsArgInitViaCast
;
3200 if (IsArgInitViaCast
)
3201 InitInsts
.push_back(cast
<Instruction
>(Val
));
3202 InitInsts
.push_back(Store
);
3206 // Do not reorder past unknown instructions: argument initialization should
3207 // only involve casts and stores.
3212 void FunctionStackPoisoner::processStaticAllocas() {
3213 if (AllocaVec
.empty()) {
3214 assert(StaticAllocaPoisonCallVec
.empty());
3218 int StackMallocIdx
= -1;
3219 DebugLoc EntryDebugLocation
;
3220 if (auto SP
= F
.getSubprogram())
3221 EntryDebugLocation
=
3222 DILocation::get(SP
->getContext(), SP
->getScopeLine(), 0, SP
);
3224 Instruction
*InsBefore
= AllocaVec
[0];
3225 IRBuilder
<> IRB(InsBefore
);
3227 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3228 // debug info is broken, because only entry-block allocas are treated as
3229 // regular stack slots.
3230 auto InsBeforeB
= InsBefore
->getParent();
3231 assert(InsBeforeB
== &F
.getEntryBlock());
3232 for (auto *AI
: StaticAllocasToMoveUp
)
3233 if (AI
->getParent() == InsBeforeB
)
3234 AI
->moveBefore(InsBefore
);
3236 // Move stores of arguments into entry-block allocas as well. This prevents
3237 // extra stack slots from being generated (to house the argument values until
3238 // they can be stored into the allocas). This also prevents uninitialized
3239 // values from being shown in backtraces.
3240 SmallVector
<Instruction
*, 8> ArgInitInsts
;
3241 findStoresToUninstrumentedArgAllocas(ASan
, *InsBefore
, ArgInitInsts
);
3242 for (Instruction
*ArgInitInst
: ArgInitInsts
)
3243 ArgInitInst
->moveBefore(InsBefore
);
3245 // If we have a call to llvm.localescape, keep it in the entry block.
3246 if (LocalEscapeCall
) LocalEscapeCall
->moveBefore(InsBefore
);
3248 SmallVector
<ASanStackVariableDescription
, 16> SVD
;
3249 SVD
.reserve(AllocaVec
.size());
3250 for (AllocaInst
*AI
: AllocaVec
) {
3251 ASanStackVariableDescription D
= {AI
->getName().data(),
3252 ASan
.getAllocaSizeInBytes(*AI
),
3261 // Minimal header size (left redzone) is 4 pointers,
3262 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3263 size_t Granularity
= 1ULL << Mapping
.Scale
;
3264 size_t MinHeaderSize
= std::max((size_t)ASan
.LongSize
/ 2, Granularity
);
3265 const ASanStackFrameLayout
&L
=
3266 ComputeASanStackFrameLayout(SVD
, Granularity
, MinHeaderSize
);
3268 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3269 DenseMap
<const AllocaInst
*, ASanStackVariableDescription
*> AllocaToSVDMap
;
3270 for (auto &Desc
: SVD
)
3271 AllocaToSVDMap
[Desc
.AI
] = &Desc
;
3273 // Update SVD with information from lifetime intrinsics.
3274 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3275 assert(APC
.InsBefore
);
3277 assert(ASan
.isInterestingAlloca(*APC
.AI
));
3278 assert(APC
.AI
->isStaticAlloca());
3280 ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3281 Desc
.LifetimeSize
= Desc
.Size
;
3282 if (const DILocation
*FnLoc
= EntryDebugLocation
.get()) {
3283 if (const DILocation
*LifetimeLoc
= APC
.InsBefore
->getDebugLoc().get()) {
3284 if (LifetimeLoc
->getFile() == FnLoc
->getFile())
3285 if (unsigned Line
= LifetimeLoc
->getLine())
3286 Desc
.Line
= std::min(Desc
.Line
? Desc
.Line
: Line
, Line
);
3291 auto DescriptionString
= ComputeASanStackFrameDescription(SVD
);
3292 LLVM_DEBUG(dbgs() << DescriptionString
<< " --- " << L
.FrameSize
<< "\n");
3293 uint64_t LocalStackSize
= L
.FrameSize
;
3294 bool DoStackMalloc
=
3295 ASan
.UseAfterReturn
!= AsanDetectStackUseAfterReturnMode::Never
&&
3296 !ASan
.CompileKernel
&& LocalStackSize
<= kMaxStackMallocSize
;
3297 bool DoDynamicAlloca
= ClDynamicAllocaStack
;
3298 // Don't do dynamic alloca or stack malloc if:
3299 // 1) There is inline asm: too often it makes assumptions on which registers
3301 // 2) There is a returns_twice call (typically setjmp), which is
3302 // optimization-hostile, and doesn't play well with introduced indirect
3303 // register-relative calculation of local variable addresses.
3304 DoDynamicAlloca
&= !HasInlineAsm
&& !HasReturnsTwiceCall
;
3305 DoStackMalloc
&= !HasInlineAsm
&& !HasReturnsTwiceCall
;
3307 Value
*StaticAlloca
=
3308 DoDynamicAlloca
? nullptr : createAllocaForLayout(IRB
, L
, false);
3311 Value
*LocalStackBase
;
3312 Value
*LocalStackBaseAlloca
;
3313 uint8_t DIExprFlags
= DIExpression::ApplyOffset
;
3315 if (DoStackMalloc
) {
3316 LocalStackBaseAlloca
=
3317 IRB
.CreateAlloca(IntptrTy
, nullptr, "asan_local_stack_base");
3318 if (ASan
.UseAfterReturn
== AsanDetectStackUseAfterReturnMode::Runtime
) {
3319 // void *FakeStack = __asan_option_detect_stack_use_after_return
3320 // ? __asan_stack_malloc_N(LocalStackSize)
3322 // void *LocalStackBase = (FakeStack) ? FakeStack :
3323 // alloca(LocalStackSize);
3324 Constant
*OptionDetectUseAfterReturn
= F
.getParent()->getOrInsertGlobal(
3325 kAsanOptionDetectUseAfterReturn
, IRB
.getInt32Ty());
3326 Value
*UseAfterReturnIsEnabled
= IRB
.CreateICmpNE(
3327 IRB
.CreateLoad(IRB
.getInt32Ty(), OptionDetectUseAfterReturn
),
3328 Constant::getNullValue(IRB
.getInt32Ty()));
3330 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled
, InsBefore
, false);
3331 IRBuilder
<> IRBIf(Term
);
3332 StackMallocIdx
= StackMallocSizeClass(LocalStackSize
);
3333 assert(StackMallocIdx
<= kMaxAsanStackMallocSizeClass
);
3334 Value
*FakeStackValue
=
3335 IRBIf
.CreateCall(AsanStackMallocFunc
[StackMallocIdx
],
3336 ConstantInt::get(IntptrTy
, LocalStackSize
));
3337 IRB
.SetInsertPoint(InsBefore
);
3338 FakeStack
= createPHI(IRB
, UseAfterReturnIsEnabled
, FakeStackValue
, Term
,
3339 ConstantInt::get(IntptrTy
, 0));
3341 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3342 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3343 // void *LocalStackBase = (FakeStack) ? FakeStack :
3344 // alloca(LocalStackSize);
3345 StackMallocIdx
= StackMallocSizeClass(LocalStackSize
);
3346 FakeStack
= IRB
.CreateCall(AsanStackMallocFunc
[StackMallocIdx
],
3347 ConstantInt::get(IntptrTy
, LocalStackSize
));
3349 Value
*NoFakeStack
=
3350 IRB
.CreateICmpEQ(FakeStack
, Constant::getNullValue(IntptrTy
));
3352 SplitBlockAndInsertIfThen(NoFakeStack
, InsBefore
, false);
3353 IRBuilder
<> IRBIf(Term
);
3354 Value
*AllocaValue
=
3355 DoDynamicAlloca
? createAllocaForLayout(IRBIf
, L
, true) : StaticAlloca
;
3357 IRB
.SetInsertPoint(InsBefore
);
3358 LocalStackBase
= createPHI(IRB
, NoFakeStack
, AllocaValue
, Term
, FakeStack
);
3359 IRB
.CreateStore(LocalStackBase
, LocalStackBaseAlloca
);
3360 DIExprFlags
|= DIExpression::DerefBefore
;
3362 // void *FakeStack = nullptr;
3363 // void *LocalStackBase = alloca(LocalStackSize);
3364 FakeStack
= ConstantInt::get(IntptrTy
, 0);
3366 DoDynamicAlloca
? createAllocaForLayout(IRB
, L
, true) : StaticAlloca
;
3367 LocalStackBaseAlloca
= LocalStackBase
;
3370 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3371 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3372 // later passes and can result in dropped variable coverage in debug info.
3373 Value
*LocalStackBaseAllocaPtr
=
3374 isa
<PtrToIntInst
>(LocalStackBaseAlloca
)
3375 ? cast
<PtrToIntInst
>(LocalStackBaseAlloca
)->getPointerOperand()
3376 : LocalStackBaseAlloca
;
3377 assert(isa
<AllocaInst
>(LocalStackBaseAllocaPtr
) &&
3378 "Variable descriptions relative to ASan stack base will be dropped");
3380 // Replace Alloca instructions with base+offset.
3381 for (const auto &Desc
: SVD
) {
3382 AllocaInst
*AI
= Desc
.AI
;
3383 replaceDbgDeclare(AI
, LocalStackBaseAllocaPtr
, DIB
, DIExprFlags
,
3385 Value
*NewAllocaPtr
= IRB
.CreateIntToPtr(
3386 IRB
.CreateAdd(LocalStackBase
, ConstantInt::get(IntptrTy
, Desc
.Offset
)),
3388 AI
->replaceAllUsesWith(NewAllocaPtr
);
3391 // The left-most redzone has enough space for at least 4 pointers.
3392 // Write the Magic value to redzone[0].
3393 Value
*BasePlus0
= IRB
.CreateIntToPtr(LocalStackBase
, IntptrPtrTy
);
3394 IRB
.CreateStore(ConstantInt::get(IntptrTy
, kCurrentStackFrameMagic
),
3396 // Write the frame description constant to redzone[1].
3397 Value
*BasePlus1
= IRB
.CreateIntToPtr(
3398 IRB
.CreateAdd(LocalStackBase
,
3399 ConstantInt::get(IntptrTy
, ASan
.LongSize
/ 8)),
3401 GlobalVariable
*StackDescriptionGlobal
=
3402 createPrivateGlobalForString(*F
.getParent(), DescriptionString
,
3403 /*AllowMerging*/ true, kAsanGenPrefix
);
3404 Value
*Description
= IRB
.CreatePointerCast(StackDescriptionGlobal
, IntptrTy
);
3405 IRB
.CreateStore(Description
, BasePlus1
);
3406 // Write the PC to redzone[2].
3407 Value
*BasePlus2
= IRB
.CreateIntToPtr(
3408 IRB
.CreateAdd(LocalStackBase
,
3409 ConstantInt::get(IntptrTy
, 2 * ASan
.LongSize
/ 8)),
3411 IRB
.CreateStore(IRB
.CreatePointerCast(&F
, IntptrTy
), BasePlus2
);
3413 const auto &ShadowAfterScope
= GetShadowBytesAfterScope(SVD
, L
);
3415 // Poison the stack red zones at the entry.
3416 Value
*ShadowBase
= ASan
.memToShadow(LocalStackBase
, IRB
);
3417 // As mask we must use most poisoned case: red zones and after scope.
3418 // As bytes we can use either the same or just red zones only.
3419 copyToShadow(ShadowAfterScope
, ShadowAfterScope
, IRB
, ShadowBase
);
3421 if (!StaticAllocaPoisonCallVec
.empty()) {
3422 const auto &ShadowInScope
= GetShadowBytes(SVD
, L
);
3424 // Poison static allocas near lifetime intrinsics.
3425 for (const auto &APC
: StaticAllocaPoisonCallVec
) {
3426 const ASanStackVariableDescription
&Desc
= *AllocaToSVDMap
[APC
.AI
];
3427 assert(Desc
.Offset
% L
.Granularity
== 0);
3428 size_t Begin
= Desc
.Offset
/ L
.Granularity
;
3429 size_t End
= Begin
+ (APC
.Size
+ L
.Granularity
- 1) / L
.Granularity
;
3431 IRBuilder
<> IRB(APC
.InsBefore
);
3432 copyToShadow(ShadowAfterScope
,
3433 APC
.DoPoison
? ShadowAfterScope
: ShadowInScope
, Begin
, End
,
3438 SmallVector
<uint8_t, 64> ShadowClean(ShadowAfterScope
.size(), 0);
3439 SmallVector
<uint8_t, 64> ShadowAfterReturn
;
3441 // (Un)poison the stack before all ret instructions.
3442 for (Instruction
*Ret
: RetVec
) {
3443 IRBuilder
<> IRBRet(Ret
);
3444 // Mark the current frame as retired.
3445 IRBRet
.CreateStore(ConstantInt::get(IntptrTy
, kRetiredStackFrameMagic
),
3447 if (DoStackMalloc
) {
3448 assert(StackMallocIdx
>= 0);
3449 // if FakeStack != 0 // LocalStackBase == FakeStack
3450 // // In use-after-return mode, poison the whole stack frame.
3451 // if StackMallocIdx <= 4
3452 // // For small sizes inline the whole thing:
3453 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3454 // **SavedFlagPtr(FakeStack) = 0
3456 // __asan_stack_free_N(FakeStack, LocalStackSize)
3458 // <This is not a fake stack; unpoison the redzones>
3460 IRBRet
.CreateICmpNE(FakeStack
, Constant::getNullValue(IntptrTy
));
3461 Instruction
*ThenTerm
, *ElseTerm
;
3462 SplitBlockAndInsertIfThenElse(Cmp
, Ret
, &ThenTerm
, &ElseTerm
);
3464 IRBuilder
<> IRBPoison(ThenTerm
);
3465 if (StackMallocIdx
<= 4) {
3466 int ClassSize
= kMinStackMallocSize
<< StackMallocIdx
;
3467 ShadowAfterReturn
.resize(ClassSize
/ L
.Granularity
,
3468 kAsanStackUseAfterReturnMagic
);
3469 copyToShadow(ShadowAfterReturn
, ShadowAfterReturn
, IRBPoison
,
3471 Value
*SavedFlagPtrPtr
= IRBPoison
.CreateAdd(
3473 ConstantInt::get(IntptrTy
, ClassSize
- ASan
.LongSize
/ 8));
3474 Value
*SavedFlagPtr
= IRBPoison
.CreateLoad(
3475 IntptrTy
, IRBPoison
.CreateIntToPtr(SavedFlagPtrPtr
, IntptrPtrTy
));
3476 IRBPoison
.CreateStore(
3477 Constant::getNullValue(IRBPoison
.getInt8Ty()),
3478 IRBPoison
.CreateIntToPtr(SavedFlagPtr
, IRBPoison
.getInt8PtrTy()));
3480 // For larger frames call __asan_stack_free_*.
3481 IRBPoison
.CreateCall(
3482 AsanStackFreeFunc
[StackMallocIdx
],
3483 {FakeStack
, ConstantInt::get(IntptrTy
, LocalStackSize
)});
3486 IRBuilder
<> IRBElse(ElseTerm
);
3487 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBElse
, ShadowBase
);
3489 copyToShadow(ShadowAfterScope
, ShadowClean
, IRBRet
, ShadowBase
);
3493 // We are done. Remove the old unused alloca instructions.
3494 for (auto AI
: AllocaVec
) AI
->eraseFromParent();
3497 void FunctionStackPoisoner::poisonAlloca(Value
*V
, uint64_t Size
,
3498 IRBuilder
<> &IRB
, bool DoPoison
) {
3499 // For now just insert the call to ASan runtime.
3500 Value
*AddrArg
= IRB
.CreatePointerCast(V
, IntptrTy
);
3501 Value
*SizeArg
= ConstantInt::get(IntptrTy
, Size
);
3503 DoPoison
? AsanPoisonStackMemoryFunc
: AsanUnpoisonStackMemoryFunc
,
3504 {AddrArg
, SizeArg
});
3507 // Handling llvm.lifetime intrinsics for a given %alloca:
3508 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3509 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3510 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3511 // could be poisoned by previous llvm.lifetime.end instruction, as the
3512 // variable may go in and out of scope several times, e.g. in loops).
3513 // (3) if we poisoned at least one %alloca in a function,
3514 // unpoison the whole stack frame at function exit.
3515 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst
*AI
) {
3516 IRBuilder
<> IRB(AI
);
3518 const unsigned Alignment
= std::max(kAllocaRzSize
, AI
->getAlignment());
3519 const uint64_t AllocaRedzoneMask
= kAllocaRzSize
- 1;
3521 Value
*Zero
= Constant::getNullValue(IntptrTy
);
3522 Value
*AllocaRzSize
= ConstantInt::get(IntptrTy
, kAllocaRzSize
);
3523 Value
*AllocaRzMask
= ConstantInt::get(IntptrTy
, AllocaRedzoneMask
);
3525 // Since we need to extend alloca with additional memory to locate
3526 // redzones, and OldSize is number of allocated blocks with
3527 // ElementSize size, get allocated memory size in bytes by
3528 // OldSize * ElementSize.
3529 const unsigned ElementSize
=
3530 F
.getParent()->getDataLayout().getTypeAllocSize(AI
->getAllocatedType());
3532 IRB
.CreateMul(IRB
.CreateIntCast(AI
->getArraySize(), IntptrTy
, false),
3533 ConstantInt::get(IntptrTy
, ElementSize
));
3535 // PartialSize = OldSize % 32
3536 Value
*PartialSize
= IRB
.CreateAnd(OldSize
, AllocaRzMask
);
3538 // Misalign = kAllocaRzSize - PartialSize;
3539 Value
*Misalign
= IRB
.CreateSub(AllocaRzSize
, PartialSize
);
3541 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3542 Value
*Cond
= IRB
.CreateICmpNE(Misalign
, AllocaRzSize
);
3543 Value
*PartialPadding
= IRB
.CreateSelect(Cond
, Misalign
, Zero
);
3545 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3546 // Alignment is added to locate left redzone, PartialPadding for possible
3547 // partial redzone and kAllocaRzSize for right redzone respectively.
3548 Value
*AdditionalChunkSize
= IRB
.CreateAdd(
3549 ConstantInt::get(IntptrTy
, Alignment
+ kAllocaRzSize
), PartialPadding
);
3551 Value
*NewSize
= IRB
.CreateAdd(OldSize
, AdditionalChunkSize
);
3553 // Insert new alloca with new NewSize and Alignment params.
3554 AllocaInst
*NewAlloca
= IRB
.CreateAlloca(IRB
.getInt8Ty(), NewSize
);
3555 NewAlloca
->setAlignment(Align(Alignment
));
3557 // NewAddress = Address + Alignment
3558 Value
*NewAddress
= IRB
.CreateAdd(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
),
3559 ConstantInt::get(IntptrTy
, Alignment
));
3561 // Insert __asan_alloca_poison call for new created alloca.
3562 IRB
.CreateCall(AsanAllocaPoisonFunc
, {NewAddress
, OldSize
});
3564 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3565 // for unpoisoning stuff.
3566 IRB
.CreateStore(IRB
.CreatePtrToInt(NewAlloca
, IntptrTy
), DynamicAllocaLayout
);
3568 Value
*NewAddressPtr
= IRB
.CreateIntToPtr(NewAddress
, AI
->getType());
3570 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3571 AI
->replaceAllUsesWith(NewAddressPtr
);
3573 // We are done. Erase old alloca from parent.
3574 AI
->eraseFromParent();
3577 // isSafeAccess returns true if Addr is always inbounds with respect to its
3578 // base object. For example, it is a field access or an array access with
3579 // constant inbounds index.
3580 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor
&ObjSizeVis
,
3581 Value
*Addr
, uint64_t TypeSize
) const {
3582 SizeOffsetType SizeOffset
= ObjSizeVis
.compute(Addr
);
3583 if (!ObjSizeVis
.bothKnown(SizeOffset
)) return false;
3584 uint64_t Size
= SizeOffset
.first
.getZExtValue();
3585 int64_t Offset
= SizeOffset
.second
.getSExtValue();
3586 // Three checks are required to ensure safety:
3587 // . Offset >= 0 (since the offset is given from the base ptr)
3588 // . Size >= Offset (unsigned)
3589 // . Size - Offset >= NeededSize (unsigned)
3590 return Offset
>= 0 && Size
>= uint64_t(Offset
) &&
3591 Size
- uint64_t(Offset
) >= TypeSize
/ 8;