[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / CFGMST.h
blob2abe8d12de3c0c84d331f16d06421666702b5318
1 //===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a Union-find algorithm to compute Minimum Spanning Tree
10 // for a given CFG.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
15 #define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Support/BranchProbability.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
26 #include <utility>
27 #include <vector>
29 #define DEBUG_TYPE "cfgmst"
31 using namespace llvm;
33 namespace llvm {
35 /// An union-find based Minimum Spanning Tree for CFG
36 ///
37 /// Implements a Union-find algorithm to compute Minimum Spanning Tree
38 /// for a given CFG.
39 template <class Edge, class BBInfo> class CFGMST {
40 public:
41 Function &F;
43 // Store all the edges in CFG. It may contain some stale edges
44 // when Removed is set.
45 std::vector<std::unique_ptr<Edge>> AllEdges;
47 // This map records the auxiliary information for each BB.
48 DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos;
50 // Whehter the function has an exit block with no successors.
51 // (For function with an infinite loop, this block may be absent)
52 bool ExitBlockFound = false;
54 // Find the root group of the G and compress the path from G to the root.
55 BBInfo *findAndCompressGroup(BBInfo *G) {
56 if (G->Group != G)
57 G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group));
58 return static_cast<BBInfo *>(G->Group);
61 // Union BB1 and BB2 into the same group and return true.
62 // Returns false if BB1 and BB2 are already in the same group.
63 bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) {
64 BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1));
65 BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2));
67 if (BB1G == BB2G)
68 return false;
70 // Make the smaller rank tree a direct child or the root of high rank tree.
71 if (BB1G->Rank < BB2G->Rank)
72 BB1G->Group = BB2G;
73 else {
74 BB2G->Group = BB1G;
75 // If the ranks are the same, increment root of one tree by one.
76 if (BB1G->Rank == BB2G->Rank)
77 BB1G->Rank++;
79 return true;
82 // Give BB, return the auxiliary information.
83 BBInfo &getBBInfo(const BasicBlock *BB) const {
84 auto It = BBInfos.find(BB);
85 assert(It->second.get() != nullptr);
86 return *It->second.get();
89 // Give BB, return the auxiliary information if it's available.
90 BBInfo *findBBInfo(const BasicBlock *BB) const {
91 auto It = BBInfos.find(BB);
92 if (It == BBInfos.end())
93 return nullptr;
94 return It->second.get();
97 // Traverse the CFG using a stack. Find all the edges and assign the weight.
98 // Edges with large weight will be put into MST first so they are less likely
99 // to be instrumented.
100 void buildEdges() {
101 LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n");
103 const BasicBlock *Entry = &(F.getEntryBlock());
104 uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2);
105 // If we want to instrument the entry count, lower the weight to 0.
106 if (InstrumentFuncEntry)
107 EntryWeight = 0;
108 Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr,
109 *ExitOutgoing = nullptr, *ExitIncoming = nullptr;
110 uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0;
112 // Add a fake edge to the entry.
113 EntryIncoming = &addEdge(nullptr, Entry, EntryWeight);
114 LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName()
115 << " w = " << EntryWeight << "\n");
117 // Special handling for single BB functions.
118 if (succ_empty(Entry)) {
119 addEdge(Entry, nullptr, EntryWeight);
120 return;
123 static const uint32_t CriticalEdgeMultiplier = 1000;
125 for (BasicBlock &BB : F) {
126 Instruction *TI = BB.getTerminator();
127 uint64_t BBWeight =
128 (BFI != nullptr ? BFI->getBlockFreq(&BB).getFrequency() : 2);
129 uint64_t Weight = 2;
130 if (int successors = TI->getNumSuccessors()) {
131 for (int i = 0; i != successors; ++i) {
132 BasicBlock *TargetBB = TI->getSuccessor(i);
133 bool Critical = isCriticalEdge(TI, i);
134 uint64_t scaleFactor = BBWeight;
135 if (Critical) {
136 if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier)
137 scaleFactor *= CriticalEdgeMultiplier;
138 else
139 scaleFactor = UINT64_MAX;
141 if (BPI != nullptr)
142 Weight = BPI->getEdgeProbability(&BB, TargetBB).scale(scaleFactor);
143 if (Weight == 0)
144 Weight++;
145 auto *E = &addEdge(&BB, TargetBB, Weight);
146 E->IsCritical = Critical;
147 LLVM_DEBUG(dbgs() << " Edge: from " << BB.getName() << " to "
148 << TargetBB->getName() << " w=" << Weight << "\n");
150 // Keep track of entry/exit edges:
151 if (&BB == Entry) {
152 if (Weight > MaxEntryOutWeight) {
153 MaxEntryOutWeight = Weight;
154 EntryOutgoing = E;
158 auto *TargetTI = TargetBB->getTerminator();
159 if (TargetTI && !TargetTI->getNumSuccessors()) {
160 if (Weight > MaxExitInWeight) {
161 MaxExitInWeight = Weight;
162 ExitIncoming = E;
166 } else {
167 ExitBlockFound = true;
168 Edge *ExitO = &addEdge(&BB, nullptr, BBWeight);
169 if (BBWeight > MaxExitOutWeight) {
170 MaxExitOutWeight = BBWeight;
171 ExitOutgoing = ExitO;
173 LLVM_DEBUG(dbgs() << " Edge: from " << BB.getName() << " to fake exit"
174 << " w = " << BBWeight << "\n");
178 // Entry/exit edge adjustment heurisitic:
179 // prefer instrumenting entry edge over exit edge
180 // if possible. Those exit edges may never have a chance to be
181 // executed (for instance the program is an event handling loop)
182 // before the profile is asynchronously dumped.
184 // If EntryIncoming and ExitOutgoing has similar weight, make sure
185 // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing
186 // and ExitIncoming has similar weight, make sure ExitIncoming becomes
187 // the min-edge.
188 uint64_t EntryInWeight = EntryWeight;
190 if (EntryInWeight >= MaxExitOutWeight &&
191 EntryInWeight * 2 < MaxExitOutWeight * 3) {
192 EntryIncoming->Weight = MaxExitOutWeight;
193 ExitOutgoing->Weight = EntryInWeight + 1;
196 if (MaxEntryOutWeight >= MaxExitInWeight &&
197 MaxEntryOutWeight * 2 < MaxExitInWeight * 3) {
198 EntryOutgoing->Weight = MaxExitInWeight;
199 ExitIncoming->Weight = MaxEntryOutWeight + 1;
203 // Sort CFG edges based on its weight.
204 void sortEdgesByWeight() {
205 llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1,
206 const std::unique_ptr<Edge> &Edge2) {
207 return Edge1->Weight > Edge2->Weight;
211 // Traverse all the edges and compute the Minimum Weight Spanning Tree
212 // using union-find algorithm.
213 void computeMinimumSpanningTree() {
214 // First, put all the critical edge with landing-pad as the Dest to MST.
215 // This works around the insufficient support of critical edges split
216 // when destination BB is a landing pad.
217 for (auto &Ei : AllEdges) {
218 if (Ei->Removed)
219 continue;
220 if (Ei->IsCritical) {
221 if (Ei->DestBB && Ei->DestBB->isLandingPad()) {
222 if (unionGroups(Ei->SrcBB, Ei->DestBB))
223 Ei->InMST = true;
228 for (auto &Ei : AllEdges) {
229 if (Ei->Removed)
230 continue;
231 // If we detect infinite loops, force
232 // instrumenting the entry edge:
233 if (!ExitBlockFound && Ei->SrcBB == nullptr)
234 continue;
235 if (unionGroups(Ei->SrcBB, Ei->DestBB))
236 Ei->InMST = true;
240 // Dump the Debug information about the instrumentation.
241 void dumpEdges(raw_ostream &OS, const Twine &Message) const {
242 if (!Message.str().empty())
243 OS << Message << "\n";
244 OS << " Number of Basic Blocks: " << BBInfos.size() << "\n";
245 for (auto &BI : BBInfos) {
246 const BasicBlock *BB = BI.first;
247 OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " "
248 << BI.second->infoString() << "\n";
251 OS << " Number of Edges: " << AllEdges.size()
252 << " (*: Instrument, C: CriticalEdge, -: Removed)\n";
253 uint32_t Count = 0;
254 for (auto &EI : AllEdges)
255 OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->"
256 << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n";
259 // Add an edge to AllEdges with weight W.
260 Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) {
261 uint32_t Index = BBInfos.size();
262 auto Iter = BBInfos.end();
263 bool Inserted;
264 std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr));
265 if (Inserted) {
266 // Newly inserted, update the real info.
267 Iter->second = std::move(std::make_unique<BBInfo>(Index));
268 Index++;
270 std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr));
271 if (Inserted)
272 // Newly inserted, update the real info.
273 Iter->second = std::move(std::make_unique<BBInfo>(Index));
274 AllEdges.emplace_back(new Edge(Src, Dest, W));
275 return *AllEdges.back();
278 BranchProbabilityInfo *BPI;
279 BlockFrequencyInfo *BFI;
281 // If function entry will be always instrumented.
282 bool InstrumentFuncEntry;
284 public:
285 CFGMST(Function &Func, bool InstrumentFuncEntry_,
286 BranchProbabilityInfo *BPI_ = nullptr,
287 BlockFrequencyInfo *BFI_ = nullptr)
288 : F(Func), BPI(BPI_), BFI(BFI_),
289 InstrumentFuncEntry(InstrumentFuncEntry_) {
290 buildEdges();
291 sortEdgesByWeight();
292 computeMinimumSpanningTree();
293 if (AllEdges.size() > 1 && InstrumentFuncEntry)
294 std::iter_swap(std::move(AllEdges.begin()),
295 std::move(AllEdges.begin() + AllEdges.size() - 1));
299 } // end namespace llvm
301 #undef DEBUG_TYPE // "cfgmst"
303 #endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H