[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / DataFlowSanitizer.cpp
blob6a62f5e9ad774ca6c0b79cf7e2d8f245b7aea84a
1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11 /// analysis.
12 ///
13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow
15 /// analysis framework to be used by clients to help detect application-specific
16 /// issues within their own code.
17 ///
18 /// The analysis is based on automatic propagation of data flow labels (also
19 /// known as taint labels) through a program as it performs computation.
20 ///
21 /// Each byte of application memory is backed by a shadow memory byte. The
22 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then
23 /// laid out as follows:
24 ///
25 /// +--------------------+ 0x800000000000 (top of memory)
26 /// | application 3 |
27 /// +--------------------+ 0x700000000000
28 /// | invalid |
29 /// +--------------------+ 0x610000000000
30 /// | origin 1 |
31 /// +--------------------+ 0x600000000000
32 /// | application 2 |
33 /// +--------------------+ 0x510000000000
34 /// | shadow 1 |
35 /// +--------------------+ 0x500000000000
36 /// | invalid |
37 /// +--------------------+ 0x400000000000
38 /// | origin 3 |
39 /// +--------------------+ 0x300000000000
40 /// | shadow 3 |
41 /// +--------------------+ 0x200000000000
42 /// | origin 2 |
43 /// +--------------------+ 0x110000000000
44 /// | invalid |
45 /// +--------------------+ 0x100000000000
46 /// | shadow 2 |
47 /// +--------------------+ 0x010000000000
48 /// | application 1 |
49 /// +--------------------+ 0x000000000000
50 ///
51 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000
52 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000
53 ///
54 /// For more information, please refer to the design document:
55 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
57 //===----------------------------------------------------------------------===//
59 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
60 #include "llvm/ADT/DenseMap.h"
61 #include "llvm/ADT/DenseSet.h"
62 #include "llvm/ADT/DepthFirstIterator.h"
63 #include "llvm/ADT/None.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallVector.h"
66 #include "llvm/ADT/StringExtras.h"
67 #include "llvm/ADT/StringRef.h"
68 #include "llvm/ADT/Triple.h"
69 #include "llvm/ADT/iterator.h"
70 #include "llvm/Analysis/ValueTracking.h"
71 #include "llvm/IR/Argument.h"
72 #include "llvm/IR/Attributes.h"
73 #include "llvm/IR/BasicBlock.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/DataLayout.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Dominators.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GlobalAlias.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/IRBuilder.h"
84 #include "llvm/IR/InlineAsm.h"
85 #include "llvm/IR/InstVisitor.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/MDBuilder.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/InitializePasses.h"
98 #include "llvm/Pass.h"
99 #include "llvm/Support/Alignment.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/ErrorHandling.h"
103 #include "llvm/Support/SpecialCaseList.h"
104 #include "llvm/Support/VirtualFileSystem.h"
105 #include "llvm/Transforms/Instrumentation.h"
106 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include <algorithm>
109 #include <cassert>
110 #include <cstddef>
111 #include <cstdint>
112 #include <iterator>
113 #include <memory>
114 #include <set>
115 #include <string>
116 #include <utility>
117 #include <vector>
119 using namespace llvm;
121 // This must be consistent with ShadowWidthBits.
122 static const Align ShadowTLSAlignment = Align(2);
124 static const Align MinOriginAlignment = Align(4);
126 // The size of TLS variables. These constants must be kept in sync with the ones
127 // in dfsan.cpp.
128 static const unsigned ArgTLSSize = 800;
129 static const unsigned RetvalTLSSize = 800;
131 // The -dfsan-preserve-alignment flag controls whether this pass assumes that
132 // alignment requirements provided by the input IR are correct. For example,
133 // if the input IR contains a load with alignment 8, this flag will cause
134 // the shadow load to have alignment 16. This flag is disabled by default as
135 // we have unfortunately encountered too much code (including Clang itself;
136 // see PR14291) which performs misaligned access.
137 static cl::opt<bool> ClPreserveAlignment(
138 "dfsan-preserve-alignment",
139 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
140 cl::init(false));
142 // The ABI list files control how shadow parameters are passed. The pass treats
143 // every function labelled "uninstrumented" in the ABI list file as conforming
144 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
145 // additional annotations for those functions, a call to one of those functions
146 // will produce a warning message, as the labelling behaviour of the function is
147 // unknown. The other supported annotations are "functional" and "discard",
148 // which are described below under DataFlowSanitizer::WrapperKind.
149 static cl::list<std::string> ClABIListFiles(
150 "dfsan-abilist",
151 cl::desc("File listing native ABI functions and how the pass treats them"),
152 cl::Hidden);
154 // Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
155 // functions (see DataFlowSanitizer::InstrumentedABI below).
156 static cl::opt<bool>
157 ClArgsABI("dfsan-args-abi",
158 cl::desc("Use the argument ABI rather than the TLS ABI"),
159 cl::Hidden);
161 // Controls whether the pass includes or ignores the labels of pointers in load
162 // instructions.
163 static cl::opt<bool> ClCombinePointerLabelsOnLoad(
164 "dfsan-combine-pointer-labels-on-load",
165 cl::desc("Combine the label of the pointer with the label of the data when "
166 "loading from memory."),
167 cl::Hidden, cl::init(true));
169 // Controls whether the pass includes or ignores the labels of pointers in
170 // stores instructions.
171 static cl::opt<bool> ClCombinePointerLabelsOnStore(
172 "dfsan-combine-pointer-labels-on-store",
173 cl::desc("Combine the label of the pointer with the label of the data when "
174 "storing in memory."),
175 cl::Hidden, cl::init(false));
177 // Controls whether the pass propagates labels of offsets in GEP instructions.
178 static cl::opt<bool> ClCombineOffsetLabelsOnGEP(
179 "dfsan-combine-offset-labels-on-gep",
180 cl::desc(
181 "Combine the label of the offset with the label of the pointer when "
182 "doing pointer arithmetic."),
183 cl::Hidden, cl::init(true));
185 static cl::opt<bool> ClDebugNonzeroLabels(
186 "dfsan-debug-nonzero-labels",
187 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
188 "load or return with a nonzero label"),
189 cl::Hidden);
191 // Experimental feature that inserts callbacks for certain data events.
192 // Currently callbacks are only inserted for loads, stores, memory transfers
193 // (i.e. memcpy and memmove), and comparisons.
195 // If this flag is set to true, the user must provide definitions for the
196 // following callback functions:
197 // void __dfsan_load_callback(dfsan_label Label, void* addr);
198 // void __dfsan_store_callback(dfsan_label Label, void* addr);
199 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len);
200 // void __dfsan_cmp_callback(dfsan_label CombinedLabel);
201 static cl::opt<bool> ClEventCallbacks(
202 "dfsan-event-callbacks",
203 cl::desc("Insert calls to __dfsan_*_callback functions on data events."),
204 cl::Hidden, cl::init(false));
206 // Controls whether the pass tracks the control flow of select instructions.
207 static cl::opt<bool> ClTrackSelectControlFlow(
208 "dfsan-track-select-control-flow",
209 cl::desc("Propagate labels from condition values of select instructions "
210 "to results."),
211 cl::Hidden, cl::init(true));
213 // TODO: This default value follows MSan. DFSan may use a different value.
214 static cl::opt<int> ClInstrumentWithCallThreshold(
215 "dfsan-instrument-with-call-threshold",
216 cl::desc("If the function being instrumented requires more than "
217 "this number of origin stores, use callbacks instead of "
218 "inline checks (-1 means never use callbacks)."),
219 cl::Hidden, cl::init(3500));
221 // Controls how to track origins.
222 // * 0: do not track origins.
223 // * 1: track origins at memory store operations.
224 // * 2: track origins at memory load and store operations.
225 // TODO: track callsites.
226 static cl::opt<int> ClTrackOrigins("dfsan-track-origins",
227 cl::desc("Track origins of labels"),
228 cl::Hidden, cl::init(0));
230 static StringRef getGlobalTypeString(const GlobalValue &G) {
231 // Types of GlobalVariables are always pointer types.
232 Type *GType = G.getValueType();
233 // For now we support excluding struct types only.
234 if (StructType *SGType = dyn_cast<StructType>(GType)) {
235 if (!SGType->isLiteral())
236 return SGType->getName();
238 return "<unknown type>";
241 namespace {
243 // Memory map parameters used in application-to-shadow address calculation.
244 // Offset = (Addr & ~AndMask) ^ XorMask
245 // Shadow = ShadowBase + Offset
246 // Origin = (OriginBase + Offset) & ~3ULL
247 struct MemoryMapParams {
248 uint64_t AndMask;
249 uint64_t XorMask;
250 uint64_t ShadowBase;
251 uint64_t OriginBase;
254 } // end anonymous namespace
256 // x86_64 Linux
257 // NOLINTNEXTLINE(readability-identifier-naming)
258 static const MemoryMapParams Linux_X86_64_MemoryMapParams = {
259 0, // AndMask (not used)
260 0x500000000000, // XorMask
261 0, // ShadowBase (not used)
262 0x100000000000, // OriginBase
265 namespace {
267 class DFSanABIList {
268 std::unique_ptr<SpecialCaseList> SCL;
270 public:
271 DFSanABIList() = default;
273 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); }
275 /// Returns whether either this function or its source file are listed in the
276 /// given category.
277 bool isIn(const Function &F, StringRef Category) const {
278 return isIn(*F.getParent(), Category) ||
279 SCL->inSection("dataflow", "fun", F.getName(), Category);
282 /// Returns whether this global alias is listed in the given category.
284 /// If GA aliases a function, the alias's name is matched as a function name
285 /// would be. Similarly, aliases of globals are matched like globals.
286 bool isIn(const GlobalAlias &GA, StringRef Category) const {
287 if (isIn(*GA.getParent(), Category))
288 return true;
290 if (isa<FunctionType>(GA.getValueType()))
291 return SCL->inSection("dataflow", "fun", GA.getName(), Category);
293 return SCL->inSection("dataflow", "global", GA.getName(), Category) ||
294 SCL->inSection("dataflow", "type", getGlobalTypeString(GA),
295 Category);
298 /// Returns whether this module is listed in the given category.
299 bool isIn(const Module &M, StringRef Category) const {
300 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category);
304 /// TransformedFunction is used to express the result of transforming one
305 /// function type into another. This struct is immutable. It holds metadata
306 /// useful for updating calls of the old function to the new type.
307 struct TransformedFunction {
308 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType,
309 std::vector<unsigned> ArgumentIndexMapping)
310 : OriginalType(OriginalType), TransformedType(TransformedType),
311 ArgumentIndexMapping(ArgumentIndexMapping) {}
313 // Disallow copies.
314 TransformedFunction(const TransformedFunction &) = delete;
315 TransformedFunction &operator=(const TransformedFunction &) = delete;
317 // Allow moves.
318 TransformedFunction(TransformedFunction &&) = default;
319 TransformedFunction &operator=(TransformedFunction &&) = default;
321 /// Type of the function before the transformation.
322 FunctionType *OriginalType;
324 /// Type of the function after the transformation.
325 FunctionType *TransformedType;
327 /// Transforming a function may change the position of arguments. This
328 /// member records the mapping from each argument's old position to its new
329 /// position. Argument positions are zero-indexed. If the transformation
330 /// from F to F' made the first argument of F into the third argument of F',
331 /// then ArgumentIndexMapping[0] will equal 2.
332 std::vector<unsigned> ArgumentIndexMapping;
335 /// Given function attributes from a call site for the original function,
336 /// return function attributes appropriate for a call to the transformed
337 /// function.
338 AttributeList
339 transformFunctionAttributes(const TransformedFunction &TransformedFunction,
340 LLVMContext &Ctx, AttributeList CallSiteAttrs) {
342 // Construct a vector of AttributeSet for each function argument.
343 std::vector<llvm::AttributeSet> ArgumentAttributes(
344 TransformedFunction.TransformedType->getNumParams());
346 // Copy attributes from the parameter of the original function to the
347 // transformed version. 'ArgumentIndexMapping' holds the mapping from
348 // old argument position to new.
349 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size();
350 I < IE; ++I) {
351 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I];
352 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I);
355 // Copy annotations on varargs arguments.
356 for (unsigned I = TransformedFunction.OriginalType->getNumParams(),
357 IE = CallSiteAttrs.getNumAttrSets();
358 I < IE; ++I) {
359 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I));
362 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(),
363 CallSiteAttrs.getRetAttrs(),
364 llvm::makeArrayRef(ArgumentAttributes));
367 class DataFlowSanitizer {
368 friend struct DFSanFunction;
369 friend class DFSanVisitor;
371 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 };
373 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 };
375 /// Which ABI should be used for instrumented functions?
376 enum InstrumentedABI {
377 /// Argument and return value labels are passed through additional
378 /// arguments and by modifying the return type.
379 IA_Args,
381 /// Argument and return value labels are passed through TLS variables
382 /// __dfsan_arg_tls and __dfsan_retval_tls.
383 IA_TLS
386 /// How should calls to uninstrumented functions be handled?
387 enum WrapperKind {
388 /// This function is present in an uninstrumented form but we don't know
389 /// how it should be handled. Print a warning and call the function anyway.
390 /// Don't label the return value.
391 WK_Warning,
393 /// This function does not write to (user-accessible) memory, and its return
394 /// value is unlabelled.
395 WK_Discard,
397 /// This function does not write to (user-accessible) memory, and the label
398 /// of its return value is the union of the label of its arguments.
399 WK_Functional,
401 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
402 /// where F is the name of the function. This function may wrap the
403 /// original function or provide its own implementation. This is similar to
404 /// the IA_Args ABI, except that IA_Args uses a struct return type to
405 /// pass the return value shadow in a register, while WK_Custom uses an
406 /// extra pointer argument to return the shadow. This allows the wrapped
407 /// form of the function type to be expressed in C.
408 WK_Custom
411 Module *Mod;
412 LLVMContext *Ctx;
413 Type *Int8Ptr;
414 IntegerType *OriginTy;
415 PointerType *OriginPtrTy;
416 ConstantInt *ZeroOrigin;
417 /// The shadow type for all primitive types and vector types.
418 IntegerType *PrimitiveShadowTy;
419 PointerType *PrimitiveShadowPtrTy;
420 IntegerType *IntptrTy;
421 ConstantInt *ZeroPrimitiveShadow;
422 Constant *ArgTLS;
423 ArrayType *ArgOriginTLSTy;
424 Constant *ArgOriginTLS;
425 Constant *RetvalTLS;
426 Constant *RetvalOriginTLS;
427 FunctionType *DFSanUnionLoadFnTy;
428 FunctionType *DFSanLoadLabelAndOriginFnTy;
429 FunctionType *DFSanUnimplementedFnTy;
430 FunctionType *DFSanSetLabelFnTy;
431 FunctionType *DFSanNonzeroLabelFnTy;
432 FunctionType *DFSanVarargWrapperFnTy;
433 FunctionType *DFSanCmpCallbackFnTy;
434 FunctionType *DFSanLoadStoreCallbackFnTy;
435 FunctionType *DFSanMemTransferCallbackFnTy;
436 FunctionType *DFSanChainOriginFnTy;
437 FunctionType *DFSanChainOriginIfTaintedFnTy;
438 FunctionType *DFSanMemOriginTransferFnTy;
439 FunctionType *DFSanMaybeStoreOriginFnTy;
440 FunctionCallee DFSanUnionLoadFn;
441 FunctionCallee DFSanLoadLabelAndOriginFn;
442 FunctionCallee DFSanUnimplementedFn;
443 FunctionCallee DFSanSetLabelFn;
444 FunctionCallee DFSanNonzeroLabelFn;
445 FunctionCallee DFSanVarargWrapperFn;
446 FunctionCallee DFSanLoadCallbackFn;
447 FunctionCallee DFSanStoreCallbackFn;
448 FunctionCallee DFSanMemTransferCallbackFn;
449 FunctionCallee DFSanCmpCallbackFn;
450 FunctionCallee DFSanChainOriginFn;
451 FunctionCallee DFSanChainOriginIfTaintedFn;
452 FunctionCallee DFSanMemOriginTransferFn;
453 FunctionCallee DFSanMaybeStoreOriginFn;
454 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions;
455 MDNode *ColdCallWeights;
456 MDNode *OriginStoreWeights;
457 DFSanABIList ABIList;
458 DenseMap<Value *, Function *> UnwrappedFnMap;
459 AttrBuilder ReadOnlyNoneAttrs;
461 /// Memory map parameters used in calculation mapping application addresses
462 /// to shadow addresses and origin addresses.
463 const MemoryMapParams *MapParams;
465 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB);
466 Value *getShadowAddress(Value *Addr, Instruction *Pos);
467 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset);
468 std::pair<Value *, Value *>
469 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos);
470 bool isInstrumented(const Function *F);
471 bool isInstrumented(const GlobalAlias *GA);
472 FunctionType *getArgsFunctionType(FunctionType *T);
473 FunctionType *getTrampolineFunctionType(FunctionType *T);
474 TransformedFunction getCustomFunctionType(FunctionType *T);
475 InstrumentedABI getInstrumentedABI();
476 WrapperKind getWrapperKind(Function *F);
477 void addGlobalNameSuffix(GlobalValue *GV);
478 Function *buildWrapperFunction(Function *F, StringRef NewFName,
479 GlobalValue::LinkageTypes NewFLink,
480 FunctionType *NewFT);
481 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
482 void initializeCallbackFunctions(Module &M);
483 void initializeRuntimeFunctions(Module &M);
484 void injectMetadataGlobals(Module &M);
485 bool initializeModule(Module &M);
487 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads
488 /// from it. Returns the origin's loaded value.
489 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign,
490 Value **OriginAddr);
492 /// Returns whether the given load byte size is amenable to inlined
493 /// optimization patterns.
494 bool hasLoadSizeForFastPath(uint64_t Size);
496 /// Returns whether the pass tracks origins. Supports only TLS ABI mode.
497 bool shouldTrackOrigins();
499 /// Returns whether the pass tracks labels for struct fields and array
500 /// indices. Supports only TLS ABI mode.
501 bool shouldTrackFieldsAndIndices();
503 /// Returns a zero constant with the shadow type of OrigTy.
505 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...}
506 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)]
507 /// getZeroShadow(other type) = i16(0)
509 /// Note that a zero shadow is always i16(0) when shouldTrackFieldsAndIndices
510 /// returns false.
511 Constant *getZeroShadow(Type *OrigTy);
512 /// Returns a zero constant with the shadow type of V's type.
513 Constant *getZeroShadow(Value *V);
515 /// Checks if V is a zero shadow.
516 bool isZeroShadow(Value *V);
518 /// Returns the shadow type of OrigTy.
520 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...}
521 /// getShadowTy([n x T]) = [n x getShadowTy(T)]
522 /// getShadowTy(other type) = i16
524 /// Note that a shadow type is always i16 when shouldTrackFieldsAndIndices
525 /// returns false.
526 Type *getShadowTy(Type *OrigTy);
527 /// Returns the shadow type of of V's type.
528 Type *getShadowTy(Value *V);
530 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes;
532 public:
533 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles);
535 bool runImpl(Module &M);
538 struct DFSanFunction {
539 DataFlowSanitizer &DFS;
540 Function *F;
541 DominatorTree DT;
542 DataFlowSanitizer::InstrumentedABI IA;
543 bool IsNativeABI;
544 AllocaInst *LabelReturnAlloca = nullptr;
545 AllocaInst *OriginReturnAlloca = nullptr;
546 DenseMap<Value *, Value *> ValShadowMap;
547 DenseMap<Value *, Value *> ValOriginMap;
548 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
549 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap;
551 struct PHIFixupElement {
552 PHINode *Phi;
553 PHINode *ShadowPhi;
554 PHINode *OriginPhi;
556 std::vector<PHIFixupElement> PHIFixups;
558 DenseSet<Instruction *> SkipInsts;
559 std::vector<Value *> NonZeroChecks;
561 struct CachedShadow {
562 BasicBlock *Block; // The block where Shadow is defined.
563 Value *Shadow;
565 /// Maps a value to its latest shadow value in terms of domination tree.
566 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows;
567 /// Maps a value to its latest collapsed shadow value it was converted to in
568 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is
569 /// used at a post process where CFG blocks are split. So it does not cache
570 /// BasicBlock like CachedShadows, but uses domination between values.
571 DenseMap<Value *, Value *> CachedCollapsedShadows;
572 DenseMap<Value *, std::set<Value *>> ShadowElements;
574 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
575 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) {
576 DT.recalculate(*F);
579 /// Computes the shadow address for a given function argument.
581 /// Shadow = ArgTLS+ArgOffset.
582 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB);
584 /// Computes the shadow address for a return value.
585 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB);
587 /// Computes the origin address for a given function argument.
589 /// Origin = ArgOriginTLS[ArgNo].
590 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB);
592 /// Computes the origin address for a return value.
593 Value *getRetvalOriginTLS();
595 Value *getOrigin(Value *V);
596 void setOrigin(Instruction *I, Value *Origin);
597 /// Generates IR to compute the origin of the last operand with a taint label.
598 Value *combineOperandOrigins(Instruction *Inst);
599 /// Before the instruction Pos, generates IR to compute the last origin with a
600 /// taint label. Labels and origins are from vectors Shadows and Origins
601 /// correspondingly. The generated IR is like
602 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0
603 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be
604 /// zeros with other bitwidths.
605 Value *combineOrigins(const std::vector<Value *> &Shadows,
606 const std::vector<Value *> &Origins, Instruction *Pos,
607 ConstantInt *Zero = nullptr);
609 Value *getShadow(Value *V);
610 void setShadow(Instruction *I, Value *Shadow);
611 /// Generates IR to compute the union of the two given shadows, inserting it
612 /// before Pos. The combined value is with primitive type.
613 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
614 /// Combines the shadow values of V1 and V2, then converts the combined value
615 /// with primitive type into a shadow value with the original type T.
616 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
617 Instruction *Pos);
618 Value *combineOperandShadows(Instruction *Inst);
620 /// Generates IR to load shadow and origin corresponding to bytes [\p
621 /// Addr, \p Addr + \p Size), where addr has alignment \p
622 /// InstAlignment, and take the union of each of those shadows. The returned
623 /// shadow always has primitive type.
625 /// When tracking loads is enabled, the returned origin is a chain at the
626 /// current stack if the returned shadow is tainted.
627 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size,
628 Align InstAlignment,
629 Instruction *Pos);
631 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
632 Align InstAlignment, Value *PrimitiveShadow,
633 Value *Origin, Instruction *Pos);
634 /// Applies PrimitiveShadow to all primitive subtypes of T, returning
635 /// the expanded shadow value.
637 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...}
638 /// EFP([n x T], PS) = [n x EFP(T,PS)]
639 /// EFP(other types, PS) = PS
640 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
641 Instruction *Pos);
642 /// Collapses Shadow into a single primitive shadow value, unioning all
643 /// primitive shadow values in the process. Returns the final primitive
644 /// shadow value.
646 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...)
647 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...)
648 /// CTP(other types, PS) = PS
649 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos);
651 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign,
652 Instruction *Pos);
654 Align getShadowAlign(Align InstAlignment);
656 private:
657 /// Collapses the shadow with aggregate type into a single primitive shadow
658 /// value.
659 template <class AggregateType>
660 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow,
661 IRBuilder<> &IRB);
663 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB);
665 /// Returns the shadow value of an argument A.
666 Value *getShadowForTLSArgument(Argument *A);
668 /// The fast path of loading shadows.
669 std::pair<Value *, Value *>
670 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size,
671 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin,
672 Instruction *Pos);
674 Align getOriginAlign(Align InstAlignment);
676 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load
677 /// is __dfsan_load_label_and_origin. This function returns the union of all
678 /// labels and the origin of the first taint label. However this is an
679 /// additional call with many instructions. To ensure common cases are fast,
680 /// checks if it is possible to load labels and origins without using the
681 /// callback function.
683 /// When enabling tracking load instructions, we always use
684 /// __dfsan_load_label_and_origin to reduce code size.
685 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment);
687 /// Returns a chain at the current stack with previous origin V.
688 Value *updateOrigin(Value *V, IRBuilder<> &IRB);
690 /// Returns a chain at the current stack with previous origin V if Shadow is
691 /// tainted.
692 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB);
694 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns
695 /// Origin otherwise.
696 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin);
698 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr +
699 /// Size).
700 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr,
701 uint64_t StoreOriginSize, Align Alignment);
703 /// Stores Origin in terms of its Shadow value.
704 /// * Do not write origins for zero shadows because we do not trace origins
705 /// for untainted sinks.
706 /// * Use __dfsan_maybe_store_origin if there are too many origin store
707 /// instrumentations.
708 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow,
709 Value *Origin, Value *StoreOriginAddr, Align InstAlignment);
711 /// Convert a scalar value to an i1 by comparing with 0.
712 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = "");
714 bool shouldInstrumentWithCall();
716 /// Generates IR to load shadow and origin corresponding to bytes [\p
717 /// Addr, \p Addr + \p Size), where addr has alignment \p
718 /// InstAlignment, and take the union of each of those shadows. The returned
719 /// shadow always has primitive type.
720 std::pair<Value *, Value *>
721 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size,
722 Align InstAlignment, Instruction *Pos);
723 int NumOriginStores = 0;
726 class DFSanVisitor : public InstVisitor<DFSanVisitor> {
727 public:
728 DFSanFunction &DFSF;
730 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
732 const DataLayout &getDataLayout() const {
733 return DFSF.F->getParent()->getDataLayout();
736 // Combines shadow values and origins for all of I's operands.
737 void visitInstOperands(Instruction &I);
739 void visitUnaryOperator(UnaryOperator &UO);
740 void visitBinaryOperator(BinaryOperator &BO);
741 void visitBitCastInst(BitCastInst &BCI);
742 void visitCastInst(CastInst &CI);
743 void visitCmpInst(CmpInst &CI);
744 void visitLandingPadInst(LandingPadInst &LPI);
745 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
746 void visitLoadInst(LoadInst &LI);
747 void visitStoreInst(StoreInst &SI);
748 void visitAtomicRMWInst(AtomicRMWInst &I);
749 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I);
750 void visitReturnInst(ReturnInst &RI);
751 void visitCallBase(CallBase &CB);
752 void visitPHINode(PHINode &PN);
753 void visitExtractElementInst(ExtractElementInst &I);
754 void visitInsertElementInst(InsertElementInst &I);
755 void visitShuffleVectorInst(ShuffleVectorInst &I);
756 void visitExtractValueInst(ExtractValueInst &I);
757 void visitInsertValueInst(InsertValueInst &I);
758 void visitAllocaInst(AllocaInst &I);
759 void visitSelectInst(SelectInst &I);
760 void visitMemSetInst(MemSetInst &I);
761 void visitMemTransferInst(MemTransferInst &I);
763 private:
764 void visitCASOrRMW(Align InstAlignment, Instruction &I);
766 // Returns false when this is an invoke of a custom function.
767 bool visitWrappedCallBase(Function &F, CallBase &CB);
769 // Combines origins for all of I's operands.
770 void visitInstOperandOrigins(Instruction &I);
772 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
773 IRBuilder<> &IRB);
775 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args,
776 IRBuilder<> &IRB);
779 } // end anonymous namespace
781 DataFlowSanitizer::DataFlowSanitizer(
782 const std::vector<std::string> &ABIListFiles) {
783 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles));
784 llvm::append_range(AllABIListFiles, ClABIListFiles);
785 // FIXME: should we propagate vfs::FileSystem to this constructor?
786 ABIList.set(
787 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem()));
790 FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
791 SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end());
792 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
793 if (T->isVarArg())
794 ArgTypes.push_back(PrimitiveShadowPtrTy);
795 Type *RetType = T->getReturnType();
796 if (!RetType->isVoidTy())
797 RetType = StructType::get(RetType, PrimitiveShadowTy);
798 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
801 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
802 assert(!T->isVarArg());
803 SmallVector<Type *, 4> ArgTypes;
804 ArgTypes.push_back(T->getPointerTo());
805 ArgTypes.append(T->param_begin(), T->param_end());
806 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy);
807 Type *RetType = T->getReturnType();
808 if (!RetType->isVoidTy())
809 ArgTypes.push_back(PrimitiveShadowPtrTy);
811 if (shouldTrackOrigins()) {
812 ArgTypes.append(T->getNumParams(), OriginTy);
813 if (!RetType->isVoidTy())
814 ArgTypes.push_back(OriginPtrTy);
817 return FunctionType::get(T->getReturnType(), ArgTypes, false);
820 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
821 SmallVector<Type *, 4> ArgTypes;
823 // Some parameters of the custom function being constructed are
824 // parameters of T. Record the mapping from parameters of T to
825 // parameters of the custom function, so that parameter attributes
826 // at call sites can be updated.
827 std::vector<unsigned> ArgumentIndexMapping;
828 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) {
829 Type *ParamType = T->getParamType(I);
830 FunctionType *FT;
831 if (isa<PointerType>(ParamType) &&
832 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) {
833 ArgumentIndexMapping.push_back(ArgTypes.size());
834 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
835 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
836 } else {
837 ArgumentIndexMapping.push_back(ArgTypes.size());
838 ArgTypes.push_back(ParamType);
841 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
842 ArgTypes.push_back(PrimitiveShadowTy);
843 if (T->isVarArg())
844 ArgTypes.push_back(PrimitiveShadowPtrTy);
845 Type *RetType = T->getReturnType();
846 if (!RetType->isVoidTy())
847 ArgTypes.push_back(PrimitiveShadowPtrTy);
849 if (shouldTrackOrigins()) {
850 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I)
851 ArgTypes.push_back(OriginTy);
852 if (T->isVarArg())
853 ArgTypes.push_back(OriginPtrTy);
854 if (!RetType->isVoidTy())
855 ArgTypes.push_back(OriginPtrTy);
858 return TransformedFunction(
859 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()),
860 ArgumentIndexMapping);
863 bool DataFlowSanitizer::isZeroShadow(Value *V) {
864 if (!shouldTrackFieldsAndIndices())
865 return ZeroPrimitiveShadow == V;
867 Type *T = V->getType();
868 if (!isa<ArrayType>(T) && !isa<StructType>(T)) {
869 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
870 return CI->isZero();
871 return false;
874 return isa<ConstantAggregateZero>(V);
877 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) {
878 uint64_t ShadowSize = Size * ShadowWidthBytes;
879 return ShadowSize % 8 == 0 || ShadowSize == 4;
882 bool DataFlowSanitizer::shouldTrackOrigins() {
883 static const bool ShouldTrackOrigins =
884 ClTrackOrigins && getInstrumentedABI() == DataFlowSanitizer::IA_TLS;
885 return ShouldTrackOrigins;
888 bool DataFlowSanitizer::shouldTrackFieldsAndIndices() {
889 return getInstrumentedABI() == DataFlowSanitizer::IA_TLS;
892 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) {
893 if (!shouldTrackFieldsAndIndices())
894 return ZeroPrimitiveShadow;
896 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy))
897 return ZeroPrimitiveShadow;
898 Type *ShadowTy = getShadowTy(OrigTy);
899 return ConstantAggregateZero::get(ShadowTy);
902 Constant *DataFlowSanitizer::getZeroShadow(Value *V) {
903 return getZeroShadow(V->getType());
906 static Value *expandFromPrimitiveShadowRecursive(
907 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy,
908 Value *PrimitiveShadow, IRBuilder<> &IRB) {
909 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy))
910 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices);
912 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) {
913 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) {
914 Indices.push_back(Idx);
915 Shadow = expandFromPrimitiveShadowRecursive(
916 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB);
917 Indices.pop_back();
919 return Shadow;
922 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) {
923 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) {
924 Indices.push_back(Idx);
925 Shadow = expandFromPrimitiveShadowRecursive(
926 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB);
927 Indices.pop_back();
929 return Shadow;
931 llvm_unreachable("Unexpected shadow type");
934 bool DFSanFunction::shouldInstrumentWithCall() {
935 return ClInstrumentWithCallThreshold >= 0 &&
936 NumOriginStores >= ClInstrumentWithCallThreshold;
939 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow,
940 Instruction *Pos) {
941 Type *ShadowTy = DFS.getShadowTy(T);
943 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
944 return PrimitiveShadow;
946 if (DFS.isZeroShadow(PrimitiveShadow))
947 return DFS.getZeroShadow(ShadowTy);
949 IRBuilder<> IRB(Pos);
950 SmallVector<unsigned, 4> Indices;
951 Value *Shadow = UndefValue::get(ShadowTy);
952 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy,
953 PrimitiveShadow, IRB);
955 // Caches the primitive shadow value that built the shadow value.
956 CachedCollapsedShadows[Shadow] = PrimitiveShadow;
957 return Shadow;
960 template <class AggregateType>
961 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow,
962 IRBuilder<> &IRB) {
963 if (!AT->getNumElements())
964 return DFS.ZeroPrimitiveShadow;
966 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0);
967 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB);
969 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) {
970 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx);
971 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB);
972 Aggregator = IRB.CreateOr(Aggregator, ShadowInner);
974 return Aggregator;
977 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
978 IRBuilder<> &IRB) {
979 Type *ShadowTy = Shadow->getType();
980 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
981 return Shadow;
982 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy))
983 return collapseAggregateShadow<>(AT, Shadow, IRB);
984 if (StructType *ST = dyn_cast<StructType>(ShadowTy))
985 return collapseAggregateShadow<>(ST, Shadow, IRB);
986 llvm_unreachable("Unexpected shadow type");
989 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow,
990 Instruction *Pos) {
991 Type *ShadowTy = Shadow->getType();
992 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy))
993 return Shadow;
995 assert(DFS.shouldTrackFieldsAndIndices());
997 // Checks if the cached collapsed shadow value dominates Pos.
998 Value *&CS = CachedCollapsedShadows[Shadow];
999 if (CS && DT.dominates(CS, Pos))
1000 return CS;
1002 IRBuilder<> IRB(Pos);
1003 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB);
1004 // Caches the converted primitive shadow value.
1005 CS = PrimitiveShadow;
1006 return PrimitiveShadow;
1009 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) {
1010 if (!shouldTrackFieldsAndIndices())
1011 return PrimitiveShadowTy;
1013 if (!OrigTy->isSized())
1014 return PrimitiveShadowTy;
1015 if (isa<IntegerType>(OrigTy))
1016 return PrimitiveShadowTy;
1017 if (isa<VectorType>(OrigTy))
1018 return PrimitiveShadowTy;
1019 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy))
1020 return ArrayType::get(getShadowTy(AT->getElementType()),
1021 AT->getNumElements());
1022 if (StructType *ST = dyn_cast<StructType>(OrigTy)) {
1023 SmallVector<Type *, 4> Elements;
1024 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I)
1025 Elements.push_back(getShadowTy(ST->getElementType(I)));
1026 return StructType::get(*Ctx, Elements);
1028 return PrimitiveShadowTy;
1031 Type *DataFlowSanitizer::getShadowTy(Value *V) {
1032 return getShadowTy(V->getType());
1035 bool DataFlowSanitizer::initializeModule(Module &M) {
1036 Triple TargetTriple(M.getTargetTriple());
1037 const DataLayout &DL = M.getDataLayout();
1039 if (TargetTriple.getOS() != Triple::Linux)
1040 report_fatal_error("unsupported operating system");
1041 if (TargetTriple.getArch() != Triple::x86_64)
1042 report_fatal_error("unsupported architecture");
1043 MapParams = &Linux_X86_64_MemoryMapParams;
1045 Mod = &M;
1046 Ctx = &M.getContext();
1047 Int8Ptr = Type::getInt8PtrTy(*Ctx);
1048 OriginTy = IntegerType::get(*Ctx, OriginWidthBits);
1049 OriginPtrTy = PointerType::getUnqual(OriginTy);
1050 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1051 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy);
1052 IntptrTy = DL.getIntPtrType(*Ctx);
1053 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0);
1054 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0);
1056 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1057 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs,
1058 /*isVarArg=*/false);
1059 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy};
1060 DFSanLoadLabelAndOriginFnTy =
1061 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs,
1062 /*isVarArg=*/false);
1063 DFSanUnimplementedFnTy = FunctionType::get(
1064 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1065 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy,
1066 Type::getInt8PtrTy(*Ctx), IntptrTy};
1067 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
1068 DFSanSetLabelArgs, /*isVarArg=*/false);
1069 DFSanNonzeroLabelFnTy =
1070 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false);
1071 DFSanVarargWrapperFnTy = FunctionType::get(
1072 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
1073 DFSanCmpCallbackFnTy =
1074 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy,
1075 /*isVarArg=*/false);
1076 DFSanChainOriginFnTy =
1077 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false);
1078 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy};
1079 DFSanChainOriginIfTaintedFnTy = FunctionType::get(
1080 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false);
1081 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits),
1082 Int8Ptr, IntptrTy, OriginTy};
1083 DFSanMaybeStoreOriginFnTy = FunctionType::get(
1084 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false);
1085 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy};
1086 DFSanMemOriginTransferFnTy = FunctionType::get(
1087 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false);
1088 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr};
1089 DFSanLoadStoreCallbackFnTy =
1090 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs,
1091 /*isVarArg=*/false);
1092 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy};
1093 DFSanMemTransferCallbackFnTy =
1094 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs,
1095 /*isVarArg=*/false);
1097 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1098 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
1099 return true;
1102 bool DataFlowSanitizer::isInstrumented(const Function *F) {
1103 return !ABIList.isIn(*F, "uninstrumented");
1106 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
1107 return !ABIList.isIn(*GA, "uninstrumented");
1110 DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
1111 return ClArgsABI ? IA_Args : IA_TLS;
1114 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
1115 if (ABIList.isIn(*F, "functional"))
1116 return WK_Functional;
1117 if (ABIList.isIn(*F, "discard"))
1118 return WK_Discard;
1119 if (ABIList.isIn(*F, "custom"))
1120 return WK_Custom;
1122 return WK_Warning;
1125 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) {
1126 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan";
1127 GV->setName(GVName + Suffix);
1129 // Try to change the name of the function in module inline asm. We only do
1130 // this for specific asm directives, currently only ".symver", to try to avoid
1131 // corrupting asm which happens to contain the symbol name as a substring.
1132 // Note that the substitution for .symver assumes that the versioned symbol
1133 // also has an instrumented name.
1134 std::string Asm = GV->getParent()->getModuleInlineAsm();
1135 std::string SearchStr = ".symver " + GVName + ",";
1136 size_t Pos = Asm.find(SearchStr);
1137 if (Pos != std::string::npos) {
1138 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ",");
1139 Pos = Asm.find("@");
1141 if (Pos == std::string::npos)
1142 report_fatal_error("unsupported .symver: " + Asm);
1144 Asm.replace(Pos, 1, Suffix + "@");
1145 GV->getParent()->setModuleInlineAsm(Asm);
1149 Function *
1150 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
1151 GlobalValue::LinkageTypes NewFLink,
1152 FunctionType *NewFT) {
1153 FunctionType *FT = F->getFunctionType();
1154 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(),
1155 NewFName, F->getParent());
1156 NewF->copyAttributesFrom(F);
1157 NewF->removeRetAttrs(
1158 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1160 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
1161 if (F->isVarArg()) {
1162 NewF->removeFnAttrs(AttrBuilder().addAttribute("split-stack"));
1163 CallInst::Create(DFSanVarargWrapperFn,
1164 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "",
1165 BB);
1166 new UnreachableInst(*Ctx, BB);
1167 } else {
1168 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin());
1169 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams());
1171 CallInst *CI = CallInst::Create(F, Args, "", BB);
1172 if (FT->getReturnType()->isVoidTy())
1173 ReturnInst::Create(*Ctx, BB);
1174 else
1175 ReturnInst::Create(*Ctx, CI, BB);
1178 return NewF;
1181 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
1182 StringRef FName) {
1183 FunctionType *FTT = getTrampolineFunctionType(FT);
1184 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT);
1185 Function *F = dyn_cast<Function>(C.getCallee());
1186 if (F && F->isDeclaration()) {
1187 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
1188 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
1189 std::vector<Value *> Args;
1190 Function::arg_iterator AI = F->arg_begin() + 1;
1191 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
1192 Args.push_back(&*AI);
1193 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB);
1194 Type *RetType = FT->getReturnType();
1195 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB)
1196 : ReturnInst::Create(*Ctx, CI, BB);
1198 // F is called by a wrapped custom function with primitive shadows. So
1199 // its arguments and return value need conversion.
1200 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
1201 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI;
1202 ++ValAI;
1203 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) {
1204 Value *Shadow =
1205 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI);
1206 DFSF.ValShadowMap[&*ValAI] = Shadow;
1208 Function::arg_iterator RetShadowAI = ShadowAI;
1209 const bool ShouldTrackOrigins = shouldTrackOrigins();
1210 if (ShouldTrackOrigins) {
1211 ValAI = F->arg_begin();
1212 ++ValAI;
1213 Function::arg_iterator OriginAI = ShadowAI;
1214 if (!RetType->isVoidTy())
1215 ++OriginAI;
1216 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) {
1217 DFSF.ValOriginMap[&*ValAI] = &*OriginAI;
1220 DFSanVisitor(DFSF).visitCallInst(*CI);
1221 if (!RetType->isVoidTy()) {
1222 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(
1223 DFSF.getShadow(RI->getReturnValue()), RI);
1224 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI);
1225 if (ShouldTrackOrigins) {
1226 Value *Origin = DFSF.getOrigin(RI->getReturnValue());
1227 new StoreInst(Origin, &*std::prev(F->arg_end()), RI);
1232 return cast<Constant>(C.getCallee());
1235 // Initialize DataFlowSanitizer runtime functions and declare them in the module
1236 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) {
1238 AttributeList AL;
1239 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
1240 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
1241 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1242 DFSanUnionLoadFn =
1243 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL);
1246 AttributeList AL;
1247 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind);
1248 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly);
1249 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1250 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction(
1251 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL);
1253 DFSanUnimplementedFn =
1254 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
1256 AttributeList AL;
1257 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1258 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1259 DFSanSetLabelFn =
1260 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL);
1262 DFSanNonzeroLabelFn =
1263 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
1264 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper",
1265 DFSanVarargWrapperFnTy);
1267 AttributeList AL;
1268 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1269 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1270 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin",
1271 DFSanChainOriginFnTy, AL);
1274 AttributeList AL;
1275 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1276 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt);
1277 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt);
1278 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction(
1279 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL);
1281 DFSanMemOriginTransferFn = Mod->getOrInsertFunction(
1282 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy);
1285 AttributeList AL;
1286 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt);
1287 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt);
1288 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction(
1289 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL);
1292 DFSanRuntimeFunctions.insert(
1293 DFSanUnionLoadFn.getCallee()->stripPointerCasts());
1294 DFSanRuntimeFunctions.insert(
1295 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts());
1296 DFSanRuntimeFunctions.insert(
1297 DFSanUnimplementedFn.getCallee()->stripPointerCasts());
1298 DFSanRuntimeFunctions.insert(
1299 DFSanSetLabelFn.getCallee()->stripPointerCasts());
1300 DFSanRuntimeFunctions.insert(
1301 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts());
1302 DFSanRuntimeFunctions.insert(
1303 DFSanVarargWrapperFn.getCallee()->stripPointerCasts());
1304 DFSanRuntimeFunctions.insert(
1305 DFSanLoadCallbackFn.getCallee()->stripPointerCasts());
1306 DFSanRuntimeFunctions.insert(
1307 DFSanStoreCallbackFn.getCallee()->stripPointerCasts());
1308 DFSanRuntimeFunctions.insert(
1309 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts());
1310 DFSanRuntimeFunctions.insert(
1311 DFSanCmpCallbackFn.getCallee()->stripPointerCasts());
1312 DFSanRuntimeFunctions.insert(
1313 DFSanChainOriginFn.getCallee()->stripPointerCasts());
1314 DFSanRuntimeFunctions.insert(
1315 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts());
1316 DFSanRuntimeFunctions.insert(
1317 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts());
1318 DFSanRuntimeFunctions.insert(
1319 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts());
1322 // Initializes event callback functions and declare them in the module
1323 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) {
1324 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback",
1325 DFSanLoadStoreCallbackFnTy);
1326 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback",
1327 DFSanLoadStoreCallbackFnTy);
1328 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction(
1329 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy);
1330 DFSanCmpCallbackFn =
1331 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy);
1334 void DataFlowSanitizer::injectMetadataGlobals(Module &M) {
1335 // These variables can be used:
1336 // - by the runtime (to discover what the shadow width was, during
1337 // compilation)
1338 // - in testing (to avoid hardcoding the shadow width and type but instead
1339 // extract them by pattern matching)
1340 Type *IntTy = Type::getInt32Ty(*Ctx);
1341 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] {
1342 return new GlobalVariable(
1343 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage,
1344 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits");
1346 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] {
1347 return new GlobalVariable(M, IntTy, /*isConstant=*/true,
1348 GlobalValue::WeakODRLinkage,
1349 ConstantInt::get(IntTy, ShadowWidthBytes),
1350 "__dfsan_shadow_width_bytes");
1354 bool DataFlowSanitizer::runImpl(Module &M) {
1355 initializeModule(M);
1357 if (ABIList.isIn(M, "skip"))
1358 return false;
1360 const unsigned InitialGlobalSize = M.global_size();
1361 const unsigned InitialModuleSize = M.size();
1363 bool Changed = false;
1365 auto GetOrInsertGlobal = [this, &Changed](StringRef Name,
1366 Type *Ty) -> Constant * {
1367 Constant *C = Mod->getOrInsertGlobal(Name, Ty);
1368 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
1369 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel;
1370 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
1372 return C;
1375 // These globals must be kept in sync with the ones in dfsan.cpp.
1376 ArgTLS =
1377 GetOrInsertGlobal("__dfsan_arg_tls",
1378 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8));
1379 RetvalTLS = GetOrInsertGlobal(
1380 "__dfsan_retval_tls",
1381 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8));
1382 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS);
1383 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy);
1384 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy);
1386 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] {
1387 Changed = true;
1388 return new GlobalVariable(
1389 M, OriginTy, true, GlobalValue::WeakODRLinkage,
1390 ConstantInt::getSigned(OriginTy,
1391 shouldTrackOrigins() ? ClTrackOrigins : 0),
1392 "__dfsan_track_origins");
1395 injectMetadataGlobals(M);
1397 initializeCallbackFunctions(M);
1398 initializeRuntimeFunctions(M);
1400 std::vector<Function *> FnsToInstrument;
1401 SmallPtrSet<Function *, 2> FnsWithNativeABI;
1402 for (Function &F : M)
1403 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F))
1404 FnsToInstrument.push_back(&F);
1406 // Give function aliases prefixes when necessary, and build wrappers where the
1407 // instrumentedness is inconsistent.
1408 for (Module::alias_iterator AI = M.alias_begin(), AE = M.alias_end();
1409 AI != AE;) {
1410 GlobalAlias *GA = &*AI;
1411 ++AI;
1412 // Don't stop on weak. We assume people aren't playing games with the
1413 // instrumentedness of overridden weak aliases.
1414 auto *F = dyn_cast<Function>(GA->getBaseObject());
1415 if (!F)
1416 continue;
1418 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
1419 if (GAInst && FInst) {
1420 addGlobalNameSuffix(GA);
1421 } else if (GAInst != FInst) {
1422 // Non-instrumented alias of an instrumented function, or vice versa.
1423 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
1424 // below will take care of instrumenting it.
1425 Function *NewF =
1426 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
1427 GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType()));
1428 NewF->takeName(GA);
1429 GA->eraseFromParent();
1430 FnsToInstrument.push_back(NewF);
1434 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly)
1435 .addAttribute(Attribute::ReadNone);
1437 // First, change the ABI of every function in the module. ABI-listed
1438 // functions keep their original ABI and get a wrapper function.
1439 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(),
1440 FE = FnsToInstrument.end();
1441 FI != FE; ++FI) {
1442 Function &F = **FI;
1443 FunctionType *FT = F.getFunctionType();
1445 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
1446 FT->getReturnType()->isVoidTy());
1448 if (isInstrumented(&F)) {
1449 // Instrumented functions get a '.dfsan' suffix. This allows us to more
1450 // easily identify cases of mismatching ABIs. This naming scheme is
1451 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix.
1452 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
1453 FunctionType *NewFT = getArgsFunctionType(FT);
1454 Function *NewF = Function::Create(NewFT, F.getLinkage(),
1455 F.getAddressSpace(), "", &M);
1456 NewF->copyAttributesFrom(&F);
1457 NewF->removeRetAttrs(
1458 AttributeFuncs::typeIncompatible(NewFT->getReturnType()));
1459 for (Function::arg_iterator FArg = F.arg_begin(),
1460 NewFArg = NewF->arg_begin(),
1461 FArgEnd = F.arg_end();
1462 FArg != FArgEnd; ++FArg, ++NewFArg) {
1463 FArg->replaceAllUsesWith(&*NewFArg);
1465 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
1467 for (Function::user_iterator UI = F.user_begin(), UE = F.user_end();
1468 UI != UE;) {
1469 BlockAddress *BA = dyn_cast<BlockAddress>(*UI);
1470 ++UI;
1471 if (BA) {
1472 BA->replaceAllUsesWith(
1473 BlockAddress::get(NewF, BA->getBasicBlock()));
1474 delete BA;
1477 F.replaceAllUsesWith(
1478 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
1479 NewF->takeName(&F);
1480 F.eraseFromParent();
1481 *FI = NewF;
1482 addGlobalNameSuffix(NewF);
1483 } else {
1484 addGlobalNameSuffix(&F);
1486 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
1487 // Build a wrapper function for F. The wrapper simply calls F, and is
1488 // added to FnsToInstrument so that any instrumentation according to its
1489 // WrapperKind is done in the second pass below.
1490 FunctionType *NewFT =
1491 getInstrumentedABI() == IA_Args ? getArgsFunctionType(FT) : FT;
1493 // If the function being wrapped has local linkage, then preserve the
1494 // function's linkage in the wrapper function.
1495 GlobalValue::LinkageTypes WrapperLinkage =
1496 F.hasLocalLinkage() ? F.getLinkage()
1497 : GlobalValue::LinkOnceODRLinkage;
1499 Function *NewF = buildWrapperFunction(
1501 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) +
1502 std::string(F.getName()),
1503 WrapperLinkage, NewFT);
1504 if (getInstrumentedABI() == IA_TLS)
1505 NewF->removeFnAttrs(ReadOnlyNoneAttrs);
1507 Value *WrappedFnCst =
1508 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
1509 F.replaceAllUsesWith(WrappedFnCst);
1511 UnwrappedFnMap[WrappedFnCst] = &F;
1512 *FI = NewF;
1514 if (!F.isDeclaration()) {
1515 // This function is probably defining an interposition of an
1516 // uninstrumented function and hence needs to keep the original ABI.
1517 // But any functions it may call need to use the instrumented ABI, so
1518 // we instrument it in a mode which preserves the original ABI.
1519 FnsWithNativeABI.insert(&F);
1521 // This code needs to rebuild the iterators, as they may be invalidated
1522 // by the push_back, taking care that the new range does not include
1523 // any functions added by this code.
1524 size_t N = FI - FnsToInstrument.begin(),
1525 Count = FE - FnsToInstrument.begin();
1526 FnsToInstrument.push_back(&F);
1527 FI = FnsToInstrument.begin() + N;
1528 FE = FnsToInstrument.begin() + Count;
1530 // Hopefully, nobody will try to indirectly call a vararg
1531 // function... yet.
1532 } else if (FT->isVarArg()) {
1533 UnwrappedFnMap[&F] = &F;
1534 *FI = nullptr;
1538 for (Function *F : FnsToInstrument) {
1539 if (!F || F->isDeclaration())
1540 continue;
1542 removeUnreachableBlocks(*F);
1544 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F));
1546 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
1547 // Build a copy of the list before iterating over it.
1548 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock()));
1550 for (BasicBlock *BB : BBList) {
1551 Instruction *Inst = &BB->front();
1552 while (true) {
1553 // DFSanVisitor may split the current basic block, changing the current
1554 // instruction's next pointer and moving the next instruction to the
1555 // tail block from which we should continue.
1556 Instruction *Next = Inst->getNextNode();
1557 // DFSanVisitor may delete Inst, so keep track of whether it was a
1558 // terminator.
1559 bool IsTerminator = Inst->isTerminator();
1560 if (!DFSF.SkipInsts.count(Inst))
1561 DFSanVisitor(DFSF).visit(Inst);
1562 if (IsTerminator)
1563 break;
1564 Inst = Next;
1568 // We will not necessarily be able to compute the shadow for every phi node
1569 // until we have visited every block. Therefore, the code that handles phi
1570 // nodes adds them to the PHIFixups list so that they can be properly
1571 // handled here.
1572 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) {
1573 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N;
1574 ++Val) {
1575 P.ShadowPhi->setIncomingValue(
1576 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val)));
1577 if (P.OriginPhi)
1578 P.OriginPhi->setIncomingValue(
1579 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val)));
1583 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
1584 // places (i.e. instructions in basic blocks we haven't even begun visiting
1585 // yet). To make our life easier, do this work in a pass after the main
1586 // instrumentation.
1587 if (ClDebugNonzeroLabels) {
1588 for (Value *V : DFSF.NonZeroChecks) {
1589 Instruction *Pos;
1590 if (Instruction *I = dyn_cast<Instruction>(V))
1591 Pos = I->getNextNode();
1592 else
1593 Pos = &DFSF.F->getEntryBlock().front();
1594 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
1595 Pos = Pos->getNextNode();
1596 IRBuilder<> IRB(Pos);
1597 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos);
1598 Value *Ne =
1599 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow);
1600 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
1601 Ne, Pos, /*Unreachable=*/false, ColdCallWeights));
1602 IRBuilder<> ThenIRB(BI);
1603 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {});
1608 return Changed || !FnsToInstrument.empty() ||
1609 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize;
1612 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) {
1613 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy);
1614 if (ArgOffset)
1615 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset));
1616 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0),
1617 "_dfsarg");
1620 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) {
1621 return IRB.CreatePointerCast(
1622 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret");
1625 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; }
1627 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) {
1628 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo,
1629 "_dfsarg_o");
1632 Value *DFSanFunction::getOrigin(Value *V) {
1633 assert(DFS.shouldTrackOrigins());
1634 if (!isa<Argument>(V) && !isa<Instruction>(V))
1635 return DFS.ZeroOrigin;
1636 Value *&Origin = ValOriginMap[V];
1637 if (!Origin) {
1638 if (Argument *A = dyn_cast<Argument>(V)) {
1639 if (IsNativeABI)
1640 return DFS.ZeroOrigin;
1641 switch (IA) {
1642 case DataFlowSanitizer::IA_TLS: {
1643 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) {
1644 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin();
1645 IRBuilder<> IRB(ArgOriginTLSPos);
1646 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB);
1647 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr);
1648 } else {
1649 // Overflow
1650 Origin = DFS.ZeroOrigin;
1652 break;
1654 case DataFlowSanitizer::IA_Args: {
1655 Origin = DFS.ZeroOrigin;
1656 break;
1659 } else {
1660 Origin = DFS.ZeroOrigin;
1663 return Origin;
1666 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) {
1667 if (!DFS.shouldTrackOrigins())
1668 return;
1669 assert(!ValOriginMap.count(I));
1670 assert(Origin->getType() == DFS.OriginTy);
1671 ValOriginMap[I] = Origin;
1674 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) {
1675 unsigned ArgOffset = 0;
1676 const DataLayout &DL = F->getParent()->getDataLayout();
1677 for (auto &FArg : F->args()) {
1678 if (!FArg.getType()->isSized()) {
1679 if (A == &FArg)
1680 break;
1681 continue;
1684 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg));
1685 if (A != &FArg) {
1686 ArgOffset += alignTo(Size, ShadowTLSAlignment);
1687 if (ArgOffset > ArgTLSSize)
1688 break; // ArgTLS overflows, uses a zero shadow.
1689 continue;
1692 if (ArgOffset + Size > ArgTLSSize)
1693 break; // ArgTLS overflows, uses a zero shadow.
1695 Instruction *ArgTLSPos = &*F->getEntryBlock().begin();
1696 IRBuilder<> IRB(ArgTLSPos);
1697 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB);
1698 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr,
1699 ShadowTLSAlignment);
1702 return DFS.getZeroShadow(A);
1705 Value *DFSanFunction::getShadow(Value *V) {
1706 if (!isa<Argument>(V) && !isa<Instruction>(V))
1707 return DFS.getZeroShadow(V);
1708 Value *&Shadow = ValShadowMap[V];
1709 if (!Shadow) {
1710 if (Argument *A = dyn_cast<Argument>(V)) {
1711 if (IsNativeABI)
1712 return DFS.getZeroShadow(V);
1713 switch (IA) {
1714 case DataFlowSanitizer::IA_TLS: {
1715 Shadow = getShadowForTLSArgument(A);
1716 break;
1718 case DataFlowSanitizer::IA_Args: {
1719 unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2;
1720 Function::arg_iterator Arg = F->arg_begin();
1721 std::advance(Arg, ArgIdx);
1722 Shadow = &*Arg;
1723 assert(Shadow->getType() == DFS.PrimitiveShadowTy);
1724 break;
1727 NonZeroChecks.push_back(Shadow);
1728 } else {
1729 Shadow = DFS.getZeroShadow(V);
1732 return Shadow;
1735 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
1736 assert(!ValShadowMap.count(I));
1737 assert(DFS.shouldTrackFieldsAndIndices() ||
1738 Shadow->getType() == DFS.PrimitiveShadowTy);
1739 ValShadowMap[I] = Shadow;
1742 /// Compute the integer shadow offset that corresponds to a given
1743 /// application address.
1745 /// Offset = (Addr & ~AndMask) ^ XorMask
1746 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) {
1747 assert(Addr != RetvalTLS && "Reinstrumenting?");
1748 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy);
1750 uint64_t AndMask = MapParams->AndMask;
1751 if (AndMask)
1752 OffsetLong =
1753 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask));
1755 uint64_t XorMask = MapParams->XorMask;
1756 if (XorMask)
1757 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask));
1758 return OffsetLong;
1761 std::pair<Value *, Value *>
1762 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment,
1763 Instruction *Pos) {
1764 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL
1765 IRBuilder<> IRB(Pos);
1766 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1767 Value *ShadowLong = ShadowOffset;
1768 uint64_t ShadowBase = MapParams->ShadowBase;
1769 if (ShadowBase != 0) {
1770 ShadowLong =
1771 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase));
1773 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits);
1774 Value *ShadowPtr =
1775 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0));
1776 Value *OriginPtr = nullptr;
1777 if (shouldTrackOrigins()) {
1778 Value *OriginLong = ShadowOffset;
1779 uint64_t OriginBase = MapParams->OriginBase;
1780 if (OriginBase != 0)
1781 OriginLong =
1782 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase));
1783 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1784 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB.
1785 // So Mask is unnecessary.
1786 if (Alignment < MinOriginAlignment) {
1787 uint64_t Mask = MinOriginAlignment.value() - 1;
1788 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask));
1790 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy);
1792 return std::make_pair(ShadowPtr, OriginPtr);
1795 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos,
1796 Value *ShadowOffset) {
1797 IRBuilder<> IRB(Pos);
1798 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy);
1801 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
1802 IRBuilder<> IRB(Pos);
1803 Value *ShadowOffset = getShadowOffset(Addr, IRB);
1804 return getShadowAddress(Addr, Pos, ShadowOffset);
1807 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2,
1808 Instruction *Pos) {
1809 Value *PrimitiveValue = combineShadows(V1, V2, Pos);
1810 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos);
1813 // Generates IR to compute the union of the two given shadows, inserting it
1814 // before Pos. The combined value is with primitive type.
1815 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) {
1816 if (DFS.isZeroShadow(V1))
1817 return collapseToPrimitiveShadow(V2, Pos);
1818 if (DFS.isZeroShadow(V2))
1819 return collapseToPrimitiveShadow(V1, Pos);
1820 if (V1 == V2)
1821 return collapseToPrimitiveShadow(V1, Pos);
1823 auto V1Elems = ShadowElements.find(V1);
1824 auto V2Elems = ShadowElements.find(V2);
1825 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) {
1826 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(),
1827 V2Elems->second.begin(), V2Elems->second.end())) {
1828 return collapseToPrimitiveShadow(V1, Pos);
1830 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(),
1831 V1Elems->second.begin(), V1Elems->second.end())) {
1832 return collapseToPrimitiveShadow(V2, Pos);
1834 } else if (V1Elems != ShadowElements.end()) {
1835 if (V1Elems->second.count(V2))
1836 return collapseToPrimitiveShadow(V1, Pos);
1837 } else if (V2Elems != ShadowElements.end()) {
1838 if (V2Elems->second.count(V1))
1839 return collapseToPrimitiveShadow(V2, Pos);
1842 auto Key = std::make_pair(V1, V2);
1843 if (V1 > V2)
1844 std::swap(Key.first, Key.second);
1845 CachedShadow &CCS = CachedShadows[Key];
1846 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent()))
1847 return CCS.Shadow;
1849 // Converts inputs shadows to shadows with primitive types.
1850 Value *PV1 = collapseToPrimitiveShadow(V1, Pos);
1851 Value *PV2 = collapseToPrimitiveShadow(V2, Pos);
1853 IRBuilder<> IRB(Pos);
1854 CCS.Block = Pos->getParent();
1855 CCS.Shadow = IRB.CreateOr(PV1, PV2);
1857 std::set<Value *> UnionElems;
1858 if (V1Elems != ShadowElements.end()) {
1859 UnionElems = V1Elems->second;
1860 } else {
1861 UnionElems.insert(V1);
1863 if (V2Elems != ShadowElements.end()) {
1864 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end());
1865 } else {
1866 UnionElems.insert(V2);
1868 ShadowElements[CCS.Shadow] = std::move(UnionElems);
1870 return CCS.Shadow;
1873 // A convenience function which folds the shadows of each of the operands
1874 // of the provided instruction Inst, inserting the IR before Inst. Returns
1875 // the computed union Value.
1876 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
1877 if (Inst->getNumOperands() == 0)
1878 return DFS.getZeroShadow(Inst);
1880 Value *Shadow = getShadow(Inst->getOperand(0));
1881 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I)
1882 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst);
1884 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst);
1887 void DFSanVisitor::visitInstOperands(Instruction &I) {
1888 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
1889 DFSF.setShadow(&I, CombinedShadow);
1890 visitInstOperandOrigins(I);
1893 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows,
1894 const std::vector<Value *> &Origins,
1895 Instruction *Pos, ConstantInt *Zero) {
1896 assert(Shadows.size() == Origins.size());
1897 size_t Size = Origins.size();
1898 if (Size == 0)
1899 return DFS.ZeroOrigin;
1900 Value *Origin = nullptr;
1901 if (!Zero)
1902 Zero = DFS.ZeroPrimitiveShadow;
1903 for (size_t I = 0; I != Size; ++I) {
1904 Value *OpOrigin = Origins[I];
1905 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin);
1906 if (ConstOpOrigin && ConstOpOrigin->isNullValue())
1907 continue;
1908 if (!Origin) {
1909 Origin = OpOrigin;
1910 continue;
1912 Value *OpShadow = Shadows[I];
1913 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos);
1914 IRBuilder<> IRB(Pos);
1915 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero);
1916 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin);
1918 return Origin ? Origin : DFS.ZeroOrigin;
1921 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) {
1922 size_t Size = Inst->getNumOperands();
1923 std::vector<Value *> Shadows(Size);
1924 std::vector<Value *> Origins(Size);
1925 for (unsigned I = 0; I != Size; ++I) {
1926 Shadows[I] = getShadow(Inst->getOperand(I));
1927 Origins[I] = getOrigin(Inst->getOperand(I));
1929 return combineOrigins(Shadows, Origins, Inst);
1932 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) {
1933 if (!DFSF.DFS.shouldTrackOrigins())
1934 return;
1935 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I);
1936 DFSF.setOrigin(&I, CombinedOrigin);
1939 Align DFSanFunction::getShadowAlign(Align InstAlignment) {
1940 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1);
1941 return Align(Alignment.value() * DFS.ShadowWidthBytes);
1944 Align DFSanFunction::getOriginAlign(Align InstAlignment) {
1945 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1946 return Align(std::max(MinOriginAlignment, Alignment));
1949 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size,
1950 Align InstAlignment) {
1951 // When enabling tracking load instructions, we always use
1952 // __dfsan_load_label_and_origin to reduce code size.
1953 if (ClTrackOrigins == 2)
1954 return true;
1956 assert(Size != 0);
1957 // * if Size == 1, it is sufficient to load its origin aligned at 4.
1958 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to
1959 // load its origin aligned at 4. If not, although origins may be lost, it
1960 // should not happen very often.
1961 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When
1962 // Size % 4 == 0, it is more efficient to load origins without callbacks.
1963 // * Otherwise we use __dfsan_load_label_and_origin.
1964 // This should ensure that common cases run efficiently.
1965 if (Size <= 2)
1966 return false;
1968 const Align Alignment = llvm::assumeAligned(InstAlignment.value());
1969 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size);
1972 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign,
1973 Value **OriginAddr) {
1974 IRBuilder<> IRB(Pos);
1975 *OriginAddr =
1976 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1));
1977 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign);
1980 std::pair<Value *, Value *> DFSanFunction::loadShadowFast(
1981 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign,
1982 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) {
1983 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
1984 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes;
1986 assert(Size >= 4 && "Not large enough load size for fast path!");
1988 // Used for origin tracking.
1989 std::vector<Value *> Shadows;
1990 std::vector<Value *> Origins;
1992 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20)
1993 // but this function is only used in a subset of cases that make it possible
1994 // to optimize the instrumentation.
1996 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow
1997 // per byte) is either:
1998 // - a multiple of 8 (common)
1999 // - equal to 4 (only for load32)
2001 // For the second case, we can fit the wide shadow in a 32-bit integer. In all
2002 // other cases, we use a 64-bit integer to hold the wide shadow.
2003 Type *WideShadowTy =
2004 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx);
2006 IRBuilder<> IRB(Pos);
2007 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo());
2008 Value *CombinedWideShadow =
2009 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2011 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth();
2012 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits;
2014 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) {
2015 if (BytesPerWideShadow > 4) {
2016 assert(BytesPerWideShadow == 8);
2017 // The wide shadow relates to two origin pointers: one for the first four
2018 // application bytes, and one for the latest four. We use a left shift to
2019 // get just the shadow bytes that correspond to the first origin pointer,
2020 // and then the entire shadow for the second origin pointer (which will be
2021 // chosen by combineOrigins() iff the least-significant half of the wide
2022 // shadow was empty but the other half was not).
2023 Value *WideShadowLo = IRB.CreateShl(
2024 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2));
2025 Shadows.push_back(WideShadow);
2026 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr));
2028 Shadows.push_back(WideShadowLo);
2029 Origins.push_back(Origin);
2030 } else {
2031 Shadows.push_back(WideShadow);
2032 Origins.push_back(Origin);
2036 if (ShouldTrackOrigins)
2037 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin);
2039 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly;
2040 // then OR individual shadows within the combined WideShadow by binary ORing.
2041 // This is fewer instructions than ORing shadows individually, since it
2042 // needs logN shift/or instructions (N being the bytes of the combined wide
2043 // shadow).
2044 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size;
2045 ByteOfs += BytesPerWideShadow) {
2046 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr,
2047 ConstantInt::get(DFS.IntptrTy, 1));
2048 Value *NextWideShadow =
2049 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign);
2050 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow);
2051 if (ShouldTrackOrigins) {
2052 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr);
2053 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin);
2056 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits;
2057 Width >>= 1) {
2058 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width);
2059 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow);
2061 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy),
2062 ShouldTrackOrigins
2063 ? combineOrigins(Shadows, Origins, Pos,
2064 ConstantInt::getSigned(IRB.getInt64Ty(), 0))
2065 : DFS.ZeroOrigin};
2068 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking(
2069 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) {
2070 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins();
2072 // Non-escaped loads.
2073 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2074 const auto SI = AllocaShadowMap.find(AI);
2075 if (SI != AllocaShadowMap.end()) {
2076 IRBuilder<> IRB(Pos);
2077 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second);
2078 const auto OI = AllocaOriginMap.find(AI);
2079 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end());
2080 return {ShadowLI, ShouldTrackOrigins
2081 ? IRB.CreateLoad(DFS.OriginTy, OI->second)
2082 : nullptr};
2086 // Load from constant addresses.
2087 SmallVector<const Value *, 2> Objs;
2088 getUnderlyingObjects(Addr, Objs);
2089 bool AllConstants = true;
2090 for (const Value *Obj : Objs) {
2091 if (isa<Function>(Obj) || isa<BlockAddress>(Obj))
2092 continue;
2093 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant())
2094 continue;
2096 AllConstants = false;
2097 break;
2099 if (AllConstants)
2100 return {DFS.ZeroPrimitiveShadow,
2101 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2103 if (Size == 0)
2104 return {DFS.ZeroPrimitiveShadow,
2105 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr};
2107 // Use callback to load if this is not an optimizable case for origin
2108 // tracking.
2109 if (ShouldTrackOrigins &&
2110 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) {
2111 IRBuilder<> IRB(Pos);
2112 CallInst *Call =
2113 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn,
2114 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2115 ConstantInt::get(DFS.IntptrTy, Size)});
2116 Call->addRetAttr(Attribute::ZExt);
2117 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits),
2118 DFS.PrimitiveShadowTy),
2119 IRB.CreateTrunc(Call, DFS.OriginTy)};
2122 // Other cases that support loading shadows or origins in a fast way.
2123 Value *ShadowAddr, *OriginAddr;
2124 std::tie(ShadowAddr, OriginAddr) =
2125 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2127 const Align ShadowAlign = getShadowAlign(InstAlignment);
2128 const Align OriginAlign = getOriginAlign(InstAlignment);
2129 Value *Origin = nullptr;
2130 if (ShouldTrackOrigins) {
2131 IRBuilder<> IRB(Pos);
2132 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign);
2135 // When the byte size is small enough, we can load the shadow directly with
2136 // just a few instructions.
2137 switch (Size) {
2138 case 1: {
2139 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos);
2140 LI->setAlignment(ShadowAlign);
2141 return {LI, Origin};
2143 case 2: {
2144 IRBuilder<> IRB(Pos);
2145 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr,
2146 ConstantInt::get(DFS.IntptrTy, 1));
2147 Value *Load =
2148 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign);
2149 Value *Load1 =
2150 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign);
2151 return {combineShadows(Load, Load1, Pos), Origin};
2154 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size);
2156 if (HasSizeForFastPath)
2157 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign,
2158 OriginAlign, Origin, Pos);
2160 IRBuilder<> IRB(Pos);
2161 CallInst *FallbackCall = IRB.CreateCall(
2162 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)});
2163 FallbackCall->addRetAttr(Attribute::ZExt);
2164 return {FallbackCall, Origin};
2167 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr,
2168 uint64_t Size,
2169 Align InstAlignment,
2170 Instruction *Pos) {
2171 Value *PrimitiveShadow, *Origin;
2172 std::tie(PrimitiveShadow, Origin) =
2173 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos);
2174 if (DFS.shouldTrackOrigins()) {
2175 if (ClTrackOrigins == 2) {
2176 IRBuilder<> IRB(Pos);
2177 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow);
2178 if (!ConstantShadow || !ConstantShadow->isZeroValue())
2179 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB);
2182 return {PrimitiveShadow, Origin};
2185 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) {
2186 switch (AO) {
2187 case AtomicOrdering::NotAtomic:
2188 return AtomicOrdering::NotAtomic;
2189 case AtomicOrdering::Unordered:
2190 case AtomicOrdering::Monotonic:
2191 case AtomicOrdering::Acquire:
2192 return AtomicOrdering::Acquire;
2193 case AtomicOrdering::Release:
2194 case AtomicOrdering::AcquireRelease:
2195 return AtomicOrdering::AcquireRelease;
2196 case AtomicOrdering::SequentiallyConsistent:
2197 return AtomicOrdering::SequentiallyConsistent;
2199 llvm_unreachable("Unknown ordering");
2202 void DFSanVisitor::visitLoadInst(LoadInst &LI) {
2203 auto &DL = LI.getModule()->getDataLayout();
2204 uint64_t Size = DL.getTypeStoreSize(LI.getType());
2205 if (Size == 0) {
2206 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI));
2207 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin);
2208 return;
2211 // When an application load is atomic, increase atomic ordering between
2212 // atomic application loads and stores to ensure happen-before order; load
2213 // shadow data after application data; store zero shadow data before
2214 // application data. This ensure shadow loads return either labels of the
2215 // initial application data or zeros.
2216 if (LI.isAtomic())
2217 LI.setOrdering(addAcquireOrdering(LI.getOrdering()));
2219 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI;
2220 std::vector<Value *> Shadows;
2221 std::vector<Value *> Origins;
2222 Value *PrimitiveShadow, *Origin;
2223 std::tie(PrimitiveShadow, Origin) =
2224 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos);
2225 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2226 if (ShouldTrackOrigins) {
2227 Shadows.push_back(PrimitiveShadow);
2228 Origins.push_back(Origin);
2230 if (ClCombinePointerLabelsOnLoad) {
2231 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
2232 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos);
2233 if (ShouldTrackOrigins) {
2234 Shadows.push_back(PtrShadow);
2235 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand()));
2238 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow))
2239 DFSF.NonZeroChecks.push_back(PrimitiveShadow);
2241 Value *Shadow =
2242 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos);
2243 DFSF.setShadow(&LI, Shadow);
2245 if (ShouldTrackOrigins) {
2246 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos));
2249 if (ClEventCallbacks) {
2250 IRBuilder<> IRB(Pos);
2251 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2252 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8});
2256 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin,
2257 IRBuilder<> &IRB) {
2258 assert(DFS.shouldTrackOrigins());
2259 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin});
2262 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) {
2263 if (!DFS.shouldTrackOrigins())
2264 return V;
2265 return IRB.CreateCall(DFS.DFSanChainOriginFn, V);
2268 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) {
2269 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2270 const DataLayout &DL = F->getParent()->getDataLayout();
2271 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2272 if (IntptrSize == OriginSize)
2273 return Origin;
2274 assert(IntptrSize == OriginSize * 2);
2275 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false);
2276 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8));
2279 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin,
2280 Value *StoreOriginAddr,
2281 uint64_t StoreOriginSize, Align Alignment) {
2282 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes;
2283 const DataLayout &DL = F->getParent()->getDataLayout();
2284 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy);
2285 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy);
2286 assert(IntptrAlignment >= MinOriginAlignment);
2287 assert(IntptrSize >= OriginSize);
2289 unsigned Ofs = 0;
2290 Align CurrentAlignment = Alignment;
2291 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) {
2292 Value *IntptrOrigin = originToIntptr(IRB, Origin);
2293 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast(
2294 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0));
2295 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) {
2296 Value *Ptr =
2297 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I)
2298 : IntptrStoreOriginPtr;
2299 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment);
2300 Ofs += IntptrSize / OriginSize;
2301 CurrentAlignment = IntptrAlignment;
2305 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize;
2306 ++I) {
2307 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I)
2308 : StoreOriginAddr;
2309 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment);
2310 CurrentAlignment = MinOriginAlignment;
2314 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB,
2315 const Twine &Name) {
2316 Type *VTy = V->getType();
2317 assert(VTy->isIntegerTy());
2318 if (VTy->getIntegerBitWidth() == 1)
2319 // Just converting a bool to a bool, so do nothing.
2320 return V;
2321 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name);
2324 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size,
2325 Value *Shadow, Value *Origin,
2326 Value *StoreOriginAddr, Align InstAlignment) {
2327 // Do not write origins for zero shadows because we do not trace origins for
2328 // untainted sinks.
2329 const Align OriginAlignment = getOriginAlign(InstAlignment);
2330 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos);
2331 IRBuilder<> IRB(Pos);
2332 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) {
2333 if (!ConstantShadow->isZeroValue())
2334 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size,
2335 OriginAlignment);
2336 return;
2339 if (shouldInstrumentWithCall()) {
2340 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn,
2341 {CollapsedShadow,
2342 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
2343 ConstantInt::get(DFS.IntptrTy, Size), Origin});
2344 } else {
2345 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp");
2346 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
2347 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT);
2348 IRBuilder<> IRBNew(CheckTerm);
2349 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size,
2350 OriginAlignment);
2351 ++NumOriginStores;
2355 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size,
2356 Align ShadowAlign,
2357 Instruction *Pos) {
2358 IRBuilder<> IRB(Pos);
2359 IntegerType *ShadowTy =
2360 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits);
2361 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
2362 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
2363 Value *ExtShadowAddr =
2364 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
2365 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
2366 // Do not write origins for 0 shadows because we do not trace origins for
2367 // untainted sinks.
2370 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size,
2371 Align InstAlignment,
2372 Value *PrimitiveShadow,
2373 Value *Origin,
2374 Instruction *Pos) {
2375 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin;
2377 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
2378 const auto SI = AllocaShadowMap.find(AI);
2379 if (SI != AllocaShadowMap.end()) {
2380 IRBuilder<> IRB(Pos);
2381 IRB.CreateStore(PrimitiveShadow, SI->second);
2383 // Do not write origins for 0 shadows because we do not trace origins for
2384 // untainted sinks.
2385 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) {
2386 const auto OI = AllocaOriginMap.find(AI);
2387 assert(OI != AllocaOriginMap.end() && Origin);
2388 IRB.CreateStore(Origin, OI->second);
2390 return;
2394 const Align ShadowAlign = getShadowAlign(InstAlignment);
2395 if (DFS.isZeroShadow(PrimitiveShadow)) {
2396 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos);
2397 return;
2400 IRBuilder<> IRB(Pos);
2401 Value *ShadowAddr, *OriginAddr;
2402 std::tie(ShadowAddr, OriginAddr) =
2403 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos);
2405 const unsigned ShadowVecSize = 8;
2406 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 &&
2407 "Shadow vector is too large!");
2409 uint64_t Offset = 0;
2410 uint64_t LeftSize = Size;
2411 if (LeftSize >= ShadowVecSize) {
2412 auto *ShadowVecTy =
2413 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize);
2414 Value *ShadowVec = UndefValue::get(ShadowVecTy);
2415 for (unsigned I = 0; I != ShadowVecSize; ++I) {
2416 ShadowVec = IRB.CreateInsertElement(
2417 ShadowVec, PrimitiveShadow,
2418 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I));
2420 Value *ShadowVecAddr =
2421 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
2422 do {
2423 Value *CurShadowVecAddr =
2424 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset);
2425 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
2426 LeftSize -= ShadowVecSize;
2427 ++Offset;
2428 } while (LeftSize >= ShadowVecSize);
2429 Offset *= ShadowVecSize;
2431 while (LeftSize > 0) {
2432 Value *CurShadowAddr =
2433 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset);
2434 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign);
2435 --LeftSize;
2436 ++Offset;
2439 if (ShouldTrackOrigins) {
2440 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr,
2441 InstAlignment);
2445 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) {
2446 switch (AO) {
2447 case AtomicOrdering::NotAtomic:
2448 return AtomicOrdering::NotAtomic;
2449 case AtomicOrdering::Unordered:
2450 case AtomicOrdering::Monotonic:
2451 case AtomicOrdering::Release:
2452 return AtomicOrdering::Release;
2453 case AtomicOrdering::Acquire:
2454 case AtomicOrdering::AcquireRelease:
2455 return AtomicOrdering::AcquireRelease;
2456 case AtomicOrdering::SequentiallyConsistent:
2457 return AtomicOrdering::SequentiallyConsistent;
2459 llvm_unreachable("Unknown ordering");
2462 void DFSanVisitor::visitStoreInst(StoreInst &SI) {
2463 auto &DL = SI.getModule()->getDataLayout();
2464 Value *Val = SI.getValueOperand();
2465 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2466 if (Size == 0)
2467 return;
2469 // When an application store is atomic, increase atomic ordering between
2470 // atomic application loads and stores to ensure happen-before order; load
2471 // shadow data after application data; store zero shadow data before
2472 // application data. This ensure shadow loads return either labels of the
2473 // initial application data or zeros.
2474 if (SI.isAtomic())
2475 SI.setOrdering(addReleaseOrdering(SI.getOrdering()));
2477 const bool ShouldTrackOrigins =
2478 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic();
2479 std::vector<Value *> Shadows;
2480 std::vector<Value *> Origins;
2482 Value *Shadow =
2483 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val);
2485 if (ShouldTrackOrigins) {
2486 Shadows.push_back(Shadow);
2487 Origins.push_back(DFSF.getOrigin(Val));
2490 Value *PrimitiveShadow;
2491 if (ClCombinePointerLabelsOnStore) {
2492 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
2493 if (ShouldTrackOrigins) {
2494 Shadows.push_back(PtrShadow);
2495 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand()));
2497 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
2498 } else {
2499 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI);
2501 Value *Origin = nullptr;
2502 if (ShouldTrackOrigins)
2503 Origin = DFSF.combineOrigins(Shadows, Origins, &SI);
2504 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(),
2505 PrimitiveShadow, Origin, &SI);
2506 if (ClEventCallbacks) {
2507 IRBuilder<> IRB(&SI);
2508 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr);
2509 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8});
2513 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) {
2514 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I));
2516 Value *Val = I.getOperand(1);
2517 const auto &DL = I.getModule()->getDataLayout();
2518 uint64_t Size = DL.getTypeStoreSize(Val->getType());
2519 if (Size == 0)
2520 return;
2522 // Conservatively set data at stored addresses and return with zero shadow to
2523 // prevent shadow data races.
2524 IRBuilder<> IRB(&I);
2525 Value *Addr = I.getOperand(0);
2526 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment);
2527 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I);
2528 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I));
2529 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2532 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) {
2533 visitCASOrRMW(I.getAlign(), I);
2534 // TODO: The ordering change follows MSan. It is possible not to change
2535 // ordering because we always set and use 0 shadows.
2536 I.setOrdering(addReleaseOrdering(I.getOrdering()));
2539 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
2540 visitCASOrRMW(I.getAlign(), I);
2541 // TODO: The ordering change follows MSan. It is possible not to change
2542 // ordering because we always set and use 0 shadows.
2543 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering()));
2546 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) {
2547 visitInstOperands(UO);
2550 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
2551 visitInstOperands(BO);
2554 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) {
2555 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
2556 // Special case: if this is the bitcast (there is exactly 1 allowed) between
2557 // a musttail call and a ret, don't instrument. New instructions are not
2558 // allowed after a musttail call.
2559 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0)))
2560 if (CI->isMustTailCall())
2561 return;
2563 // TODO: handle musttail call returns for IA_Args.
2564 visitInstOperands(BCI);
2567 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); }
2569 void DFSanVisitor::visitCmpInst(CmpInst &CI) {
2570 visitInstOperands(CI);
2571 if (ClEventCallbacks) {
2572 IRBuilder<> IRB(&CI);
2573 Value *CombinedShadow = DFSF.getShadow(&CI);
2574 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow);
2578 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) {
2579 // We do not need to track data through LandingPadInst.
2581 // For the C++ exceptions, if a value is thrown, this value will be stored
2582 // in a memory location provided by __cxa_allocate_exception(...) (on the
2583 // throw side) or __cxa_begin_catch(...) (on the catch side).
2584 // This memory will have a shadow, so with the loads and stores we will be
2585 // able to propagate labels on data thrown through exceptions, without any
2586 // special handling of the LandingPadInst.
2588 // The second element in the pair result of the LandingPadInst is a
2589 // register value, but it is for a type ID and should never be tainted.
2590 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI));
2591 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin);
2594 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2595 if (ClCombineOffsetLabelsOnGEP) {
2596 visitInstOperands(GEPI);
2597 return;
2600 // Only propagate shadow/origin of base pointer value but ignore those of
2601 // offset operands.
2602 Value *BasePointer = GEPI.getPointerOperand();
2603 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer));
2604 if (DFSF.DFS.shouldTrackOrigins())
2605 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer));
2608 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
2609 visitInstOperands(I);
2612 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
2613 visitInstOperands(I);
2616 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
2617 visitInstOperands(I);
2620 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
2621 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
2622 visitInstOperands(I);
2623 return;
2626 IRBuilder<> IRB(&I);
2627 Value *Agg = I.getAggregateOperand();
2628 Value *AggShadow = DFSF.getShadow(Agg);
2629 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices());
2630 DFSF.setShadow(&I, ResShadow);
2631 visitInstOperandOrigins(I);
2634 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
2635 if (!DFSF.DFS.shouldTrackFieldsAndIndices()) {
2636 visitInstOperands(I);
2637 return;
2640 IRBuilder<> IRB(&I);
2641 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand());
2642 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand());
2643 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices());
2644 DFSF.setShadow(&I, Res);
2645 visitInstOperandOrigins(I);
2648 void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
2649 bool AllLoadsStores = true;
2650 for (User *U : I.users()) {
2651 if (isa<LoadInst>(U))
2652 continue;
2654 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
2655 if (SI->getPointerOperand() == &I)
2656 continue;
2659 AllLoadsStores = false;
2660 break;
2662 if (AllLoadsStores) {
2663 IRBuilder<> IRB(&I);
2664 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy);
2665 if (DFSF.DFS.shouldTrackOrigins()) {
2666 DFSF.AllocaOriginMap[&I] =
2667 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa");
2670 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow);
2671 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin);
2674 void DFSanVisitor::visitSelectInst(SelectInst &I) {
2675 Value *CondShadow = DFSF.getShadow(I.getCondition());
2676 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
2677 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
2678 Value *ShadowSel = nullptr;
2679 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2680 std::vector<Value *> Shadows;
2681 std::vector<Value *> Origins;
2682 Value *TrueOrigin =
2683 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr;
2684 Value *FalseOrigin =
2685 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr;
2687 if (isa<VectorType>(I.getCondition()->getType())) {
2688 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow,
2689 FalseShadow, &I);
2690 if (ShouldTrackOrigins) {
2691 Shadows.push_back(TrueShadow);
2692 Shadows.push_back(FalseShadow);
2693 Origins.push_back(TrueOrigin);
2694 Origins.push_back(FalseOrigin);
2696 } else {
2697 if (TrueShadow == FalseShadow) {
2698 ShadowSel = TrueShadow;
2699 if (ShouldTrackOrigins) {
2700 Shadows.push_back(TrueShadow);
2701 Origins.push_back(TrueOrigin);
2703 } else {
2704 ShadowSel =
2705 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
2706 if (ShouldTrackOrigins) {
2707 Shadows.push_back(ShadowSel);
2708 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin,
2709 FalseOrigin, "", &I));
2713 DFSF.setShadow(&I, ClTrackSelectControlFlow
2714 ? DFSF.combineShadowsThenConvert(
2715 I.getType(), CondShadow, ShadowSel, &I)
2716 : ShadowSel);
2717 if (ShouldTrackOrigins) {
2718 if (ClTrackSelectControlFlow) {
2719 Shadows.push_back(CondShadow);
2720 Origins.push_back(DFSF.getOrigin(I.getCondition()));
2722 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I));
2726 void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
2727 IRBuilder<> IRB(&I);
2728 Value *ValShadow = DFSF.getShadow(I.getValue());
2729 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins()
2730 ? DFSF.getOrigin(I.getValue())
2731 : DFSF.DFS.ZeroOrigin;
2732 IRB.CreateCall(
2733 DFSF.DFS.DFSanSetLabelFn,
2734 {ValShadow, ValOrigin,
2735 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
2736 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2739 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
2740 IRBuilder<> IRB(&I);
2742 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we
2743 // need to move origins before moving shadows.
2744 if (DFSF.DFS.shouldTrackOrigins()) {
2745 IRB.CreateCall(
2746 DFSF.DFS.DFSanMemOriginTransferFn,
2747 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()),
2748 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()),
2749 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)});
2752 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
2753 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
2754 Value *LenShadow =
2755 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(),
2756 DFSF.DFS.ShadowWidthBytes));
2757 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
2758 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr);
2759 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
2760 auto *MTI = cast<MemTransferInst>(
2761 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(),
2762 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()}));
2763 if (ClPreserveAlignment) {
2764 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes);
2765 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes);
2766 } else {
2767 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes));
2768 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes));
2770 if (ClEventCallbacks) {
2771 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn,
2772 {RawDestShadow,
2773 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)});
2777 static bool isAMustTailRetVal(Value *RetVal) {
2778 // Tail call may have a bitcast between return.
2779 if (auto *I = dyn_cast<BitCastInst>(RetVal)) {
2780 RetVal = I->getOperand(0);
2782 if (auto *I = dyn_cast<CallInst>(RetVal)) {
2783 return I->isMustTailCall();
2785 return false;
2788 void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
2789 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
2790 switch (DFSF.IA) {
2791 case DataFlowSanitizer::IA_TLS: {
2792 // Don't emit the instrumentation for musttail call returns.
2793 if (isAMustTailRetVal(RI.getReturnValue()))
2794 return;
2796 Value *S = DFSF.getShadow(RI.getReturnValue());
2797 IRBuilder<> IRB(&RI);
2798 Type *RT = DFSF.F->getFunctionType()->getReturnType();
2799 unsigned Size =
2800 getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT));
2801 if (Size <= RetvalTLSSize) {
2802 // If the size overflows, stores nothing. At callsite, oversized return
2803 // shadows are set to zero.
2804 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB),
2805 ShadowTLSAlignment);
2807 if (DFSF.DFS.shouldTrackOrigins()) {
2808 Value *O = DFSF.getOrigin(RI.getReturnValue());
2809 IRB.CreateStore(O, DFSF.getRetvalOriginTLS());
2811 break;
2813 case DataFlowSanitizer::IA_Args: {
2814 // TODO: handle musttail call returns for IA_Args.
2816 IRBuilder<> IRB(&RI);
2817 Type *RT = DFSF.F->getFunctionType()->getReturnType();
2818 Value *InsVal =
2819 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
2820 Value *InsShadow =
2821 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
2822 RI.setOperand(0, InsShadow);
2823 break;
2829 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB,
2830 std::vector<Value *> &Args,
2831 IRBuilder<> &IRB) {
2832 FunctionType *FT = F.getFunctionType();
2834 auto *I = CB.arg_begin();
2836 // Adds non-variable argument shadows.
2837 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
2838 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB));
2840 // Adds variable argument shadows.
2841 if (FT->isVarArg()) {
2842 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy,
2843 CB.arg_size() - FT->getNumParams());
2844 auto *LabelVAAlloca =
2845 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(),
2846 "labelva", &DFSF.F->getEntryBlock().front());
2848 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
2849 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N);
2850 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB),
2851 LabelVAPtr);
2854 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0));
2857 // Adds the return value shadow.
2858 if (!FT->getReturnType()->isVoidTy()) {
2859 if (!DFSF.LabelReturnAlloca) {
2860 DFSF.LabelReturnAlloca = new AllocaInst(
2861 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(),
2862 "labelreturn", &DFSF.F->getEntryBlock().front());
2864 Args.push_back(DFSF.LabelReturnAlloca);
2868 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB,
2869 std::vector<Value *> &Args,
2870 IRBuilder<> &IRB) {
2871 FunctionType *FT = F.getFunctionType();
2873 auto *I = CB.arg_begin();
2875 // Add non-variable argument origins.
2876 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N)
2877 Args.push_back(DFSF.getOrigin(*I));
2879 // Add variable argument origins.
2880 if (FT->isVarArg()) {
2881 auto *OriginVATy =
2882 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams());
2883 auto *OriginVAAlloca =
2884 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(),
2885 "originva", &DFSF.F->getEntryBlock().front());
2887 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) {
2888 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N);
2889 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr);
2892 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0));
2895 // Add the return value origin.
2896 if (!FT->getReturnType()->isVoidTy()) {
2897 if (!DFSF.OriginReturnAlloca) {
2898 DFSF.OriginReturnAlloca = new AllocaInst(
2899 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(),
2900 "originreturn", &DFSF.F->getEntryBlock().front());
2902 Args.push_back(DFSF.OriginReturnAlloca);
2906 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) {
2907 IRBuilder<> IRB(&CB);
2908 switch (DFSF.DFS.getWrapperKind(&F)) {
2909 case DataFlowSanitizer::WK_Warning:
2910 CB.setCalledFunction(&F);
2911 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
2912 IRB.CreateGlobalStringPtr(F.getName()));
2913 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2914 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
2915 return true;
2916 case DataFlowSanitizer::WK_Discard:
2917 CB.setCalledFunction(&F);
2918 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
2919 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin);
2920 return true;
2921 case DataFlowSanitizer::WK_Functional:
2922 CB.setCalledFunction(&F);
2923 visitInstOperands(CB);
2924 return true;
2925 case DataFlowSanitizer::WK_Custom:
2926 // Don't try to handle invokes of custom functions, it's too complicated.
2927 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
2928 // wrapper.
2929 CallInst *CI = dyn_cast<CallInst>(&CB);
2930 if (!CI)
2931 return false;
2933 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
2934 FunctionType *FT = F.getFunctionType();
2935 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT);
2936 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_";
2937 CustomFName += F.getName();
2938 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction(
2939 CustomFName, CustomFn.TransformedType);
2940 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) {
2941 CustomFn->copyAttributesFrom(&F);
2943 // Custom functions returning non-void will write to the return label.
2944 if (!FT->getReturnType()->isVoidTy()) {
2945 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs);
2949 std::vector<Value *> Args;
2951 // Adds non-variable arguments.
2952 auto *I = CB.arg_begin();
2953 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) {
2954 Type *T = (*I)->getType();
2955 FunctionType *ParamFT;
2956 if (isa<PointerType>(T) &&
2957 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) {
2958 std::string TName = "dfst";
2959 TName += utostr(FT->getNumParams() - N);
2960 TName += "$";
2961 TName += F.getName();
2962 Constant *Trampoline =
2963 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
2964 Args.push_back(Trampoline);
2965 Args.push_back(
2966 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
2967 } else {
2968 Args.push_back(*I);
2972 // Adds shadow arguments.
2973 const unsigned ShadowArgStart = Args.size();
2974 addShadowArguments(F, CB, Args, IRB);
2976 // Adds origin arguments.
2977 const unsigned OriginArgStart = Args.size();
2978 if (ShouldTrackOrigins)
2979 addOriginArguments(F, CB, Args, IRB);
2981 // Adds variable arguments.
2982 append_range(Args, drop_begin(CB.args(), FT->getNumParams()));
2984 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
2985 CustomCI->setCallingConv(CI->getCallingConv());
2986 CustomCI->setAttributes(transformFunctionAttributes(
2987 CustomFn, CI->getContext(), CI->getAttributes()));
2989 // Update the parameter attributes of the custom call instruction to
2990 // zero extend the shadow parameters. This is required for targets
2991 // which consider PrimitiveShadowTy an illegal type.
2992 for (unsigned N = 0; N < FT->getNumParams(); N++) {
2993 const unsigned ArgNo = ShadowArgStart + N;
2994 if (CustomCI->getArgOperand(ArgNo)->getType() ==
2995 DFSF.DFS.PrimitiveShadowTy)
2996 CustomCI->addParamAttr(ArgNo, Attribute::ZExt);
2997 if (ShouldTrackOrigins) {
2998 const unsigned OriginArgNo = OriginArgStart + N;
2999 if (CustomCI->getArgOperand(OriginArgNo)->getType() ==
3000 DFSF.DFS.OriginTy)
3001 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt);
3005 // Loads the return value shadow and origin.
3006 if (!FT->getReturnType()->isVoidTy()) {
3007 LoadInst *LabelLoad =
3008 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca);
3009 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow(
3010 FT->getReturnType(), LabelLoad, &CB));
3011 if (ShouldTrackOrigins) {
3012 LoadInst *OriginLoad =
3013 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca);
3014 DFSF.setOrigin(CustomCI, OriginLoad);
3018 CI->replaceAllUsesWith(CustomCI);
3019 CI->eraseFromParent();
3020 return true;
3022 return false;
3025 void DFSanVisitor::visitCallBase(CallBase &CB) {
3026 Function *F = CB.getCalledFunction();
3027 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) {
3028 visitInstOperands(CB);
3029 return;
3032 // Calls to this function are synthesized in wrappers, and we shouldn't
3033 // instrument them.
3034 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts())
3035 return;
3037 DenseMap<Value *, Function *>::iterator UnwrappedFnIt =
3038 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand());
3039 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end())
3040 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB))
3041 return;
3043 IRBuilder<> IRB(&CB);
3045 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins();
3046 FunctionType *FT = CB.getFunctionType();
3047 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
3048 // Stores argument shadows.
3049 unsigned ArgOffset = 0;
3050 const DataLayout &DL = getDataLayout();
3051 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) {
3052 if (ShouldTrackOrigins) {
3053 // Ignore overflowed origins
3054 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I));
3055 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS &&
3056 !DFSF.DFS.isZeroShadow(ArgShadow))
3057 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)),
3058 DFSF.getArgOriginTLS(I, IRB));
3061 unsigned Size =
3062 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I)));
3063 // Stop storing if arguments' size overflows. Inside a function, arguments
3064 // after overflow have zero shadow values.
3065 if (ArgOffset + Size > ArgTLSSize)
3066 break;
3067 IRB.CreateAlignedStore(
3068 DFSF.getShadow(CB.getArgOperand(I)),
3069 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB),
3070 ShadowTLSAlignment);
3071 ArgOffset += alignTo(Size, ShadowTLSAlignment);
3075 Instruction *Next = nullptr;
3076 if (!CB.getType()->isVoidTy()) {
3077 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3078 if (II->getNormalDest()->getSinglePredecessor()) {
3079 Next = &II->getNormalDest()->front();
3080 } else {
3081 BasicBlock *NewBB =
3082 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT);
3083 Next = &NewBB->front();
3085 } else {
3086 assert(CB.getIterator() != CB.getParent()->end());
3087 Next = CB.getNextNode();
3090 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
3091 // Don't emit the epilogue for musttail call returns.
3092 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall())
3093 return;
3095 // Loads the return value shadow.
3096 IRBuilder<> NextIRB(Next);
3097 const DataLayout &DL = getDataLayout();
3098 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB));
3099 if (Size > RetvalTLSSize) {
3100 // Set overflowed return shadow to be zero.
3101 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB));
3102 } else {
3103 LoadInst *LI = NextIRB.CreateAlignedLoad(
3104 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB),
3105 ShadowTLSAlignment, "_dfsret");
3106 DFSF.SkipInsts.insert(LI);
3107 DFSF.setShadow(&CB, LI);
3108 DFSF.NonZeroChecks.push_back(LI);
3111 if (ShouldTrackOrigins) {
3112 LoadInst *LI = NextIRB.CreateLoad(
3113 DFSF.DFS.OriginTy, DFSF.getRetvalOriginTLS(), "_dfsret_o");
3114 DFSF.SkipInsts.insert(LI);
3115 DFSF.setOrigin(&CB, LI);
3120 // Do all instrumentation for IA_Args down here to defer tampering with the
3121 // CFG in a way that SplitEdge may be able to detect.
3122 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
3123 // TODO: handle musttail call returns for IA_Args.
3125 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
3126 Value *Func =
3127 IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT));
3129 const unsigned NumParams = FT->getNumParams();
3131 // Copy original arguments.
3132 auto *ArgIt = CB.arg_begin(), *ArgEnd = CB.arg_end();
3133 std::vector<Value *> Args(NumParams);
3134 std::copy_n(ArgIt, NumParams, Args.begin());
3136 // Add shadow arguments by transforming original arguments.
3137 std::generate_n(std::back_inserter(Args), NumParams,
3138 [&]() { return DFSF.getShadow(*ArgIt++); });
3140 if (FT->isVarArg()) {
3141 unsigned VarArgSize = CB.arg_size() - NumParams;
3142 ArrayType *VarArgArrayTy =
3143 ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize);
3144 AllocaInst *VarArgShadow =
3145 new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(),
3146 "", &DFSF.F->getEntryBlock().front());
3147 Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0));
3149 // Copy remaining var args.
3150 unsigned GepIndex = 0;
3151 std::for_each(ArgIt, ArgEnd, [&](Value *Arg) {
3152 IRB.CreateStore(
3153 DFSF.getShadow(Arg),
3154 IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, GepIndex++));
3155 Args.push_back(Arg);
3159 CallBase *NewCB;
3160 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
3161 NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(),
3162 II->getUnwindDest(), Args);
3163 } else {
3164 NewCB = IRB.CreateCall(NewFT, Func, Args);
3166 NewCB->setCallingConv(CB.getCallingConv());
3167 NewCB->setAttributes(CB.getAttributes().removeRetAttributes(
3168 *DFSF.DFS.Ctx, AttributeFuncs::typeIncompatible(NewCB->getType())));
3170 if (Next) {
3171 ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next);
3172 DFSF.SkipInsts.insert(ExVal);
3173 ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next);
3174 DFSF.SkipInsts.insert(ExShadow);
3175 DFSF.setShadow(ExVal, ExShadow);
3176 DFSF.NonZeroChecks.push_back(ExShadow);
3178 CB.replaceAllUsesWith(ExVal);
3181 CB.eraseFromParent();
3185 void DFSanVisitor::visitPHINode(PHINode &PN) {
3186 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN);
3187 PHINode *ShadowPN =
3188 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN);
3190 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
3191 Value *UndefShadow = UndefValue::get(ShadowTy);
3192 for (BasicBlock *BB : PN.blocks())
3193 ShadowPN->addIncoming(UndefShadow, BB);
3195 DFSF.setShadow(&PN, ShadowPN);
3197 PHINode *OriginPN = nullptr;
3198 if (DFSF.DFS.shouldTrackOrigins()) {
3199 OriginPN =
3200 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN);
3201 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy);
3202 for (BasicBlock *BB : PN.blocks())
3203 OriginPN->addIncoming(UndefOrigin, BB);
3204 DFSF.setOrigin(&PN, OriginPN);
3207 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN});
3210 namespace {
3211 class DataFlowSanitizerLegacyPass : public ModulePass {
3212 private:
3213 std::vector<std::string> ABIListFiles;
3215 public:
3216 static char ID;
3218 DataFlowSanitizerLegacyPass(
3219 const std::vector<std::string> &ABIListFiles = std::vector<std::string>())
3220 : ModulePass(ID), ABIListFiles(ABIListFiles) {}
3222 bool runOnModule(Module &M) override {
3223 return DataFlowSanitizer(ABIListFiles).runImpl(M);
3226 } // namespace
3228 char DataFlowSanitizerLegacyPass::ID;
3230 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan",
3231 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
3233 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass(
3234 const std::vector<std::string> &ABIListFiles) {
3235 return new DataFlowSanitizerLegacyPass(ABIListFiles);
3238 PreservedAnalyses DataFlowSanitizerPass::run(Module &M,
3239 ModuleAnalysisManager &AM) {
3240 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) {
3241 return PreservedAnalyses::none();
3243 return PreservedAnalyses::all();