[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / PGOInstrumentation.cpp
blob152fff9ffce05eb98bfd2be197b1e29a808612fc
1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 // Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
48 //===----------------------------------------------------------------------===//
50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
51 #include "CFGMST.h"
52 #include "ValueProfileCollector.h"
53 #include "llvm/ADT/APInt.h"
54 #include "llvm/ADT/ArrayRef.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/STLExtras.h"
57 #include "llvm/ADT/SmallVector.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Triple.h"
61 #include "llvm/ADT/Twine.h"
62 #include "llvm/ADT/iterator.h"
63 #include "llvm/ADT/iterator_range.h"
64 #include "llvm/Analysis/BlockFrequencyInfo.h"
65 #include "llvm/Analysis/BranchProbabilityInfo.h"
66 #include "llvm/Analysis/CFG.h"
67 #include "llvm/Analysis/EHPersonalities.h"
68 #include "llvm/Analysis/LoopInfo.h"
69 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
70 #include "llvm/Analysis/ProfileSummaryInfo.h"
71 #include "llvm/IR/Attributes.h"
72 #include "llvm/IR/BasicBlock.h"
73 #include "llvm/IR/CFG.h"
74 #include "llvm/IR/Comdat.h"
75 #include "llvm/IR/Constant.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DiagnosticInfo.h"
78 #include "llvm/IR/Dominators.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GlobalAlias.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/IRBuilder.h"
84 #include "llvm/IR/InstVisitor.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/LLVMContext.h"
91 #include "llvm/IR/MDBuilder.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/ProfileSummary.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/InitializePasses.h"
98 #include "llvm/Pass.h"
99 #include "llvm/ProfileData/InstrProf.h"
100 #include "llvm/ProfileData/InstrProfReader.h"
101 #include "llvm/Support/BranchProbability.h"
102 #include "llvm/Support/CRC.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/DOTGraphTraits.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/Error.h"
108 #include "llvm/Support/ErrorHandling.h"
109 #include "llvm/Support/GraphWriter.h"
110 #include "llvm/Support/raw_ostream.h"
111 #include "llvm/Transforms/Instrumentation.h"
112 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
113 #include <algorithm>
114 #include <cassert>
115 #include <cstdint>
116 #include <memory>
117 #include <numeric>
118 #include <string>
119 #include <unordered_map>
120 #include <utility>
121 #include <vector>
123 using namespace llvm;
124 using ProfileCount = Function::ProfileCount;
125 using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
127 #define DEBUG_TYPE "pgo-instrumentation"
129 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
130 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
131 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
132 STATISTIC(NumOfPGOEdge, "Number of edges.");
133 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
134 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
135 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
136 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
137 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
138 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
139 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
140 STATISTIC(NumOfCSPGOSelectInsts,
141 "Number of select instruction instrumented in CSPGO.");
142 STATISTIC(NumOfCSPGOMemIntrinsics,
143 "Number of mem intrinsics instrumented in CSPGO.");
144 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
145 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
146 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
147 STATISTIC(NumOfCSPGOFunc,
148 "Number of functions having valid profile counts in CSPGO.");
149 STATISTIC(NumOfCSPGOMismatch,
150 "Number of functions having mismatch profile in CSPGO.");
151 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
153 // Command line option to specify the file to read profile from. This is
154 // mainly used for testing.
155 static cl::opt<std::string>
156 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
157 cl::value_desc("filename"),
158 cl::desc("Specify the path of profile data file. This is"
159 "mainly for test purpose."));
160 static cl::opt<std::string> PGOTestProfileRemappingFile(
161 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
162 cl::value_desc("filename"),
163 cl::desc("Specify the path of profile remapping file. This is mainly for "
164 "test purpose."));
166 // Command line option to disable value profiling. The default is false:
167 // i.e. value profiling is enabled by default. This is for debug purpose.
168 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
169 cl::Hidden,
170 cl::desc("Disable Value Profiling"));
172 // Command line option to set the maximum number of VP annotations to write to
173 // the metadata for a single indirect call callsite.
174 static cl::opt<unsigned> MaxNumAnnotations(
175 "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore,
176 cl::desc("Max number of annotations for a single indirect "
177 "call callsite"));
179 // Command line option to set the maximum number of value annotations
180 // to write to the metadata for a single memop intrinsic.
181 static cl::opt<unsigned> MaxNumMemOPAnnotations(
182 "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore,
183 cl::desc("Max number of preicise value annotations for a single memop"
184 "intrinsic"));
186 // Command line option to control appending FunctionHash to the name of a COMDAT
187 // function. This is to avoid the hash mismatch caused by the preinliner.
188 static cl::opt<bool> DoComdatRenaming(
189 "do-comdat-renaming", cl::init(false), cl::Hidden,
190 cl::desc("Append function hash to the name of COMDAT function to avoid "
191 "function hash mismatch due to the preinliner"));
193 // Command line option to enable/disable the warning about missing profile
194 // information.
195 static cl::opt<bool>
196 PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden,
197 cl::desc("Use this option to turn on/off "
198 "warnings about missing profile data for "
199 "functions."));
201 namespace llvm {
202 // Command line option to enable/disable the warning about a hash mismatch in
203 // the profile data.
204 cl::opt<bool>
205 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
206 cl::desc("Use this option to turn off/on "
207 "warnings about profile cfg mismatch."));
208 } // namespace llvm
210 // Command line option to enable/disable the warning about a hash mismatch in
211 // the profile data for Comdat functions, which often turns out to be false
212 // positive due to the pre-instrumentation inline.
213 static cl::opt<bool>
214 NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true),
215 cl::Hidden,
216 cl::desc("The option is used to turn on/off "
217 "warnings about hash mismatch for comdat "
218 "functions."));
220 // Command line option to enable/disable select instruction instrumentation.
221 static cl::opt<bool>
222 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
223 cl::desc("Use this option to turn on/off SELECT "
224 "instruction instrumentation. "));
226 // Command line option to turn on CFG dot or text dump of raw profile counts
227 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
228 "pgo-view-raw-counts", cl::Hidden,
229 cl::desc("A boolean option to show CFG dag or text "
230 "with raw profile counts from "
231 "profile data. See also option "
232 "-pgo-view-counts. To limit graph "
233 "display to only one function, use "
234 "filtering option -view-bfi-func-name."),
235 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
236 clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
237 clEnumValN(PGOVCT_Text, "text", "show in text.")));
239 // Command line option to enable/disable memop intrinsic call.size profiling.
240 static cl::opt<bool>
241 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
242 cl::desc("Use this option to turn on/off "
243 "memory intrinsic size profiling."));
245 // Emit branch probability as optimization remarks.
246 static cl::opt<bool>
247 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
248 cl::desc("When this option is on, the annotated "
249 "branch probability will be emitted as "
250 "optimization remarks: -{Rpass|"
251 "pass-remarks}=pgo-instrumentation"));
253 static cl::opt<bool> PGOInstrumentEntry(
254 "pgo-instrument-entry", cl::init(false), cl::Hidden,
255 cl::desc("Force to instrument function entry basicblock."));
257 static cl::opt<bool>
258 PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
259 cl::desc("Fix function entry count in profile use."));
261 static cl::opt<bool> PGOVerifyHotBFI(
262 "pgo-verify-hot-bfi", cl::init(false), cl::Hidden,
263 cl::desc("Print out the non-match BFI count if a hot raw profile count "
264 "becomes non-hot, or a cold raw profile count becomes hot. "
265 "The print is enabled under -Rpass-analysis=pgo, or "
266 "internal option -pass-remakrs-analysis=pgo."));
268 static cl::opt<bool> PGOVerifyBFI(
269 "pgo-verify-bfi", cl::init(false), cl::Hidden,
270 cl::desc("Print out mismatched BFI counts after setting profile metadata "
271 "The print is enabled under -Rpass-analysis=pgo, or "
272 "internal option -pass-remakrs-analysis=pgo."));
274 static cl::opt<unsigned> PGOVerifyBFIRatio(
275 "pgo-verify-bfi-ratio", cl::init(5), cl::Hidden,
276 cl::desc("Set the threshold for pgo-verify-big -- only print out "
277 "mismatched BFI if the difference percentage is greater than "
278 "this value (in percentage)."));
280 static cl::opt<unsigned> PGOVerifyBFICutoff(
281 "pgo-verify-bfi-cutoff", cl::init(1), cl::Hidden,
282 cl::desc("Set the threshold for pgo-verify-bfi -- skip the counts whose "
283 "profile count value is below."));
285 namespace llvm {
286 // Command line option to turn on CFG dot dump after profile annotation.
287 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts
288 extern cl::opt<PGOViewCountsType> PGOViewCounts;
290 // Command line option to specify the name of the function for CFG dump
291 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
292 extern cl::opt<std::string> ViewBlockFreqFuncName;
293 } // namespace llvm
295 static cl::opt<bool>
296 PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden,
297 cl::desc("Use the old CFG function hashing"));
299 // Return a string describing the branch condition that can be
300 // used in static branch probability heuristics:
301 static std::string getBranchCondString(Instruction *TI) {
302 BranchInst *BI = dyn_cast<BranchInst>(TI);
303 if (!BI || !BI->isConditional())
304 return std::string();
306 Value *Cond = BI->getCondition();
307 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
308 if (!CI)
309 return std::string();
311 std::string result;
312 raw_string_ostream OS(result);
313 OS << CmpInst::getPredicateName(CI->getPredicate()) << "_";
314 CI->getOperand(0)->getType()->print(OS, true);
316 Value *RHS = CI->getOperand(1);
317 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
318 if (CV) {
319 if (CV->isZero())
320 OS << "_Zero";
321 else if (CV->isOne())
322 OS << "_One";
323 else if (CV->isMinusOne())
324 OS << "_MinusOne";
325 else
326 OS << "_Const";
328 OS.flush();
329 return result;
332 static const char *ValueProfKindDescr[] = {
333 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
334 #include "llvm/ProfileData/InstrProfData.inc"
337 namespace {
339 /// The select instruction visitor plays three roles specified
340 /// by the mode. In \c VM_counting mode, it simply counts the number of
341 /// select instructions. In \c VM_instrument mode, it inserts code to count
342 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
343 /// it reads the profile data and annotate the select instruction with metadata.
344 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
345 class PGOUseFunc;
347 /// Instruction Visitor class to visit select instructions.
348 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
349 Function &F;
350 unsigned NSIs = 0; // Number of select instructions instrumented.
351 VisitMode Mode = VM_counting; // Visiting mode.
352 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
353 unsigned TotalNumCtrs = 0; // Total number of counters
354 GlobalVariable *FuncNameVar = nullptr;
355 uint64_t FuncHash = 0;
356 PGOUseFunc *UseFunc = nullptr;
358 SelectInstVisitor(Function &Func) : F(Func) {}
360 void countSelects(Function &Func) {
361 NSIs = 0;
362 Mode = VM_counting;
363 visit(Func);
366 // Visit the IR stream and instrument all select instructions. \p
367 // Ind is a pointer to the counter index variable; \p TotalNC
368 // is the total number of counters; \p FNV is the pointer to the
369 // PGO function name var; \p FHash is the function hash.
370 void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC,
371 GlobalVariable *FNV, uint64_t FHash) {
372 Mode = VM_instrument;
373 CurCtrIdx = Ind;
374 TotalNumCtrs = TotalNC;
375 FuncHash = FHash;
376 FuncNameVar = FNV;
377 visit(Func);
380 // Visit the IR stream and annotate all select instructions.
381 void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) {
382 Mode = VM_annotate;
383 UseFunc = UF;
384 CurCtrIdx = Ind;
385 visit(Func);
388 void instrumentOneSelectInst(SelectInst &SI);
389 void annotateOneSelectInst(SelectInst &SI);
391 // Visit \p SI instruction and perform tasks according to visit mode.
392 void visitSelectInst(SelectInst &SI);
394 // Return the number of select instructions. This needs be called after
395 // countSelects().
396 unsigned getNumOfSelectInsts() const { return NSIs; }
400 class PGOInstrumentationGenLegacyPass : public ModulePass {
401 public:
402 static char ID;
404 PGOInstrumentationGenLegacyPass(bool IsCS = false)
405 : ModulePass(ID), IsCS(IsCS) {
406 initializePGOInstrumentationGenLegacyPassPass(
407 *PassRegistry::getPassRegistry());
410 StringRef getPassName() const override { return "PGOInstrumentationGenPass"; }
412 private:
413 // Is this is context-sensitive instrumentation.
414 bool IsCS;
415 bool runOnModule(Module &M) override;
417 void getAnalysisUsage(AnalysisUsage &AU) const override {
418 AU.addRequired<BlockFrequencyInfoWrapperPass>();
419 AU.addRequired<TargetLibraryInfoWrapperPass>();
423 class PGOInstrumentationUseLegacyPass : public ModulePass {
424 public:
425 static char ID;
427 // Provide the profile filename as the parameter.
428 PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false)
429 : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) {
430 if (!PGOTestProfileFile.empty())
431 ProfileFileName = PGOTestProfileFile;
432 initializePGOInstrumentationUseLegacyPassPass(
433 *PassRegistry::getPassRegistry());
436 StringRef getPassName() const override { return "PGOInstrumentationUsePass"; }
438 private:
439 std::string ProfileFileName;
440 // Is this is context-sensitive instrumentation use.
441 bool IsCS;
443 bool runOnModule(Module &M) override;
445 void getAnalysisUsage(AnalysisUsage &AU) const override {
446 AU.addRequired<ProfileSummaryInfoWrapperPass>();
447 AU.addRequired<BlockFrequencyInfoWrapperPass>();
448 AU.addRequired<TargetLibraryInfoWrapperPass>();
452 class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass {
453 public:
454 static char ID;
455 StringRef getPassName() const override {
456 return "PGOInstrumentationGenCreateVarPass";
458 PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "")
459 : ModulePass(ID), InstrProfileOutput(CSInstrName) {
460 initializePGOInstrumentationGenCreateVarLegacyPassPass(
461 *PassRegistry::getPassRegistry());
464 private:
465 bool runOnModule(Module &M) override {
466 createProfileFileNameVar(M, InstrProfileOutput);
467 createIRLevelProfileFlagVar(M, /* IsCS */ true, PGOInstrumentEntry);
468 return false;
470 std::string InstrProfileOutput;
473 } // end anonymous namespace
475 char PGOInstrumentationGenLegacyPass::ID = 0;
477 INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
478 "PGO instrumentation.", false, false)
479 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
480 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
481 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
482 INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
483 "PGO instrumentation.", false, false)
485 ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) {
486 return new PGOInstrumentationGenLegacyPass(IsCS);
489 char PGOInstrumentationUseLegacyPass::ID = 0;
491 INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
492 "Read PGO instrumentation profile.", false, false)
493 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
494 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
495 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
496 INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
497 "Read PGO instrumentation profile.", false, false)
499 ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename,
500 bool IsCS) {
501 return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS);
504 char PGOInstrumentationGenCreateVarLegacyPass::ID = 0;
506 INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass,
507 "pgo-instr-gen-create-var",
508 "Create PGO instrumentation version variable for CSPGO.", false,
509 false)
511 ModulePass *
512 llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) {
513 return new PGOInstrumentationGenCreateVarLegacyPass(std::string(CSInstrName));
516 namespace {
518 /// An MST based instrumentation for PGO
520 /// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
521 /// in the function level.
522 struct PGOEdge {
523 // This class implements the CFG edges. Note the CFG can be a multi-graph.
524 // So there might be multiple edges with same SrcBB and DestBB.
525 const BasicBlock *SrcBB;
526 const BasicBlock *DestBB;
527 uint64_t Weight;
528 bool InMST = false;
529 bool Removed = false;
530 bool IsCritical = false;
532 PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
533 : SrcBB(Src), DestBB(Dest), Weight(W) {}
535 // Return the information string of an edge.
536 std::string infoString() const {
537 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
538 (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str();
542 // This class stores the auxiliary information for each BB.
543 struct BBInfo {
544 BBInfo *Group;
545 uint32_t Index;
546 uint32_t Rank = 0;
548 BBInfo(unsigned IX) : Group(this), Index(IX) {}
550 // Return the information string of this object.
551 std::string infoString() const {
552 return (Twine("Index=") + Twine(Index)).str();
555 // Empty function -- only applicable to UseBBInfo.
556 void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
558 // Empty function -- only applicable to UseBBInfo.
559 void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
562 // This class implements the CFG edges. Note the CFG can be a multi-graph.
563 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
564 private:
565 Function &F;
567 // Is this is context-sensitive instrumentation.
568 bool IsCS;
570 // A map that stores the Comdat group in function F.
571 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
573 ValueProfileCollector VPC;
575 void computeCFGHash();
576 void renameComdatFunction();
578 public:
579 std::vector<std::vector<VPCandidateInfo>> ValueSites;
580 SelectInstVisitor SIVisitor;
581 std::string FuncName;
582 GlobalVariable *FuncNameVar;
584 // CFG hash value for this function.
585 uint64_t FunctionHash = 0;
587 // The Minimum Spanning Tree of function CFG.
588 CFGMST<Edge, BBInfo> MST;
590 // Collect all the BBs that will be instrumented, and store them in
591 // InstrumentBBs.
592 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
594 // Give an edge, find the BB that will be instrumented.
595 // Return nullptr if there is no BB to be instrumented.
596 BasicBlock *getInstrBB(Edge *E);
598 // Return the auxiliary BB information.
599 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
601 // Return the auxiliary BB information if available.
602 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
604 // Dump edges and BB information.
605 void dumpInfo(std::string Str = "") const {
606 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
607 Twine(FunctionHash) + "\t" + Str);
610 FuncPGOInstrumentation(
611 Function &Func, TargetLibraryInfo &TLI,
612 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
613 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
614 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
615 bool InstrumentFuncEntry = true)
616 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
617 ValueSites(IPVK_Last + 1), SIVisitor(Func),
618 MST(F, InstrumentFuncEntry, BPI, BFI) {
619 // This should be done before CFG hash computation.
620 SIVisitor.countSelects(Func);
621 ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
622 if (!IsCS) {
623 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
624 NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
625 NumOfPGOBB += MST.BBInfos.size();
626 ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
627 } else {
628 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
629 NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
630 NumOfCSPGOBB += MST.BBInfos.size();
633 FuncName = getPGOFuncName(F);
634 computeCFGHash();
635 if (!ComdatMembers.empty())
636 renameComdatFunction();
637 LLVM_DEBUG(dumpInfo("after CFGMST"));
639 for (auto &E : MST.AllEdges) {
640 if (E->Removed)
641 continue;
642 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
643 if (!E->InMST)
644 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
647 if (CreateGlobalVar)
648 FuncNameVar = createPGOFuncNameVar(F, FuncName);
652 } // end anonymous namespace
654 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
655 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
656 // of selects, indirect calls, mem ops and edges.
657 template <class Edge, class BBInfo>
658 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
659 std::vector<uint8_t> Indexes;
660 JamCRC JC;
661 for (auto &BB : F) {
662 const Instruction *TI = BB.getTerminator();
663 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
664 BasicBlock *Succ = TI->getSuccessor(I);
665 auto BI = findBBInfo(Succ);
666 if (BI == nullptr)
667 continue;
668 uint32_t Index = BI->Index;
669 for (int J = 0; J < 4; J++)
670 Indexes.push_back((uint8_t)(Index >> (J * 8)));
673 JC.update(Indexes);
675 JamCRC JCH;
676 if (PGOOldCFGHashing) {
677 // Hash format for context sensitive profile. Reserve 4 bits for other
678 // information.
679 FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
680 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
681 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
682 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
683 } else {
684 // The higher 32 bits.
685 auto updateJCH = [&JCH](uint64_t Num) {
686 uint8_t Data[8];
687 support::endian::write64le(Data, Num);
688 JCH.update(Data);
690 updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
691 updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
692 updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
693 updateJCH((uint64_t)MST.AllEdges.size());
695 // Hash format for context sensitive profile. Reserve 4 bits for other
696 // information.
697 FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
700 // Reserve bit 60-63 for other information purpose.
701 FunctionHash &= 0x0FFFFFFFFFFFFFFF;
702 if (IsCS)
703 NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
704 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
705 << " CRC = " << JC.getCRC()
706 << ", Selects = " << SIVisitor.getNumOfSelectInsts()
707 << ", Edges = " << MST.AllEdges.size() << ", ICSites = "
708 << ValueSites[IPVK_IndirectCallTarget].size());
709 if (!PGOOldCFGHashing) {
710 LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
711 << ", High32 CRC = " << JCH.getCRC());
713 LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";);
716 // Check if we can safely rename this Comdat function.
717 static bool canRenameComdat(
718 Function &F,
719 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
720 if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
721 return false;
723 // FIXME: Current only handle those Comdat groups that only containing one
724 // function.
725 // (1) For a Comdat group containing multiple functions, we need to have a
726 // unique postfix based on the hashes for each function. There is a
727 // non-trivial code refactoring to do this efficiently.
728 // (2) Variables can not be renamed, so we can not rename Comdat function in a
729 // group including global vars.
730 Comdat *C = F.getComdat();
731 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
732 assert(!isa<GlobalAlias>(CM.second));
733 Function *FM = dyn_cast<Function>(CM.second);
734 if (FM != &F)
735 return false;
737 return true;
740 // Append the CFGHash to the Comdat function name.
741 template <class Edge, class BBInfo>
742 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
743 if (!canRenameComdat(F, ComdatMembers))
744 return;
745 std::string OrigName = F.getName().str();
746 std::string NewFuncName =
747 Twine(F.getName() + "." + Twine(FunctionHash)).str();
748 F.setName(Twine(NewFuncName));
749 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
750 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
751 Comdat *NewComdat;
752 Module *M = F.getParent();
753 // For AvailableExternallyLinkage functions, change the linkage to
754 // LinkOnceODR and put them into comdat. This is because after renaming, there
755 // is no backup external copy available for the function.
756 if (!F.hasComdat()) {
757 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
758 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
759 F.setLinkage(GlobalValue::LinkOnceODRLinkage);
760 F.setComdat(NewComdat);
761 return;
764 // This function belongs to a single function Comdat group.
765 Comdat *OrigComdat = F.getComdat();
766 std::string NewComdatName =
767 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
768 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
769 NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
771 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
772 // Must be a function.
773 cast<Function>(CM.second)->setComdat(NewComdat);
777 // Collect all the BBs that will be instruments and return them in
778 // InstrumentBBs and setup InEdges/OutEdge for UseBBInfo.
779 template <class Edge, class BBInfo>
780 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
781 std::vector<BasicBlock *> &InstrumentBBs) {
782 // Use a worklist as we will update the vector during the iteration.
783 std::vector<Edge *> EdgeList;
784 EdgeList.reserve(MST.AllEdges.size());
785 for (auto &E : MST.AllEdges)
786 EdgeList.push_back(E.get());
788 for (auto &E : EdgeList) {
789 BasicBlock *InstrBB = getInstrBB(E);
790 if (InstrBB)
791 InstrumentBBs.push_back(InstrBB);
794 // Set up InEdges/OutEdges for all BBs.
795 for (auto &E : MST.AllEdges) {
796 if (E->Removed)
797 continue;
798 const BasicBlock *SrcBB = E->SrcBB;
799 const BasicBlock *DestBB = E->DestBB;
800 BBInfo &SrcInfo = getBBInfo(SrcBB);
801 BBInfo &DestInfo = getBBInfo(DestBB);
802 SrcInfo.addOutEdge(E.get());
803 DestInfo.addInEdge(E.get());
807 // Given a CFG E to be instrumented, find which BB to place the instrumented
808 // code. The function will split the critical edge if necessary.
809 template <class Edge, class BBInfo>
810 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
811 if (E->InMST || E->Removed)
812 return nullptr;
814 BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
815 BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
816 // For a fake edge, instrument the real BB.
817 if (SrcBB == nullptr)
818 return DestBB;
819 if (DestBB == nullptr)
820 return SrcBB;
822 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
823 // There are basic blocks (such as catchswitch) cannot be instrumented.
824 // If the returned first insertion point is the end of BB, skip this BB.
825 if (BB->getFirstInsertionPt() == BB->end())
826 return nullptr;
827 return BB;
830 // Instrument the SrcBB if it has a single successor,
831 // otherwise, the DestBB if this is not a critical edge.
832 Instruction *TI = SrcBB->getTerminator();
833 if (TI->getNumSuccessors() <= 1)
834 return canInstrument(SrcBB);
835 if (!E->IsCritical)
836 return canInstrument(DestBB);
838 // Some IndirectBr critical edges cannot be split by the previous
839 // SplitIndirectBrCriticalEdges call. Bail out.
840 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
841 BasicBlock *InstrBB =
842 isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
843 if (!InstrBB) {
844 LLVM_DEBUG(
845 dbgs() << "Fail to split critical edge: not instrument this edge.\n");
846 return nullptr;
848 // For a critical edge, we have to split. Instrument the newly
849 // created BB.
850 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
851 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
852 << " --> " << getBBInfo(DestBB).Index << "\n");
853 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
854 MST.addEdge(SrcBB, InstrBB, 0);
855 // Second one: Add new edge of InstrBB->DestBB.
856 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
857 NewEdge1.InMST = true;
858 E->Removed = true;
860 return canInstrument(InstrBB);
863 // When generating value profiling calls on Windows routines that make use of
864 // handler funclets for exception processing an operand bundle needs to attached
865 // to the called function. This routine will set \p OpBundles to contain the
866 // funclet information, if any is needed, that should be placed on the generated
867 // value profiling call for the value profile candidate call.
868 static void
869 populateEHOperandBundle(VPCandidateInfo &Cand,
870 DenseMap<BasicBlock *, ColorVector> &BlockColors,
871 SmallVectorImpl<OperandBundleDef> &OpBundles) {
872 auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
873 if (OrigCall && !isa<IntrinsicInst>(OrigCall)) {
874 // The instrumentation call should belong to the same funclet as a
875 // non-intrinsic call, so just copy the operand bundle, if any exists.
876 Optional<OperandBundleUse> ParentFunclet =
877 OrigCall->getOperandBundle(LLVMContext::OB_funclet);
878 if (ParentFunclet)
879 OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
880 } else {
881 // Intrinsics or other instructions do not get funclet information from the
882 // front-end. Need to use the BlockColors that was computed by the routine
883 // colorEHFunclets to determine whether a funclet is needed.
884 if (!BlockColors.empty()) {
885 const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
886 assert(CV.size() == 1 && "non-unique color for block!");
887 Instruction *EHPad = CV.front()->getFirstNonPHI();
888 if (EHPad->isEHPad())
889 OpBundles.emplace_back("funclet", EHPad);
894 // Visit all edge and instrument the edges not in MST, and do value profiling.
895 // Critical edges will be split.
896 static void instrumentOneFunc(
897 Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
898 BlockFrequencyInfo *BFI,
899 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
900 bool IsCS) {
901 // Split indirectbr critical edges here before computing the MST rather than
902 // later in getInstrBB() to avoid invalidating it.
903 SplitIndirectBrCriticalEdges(F, BPI, BFI);
905 FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(
906 F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry);
907 std::vector<BasicBlock *> InstrumentBBs;
908 FuncInfo.getInstrumentBBs(InstrumentBBs);
909 unsigned NumCounters =
910 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
912 uint32_t I = 0;
913 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
914 for (auto *InstrBB : InstrumentBBs) {
915 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
916 assert(Builder.GetInsertPoint() != InstrBB->end() &&
917 "Cannot get the Instrumentation point");
918 Builder.CreateCall(
919 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
920 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
921 Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters),
922 Builder.getInt32(I++)});
925 // Now instrument select instructions:
926 FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar,
927 FuncInfo.FunctionHash);
928 assert(I == NumCounters);
930 if (DisableValueProfiling)
931 return;
933 NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
935 // Intrinsic function calls do not have funclet operand bundles needed for
936 // Windows exception handling attached to them. However, if value profiling is
937 // inserted for one of these calls, then a funclet value will need to be set
938 // on the instrumentation call based on the funclet coloring.
939 DenseMap<BasicBlock *, ColorVector> BlockColors;
940 if (F.hasPersonalityFn() &&
941 isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
942 BlockColors = colorEHFunclets(F);
944 // For each VP Kind, walk the VP candidates and instrument each one.
945 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
946 unsigned SiteIndex = 0;
947 if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
948 continue;
950 for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
951 LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
952 << " site: CallSite Index = " << SiteIndex << "\n");
954 IRBuilder<> Builder(Cand.InsertPt);
955 assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
956 "Cannot get the Instrumentation point");
958 Value *ToProfile = nullptr;
959 if (Cand.V->getType()->isIntegerTy())
960 ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
961 else if (Cand.V->getType()->isPointerTy())
962 ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
963 assert(ToProfile && "value profiling Value is of unexpected type");
965 SmallVector<OperandBundleDef, 1> OpBundles;
966 populateEHOperandBundle(Cand, BlockColors, OpBundles);
967 Builder.CreateCall(
968 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
969 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
970 Builder.getInt64(FuncInfo.FunctionHash), ToProfile,
971 Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
972 OpBundles);
974 } // IPVK_First <= Kind <= IPVK_Last
977 namespace {
979 // This class represents a CFG edge in profile use compilation.
980 struct PGOUseEdge : public PGOEdge {
981 bool CountValid = false;
982 uint64_t CountValue = 0;
984 PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
985 : PGOEdge(Src, Dest, W) {}
987 // Set edge count value
988 void setEdgeCount(uint64_t Value) {
989 CountValue = Value;
990 CountValid = true;
993 // Return the information string for this object.
994 std::string infoString() const {
995 if (!CountValid)
996 return PGOEdge::infoString();
997 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue))
998 .str();
1002 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
1004 // This class stores the auxiliary information for each BB.
1005 struct UseBBInfo : public BBInfo {
1006 uint64_t CountValue = 0;
1007 bool CountValid;
1008 int32_t UnknownCountInEdge = 0;
1009 int32_t UnknownCountOutEdge = 0;
1010 DirectEdges InEdges;
1011 DirectEdges OutEdges;
1013 UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {}
1015 UseBBInfo(unsigned IX, uint64_t C)
1016 : BBInfo(IX), CountValue(C), CountValid(true) {}
1018 // Set the profile count value for this BB.
1019 void setBBInfoCount(uint64_t Value) {
1020 CountValue = Value;
1021 CountValid = true;
1024 // Return the information string of this object.
1025 std::string infoString() const {
1026 if (!CountValid)
1027 return BBInfo::infoString();
1028 return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str();
1031 // Add an OutEdge and update the edge count.
1032 void addOutEdge(PGOUseEdge *E) {
1033 OutEdges.push_back(E);
1034 UnknownCountOutEdge++;
1037 // Add an InEdge and update the edge count.
1038 void addInEdge(PGOUseEdge *E) {
1039 InEdges.push_back(E);
1040 UnknownCountInEdge++;
1044 } // end anonymous namespace
1046 // Sum up the count values for all the edges.
1047 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
1048 uint64_t Total = 0;
1049 for (auto &E : Edges) {
1050 if (E->Removed)
1051 continue;
1052 Total += E->CountValue;
1054 return Total;
1057 namespace {
1059 class PGOUseFunc {
1060 public:
1061 PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
1062 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
1063 BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
1064 ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry)
1065 : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
1066 FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
1067 InstrumentFuncEntry),
1068 FreqAttr(FFA_Normal), IsCS(IsCS) {}
1070 // Read counts for the instrumented BB from profile.
1071 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1072 bool &AllMinusOnes);
1074 // Populate the counts for all BBs.
1075 void populateCounters();
1077 // Set the branch weights based on the count values.
1078 void setBranchWeights();
1080 // Annotate the value profile call sites for all value kind.
1081 void annotateValueSites();
1083 // Annotate the value profile call sites for one value kind.
1084 void annotateValueSites(uint32_t Kind);
1086 // Annotate the irreducible loop header weights.
1087 void annotateIrrLoopHeaderWeights();
1089 // The hotness of the function from the profile count.
1090 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1092 // Return the function hotness from the profile.
1093 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1095 // Return the function hash.
1096 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1098 // Return the profile record for this function;
1099 InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1101 // Return the auxiliary BB information.
1102 UseBBInfo &getBBInfo(const BasicBlock *BB) const {
1103 return FuncInfo.getBBInfo(BB);
1106 // Return the auxiliary BB information if available.
1107 UseBBInfo *findBBInfo(const BasicBlock *BB) const {
1108 return FuncInfo.findBBInfo(BB);
1111 Function &getFunc() const { return F; }
1113 void dumpInfo(std::string Str = "") const {
1114 FuncInfo.dumpInfo(Str);
1117 uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1118 private:
1119 Function &F;
1120 Module *M;
1121 BlockFrequencyInfo *BFI;
1122 ProfileSummaryInfo *PSI;
1124 // This member stores the shared information with class PGOGenFunc.
1125 FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
1127 // The maximum count value in the profile. This is only used in PGO use
1128 // compilation.
1129 uint64_t ProgramMaxCount;
1131 // Position of counter that remains to be read.
1132 uint32_t CountPosition = 0;
1134 // Total size of the profile count for this function.
1135 uint32_t ProfileCountSize = 0;
1137 // ProfileRecord for this function.
1138 InstrProfRecord ProfileRecord;
1140 // Function hotness info derived from profile.
1141 FuncFreqAttr FreqAttr;
1143 // Is to use the context sensitive profile.
1144 bool IsCS;
1146 // Find the Instrumented BB and set the value. Return false on error.
1147 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1149 // Set the edge counter value for the unknown edge -- there should be only
1150 // one unknown edge.
1151 void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1153 // Return FuncName string;
1154 std::string getFuncName() const { return FuncInfo.FuncName; }
1156 // Set the hot/cold inline hints based on the count values.
1157 // FIXME: This function should be removed once the functionality in
1158 // the inliner is implemented.
1159 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1160 if (PSI->isHotCount(EntryCount))
1161 FreqAttr = FFA_Hot;
1162 else if (PSI->isColdCount(MaxCount))
1163 FreqAttr = FFA_Cold;
1167 } // end anonymous namespace
1169 // Visit all the edges and assign the count value for the instrumented
1170 // edges and the BB. Return false on error.
1171 bool PGOUseFunc::setInstrumentedCounts(
1172 const std::vector<uint64_t> &CountFromProfile) {
1174 std::vector<BasicBlock *> InstrumentBBs;
1175 FuncInfo.getInstrumentBBs(InstrumentBBs);
1176 unsigned NumCounters =
1177 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1178 // The number of counters here should match the number of counters
1179 // in profile. Return if they mismatch.
1180 if (NumCounters != CountFromProfile.size()) {
1181 return false;
1183 auto *FuncEntry = &*F.begin();
1185 // Set the profile count to the Instrumented BBs.
1186 uint32_t I = 0;
1187 for (BasicBlock *InstrBB : InstrumentBBs) {
1188 uint64_t CountValue = CountFromProfile[I++];
1189 UseBBInfo &Info = getBBInfo(InstrBB);
1190 // If we reach here, we know that we have some nonzero count
1191 // values in this function. The entry count should not be 0.
1192 // Fix it if necessary.
1193 if (InstrBB == FuncEntry && CountValue == 0)
1194 CountValue = 1;
1195 Info.setBBInfoCount(CountValue);
1197 ProfileCountSize = CountFromProfile.size();
1198 CountPosition = I;
1200 // Set the edge count and update the count of unknown edges for BBs.
1201 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1202 E->setEdgeCount(Value);
1203 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1204 this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1207 // Set the profile count the Instrumented edges. There are BBs that not in
1208 // MST but not instrumented. Need to set the edge count value so that we can
1209 // populate the profile counts later.
1210 for (auto &E : FuncInfo.MST.AllEdges) {
1211 if (E->Removed || E->InMST)
1212 continue;
1213 const BasicBlock *SrcBB = E->SrcBB;
1214 UseBBInfo &SrcInfo = getBBInfo(SrcBB);
1216 // If only one out-edge, the edge profile count should be the same as BB
1217 // profile count.
1218 if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
1219 setEdgeCount(E.get(), SrcInfo.CountValue);
1220 else {
1221 const BasicBlock *DestBB = E->DestBB;
1222 UseBBInfo &DestInfo = getBBInfo(DestBB);
1223 // If only one in-edge, the edge profile count should be the same as BB
1224 // profile count.
1225 if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
1226 setEdgeCount(E.get(), DestInfo.CountValue);
1228 if (E->CountValid)
1229 continue;
1230 // E's count should have been set from profile. If not, this meenas E skips
1231 // the instrumentation. We set the count to 0.
1232 setEdgeCount(E.get(), 0);
1234 return true;
1237 // Set the count value for the unknown edge. There should be one and only one
1238 // unknown edge in Edges vector.
1239 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1240 for (auto &E : Edges) {
1241 if (E->CountValid)
1242 continue;
1243 E->setEdgeCount(Value);
1245 getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1246 getBBInfo(E->DestBB).UnknownCountInEdge--;
1247 return;
1249 llvm_unreachable("Cannot find the unknown count edge");
1252 // Emit function metadata indicating PGO profile mismatch.
1253 static void annotateFunctionWithHashMismatch(Function &F,
1254 LLVMContext &ctx) {
1255 const char MetadataName[] = "instr_prof_hash_mismatch";
1256 SmallVector<Metadata *, 2> Names;
1257 // If this metadata already exists, ignore.
1258 auto *Existing = F.getMetadata(LLVMContext::MD_annotation);
1259 if (Existing) {
1260 MDTuple *Tuple = cast<MDTuple>(Existing);
1261 for (auto &N : Tuple->operands()) {
1262 if (cast<MDString>(N.get())->getString() == MetadataName)
1263 return;
1264 Names.push_back(N.get());
1268 MDBuilder MDB(ctx);
1269 Names.push_back(MDB.createString(MetadataName));
1270 MDNode *MD = MDTuple::get(ctx, Names);
1271 F.setMetadata(LLVMContext::MD_annotation, MD);
1274 // Read the profile from ProfileFileName and assign the value to the
1275 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1276 // Return true if the profile are successfully read, and false on errors.
1277 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1278 bool &AllMinusOnes) {
1279 auto &Ctx = M->getContext();
1280 Expected<InstrProfRecord> Result =
1281 PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash);
1282 if (Error E = Result.takeError()) {
1283 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
1284 auto Err = IPE.get();
1285 bool SkipWarning = false;
1286 LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1287 << FuncInfo.FuncName << ": ");
1288 if (Err == instrprof_error::unknown_function) {
1289 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1290 SkipWarning = !PGOWarnMissing;
1291 LLVM_DEBUG(dbgs() << "unknown function");
1292 } else if (Err == instrprof_error::hash_mismatch ||
1293 Err == instrprof_error::malformed) {
1294 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1295 SkipWarning =
1296 NoPGOWarnMismatch ||
1297 (NoPGOWarnMismatchComdat &&
1298 (F.hasComdat() ||
1299 F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1300 LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
1301 // Emit function metadata indicating PGO profile mismatch.
1302 annotateFunctionWithHashMismatch(F, M->getContext());
1305 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1306 if (SkipWarning)
1307 return;
1309 std::string Msg = IPE.message() + std::string(" ") + F.getName().str() +
1310 std::string(" Hash = ") +
1311 std::to_string(FuncInfo.FunctionHash);
1313 Ctx.diagnose(
1314 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1316 return false;
1318 ProfileRecord = std::move(Result.get());
1319 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1321 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1322 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1323 AllMinusOnes = (CountFromProfile.size() > 0);
1324 uint64_t ValueSum = 0;
1325 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1326 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
1327 ValueSum += CountFromProfile[I];
1328 if (CountFromProfile[I] != (uint64_t)-1)
1329 AllMinusOnes = false;
1331 AllZeros = (ValueSum == 0);
1333 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
1335 getBBInfo(nullptr).UnknownCountOutEdge = 2;
1336 getBBInfo(nullptr).UnknownCountInEdge = 2;
1338 if (!setInstrumentedCounts(CountFromProfile)) {
1339 LLVM_DEBUG(
1340 dbgs() << "Inconsistent number of counts, skipping this function");
1341 Ctx.diagnose(DiagnosticInfoPGOProfile(
1342 M->getName().data(),
1343 Twine("Inconsistent number of counts in ") + F.getName().str()
1344 + Twine(": the profile may be stale or there is a function name collision."),
1345 DS_Warning));
1346 return false;
1348 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1349 return true;
1352 // Populate the counters from instrumented BBs to all BBs.
1353 // In the end of this operation, all BBs should have a valid count value.
1354 void PGOUseFunc::populateCounters() {
1355 bool Changes = true;
1356 unsigned NumPasses = 0;
1357 while (Changes) {
1358 NumPasses++;
1359 Changes = false;
1361 // For efficient traversal, it's better to start from the end as most
1362 // of the instrumented edges are at the end.
1363 for (auto &BB : reverse(F)) {
1364 UseBBInfo *Count = findBBInfo(&BB);
1365 if (Count == nullptr)
1366 continue;
1367 if (!Count->CountValid) {
1368 if (Count->UnknownCountOutEdge == 0) {
1369 Count->CountValue = sumEdgeCount(Count->OutEdges);
1370 Count->CountValid = true;
1371 Changes = true;
1372 } else if (Count->UnknownCountInEdge == 0) {
1373 Count->CountValue = sumEdgeCount(Count->InEdges);
1374 Count->CountValid = true;
1375 Changes = true;
1378 if (Count->CountValid) {
1379 if (Count->UnknownCountOutEdge == 1) {
1380 uint64_t Total = 0;
1381 uint64_t OutSum = sumEdgeCount(Count->OutEdges);
1382 // If the one of the successor block can early terminate (no-return),
1383 // we can end up with situation where out edge sum count is larger as
1384 // the source BB's count is collected by a post-dominated block.
1385 if (Count->CountValue > OutSum)
1386 Total = Count->CountValue - OutSum;
1387 setEdgeCount(Count->OutEdges, Total);
1388 Changes = true;
1390 if (Count->UnknownCountInEdge == 1) {
1391 uint64_t Total = 0;
1392 uint64_t InSum = sumEdgeCount(Count->InEdges);
1393 if (Count->CountValue > InSum)
1394 Total = Count->CountValue - InSum;
1395 setEdgeCount(Count->InEdges, Total);
1396 Changes = true;
1402 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1403 #ifndef NDEBUG
1404 // Assert every BB has a valid counter.
1405 for (auto &BB : F) {
1406 auto BI = findBBInfo(&BB);
1407 if (BI == nullptr)
1408 continue;
1409 assert(BI->CountValid && "BB count is not valid");
1411 #endif
1412 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
1413 uint64_t FuncMaxCount = FuncEntryCount;
1414 for (auto &BB : F) {
1415 auto BI = findBBInfo(&BB);
1416 if (BI == nullptr)
1417 continue;
1418 FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
1421 // Fix the obviously inconsistent entry count.
1422 if (FuncMaxCount > 0 && FuncEntryCount == 0)
1423 FuncEntryCount = 1;
1424 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1425 markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1427 // Now annotate select instructions
1428 FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition);
1429 assert(CountPosition == ProfileCountSize);
1431 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1434 // Assign the scaled count values to the BB with multiple out edges.
1435 void PGOUseFunc::setBranchWeights() {
1436 // Generate MD_prof metadata for every branch instruction.
1437 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1438 << " IsCS=" << IsCS << "\n");
1439 for (auto &BB : F) {
1440 Instruction *TI = BB.getTerminator();
1441 if (TI->getNumSuccessors() < 2)
1442 continue;
1443 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1444 isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI)))
1445 continue;
1447 if (getBBInfo(&BB).CountValue == 0)
1448 continue;
1450 // We have a non-zero Branch BB.
1451 const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1452 unsigned Size = BBCountInfo.OutEdges.size();
1453 SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
1454 uint64_t MaxCount = 0;
1455 for (unsigned s = 0; s < Size; s++) {
1456 const PGOUseEdge *E = BBCountInfo.OutEdges[s];
1457 const BasicBlock *SrcBB = E->SrcBB;
1458 const BasicBlock *DestBB = E->DestBB;
1459 if (DestBB == nullptr)
1460 continue;
1461 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1462 uint64_t EdgeCount = E->CountValue;
1463 if (EdgeCount > MaxCount)
1464 MaxCount = EdgeCount;
1465 EdgeCounts[SuccNum] = EdgeCount;
1467 setProfMetadata(M, TI, EdgeCounts, MaxCount);
1471 static bool isIndirectBrTarget(BasicBlock *BB) {
1472 for (BasicBlock *Pred : predecessors(BB)) {
1473 if (isa<IndirectBrInst>(Pred->getTerminator()))
1474 return true;
1476 return false;
1479 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1480 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1481 // Find irr loop headers
1482 for (auto &BB : F) {
1483 // As a heuristic also annotate indrectbr targets as they have a high chance
1484 // to become an irreducible loop header after the indirectbr tail
1485 // duplication.
1486 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1487 Instruction *TI = BB.getTerminator();
1488 const UseBBInfo &BBCountInfo = getBBInfo(&BB);
1489 setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
1494 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1495 Module *M = F.getParent();
1496 IRBuilder<> Builder(&SI);
1497 Type *Int64Ty = Builder.getInt64Ty();
1498 Type *I8PtrTy = Builder.getInt8PtrTy();
1499 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1500 Builder.CreateCall(
1501 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1502 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
1503 Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1504 Builder.getInt32(*CurCtrIdx), Step});
1505 ++(*CurCtrIdx);
1508 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1509 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1510 assert(*CurCtrIdx < CountFromProfile.size() &&
1511 "Out of bound access of counters");
1512 uint64_t SCounts[2];
1513 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1514 ++(*CurCtrIdx);
1515 uint64_t TotalCount = 0;
1516 auto BI = UseFunc->findBBInfo(SI.getParent());
1517 if (BI != nullptr)
1518 TotalCount = BI->CountValue;
1519 // False Count
1520 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1521 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1522 if (MaxCount)
1523 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1526 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1527 if (!PGOInstrSelect)
1528 return;
1529 // FIXME: do not handle this yet.
1530 if (SI.getCondition()->getType()->isVectorTy())
1531 return;
1533 switch (Mode) {
1534 case VM_counting:
1535 NSIs++;
1536 return;
1537 case VM_instrument:
1538 instrumentOneSelectInst(SI);
1539 return;
1540 case VM_annotate:
1541 annotateOneSelectInst(SI);
1542 return;
1545 llvm_unreachable("Unknown visiting mode");
1548 // Traverse all valuesites and annotate the instructions for all value kind.
1549 void PGOUseFunc::annotateValueSites() {
1550 if (DisableValueProfiling)
1551 return;
1553 // Create the PGOFuncName meta data.
1554 createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1556 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1557 annotateValueSites(Kind);
1560 // Annotate the instructions for a specific value kind.
1561 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1562 assert(Kind <= IPVK_Last);
1563 unsigned ValueSiteIndex = 0;
1564 auto &ValueSites = FuncInfo.ValueSites[Kind];
1565 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1566 if (NumValueSites != ValueSites.size()) {
1567 auto &Ctx = M->getContext();
1568 Ctx.diagnose(DiagnosticInfoPGOProfile(
1569 M->getName().data(),
1570 Twine("Inconsistent number of value sites for ") +
1571 Twine(ValueProfKindDescr[Kind]) +
1572 Twine(" profiling in \"") + F.getName().str() +
1573 Twine("\", possibly due to the use of a stale profile."),
1574 DS_Warning));
1575 return;
1578 for (VPCandidateInfo &I : ValueSites) {
1579 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1580 << "): Index = " << ValueSiteIndex << " out of "
1581 << NumValueSites << "\n");
1582 annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord,
1583 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1584 Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
1585 : MaxNumAnnotations);
1586 ValueSiteIndex++;
1590 // Collect the set of members for each Comdat in module M and store
1591 // in ComdatMembers.
1592 static void collectComdatMembers(
1593 Module &M,
1594 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1595 if (!DoComdatRenaming)
1596 return;
1597 for (Function &F : M)
1598 if (Comdat *C = F.getComdat())
1599 ComdatMembers.insert(std::make_pair(C, &F));
1600 for (GlobalVariable &GV : M.globals())
1601 if (Comdat *C = GV.getComdat())
1602 ComdatMembers.insert(std::make_pair(C, &GV));
1603 for (GlobalAlias &GA : M.aliases())
1604 if (Comdat *C = GA.getComdat())
1605 ComdatMembers.insert(std::make_pair(C, &GA));
1608 static bool InstrumentAllFunctions(
1609 Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1610 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1611 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1612 // For the context-sensitve instrumentation, we should have a separated pass
1613 // (before LTO/ThinLTO linking) to create these variables.
1614 if (!IsCS)
1615 createIRLevelProfileFlagVar(M, /* IsCS */ false, PGOInstrumentEntry);
1616 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1617 collectComdatMembers(M, ComdatMembers);
1619 for (auto &F : M) {
1620 if (F.isDeclaration())
1621 continue;
1622 if (F.hasFnAttribute(llvm::Attribute::NoProfile))
1623 continue;
1624 auto &TLI = LookupTLI(F);
1625 auto *BPI = LookupBPI(F);
1626 auto *BFI = LookupBFI(F);
1627 instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
1629 return true;
1632 PreservedAnalyses
1633 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) {
1634 createProfileFileNameVar(M, CSInstrName);
1635 createIRLevelProfileFlagVar(M, /* IsCS */ true, PGOInstrumentEntry);
1636 return PreservedAnalyses::all();
1639 bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) {
1640 if (skipModule(M))
1641 return false;
1643 auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & {
1644 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1646 auto LookupBPI = [this](Function &F) {
1647 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
1649 auto LookupBFI = [this](Function &F) {
1650 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
1652 return InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS);
1655 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1656 ModuleAnalysisManager &AM) {
1657 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1658 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1659 return FAM.getResult<TargetLibraryAnalysis>(F);
1661 auto LookupBPI = [&FAM](Function &F) {
1662 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1664 auto LookupBFI = [&FAM](Function &F) {
1665 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1668 if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
1669 return PreservedAnalyses::all();
1671 return PreservedAnalyses::none();
1674 // Using the ratio b/w sums of profile count values and BFI count values to
1675 // adjust the func entry count.
1676 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI,
1677 BranchProbabilityInfo &NBPI) {
1678 Function &F = Func.getFunc();
1679 BlockFrequencyInfo NBFI(F, NBPI, LI);
1680 #ifndef NDEBUG
1681 auto BFIEntryCount = F.getEntryCount();
1682 assert(BFIEntryCount.hasValue() && (BFIEntryCount.getCount() > 0) &&
1683 "Invalid BFI Entrycount");
1684 #endif
1685 auto SumCount = APFloat::getZero(APFloat::IEEEdouble());
1686 auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble());
1687 for (auto &BBI : F) {
1688 uint64_t CountValue = 0;
1689 uint64_t BFICountValue = 0;
1690 if (!Func.findBBInfo(&BBI))
1691 continue;
1692 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1693 CountValue = Func.getBBInfo(&BBI).CountValue;
1694 BFICountValue = BFICount.getValue();
1695 SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven);
1696 SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven);
1698 if (SumCount.isZero())
1699 return;
1701 assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan &&
1702 "Incorrect sum of BFI counts");
1703 if (SumBFICount.compare(SumCount) == APFloat::cmpEqual)
1704 return;
1705 double Scale = (SumCount / SumBFICount).convertToDouble();
1706 if (Scale < 1.001 && Scale > 0.999)
1707 return;
1709 uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue;
1710 uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale;
1711 if (NewEntryCount == 0)
1712 NewEntryCount = 1;
1713 if (NewEntryCount != FuncEntryCount) {
1714 F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real));
1715 LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName()
1716 << ", entry_count " << FuncEntryCount << " --> "
1717 << NewEntryCount << "\n");
1721 // Compare the profile count values with BFI count values, and print out
1722 // the non-matching ones.
1723 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI,
1724 BranchProbabilityInfo &NBPI,
1725 uint64_t HotCountThreshold,
1726 uint64_t ColdCountThreshold) {
1727 Function &F = Func.getFunc();
1728 BlockFrequencyInfo NBFI(F, NBPI, LI);
1729 // bool PrintFunc = false;
1730 bool HotBBOnly = PGOVerifyHotBFI;
1731 std::string Msg;
1732 OptimizationRemarkEmitter ORE(&F);
1734 unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0;
1735 for (auto &BBI : F) {
1736 uint64_t CountValue = 0;
1737 uint64_t BFICountValue = 0;
1739 if (Func.getBBInfo(&BBI).CountValid)
1740 CountValue = Func.getBBInfo(&BBI).CountValue;
1742 BBNum++;
1743 if (CountValue)
1744 NonZeroBBNum++;
1745 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1746 if (BFICount)
1747 BFICountValue = BFICount.getValue();
1749 if (HotBBOnly) {
1750 bool rawIsHot = CountValue >= HotCountThreshold;
1751 bool BFIIsHot = BFICountValue >= HotCountThreshold;
1752 bool rawIsCold = CountValue <= ColdCountThreshold;
1753 bool ShowCount = false;
1754 if (rawIsHot && !BFIIsHot) {
1755 Msg = "raw-Hot to BFI-nonHot";
1756 ShowCount = true;
1757 } else if (rawIsCold && BFIIsHot) {
1758 Msg = "raw-Cold to BFI-Hot";
1759 ShowCount = true;
1761 if (!ShowCount)
1762 continue;
1763 } else {
1764 if ((CountValue < PGOVerifyBFICutoff) &&
1765 (BFICountValue < PGOVerifyBFICutoff))
1766 continue;
1767 uint64_t Diff = (BFICountValue >= CountValue)
1768 ? BFICountValue - CountValue
1769 : CountValue - BFICountValue;
1770 if (Diff < CountValue / 100 * PGOVerifyBFIRatio)
1771 continue;
1773 BBMisMatchNum++;
1775 ORE.emit([&]() {
1776 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify",
1777 F.getSubprogram(), &BBI);
1778 Remark << "BB " << ore::NV("Block", BBI.getName())
1779 << " Count=" << ore::NV("Count", CountValue)
1780 << " BFI_Count=" << ore::NV("Count", BFICountValue);
1781 if (!Msg.empty())
1782 Remark << " (" << Msg << ")";
1783 return Remark;
1786 if (BBMisMatchNum)
1787 ORE.emit([&]() {
1788 return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify",
1789 F.getSubprogram(), &F.getEntryBlock())
1790 << "In Func " << ore::NV("Function", F.getName())
1791 << ": Num_of_BB=" << ore::NV("Count", BBNum)
1792 << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum)
1793 << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum);
1797 static bool annotateAllFunctions(
1798 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
1799 function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1800 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1801 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
1802 ProfileSummaryInfo *PSI, bool IsCS) {
1803 LLVM_DEBUG(dbgs() << "Read in profile counters: ");
1804 auto &Ctx = M.getContext();
1805 // Read the counter array from file.
1806 auto ReaderOrErr =
1807 IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName);
1808 if (Error E = ReaderOrErr.takeError()) {
1809 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1810 Ctx.diagnose(
1811 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
1813 return false;
1816 std::unique_ptr<IndexedInstrProfReader> PGOReader =
1817 std::move(ReaderOrErr.get());
1818 if (!PGOReader) {
1819 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
1820 StringRef("Cannot get PGOReader")));
1821 return false;
1823 if (!PGOReader->hasCSIRLevelProfile() && IsCS)
1824 return false;
1826 // TODO: might need to change the warning once the clang option is finalized.
1827 if (!PGOReader->isIRLevelProfile()) {
1828 Ctx.diagnose(DiagnosticInfoPGOProfile(
1829 ProfileFileName.data(), "Not an IR level instrumentation profile"));
1830 return false;
1833 // Add the profile summary (read from the header of the indexed summary) here
1834 // so that we can use it below when reading counters (which checks if the
1835 // function should be marked with a cold or inlinehint attribute).
1836 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
1837 IsCS ? ProfileSummary::PSK_CSInstr
1838 : ProfileSummary::PSK_Instr);
1839 PSI->refresh();
1841 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1842 collectComdatMembers(M, ComdatMembers);
1843 std::vector<Function *> HotFunctions;
1844 std::vector<Function *> ColdFunctions;
1846 // If the profile marked as always instrument the entry BB, do the
1847 // same. Note this can be overwritten by the internal option in CFGMST.h
1848 bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
1849 if (PGOInstrumentEntry.getNumOccurrences() > 0)
1850 InstrumentFuncEntry = PGOInstrumentEntry;
1851 for (auto &F : M) {
1852 if (F.isDeclaration())
1853 continue;
1854 auto &TLI = LookupTLI(F);
1855 auto *BPI = LookupBPI(F);
1856 auto *BFI = LookupBFI(F);
1857 // Split indirectbr critical edges here before computing the MST rather than
1858 // later in getInstrBB() to avoid invalidating it.
1859 SplitIndirectBrCriticalEdges(F, BPI, BFI);
1860 PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
1861 InstrumentFuncEntry);
1862 // When AllMinusOnes is true, it means the profile for the function
1863 // is unrepresentative and this function is actually hot. Set the
1864 // entry count of the function to be multiple times of hot threshold
1865 // and drop all its internal counters.
1866 bool AllMinusOnes = false;
1867 bool AllZeros = false;
1868 if (!Func.readCounters(PGOReader.get(), AllZeros, AllMinusOnes))
1869 continue;
1870 if (AllZeros) {
1871 F.setEntryCount(ProfileCount(0, Function::PCT_Real));
1872 if (Func.getProgramMaxCount() != 0)
1873 ColdFunctions.push_back(&F);
1874 continue;
1876 const unsigned MultiplyFactor = 3;
1877 if (AllMinusOnes) {
1878 uint64_t HotThreshold = PSI->getHotCountThreshold();
1879 if (HotThreshold)
1880 F.setEntryCount(
1881 ProfileCount(HotThreshold * MultiplyFactor, Function::PCT_Real));
1882 HotFunctions.push_back(&F);
1883 continue;
1885 Func.populateCounters();
1886 Func.setBranchWeights();
1887 Func.annotateValueSites();
1888 Func.annotateIrrLoopHeaderWeights();
1889 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
1890 if (FreqAttr == PGOUseFunc::FFA_Cold)
1891 ColdFunctions.push_back(&F);
1892 else if (FreqAttr == PGOUseFunc::FFA_Hot)
1893 HotFunctions.push_back(&F);
1894 if (PGOViewCounts != PGOVCT_None &&
1895 (ViewBlockFreqFuncName.empty() ||
1896 F.getName().equals(ViewBlockFreqFuncName))) {
1897 LoopInfo LI{DominatorTree(F)};
1898 std::unique_ptr<BranchProbabilityInfo> NewBPI =
1899 std::make_unique<BranchProbabilityInfo>(F, LI);
1900 std::unique_ptr<BlockFrequencyInfo> NewBFI =
1901 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
1902 if (PGOViewCounts == PGOVCT_Graph)
1903 NewBFI->view();
1904 else if (PGOViewCounts == PGOVCT_Text) {
1905 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
1906 NewBFI->print(dbgs());
1909 if (PGOViewRawCounts != PGOVCT_None &&
1910 (ViewBlockFreqFuncName.empty() ||
1911 F.getName().equals(ViewBlockFreqFuncName))) {
1912 if (PGOViewRawCounts == PGOVCT_Graph)
1913 if (ViewBlockFreqFuncName.empty())
1914 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
1915 else
1916 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
1917 else if (PGOViewRawCounts == PGOVCT_Text) {
1918 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
1919 Func.dumpInfo();
1923 if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) {
1924 LoopInfo LI{DominatorTree(F)};
1925 BranchProbabilityInfo NBPI(F, LI);
1927 // Fix func entry count.
1928 if (PGOFixEntryCount)
1929 fixFuncEntryCount(Func, LI, NBPI);
1931 // Verify BlockFrequency information.
1932 uint64_t HotCountThreshold = 0, ColdCountThreshold = 0;
1933 if (PGOVerifyHotBFI) {
1934 HotCountThreshold = PSI->getOrCompHotCountThreshold();
1935 ColdCountThreshold = PSI->getOrCompColdCountThreshold();
1937 verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold);
1941 // Set function hotness attribute from the profile.
1942 // We have to apply these attributes at the end because their presence
1943 // can affect the BranchProbabilityInfo of any callers, resulting in an
1944 // inconsistent MST between prof-gen and prof-use.
1945 for (auto &F : HotFunctions) {
1946 F->addFnAttr(Attribute::InlineHint);
1947 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
1948 << "\n");
1950 for (auto &F : ColdFunctions) {
1951 // Only set when there is no Attribute::Hot set by the user. For Hot
1952 // attribute, user's annotation has the precedence over the profile.
1953 if (F->hasFnAttribute(Attribute::Hot)) {
1954 auto &Ctx = M.getContext();
1955 std::string Msg = std::string("Function ") + F->getName().str() +
1956 std::string(" is annotated as a hot function but"
1957 " the profile is cold");
1958 Ctx.diagnose(
1959 DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
1960 continue;
1962 F->addFnAttr(Attribute::Cold);
1963 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
1964 << "\n");
1966 return true;
1969 PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename,
1970 std::string RemappingFilename,
1971 bool IsCS)
1972 : ProfileFileName(std::move(Filename)),
1973 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) {
1974 if (!PGOTestProfileFile.empty())
1975 ProfileFileName = PGOTestProfileFile;
1976 if (!PGOTestProfileRemappingFile.empty())
1977 ProfileRemappingFileName = PGOTestProfileRemappingFile;
1980 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
1981 ModuleAnalysisManager &AM) {
1983 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1984 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1985 return FAM.getResult<TargetLibraryAnalysis>(F);
1987 auto LookupBPI = [&FAM](Function &F) {
1988 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1990 auto LookupBFI = [&FAM](Function &F) {
1991 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1994 auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1996 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName,
1997 LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
1998 return PreservedAnalyses::all();
2000 return PreservedAnalyses::none();
2003 bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) {
2004 if (skipModule(M))
2005 return false;
2007 auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & {
2008 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2010 auto LookupBPI = [this](Function &F) {
2011 return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
2013 auto LookupBFI = [this](Function &F) {
2014 return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
2017 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
2018 return annotateAllFunctions(M, ProfileFileName, "", LookupTLI, LookupBPI,
2019 LookupBFI, PSI, IsCS);
2022 static std::string getSimpleNodeName(const BasicBlock *Node) {
2023 if (!Node->getName().empty())
2024 return std::string(Node->getName());
2026 std::string SimpleNodeName;
2027 raw_string_ostream OS(SimpleNodeName);
2028 Node->printAsOperand(OS, false);
2029 return OS.str();
2032 void llvm::setProfMetadata(Module *M, Instruction *TI,
2033 ArrayRef<uint64_t> EdgeCounts,
2034 uint64_t MaxCount) {
2035 MDBuilder MDB(M->getContext());
2036 assert(MaxCount > 0 && "Bad max count");
2037 uint64_t Scale = calculateCountScale(MaxCount);
2038 SmallVector<unsigned, 4> Weights;
2039 for (const auto &ECI : EdgeCounts)
2040 Weights.push_back(scaleBranchCount(ECI, Scale));
2042 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
2043 : Weights) {
2044 dbgs() << W << " ";
2045 } dbgs() << "\n";);
2047 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
2048 if (EmitBranchProbability) {
2049 std::string BrCondStr = getBranchCondString(TI);
2050 if (BrCondStr.empty())
2051 return;
2053 uint64_t WSum =
2054 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
2055 [](uint64_t w1, uint64_t w2) { return w1 + w2; });
2056 uint64_t TotalCount =
2057 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
2058 [](uint64_t c1, uint64_t c2) { return c1 + c2; });
2059 Scale = calculateCountScale(WSum);
2060 BranchProbability BP(scaleBranchCount(Weights[0], Scale),
2061 scaleBranchCount(WSum, Scale));
2062 std::string BranchProbStr;
2063 raw_string_ostream OS(BranchProbStr);
2064 OS << BP;
2065 OS << " (total count : " << TotalCount << ")";
2066 OS.flush();
2067 Function *F = TI->getParent()->getParent();
2068 OptimizationRemarkEmitter ORE(F);
2069 ORE.emit([&]() {
2070 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
2071 << BrCondStr << " is true with probability : " << BranchProbStr;
2076 namespace llvm {
2078 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
2079 MDBuilder MDB(M->getContext());
2080 TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
2081 MDB.createIrrLoopHeaderWeight(Count));
2084 template <> struct GraphTraits<PGOUseFunc *> {
2085 using NodeRef = const BasicBlock *;
2086 using ChildIteratorType = const_succ_iterator;
2087 using nodes_iterator = pointer_iterator<Function::const_iterator>;
2089 static NodeRef getEntryNode(const PGOUseFunc *G) {
2090 return &G->getFunc().front();
2093 static ChildIteratorType child_begin(const NodeRef N) {
2094 return succ_begin(N);
2097 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
2099 static nodes_iterator nodes_begin(const PGOUseFunc *G) {
2100 return nodes_iterator(G->getFunc().begin());
2103 static nodes_iterator nodes_end(const PGOUseFunc *G) {
2104 return nodes_iterator(G->getFunc().end());
2108 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
2109 explicit DOTGraphTraits(bool isSimple = false)
2110 : DefaultDOTGraphTraits(isSimple) {}
2112 static std::string getGraphName(const PGOUseFunc *G) {
2113 return std::string(G->getFunc().getName());
2116 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
2117 std::string Result;
2118 raw_string_ostream OS(Result);
2120 OS << getSimpleNodeName(Node) << ":\\l";
2121 UseBBInfo *BI = Graph->findBBInfo(Node);
2122 OS << "Count : ";
2123 if (BI && BI->CountValid)
2124 OS << BI->CountValue << "\\l";
2125 else
2126 OS << "Unknown\\l";
2128 if (!PGOInstrSelect)
2129 return Result;
2131 for (const Instruction &I : *Node) {
2132 if (!isa<SelectInst>(&I))
2133 continue;
2134 // Display scaled counts for SELECT instruction:
2135 OS << "SELECT : { T = ";
2136 uint64_t TC, FC;
2137 bool HasProf = I.extractProfMetadata(TC, FC);
2138 if (!HasProf)
2139 OS << "Unknown, F = Unknown }\\l";
2140 else
2141 OS << TC << ", F = " << FC << " }\\l";
2143 return Result;
2147 } // end namespace llvm