1 //===- PoisonChecking.cpp - -----------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implements a transform pass which instruments IR such that poison semantics
10 // are made explicit. That is, it provides a (possibly partial) executable
11 // semantics for every instruction w.r.t. poison as specified in the LLVM
12 // LangRef. There are obvious parallels to the sanitizer tools, but this pass
13 // is focused purely on the semantics of LLVM IR, not any particular source
14 // language. If you're looking for something to see if your C/C++ contains
15 // UB, this is not it.
17 // The rewritten semantics of each instruction will include the following
20 // 1) The original instruction, unmodified.
21 // 2) A propagation rule which translates dynamic information about the poison
22 // state of each input to whether the dynamic output of the instruction
24 // 3) A creation rule which validates any poison producing flags on the
25 // instruction itself (e.g. checks for overflow on nsw).
26 // 4) A check rule which traps (to a handler function) if this instruction must
27 // execute undefined behavior given the poison state of it's inputs.
29 // This is a must analysis based transform; that is, the resulting code may
30 // produce a false negative result (not report UB when actually exists
31 // according to the LangRef spec), but should never produce a false positive
32 // (report UB where it doesn't exist).
34 // Use cases for this pass include:
35 // - Understanding (and testing!) the implications of the definition of poison
37 // - Validating the output of a IR fuzzer to ensure that all programs produced
38 // are well defined on the specific input used.
39 // - Finding/confirming poison specific miscompiles by checking the poison
40 // status of an input/IR pair is the same before and after an optimization
42 // - Checking that a bugpoint reduction does not introduce UB which didn't
43 // exist in the original program being reduced.
45 // The major sources of inaccuracy are currently:
46 // - Most validation rules not yet implemented for instructions with poison
47 // relavant flags. At the moment, only nsw/nuw on add/sub are supported.
48 // - UB which is control dependent on a branch on poison is not yet
49 // reported. Currently, only data flow dependence is modeled.
50 // - Poison which is propagated through memory is not modeled. As such,
51 // storing poison to memory and then reloading it will cause a false negative
52 // as we consider the reloaded value to not be poisoned.
53 // - Poison propagation across function boundaries is not modeled. At the
54 // moment, all arguments and return values are assumed not to be poison.
55 // - Undef is not modeled. In particular, the optimizer's freedom to pick
56 // concrete values for undef bits so as to maximize potential for producing
57 // poison is not modeled.
59 //===----------------------------------------------------------------------===//
61 #include "llvm/Transforms/Instrumentation/PoisonChecking.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/ADT/Statistic.h"
64 #include "llvm/Analysis/MemoryBuiltins.h"
65 #include "llvm/Analysis/ValueTracking.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/InstVisitor.h"
68 #include "llvm/IR/IntrinsicInst.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Debug.h"
75 #define DEBUG_TYPE "poison-checking"
78 LocalCheck("poison-checking-function-local",
80 cl::desc("Check that returns are non-poison (for testing)"));
83 static bool isConstantFalse(Value
* V
) {
84 assert(V
->getType()->isIntegerTy(1));
85 if (auto *CI
= dyn_cast
<ConstantInt
>(V
))
90 static Value
*buildOrChain(IRBuilder
<> &B
, ArrayRef
<Value
*> Ops
) {
94 for (; i
< Ops
.size() && isConstantFalse(Ops
[i
]); i
++) {}
97 Value
*Accum
= Ops
[i
++];
98 for (; i
< Ops
.size(); i
++)
99 if (!isConstantFalse(Ops
[i
]))
100 Accum
= B
.CreateOr(Accum
, Ops
[i
]);
104 static void generateCreationChecksForBinOp(Instruction
&I
,
105 SmallVectorImpl
<Value
*> &Checks
) {
106 assert(isa
<BinaryOperator
>(I
));
109 Value
*LHS
= I
.getOperand(0);
110 Value
*RHS
= I
.getOperand(1);
111 switch (I
.getOpcode()) {
114 case Instruction::Add
: {
115 if (I
.hasNoSignedWrap()) {
117 B
.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow
, LHS
, RHS
);
118 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
120 if (I
.hasNoUnsignedWrap()) {
122 B
.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow
, LHS
, RHS
);
123 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
127 case Instruction::Sub
: {
128 if (I
.hasNoSignedWrap()) {
130 B
.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow
, LHS
, RHS
);
131 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
133 if (I
.hasNoUnsignedWrap()) {
135 B
.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow
, LHS
, RHS
);
136 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
140 case Instruction::Mul
: {
141 if (I
.hasNoSignedWrap()) {
143 B
.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow
, LHS
, RHS
);
144 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
146 if (I
.hasNoUnsignedWrap()) {
148 B
.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow
, LHS
, RHS
);
149 Checks
.push_back(B
.CreateExtractValue(OverflowOp
, 1));
153 case Instruction::UDiv
: {
156 B
.CreateICmp(ICmpInst::ICMP_NE
, B
.CreateURem(LHS
, RHS
),
157 ConstantInt::get(LHS
->getType(), 0));
158 Checks
.push_back(Check
);
162 case Instruction::SDiv
: {
165 B
.CreateICmp(ICmpInst::ICMP_NE
, B
.CreateSRem(LHS
, RHS
),
166 ConstantInt::get(LHS
->getType(), 0));
167 Checks
.push_back(Check
);
171 case Instruction::AShr
:
172 case Instruction::LShr
:
173 case Instruction::Shl
: {
175 B
.CreateICmp(ICmpInst::ICMP_UGE
, RHS
,
176 ConstantInt::get(RHS
->getType(),
177 LHS
->getType()->getScalarSizeInBits()));
178 Checks
.push_back(ShiftCheck
);
184 /// Given an instruction which can produce poison on non-poison inputs
185 /// (i.e. canCreatePoison returns true), generate runtime checks to produce
186 /// boolean indicators of when poison would result.
187 static void generateCreationChecks(Instruction
&I
,
188 SmallVectorImpl
<Value
*> &Checks
) {
190 if (isa
<BinaryOperator
>(I
) && !I
.getType()->isVectorTy())
191 generateCreationChecksForBinOp(I
, Checks
);
193 // Handle non-binops separately
194 switch (I
.getOpcode()) {
196 // Note there are a couple of missing cases here, once implemented, this
197 // should become an llvm_unreachable.
199 case Instruction::ExtractElement
: {
200 Value
*Vec
= I
.getOperand(0);
201 auto *VecVTy
= dyn_cast
<FixedVectorType
>(Vec
->getType());
204 Value
*Idx
= I
.getOperand(1);
205 unsigned NumElts
= VecVTy
->getNumElements();
207 B
.CreateICmp(ICmpInst::ICMP_UGE
, Idx
,
208 ConstantInt::get(Idx
->getType(), NumElts
));
209 Checks
.push_back(Check
);
212 case Instruction::InsertElement
: {
213 Value
*Vec
= I
.getOperand(0);
214 auto *VecVTy
= dyn_cast
<FixedVectorType
>(Vec
->getType());
217 Value
*Idx
= I
.getOperand(2);
218 unsigned NumElts
= VecVTy
->getNumElements();
220 B
.CreateICmp(ICmpInst::ICMP_UGE
, Idx
,
221 ConstantInt::get(Idx
->getType(), NumElts
));
222 Checks
.push_back(Check
);
228 static Value
*getPoisonFor(DenseMap
<Value
*, Value
*> &ValToPoison
, Value
*V
) {
229 auto Itr
= ValToPoison
.find(V
);
230 if (Itr
!= ValToPoison
.end())
232 if (isa
<Constant
>(V
)) {
233 return ConstantInt::getFalse(V
->getContext());
235 // Return false for unknwon values - this implements a non-strict mode where
236 // unhandled IR constructs are simply considered to never produce poison. At
237 // some point in the future, we probably want a "strict mode" for testing if
239 return ConstantInt::getFalse(V
->getContext());
242 static void CreateAssert(IRBuilder
<> &B
, Value
*Cond
) {
243 assert(Cond
->getType()->isIntegerTy(1));
244 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
))
245 if (CI
->isAllOnesValue())
248 Module
*M
= B
.GetInsertBlock()->getModule();
249 M
->getOrInsertFunction("__poison_checker_assert",
250 Type::getVoidTy(M
->getContext()),
251 Type::getInt1Ty(M
->getContext()));
252 Function
*TrapFunc
= M
->getFunction("__poison_checker_assert");
253 B
.CreateCall(TrapFunc
, Cond
);
256 static void CreateAssertNot(IRBuilder
<> &B
, Value
*Cond
) {
257 assert(Cond
->getType()->isIntegerTy(1));
258 CreateAssert(B
, B
.CreateNot(Cond
));
261 static bool rewrite(Function
&F
) {
262 auto * const Int1Ty
= Type::getInt1Ty(F
.getContext());
264 DenseMap
<Value
*, Value
*> ValToPoison
;
266 for (BasicBlock
&BB
: F
)
267 for (auto I
= BB
.begin(); isa
<PHINode
>(&*I
); I
++) {
268 auto *OldPHI
= cast
<PHINode
>(&*I
);
269 auto *NewPHI
= PHINode::Create(Int1Ty
, OldPHI
->getNumIncomingValues());
270 for (unsigned i
= 0; i
< OldPHI
->getNumIncomingValues(); i
++)
271 NewPHI
->addIncoming(UndefValue::get(Int1Ty
),
272 OldPHI
->getIncomingBlock(i
));
273 NewPHI
->insertBefore(OldPHI
);
274 ValToPoison
[OldPHI
] = NewPHI
;
277 for (BasicBlock
&BB
: F
)
278 for (Instruction
&I
: BB
) {
279 if (isa
<PHINode
>(I
)) continue;
281 IRBuilder
<> B(cast
<Instruction
>(&I
));
283 // Note: There are many more sources of documented UB, but this pass only
284 // attempts to find UB triggered by propagation of poison.
285 SmallPtrSet
<const Value
*, 4> NonPoisonOps
;
286 getGuaranteedNonPoisonOps(&I
, NonPoisonOps
);
287 for (const Value
*Op
: NonPoisonOps
)
288 CreateAssertNot(B
, getPoisonFor(ValToPoison
, const_cast<Value
*>(Op
)));
291 if (auto *RI
= dyn_cast
<ReturnInst
>(&I
))
292 if (RI
->getNumOperands() != 0) {
293 Value
*Op
= RI
->getOperand(0);
294 CreateAssertNot(B
, getPoisonFor(ValToPoison
, Op
));
297 SmallVector
<Value
*, 4> Checks
;
298 if (propagatesPoison(cast
<Operator
>(&I
)))
299 for (Value
*V
: I
.operands())
300 Checks
.push_back(getPoisonFor(ValToPoison
, V
));
302 if (canCreatePoison(cast
<Operator
>(&I
)))
303 generateCreationChecks(I
, Checks
);
304 ValToPoison
[&I
] = buildOrChain(B
, Checks
);
307 for (BasicBlock
&BB
: F
)
308 for (auto I
= BB
.begin(); isa
<PHINode
>(&*I
); I
++) {
309 auto *OldPHI
= cast
<PHINode
>(&*I
);
310 if (!ValToPoison
.count(OldPHI
))
311 continue; // skip the newly inserted phis
312 auto *NewPHI
= cast
<PHINode
>(ValToPoison
[OldPHI
]);
313 for (unsigned i
= 0; i
< OldPHI
->getNumIncomingValues(); i
++) {
314 auto *OldVal
= OldPHI
->getIncomingValue(i
);
315 NewPHI
->setIncomingValue(i
, getPoisonFor(ValToPoison
, OldVal
));
322 PreservedAnalyses
PoisonCheckingPass::run(Module
&M
,
323 ModuleAnalysisManager
&AM
) {
324 bool Changed
= false;
326 Changed
|= rewrite(F
);
328 return Changed
? PreservedAnalyses::none() : PreservedAnalyses::all();
331 PreservedAnalyses
PoisonCheckingPass::run(Function
&F
,
332 FunctionAnalysisManager
&AM
) {
333 return rewrite(F
) ? PreservedAnalyses::none() : PreservedAnalyses::all();
337 - Control dependent poison UB
338 - Strict mode - (i.e. must analyze every operand)
339 - Poison through memory
341 - Full coverage of intrinsics, etc.. (ouch)
343 Instructions w/Unclear Semantics:
344 - shufflevector - It would seem reasonable for an out of bounds mask element
345 to produce poison, but the LangRef does not state.
346 - all binary ops w/vector operands - The likely interpretation would be that
347 any element overflowing should produce poison for the entire result, but
348 the LangRef does not state.
349 - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems
350 strange that only certian flags should be documented as producing poison.
352 Cases of clear poison semantics not yet implemented:
353 - Exact flags on ashr/lshr produce poison
354 - NSW/NUW flags on shl produce poison
355 - Inbounds flag on getelementptr produce poison
356 - fptosi/fptoui (out of bounds input) produce poison
357 - Scalable vector types for insertelement/extractelement
358 - Floating point binary ops w/fmf nnan/noinfs flags produce poison