[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / BoundsChecking.cpp
blob4ad07cab001ad17c95386266cd6f99ba56901643
1 //===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Instrumentation/BoundsChecking.h"
10 #include "llvm/ADT/Statistic.h"
11 #include "llvm/ADT/Twine.h"
12 #include "llvm/Analysis/MemoryBuiltins.h"
13 #include "llvm/Analysis/ScalarEvolution.h"
14 #include "llvm/Analysis/TargetFolder.h"
15 #include "llvm/Analysis/TargetLibraryInfo.h"
16 #include "llvm/IR/BasicBlock.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/IRBuilder.h"
21 #include "llvm/IR/InstIterator.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/IR/Value.h"
27 #include "llvm/InitializePasses.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <cstdint>
35 #include <utility>
37 using namespace llvm;
39 #define DEBUG_TYPE "bounds-checking"
41 static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap",
42 cl::desc("Use one trap block per function"));
44 STATISTIC(ChecksAdded, "Bounds checks added");
45 STATISTIC(ChecksSkipped, "Bounds checks skipped");
46 STATISTIC(ChecksUnable, "Bounds checks unable to add");
48 using BuilderTy = IRBuilder<TargetFolder>;
50 /// Gets the conditions under which memory accessing instructions will overflow.
51 ///
52 /// \p Ptr is the pointer that will be read/written, and \p InstVal is either
53 /// the result from the load or the value being stored. It is used to determine
54 /// the size of memory block that is touched.
55 ///
56 /// Returns the condition under which the access will overflow.
57 static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal,
58 const DataLayout &DL, TargetLibraryInfo &TLI,
59 ObjectSizeOffsetEvaluator &ObjSizeEval,
60 BuilderTy &IRB, ScalarEvolution &SE) {
61 uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType());
62 LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize)
63 << " bytes\n");
65 SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr);
67 if (!ObjSizeEval.bothKnown(SizeOffset)) {
68 ++ChecksUnable;
69 return nullptr;
72 Value *Size = SizeOffset.first;
73 Value *Offset = SizeOffset.second;
74 ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size);
76 Type *IntTy = DL.getIntPtrType(Ptr->getType());
77 Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize);
79 auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size));
80 auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset));
81 auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal));
83 // three checks are required to ensure safety:
84 // . Offset >= 0 (since the offset is given from the base ptr)
85 // . Size >= Offset (unsigned)
86 // . Size - Offset >= NeededSize (unsigned)
88 // optimization: if Size >= 0 (signed), skip 1st check
89 // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows
90 Value *ObjSize = IRB.CreateSub(Size, Offset);
91 Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax())
92 ? ConstantInt::getFalse(Ptr->getContext())
93 : IRB.CreateICmpULT(Size, Offset);
94 Value *Cmp3 = SizeRange.sub(OffsetRange)
95 .getUnsignedMin()
96 .uge(NeededSizeRange.getUnsignedMax())
97 ? ConstantInt::getFalse(Ptr->getContext())
98 : IRB.CreateICmpULT(ObjSize, NeededSizeVal);
99 Value *Or = IRB.CreateOr(Cmp2, Cmp3);
100 if ((!SizeCI || SizeCI->getValue().slt(0)) &&
101 !SizeRange.getSignedMin().isNonNegative()) {
102 Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0));
103 Or = IRB.CreateOr(Cmp1, Or);
106 return Or;
109 /// Adds run-time bounds checks to memory accessing instructions.
111 /// \p Or is the condition that should guard the trap.
113 /// \p GetTrapBB is a callable that returns the trap BB to use on failure.
114 template <typename GetTrapBBT>
115 static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) {
116 // check if the comparison is always false
117 ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or);
118 if (C) {
119 ++ChecksSkipped;
120 // If non-zero, nothing to do.
121 if (!C->getZExtValue())
122 return;
124 ++ChecksAdded;
126 BasicBlock::iterator SplitI = IRB.GetInsertPoint();
127 BasicBlock *OldBB = SplitI->getParent();
128 BasicBlock *Cont = OldBB->splitBasicBlock(SplitI);
129 OldBB->getTerminator()->eraseFromParent();
131 if (C) {
132 // If we have a constant zero, unconditionally branch.
133 // FIXME: We should really handle this differently to bypass the splitting
134 // the block.
135 BranchInst::Create(GetTrapBB(IRB), OldBB);
136 return;
139 // Create the conditional branch.
140 BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB);
143 static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI,
144 ScalarEvolution &SE) {
145 const DataLayout &DL = F.getParent()->getDataLayout();
146 ObjectSizeOpts EvalOpts;
147 EvalOpts.RoundToAlign = true;
148 ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts);
150 // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory
151 // touching instructions
152 SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo;
153 for (Instruction &I : instructions(F)) {
154 Value *Or = nullptr;
155 BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL));
156 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
157 if (!LI->isVolatile())
158 Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI,
159 ObjSizeEval, IRB, SE);
160 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
161 if (!SI->isVolatile())
162 Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(),
163 DL, TLI, ObjSizeEval, IRB, SE);
164 } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) {
165 if (!AI->isVolatile())
166 Or =
167 getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(),
168 DL, TLI, ObjSizeEval, IRB, SE);
169 } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) {
170 if (!AI->isVolatile())
171 Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(),
172 DL, TLI, ObjSizeEval, IRB, SE);
174 if (Or)
175 TrapInfo.push_back(std::make_pair(&I, Or));
178 // Create a trapping basic block on demand using a callback. Depending on
179 // flags, this will either create a single block for the entire function or
180 // will create a fresh block every time it is called.
181 BasicBlock *TrapBB = nullptr;
182 auto GetTrapBB = [&TrapBB](BuilderTy &IRB) {
183 if (TrapBB && SingleTrapBB)
184 return TrapBB;
186 Function *Fn = IRB.GetInsertBlock()->getParent();
187 // FIXME: This debug location doesn't make a lot of sense in the
188 // `SingleTrapBB` case.
189 auto DebugLoc = IRB.getCurrentDebugLocation();
190 IRBuilder<>::InsertPointGuard Guard(IRB);
191 TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn);
192 IRB.SetInsertPoint(TrapBB);
194 auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap);
195 CallInst *TrapCall = IRB.CreateCall(F, {});
196 TrapCall->setDoesNotReturn();
197 TrapCall->setDoesNotThrow();
198 TrapCall->setDebugLoc(DebugLoc);
199 IRB.CreateUnreachable();
201 return TrapBB;
204 // Add the checks.
205 for (const auto &Entry : TrapInfo) {
206 Instruction *Inst = Entry.first;
207 BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL));
208 insertBoundsCheck(Entry.second, IRB, GetTrapBB);
211 return !TrapInfo.empty();
214 PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) {
215 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
216 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
218 if (!addBoundsChecking(F, TLI, SE))
219 return PreservedAnalyses::all();
221 return PreservedAnalyses::none();
224 namespace {
225 struct BoundsCheckingLegacyPass : public FunctionPass {
226 static char ID;
228 BoundsCheckingLegacyPass() : FunctionPass(ID) {
229 initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry());
232 bool runOnFunction(Function &F) override {
233 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
234 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
235 return addBoundsChecking(F, TLI, SE);
238 void getAnalysisUsage(AnalysisUsage &AU) const override {
239 AU.addRequired<TargetLibraryInfoWrapperPass>();
240 AU.addRequired<ScalarEvolutionWrapperPass>();
243 } // namespace
245 char BoundsCheckingLegacyPass::ID = 0;
246 INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking",
247 "Run-time bounds checking", false, false)
248 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
249 INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking",
250 "Run-time bounds checking", false, false)
252 FunctionPass *llvm::createBoundsCheckingLegacyPass() {
253 return new BoundsCheckingLegacyPass();