1 //===- ADCE.cpp - Code to perform dead code elimination -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Aggressive Dead Code Elimination pass. This pass
10 // optimistically assumes that all instructions are dead until proven otherwise,
11 // allowing it to eliminate dead computations that other DCE passes do not
12 // catch, particularly involving loop computations.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/ADCE.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Analysis/PostDominators.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/DebugInfoMetadata.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstIterator.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/PassManager.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/Value.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/ProfileData/InstrProf.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Utils/Local.h"
60 #define DEBUG_TYPE "adce"
62 STATISTIC(NumRemoved
, "Number of instructions removed");
63 STATISTIC(NumBranchesRemoved
, "Number of branch instructions removed");
65 // This is a temporary option until we change the interface to this pass based
66 // on optimization level.
67 static cl::opt
<bool> RemoveControlFlowFlag("adce-remove-control-flow",
68 cl::init(true), cl::Hidden
);
70 // This option enables removing of may-be-infinite loops which have no other
72 static cl::opt
<bool> RemoveLoops("adce-remove-loops", cl::init(false),
77 /// Information about Instructions
79 /// True if the associated instruction is live.
82 /// Quick access to information for block containing associated Instruction.
83 struct BlockInfoType
*Block
= nullptr;
86 /// Information about basic blocks relevant to dead code elimination.
87 struct BlockInfoType
{
88 /// True when this block contains a live instructions.
91 /// True when this block ends in an unconditional branch.
92 bool UnconditionalBranch
= false;
94 /// True when this block is known to have live PHI nodes.
95 bool HasLivePhiNodes
= false;
97 /// Control dependence sources need to be live for this block.
100 /// Quick access to the LiveInfo for the terminator,
101 /// holds the value &InstInfo[Terminator]
102 InstInfoType
*TerminatorLiveInfo
= nullptr;
104 /// Corresponding BasicBlock.
105 BasicBlock
*BB
= nullptr;
107 /// Cache of BB->getTerminator().
108 Instruction
*Terminator
= nullptr;
110 /// Post-order numbering of reverse control flow graph.
113 bool terminatorIsLive() const { return TerminatorLiveInfo
->Live
; }
116 class AggressiveDeadCodeElimination
{
119 // ADCE does not use DominatorTree per se, but it updates it to preserve the
122 PostDominatorTree
&PDT
;
124 /// Mapping of blocks to associated information, an element in BlockInfoVec.
125 /// Use MapVector to get deterministic iteration order.
126 MapVector
<BasicBlock
*, BlockInfoType
> BlockInfo
;
127 bool isLive(BasicBlock
*BB
) { return BlockInfo
[BB
].Live
; }
129 /// Mapping of instructions to associated information.
130 DenseMap
<Instruction
*, InstInfoType
> InstInfo
;
131 bool isLive(Instruction
*I
) { return InstInfo
[I
].Live
; }
133 /// Instructions known to be live where we need to mark
134 /// reaching definitions as live.
135 SmallVector
<Instruction
*, 128> Worklist
;
137 /// Debug info scopes around a live instruction.
138 SmallPtrSet
<const Metadata
*, 32> AliveScopes
;
140 /// Set of blocks with not known to have live terminators.
141 SmallSetVector
<BasicBlock
*, 16> BlocksWithDeadTerminators
;
143 /// The set of blocks which we have determined whose control
144 /// dependence sources must be live and which have not had
145 /// those dependences analyzed.
146 SmallPtrSet
<BasicBlock
*, 16> NewLiveBlocks
;
148 /// Set up auxiliary data structures for Instructions and BasicBlocks and
149 /// initialize the Worklist to the set of must-be-live Instruscions.
152 /// Return true for operations which are always treated as live.
153 bool isAlwaysLive(Instruction
&I
);
155 /// Return true for instrumentation instructions for value profiling.
156 bool isInstrumentsConstant(Instruction
&I
);
158 /// Propagate liveness to reaching definitions.
159 void markLiveInstructions();
161 /// Mark an instruction as live.
162 void markLive(Instruction
*I
);
164 /// Mark a block as live.
165 void markLive(BlockInfoType
&BB
);
166 void markLive(BasicBlock
*BB
) { markLive(BlockInfo
[BB
]); }
168 /// Mark terminators of control predecessors of a PHI node live.
169 void markPhiLive(PHINode
*PN
);
171 /// Record the Debug Scopes which surround live debug information.
172 void collectLiveScopes(const DILocalScope
&LS
);
173 void collectLiveScopes(const DILocation
&DL
);
175 /// Analyze dead branches to find those whose branches are the sources
176 /// of control dependences impacting a live block. Those branches are
178 void markLiveBranchesFromControlDependences();
180 /// Remove instructions not marked live, return if any instruction was
182 bool removeDeadInstructions();
184 /// Identify connected sections of the control flow graph which have
185 /// dead terminators and rewrite the control flow graph to remove them.
186 bool updateDeadRegions();
188 /// Set the BlockInfo::PostOrder field based on a post-order
189 /// numbering of the reverse control flow graph.
190 void computeReversePostOrder();
192 /// Make the terminator of this block an unconditional branch to \p Target.
193 void makeUnconditional(BasicBlock
*BB
, BasicBlock
*Target
);
196 AggressiveDeadCodeElimination(Function
&F
, DominatorTree
*DT
,
197 PostDominatorTree
&PDT
)
198 : F(F
), DT(DT
), PDT(PDT
) {}
200 bool performDeadCodeElimination();
203 } // end anonymous namespace
205 bool AggressiveDeadCodeElimination::performDeadCodeElimination() {
207 markLiveInstructions();
208 return removeDeadInstructions();
211 static bool isUnconditionalBranch(Instruction
*Term
) {
212 auto *BR
= dyn_cast
<BranchInst
>(Term
);
213 return BR
&& BR
->isUnconditional();
216 void AggressiveDeadCodeElimination::initialize() {
217 auto NumBlocks
= F
.size();
219 // We will have an entry in the map for each block so we grow the
220 // structure to twice that size to keep the load factor low in the hash table.
221 BlockInfo
.reserve(NumBlocks
);
224 // Iterate over blocks and initialize BlockInfoVec entries, count
225 // instructions to size the InstInfo hash table.
227 NumInsts
+= BB
.size();
228 auto &Info
= BlockInfo
[&BB
];
230 Info
.Terminator
= BB
.getTerminator();
231 Info
.UnconditionalBranch
= isUnconditionalBranch(Info
.Terminator
);
234 // Initialize instruction map and set pointers to block info.
235 InstInfo
.reserve(NumInsts
);
236 for (auto &BBInfo
: BlockInfo
)
237 for (Instruction
&I
: *BBInfo
.second
.BB
)
238 InstInfo
[&I
].Block
= &BBInfo
.second
;
240 // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not
241 // add any more elements to either after this point.
242 for (auto &BBInfo
: BlockInfo
)
243 BBInfo
.second
.TerminatorLiveInfo
= &InstInfo
[BBInfo
.second
.Terminator
];
245 // Collect the set of "root" instructions that are known live.
246 for (Instruction
&I
: instructions(F
))
250 if (!RemoveControlFlowFlag
)
254 // This stores state for the depth-first iterator. In addition
255 // to recording which nodes have been visited we also record whether
256 // a node is currently on the "stack" of active ancestors of the current
258 using StatusMap
= DenseMap
<BasicBlock
*, bool>;
260 class DFState
: public StatusMap
{
262 std::pair
<StatusMap::iterator
, bool> insert(BasicBlock
*BB
) {
263 return StatusMap::insert(std::make_pair(BB
, true));
266 // Invoked after we have visited all children of a node.
267 void completed(BasicBlock
*BB
) { (*this)[BB
] = false; }
269 // Return true if \p BB is currently on the active stack
271 bool onStack(BasicBlock
*BB
) {
272 auto Iter
= find(BB
);
273 return Iter
!= end() && Iter
->second
;
277 State
.reserve(F
.size());
278 // Iterate over blocks in depth-first pre-order and
279 // treat all edges to a block already seen as loop back edges
280 // and mark the branch live it if there is a back edge.
281 for (auto *BB
: depth_first_ext(&F
.getEntryBlock(), State
)) {
282 Instruction
*Term
= BB
->getTerminator();
286 for (auto *Succ
: successors(BB
))
287 if (State
.onStack(Succ
)) {
295 // Mark blocks live if there is no path from the block to a
296 // return of the function.
297 // We do this by seeing which of the postdomtree root children exit the
298 // program, and for all others, mark the subtree live.
299 for (auto &PDTChild
: children
<DomTreeNode
*>(PDT
.getRootNode())) {
300 auto *BB
= PDTChild
->getBlock();
301 auto &Info
= BlockInfo
[BB
];
302 // Real function return
303 if (isa
<ReturnInst
>(Info
.Terminator
)) {
304 LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB
->getName()
309 // This child is something else, like an infinite loop.
310 for (auto DFNode
: depth_first(PDTChild
))
311 markLive(BlockInfo
[DFNode
->getBlock()].Terminator
);
314 // Treat the entry block as always live
315 auto *BB
= &F
.getEntryBlock();
316 auto &EntryInfo
= BlockInfo
[BB
];
317 EntryInfo
.Live
= true;
318 if (EntryInfo
.UnconditionalBranch
)
319 markLive(EntryInfo
.Terminator
);
321 // Build initial collection of blocks with dead terminators
322 for (auto &BBInfo
: BlockInfo
)
323 if (!BBInfo
.second
.terminatorIsLive())
324 BlocksWithDeadTerminators
.insert(BBInfo
.second
.BB
);
327 bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction
&I
) {
328 // TODO -- use llvm::isInstructionTriviallyDead
329 if (I
.isEHPad() || I
.mayHaveSideEffects()) {
330 // Skip any value profile instrumentation calls if they are
331 // instrumenting constants.
332 if (isInstrumentsConstant(I
))
336 if (!I
.isTerminator())
338 if (RemoveControlFlowFlag
&& (isa
<BranchInst
>(I
) || isa
<SwitchInst
>(I
)))
343 // Check if this instruction is a runtime call for value profiling and
344 // if it's instrumenting a constant.
345 bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction
&I
) {
346 // TODO -- move this test into llvm::isInstructionTriviallyDead
347 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
))
348 if (Function
*Callee
= CI
->getCalledFunction())
349 if (Callee
->getName().equals(getInstrProfValueProfFuncName()))
350 if (isa
<Constant
>(CI
->getArgOperand(0)))
355 void AggressiveDeadCodeElimination::markLiveInstructions() {
356 // Propagate liveness backwards to operands.
358 // Worklist holds newly discovered live instructions
359 // where we need to mark the inputs as live.
360 while (!Worklist
.empty()) {
361 Instruction
*LiveInst
= Worklist
.pop_back_val();
362 LLVM_DEBUG(dbgs() << "work live: "; LiveInst
->dump(););
364 for (Use
&OI
: LiveInst
->operands())
365 if (Instruction
*Inst
= dyn_cast
<Instruction
>(OI
))
368 if (auto *PN
= dyn_cast
<PHINode
>(LiveInst
))
372 // After data flow liveness has been identified, examine which branch
373 // decisions are required to determine live instructions are executed.
374 markLiveBranchesFromControlDependences();
376 } while (!Worklist
.empty());
379 void AggressiveDeadCodeElimination::markLive(Instruction
*I
) {
380 auto &Info
= InstInfo
[I
];
384 LLVM_DEBUG(dbgs() << "mark live: "; I
->dump());
386 Worklist
.push_back(I
);
388 // Collect the live debug info scopes attached to this instruction.
389 if (const DILocation
*DL
= I
->getDebugLoc())
390 collectLiveScopes(*DL
);
392 // Mark the containing block live
393 auto &BBInfo
= *Info
.Block
;
394 if (BBInfo
.Terminator
== I
) {
395 BlocksWithDeadTerminators
.remove(BBInfo
.BB
);
396 // For live terminators, mark destination blocks
397 // live to preserve this control flow edges.
398 if (!BBInfo
.UnconditionalBranch
)
399 for (auto *BB
: successors(I
->getParent()))
405 void AggressiveDeadCodeElimination::markLive(BlockInfoType
&BBInfo
) {
408 LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo
.BB
->getName() << '\n');
410 if (!BBInfo
.CFLive
) {
411 BBInfo
.CFLive
= true;
412 NewLiveBlocks
.insert(BBInfo
.BB
);
415 // Mark unconditional branches at the end of live
416 // blocks as live since there is no work to do for them later
417 if (BBInfo
.UnconditionalBranch
)
418 markLive(BBInfo
.Terminator
);
421 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope
&LS
) {
422 if (!AliveScopes
.insert(&LS
).second
)
425 if (isa
<DISubprogram
>(LS
))
428 // Tail-recurse through the scope chain.
429 collectLiveScopes(cast
<DILocalScope
>(*LS
.getScope()));
432 void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation
&DL
) {
433 // Even though DILocations are not scopes, shove them into AliveScopes so we
434 // don't revisit them.
435 if (!AliveScopes
.insert(&DL
).second
)
438 // Collect live scopes from the scope chain.
439 collectLiveScopes(*DL
.getScope());
441 // Tail-recurse through the inlined-at chain.
442 if (const DILocation
*IA
= DL
.getInlinedAt())
443 collectLiveScopes(*IA
);
446 void AggressiveDeadCodeElimination::markPhiLive(PHINode
*PN
) {
447 auto &Info
= BlockInfo
[PN
->getParent()];
448 // Only need to check this once per block.
449 if (Info
.HasLivePhiNodes
)
451 Info
.HasLivePhiNodes
= true;
453 // If a predecessor block is not live, mark it as control-flow live
454 // which will trigger marking live branches upon which
455 // that block is control dependent.
456 for (auto *PredBB
: predecessors(Info
.BB
)) {
457 auto &Info
= BlockInfo
[PredBB
];
460 NewLiveBlocks
.insert(PredBB
);
465 void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() {
466 if (BlocksWithDeadTerminators
.empty())
470 dbgs() << "new live blocks:\n";
471 for (auto *BB
: NewLiveBlocks
)
472 dbgs() << "\t" << BB
->getName() << '\n';
473 dbgs() << "dead terminator blocks:\n";
474 for (auto *BB
: BlocksWithDeadTerminators
)
475 dbgs() << "\t" << BB
->getName() << '\n';
478 // The dominance frontier of a live block X in the reverse
479 // control graph is the set of blocks upon which X is control
480 // dependent. The following sequence computes the set of blocks
481 // which currently have dead terminators that are control
482 // dependence sources of a block which is in NewLiveBlocks.
484 const SmallPtrSet
<BasicBlock
*, 16> BWDT
{
485 BlocksWithDeadTerminators
.begin(),
486 BlocksWithDeadTerminators
.end()
488 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
489 ReverseIDFCalculator
IDFs(PDT
);
490 IDFs
.setDefiningBlocks(NewLiveBlocks
);
491 IDFs
.setLiveInBlocks(BWDT
);
492 IDFs
.calculate(IDFBlocks
);
493 NewLiveBlocks
.clear();
495 // Dead terminators which control live blocks are now marked live.
496 for (auto *BB
: IDFBlocks
) {
497 LLVM_DEBUG(dbgs() << "live control in: " << BB
->getName() << '\n');
498 markLive(BB
->getTerminator());
502 //===----------------------------------------------------------------------===//
504 // Routines to update the CFG and SSA information before removing dead code.
506 //===----------------------------------------------------------------------===//
507 bool AggressiveDeadCodeElimination::removeDeadInstructions() {
508 // Updates control and dataflow around dead blocks
509 bool RegionsUpdated
= updateDeadRegions();
512 for (Instruction
&I
: instructions(F
)) {
513 // Check if the instruction is alive.
517 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
)) {
518 // Check if the scope of this variable location is alive.
519 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
522 // If intrinsic is pointing at a live SSA value, there may be an
523 // earlier optimization bug: if we know the location of the variable,
524 // why isn't the scope of the location alive?
525 for (Value
*V
: DII
->location_ops()) {
526 if (Instruction
*II
= dyn_cast
<Instruction
>(V
)) {
528 dbgs() << "Dropping debug info for " << *DII
<< "\n";
537 // The inverse of the live set is the dead set. These are those instructions
538 // that have no side effects and do not influence the control flow or return
539 // value of the function, and may therefore be deleted safely.
540 // NOTE: We reuse the Worklist vector here for memory efficiency.
541 for (Instruction
&I
: instructions(F
)) {
542 // Check if the instruction is alive.
546 if (auto *DII
= dyn_cast
<DbgInfoIntrinsic
>(&I
)) {
547 // Check if the scope of this variable location is alive.
548 if (AliveScopes
.count(DII
->getDebugLoc()->getScope()))
551 // Fallthrough and drop the intrinsic.
554 // Prepare to delete.
555 Worklist
.push_back(&I
);
557 I
.dropAllReferences();
560 for (Instruction
*&I
: Worklist
) {
562 I
->eraseFromParent();
565 return !Worklist
.empty() || RegionsUpdated
;
568 // A dead region is the set of dead blocks with a common live post-dominator.
569 bool AggressiveDeadCodeElimination::updateDeadRegions() {
571 dbgs() << "final dead terminator blocks: " << '\n';
572 for (auto *BB
: BlocksWithDeadTerminators
)
573 dbgs() << '\t' << BB
->getName()
574 << (BlockInfo
[BB
].Live
? " LIVE\n" : "\n");
577 // Don't compute the post ordering unless we needed it.
578 bool HavePostOrder
= false;
579 bool Changed
= false;
581 for (auto *BB
: BlocksWithDeadTerminators
) {
582 auto &Info
= BlockInfo
[BB
];
583 if (Info
.UnconditionalBranch
) {
584 InstInfo
[Info
.Terminator
].Live
= true;
588 if (!HavePostOrder
) {
589 computeReversePostOrder();
590 HavePostOrder
= true;
593 // Add an unconditional branch to the successor closest to the
594 // end of the function which insures a path to the exit for each
596 BlockInfoType
*PreferredSucc
= nullptr;
597 for (auto *Succ
: successors(BB
)) {
598 auto *Info
= &BlockInfo
[Succ
];
599 if (!PreferredSucc
|| PreferredSucc
->PostOrder
< Info
->PostOrder
)
600 PreferredSucc
= Info
;
602 assert((PreferredSucc
&& PreferredSucc
->PostOrder
> 0) &&
603 "Failed to find safe successor for dead branch");
605 // Collect removed successors to update the (Post)DominatorTrees.
606 SmallPtrSet
<BasicBlock
*, 4> RemovedSuccessors
;
608 for (auto *Succ
: successors(BB
)) {
609 if (!First
|| Succ
!= PreferredSucc
->BB
) {
610 Succ
->removePredecessor(BB
);
611 RemovedSuccessors
.insert(Succ
);
615 makeUnconditional(BB
, PreferredSucc
->BB
);
617 // Inform the dominators about the deleted CFG edges.
618 SmallVector
<DominatorTree::UpdateType
, 4> DeletedEdges
;
619 for (auto *Succ
: RemovedSuccessors
) {
620 // It might have happened that the same successor appeared multiple times
621 // and the CFG edge wasn't really removed.
622 if (Succ
!= PreferredSucc
->BB
) {
623 LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion"
624 << BB
->getName() << " -> " << Succ
->getName()
626 DeletedEdges
.push_back({DominatorTree::Delete
, BB
, Succ
});
630 DomTreeUpdater(DT
, &PDT
, DomTreeUpdater::UpdateStrategy::Eager
)
631 .applyUpdates(DeletedEdges
);
633 NumBranchesRemoved
+= 1;
640 // reverse top-sort order
641 void AggressiveDeadCodeElimination::computeReversePostOrder() {
642 // This provides a post-order numbering of the reverse control flow graph
643 // Note that it is incomplete in the presence of infinite loops but we don't
644 // need numbers blocks which don't reach the end of the functions since
645 // all branches in those blocks are forced live.
647 // For each block without successors, extend the DFS from the block
648 // backward through the graph
649 SmallPtrSet
<BasicBlock
*, 16> Visited
;
650 unsigned PostOrder
= 0;
652 if (!succ_empty(&BB
))
654 for (BasicBlock
*Block
: inverse_post_order_ext(&BB
,Visited
))
655 BlockInfo
[Block
].PostOrder
= PostOrder
++;
659 void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock
*BB
,
660 BasicBlock
*Target
) {
661 Instruction
*PredTerm
= BB
->getTerminator();
662 // Collect the live debug info scopes attached to this instruction.
663 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
664 collectLiveScopes(*DL
);
666 // Just mark live an existing unconditional branch
667 if (isUnconditionalBranch(PredTerm
)) {
668 PredTerm
->setSuccessor(0, Target
);
669 InstInfo
[PredTerm
].Live
= true;
672 LLVM_DEBUG(dbgs() << "making unconditional " << BB
->getName() << '\n');
673 NumBranchesRemoved
+= 1;
674 IRBuilder
<> Builder(PredTerm
);
675 auto *NewTerm
= Builder
.CreateBr(Target
);
676 InstInfo
[NewTerm
].Live
= true;
677 if (const DILocation
*DL
= PredTerm
->getDebugLoc())
678 NewTerm
->setDebugLoc(DL
);
680 InstInfo
.erase(PredTerm
);
681 PredTerm
->eraseFromParent();
684 //===----------------------------------------------------------------------===//
686 // Pass Manager integration code
688 //===----------------------------------------------------------------------===//
689 PreservedAnalyses
ADCEPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
690 // ADCE does not need DominatorTree, but require DominatorTree here
691 // to update analysis if it is already available.
692 auto *DT
= FAM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
693 auto &PDT
= FAM
.getResult
<PostDominatorTreeAnalysis
>(F
);
694 if (!AggressiveDeadCodeElimination(F
, DT
, PDT
).performDeadCodeElimination())
695 return PreservedAnalyses::all();
697 PreservedAnalyses PA
;
698 // TODO: We could track if we have actually done CFG changes.
699 if (!RemoveControlFlowFlag
)
700 PA
.preserveSet
<CFGAnalyses
>();
702 PA
.preserve
<DominatorTreeAnalysis
>();
703 PA
.preserve
<PostDominatorTreeAnalysis
>();
710 struct ADCELegacyPass
: public FunctionPass
{
711 static char ID
; // Pass identification, replacement for typeid
713 ADCELegacyPass() : FunctionPass(ID
) {
714 initializeADCELegacyPassPass(*PassRegistry::getPassRegistry());
717 bool runOnFunction(Function
&F
) override
{
721 // ADCE does not need DominatorTree, but require DominatorTree here
722 // to update analysis if it is already available.
723 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
724 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
725 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
726 return AggressiveDeadCodeElimination(F
, DT
, PDT
)
727 .performDeadCodeElimination();
730 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
731 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
732 if (!RemoveControlFlowFlag
)
733 AU
.setPreservesCFG();
735 AU
.addPreserved
<DominatorTreeWrapperPass
>();
736 AU
.addPreserved
<PostDominatorTreeWrapperPass
>();
738 AU
.addPreserved
<GlobalsAAWrapperPass
>();
742 } // end anonymous namespace
744 char ADCELegacyPass::ID
= 0;
746 INITIALIZE_PASS_BEGIN(ADCELegacyPass
, "adce",
747 "Aggressive Dead Code Elimination", false, false)
748 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
749 INITIALIZE_PASS_END(ADCELegacyPass
, "adce", "Aggressive Dead Code Elimination",
752 FunctionPass
*llvm::createAggressiveDCEPass() { return new ADCELegacyPass(); }