[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / CallSiteSplitting.cpp
blob2eb94b721d966fd6ecf9a8c5656fc6b1d365be64
1 //===- CallSiteSplitting.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a transformation that tries to split a call-site to pass
10 // more constrained arguments if its argument is predicated in the control flow
11 // so that we can expose better context to the later passes (e.g, inliner, jump
12 // threading, or IPA-CP based function cloning, etc.).
13 // As of now we support two cases :
15 // 1) Try to a split call-site with constrained arguments, if any constraints
16 // on any argument can be found by following the single predecessors of the
17 // all site's predecessors. Currently this pass only handles call-sites with 2
18 // predecessors. For example, in the code below, we try to split the call-site
19 // since we can predicate the argument(ptr) based on the OR condition.
21 // Split from :
22 // if (!ptr || c)
23 // callee(ptr);
24 // to :
25 // if (!ptr)
26 // callee(null) // set the known constant value
27 // else if (c)
28 // callee(nonnull ptr) // set non-null attribute in the argument
30 // 2) We can also split a call-site based on constant incoming values of a PHI
31 // For example,
32 // from :
33 // Header:
34 // %c = icmp eq i32 %i1, %i2
35 // br i1 %c, label %Tail, label %TBB
36 // TBB:
37 // br label Tail%
38 // Tail:
39 // %p = phi i32 [ 0, %Header], [ 1, %TBB]
40 // call void @bar(i32 %p)
41 // to
42 // Header:
43 // %c = icmp eq i32 %i1, %i2
44 // br i1 %c, label %Tail-split0, label %TBB
45 // TBB:
46 // br label %Tail-split1
47 // Tail-split0:
48 // call void @bar(i32 0)
49 // br label %Tail
50 // Tail-split1:
51 // call void @bar(i32 1)
52 // br label %Tail
53 // Tail:
54 // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
56 //===----------------------------------------------------------------------===//
58 #include "llvm/Transforms/Scalar/CallSiteSplitting.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/Analysis/TargetLibraryInfo.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/Local.h"
72 using namespace llvm;
73 using namespace PatternMatch;
75 #define DEBUG_TYPE "callsite-splitting"
77 STATISTIC(NumCallSiteSplit, "Number of call-site split");
79 /// Only allow instructions before a call, if their CodeSize cost is below
80 /// DuplicationThreshold. Those instructions need to be duplicated in all
81 /// split blocks.
82 static cl::opt<unsigned>
83 DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
84 cl::desc("Only allow instructions before a call, if "
85 "their cost is below DuplicationThreshold"),
86 cl::init(5));
88 static void addNonNullAttribute(CallBase &CB, Value *Op) {
89 unsigned ArgNo = 0;
90 for (auto &I : CB.args()) {
91 if (&*I == Op)
92 CB.addParamAttr(ArgNo, Attribute::NonNull);
93 ++ArgNo;
97 static void setConstantInArgument(CallBase &CB, Value *Op,
98 Constant *ConstValue) {
99 unsigned ArgNo = 0;
100 for (auto &I : CB.args()) {
101 if (&*I == Op) {
102 // It is possible we have already added the non-null attribute to the
103 // parameter by using an earlier constraining condition.
104 CB.removeParamAttr(ArgNo, Attribute::NonNull);
105 CB.setArgOperand(ArgNo, ConstValue);
107 ++ArgNo;
111 static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) {
112 assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
113 Value *Op0 = Cmp->getOperand(0);
114 unsigned ArgNo = 0;
115 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) {
116 // Don't consider constant or arguments that are already known non-null.
117 if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull))
118 continue;
120 if (*I == Op0)
121 return true;
123 return false;
126 typedef std::pair<ICmpInst *, unsigned> ConditionTy;
127 typedef SmallVector<ConditionTy, 2> ConditionsTy;
129 /// If From has a conditional jump to To, add the condition to Conditions,
130 /// if it is relevant to any argument at CB.
131 static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To,
132 ConditionsTy &Conditions) {
133 auto *BI = dyn_cast<BranchInst>(From->getTerminator());
134 if (!BI || !BI->isConditional())
135 return;
137 CmpInst::Predicate Pred;
138 Value *Cond = BI->getCondition();
139 if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
140 return;
142 ICmpInst *Cmp = cast<ICmpInst>(Cond);
143 if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
144 if (isCondRelevantToAnyCallArgument(Cmp, CB))
145 Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
146 ? Pred
147 : Cmp->getInversePredicate()});
150 /// Record ICmp conditions relevant to any argument in CB following Pred's
151 /// single predecessors. If there are conflicting conditions along a path, like
152 /// x == 1 and x == 0, the first condition will be used. We stop once we reach
153 /// an edge to StopAt.
154 static void recordConditions(CallBase &CB, BasicBlock *Pred,
155 ConditionsTy &Conditions, BasicBlock *StopAt) {
156 BasicBlock *From = Pred;
157 BasicBlock *To = Pred;
158 SmallPtrSet<BasicBlock *, 4> Visited;
159 while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
160 (From = From->getSinglePredecessor())) {
161 recordCondition(CB, From, To, Conditions);
162 Visited.insert(From);
163 To = From;
167 static void addConditions(CallBase &CB, const ConditionsTy &Conditions) {
168 for (auto &Cond : Conditions) {
169 Value *Arg = Cond.first->getOperand(0);
170 Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
171 if (Cond.second == ICmpInst::ICMP_EQ)
172 setConstantInArgument(CB, Arg, ConstVal);
173 else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
174 assert(Cond.second == ICmpInst::ICMP_NE);
175 addNonNullAttribute(CB, Arg);
180 static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
181 SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
182 assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
183 return Preds;
186 static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) {
187 if (CB.isConvergent() || CB.cannotDuplicate())
188 return false;
190 // FIXME: As of now we handle only CallInst. InvokeInst could be handled
191 // without too much effort.
192 if (!isa<CallInst>(CB))
193 return false;
195 BasicBlock *CallSiteBB = CB.getParent();
196 // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
197 SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
198 if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
199 isa<IndirectBrInst>(Preds[1]->getTerminator()))
200 return false;
202 // BasicBlock::canSplitPredecessors is more aggressive, so checking for
203 // BasicBlock::isEHPad as well.
204 if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
205 return false;
207 // Allow splitting a call-site only when the CodeSize cost of the
208 // instructions before the call is less then DuplicationThreshold. The
209 // instructions before the call will be duplicated in the split blocks and
210 // corresponding uses will be updated.
211 InstructionCost Cost = 0;
212 for (auto &InstBeforeCall :
213 llvm::make_range(CallSiteBB->begin(), CB.getIterator())) {
214 Cost += TTI.getInstructionCost(&InstBeforeCall,
215 TargetTransformInfo::TCK_CodeSize);
216 if (Cost >= DuplicationThreshold)
217 return false;
220 return true;
223 static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
224 Value *V) {
225 Instruction *Copy = I->clone();
226 Copy->setName(I->getName());
227 Copy->insertBefore(Before);
228 if (V)
229 Copy->setOperand(0, V);
230 return Copy;
233 /// Copy mandatory `musttail` return sequence that follows original `CI`, and
234 /// link it up to `NewCI` value instead:
236 /// * (optional) `bitcast NewCI to ...`
237 /// * `ret bitcast or NewCI`
239 /// Insert this sequence right before `SplitBB`'s terminator, which will be
240 /// cleaned up later in `splitCallSite` below.
241 static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
242 Instruction *NewCI) {
243 bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
244 auto II = std::next(CI->getIterator());
246 BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
247 if (BCI)
248 ++II;
250 ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
251 assert(RI && "`musttail` call must be followed by `ret` instruction");
253 Instruction *TI = SplitBB->getTerminator();
254 Value *V = NewCI;
255 if (BCI)
256 V = cloneInstForMustTail(BCI, TI, V);
257 cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
259 // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
260 // that prevents doing this now.
263 /// For each (predecessor, conditions from predecessors) pair, it will split the
264 /// basic block containing the call site, hook it up to the predecessor and
265 /// replace the call instruction with new call instructions, which contain
266 /// constraints based on the conditions from their predecessors.
267 /// For example, in the IR below with an OR condition, the call-site can
268 /// be split. In this case, Preds for Tail is [(Header, a == null),
269 /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
270 /// CallInst1, which has constraints based on the conditions from Head and
271 /// CallInst2, which has constraints based on the conditions coming from TBB.
273 /// From :
275 /// Header:
276 /// %c = icmp eq i32* %a, null
277 /// br i1 %c %Tail, %TBB
278 /// TBB:
279 /// %c2 = icmp eq i32* %b, null
280 /// br i1 %c %Tail, %End
281 /// Tail:
282 /// %ca = call i1 @callee (i32* %a, i32* %b)
284 /// to :
286 /// Header: // PredBB1 is Header
287 /// %c = icmp eq i32* %a, null
288 /// br i1 %c %Tail-split1, %TBB
289 /// TBB: // PredBB2 is TBB
290 /// %c2 = icmp eq i32* %b, null
291 /// br i1 %c %Tail-split2, %End
292 /// Tail-split1:
293 /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1
294 /// br %Tail
295 /// Tail-split2:
296 /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
297 /// br %Tail
298 /// Tail:
299 /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
301 /// Note that in case any arguments at the call-site are constrained by its
302 /// predecessors, new call-sites with more constrained arguments will be
303 /// created in createCallSitesOnPredicatedArgument().
304 static void splitCallSite(
305 CallBase &CB,
306 const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
307 DomTreeUpdater &DTU) {
308 BasicBlock *TailBB = CB.getParent();
309 bool IsMustTailCall = CB.isMustTailCall();
311 PHINode *CallPN = nullptr;
313 // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
314 // split blocks will be terminated right after that so there're no users for
315 // this phi in a `TailBB`.
316 if (!IsMustTailCall && !CB.use_empty()) {
317 CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call");
318 CallPN->setDebugLoc(CB.getDebugLoc());
321 LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n");
323 assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
324 // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
325 // here.
326 ValueToValueMapTy ValueToValueMaps[2];
327 for (unsigned i = 0; i < Preds.size(); i++) {
328 BasicBlock *PredBB = Preds[i].first;
329 BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
330 TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i],
331 DTU);
332 assert(SplitBlock && "Unexpected new basic block split.");
334 auto *NewCI =
335 cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator()));
336 addConditions(*NewCI, Preds[i].second);
338 // Handle PHIs used as arguments in the call-site.
339 for (PHINode &PN : TailBB->phis()) {
340 unsigned ArgNo = 0;
341 for (auto &CI : CB.args()) {
342 if (&*CI == &PN) {
343 NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
345 ++ArgNo;
348 LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName()
349 << "\n");
350 if (CallPN)
351 CallPN->addIncoming(NewCI, SplitBlock);
353 // Clone and place bitcast and return instructions before `TI`
354 if (IsMustTailCall)
355 copyMustTailReturn(SplitBlock, &CB, NewCI);
358 NumCallSiteSplit++;
360 // FIXME: remove TI in `copyMustTailReturn`
361 if (IsMustTailCall) {
362 // Remove superfluous `br` terminators from the end of the Split blocks
363 // NOTE: Removing terminator removes the SplitBlock from the TailBB's
364 // predecessors. Therefore we must get complete list of Splits before
365 // attempting removal.
366 SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
367 assert(Splits.size() == 2 && "Expected exactly 2 splits!");
368 for (unsigned i = 0; i < Splits.size(); i++) {
369 Splits[i]->getTerminator()->eraseFromParent();
370 DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
373 // Erase the tail block once done with musttail patching
374 DTU.deleteBB(TailBB);
375 return;
378 auto *OriginalBegin = &*TailBB->begin();
379 // Replace users of the original call with a PHI mering call-sites split.
380 if (CallPN) {
381 CallPN->insertBefore(OriginalBegin);
382 CB.replaceAllUsesWith(CallPN);
385 // Remove instructions moved to split blocks from TailBB, from the duplicated
386 // call instruction to the beginning of the basic block. If an instruction
387 // has any uses, add a new PHI node to combine the values coming from the
388 // split blocks. The new PHI nodes are placed before the first original
389 // instruction, so we do not end up deleting them. By using reverse-order, we
390 // do not introduce unnecessary PHI nodes for def-use chains from the call
391 // instruction to the beginning of the block.
392 auto I = CB.getReverseIterator();
393 while (I != TailBB->rend()) {
394 Instruction *CurrentI = &*I++;
395 if (!CurrentI->use_empty()) {
396 // If an existing PHI has users after the call, there is no need to create
397 // a new one.
398 if (isa<PHINode>(CurrentI))
399 continue;
400 PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
401 NewPN->setDebugLoc(CurrentI->getDebugLoc());
402 for (auto &Mapping : ValueToValueMaps)
403 NewPN->addIncoming(Mapping[CurrentI],
404 cast<Instruction>(Mapping[CurrentI])->getParent());
405 NewPN->insertBefore(&*TailBB->begin());
406 CurrentI->replaceAllUsesWith(NewPN);
408 CurrentI->eraseFromParent();
409 // We are done once we handled the first original instruction in TailBB.
410 if (CurrentI == OriginalBegin)
411 break;
415 // Return true if the call-site has an argument which is a PHI with only
416 // constant incoming values.
417 static bool isPredicatedOnPHI(CallBase &CB) {
418 BasicBlock *Parent = CB.getParent();
419 if (&CB != Parent->getFirstNonPHIOrDbg())
420 return false;
422 for (auto &PN : Parent->phis()) {
423 for (auto &Arg : CB.args()) {
424 if (&*Arg != &PN)
425 continue;
426 assert(PN.getNumIncomingValues() == 2 &&
427 "Unexpected number of incoming values");
428 if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1))
429 return false;
430 if (PN.getIncomingValue(0) == PN.getIncomingValue(1))
431 continue;
432 if (isa<Constant>(PN.getIncomingValue(0)) &&
433 isa<Constant>(PN.getIncomingValue(1)))
434 return true;
437 return false;
440 using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
442 // Check if any of the arguments in CS are predicated on a PHI node and return
443 // the set of predecessors we should use for splitting.
444 static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) {
445 if (!isPredicatedOnPHI(CB))
446 return {};
448 auto Preds = getTwoPredecessors(CB.getParent());
449 return {{Preds[0], {}}, {Preds[1], {}}};
452 // Checks if any of the arguments in CS are predicated in a predecessor and
453 // returns a list of predecessors with the conditions that hold on their edges
454 // to CS.
455 static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB,
456 DomTreeUpdater &DTU) {
457 auto Preds = getTwoPredecessors(CB.getParent());
458 if (Preds[0] == Preds[1])
459 return {};
461 // We can stop recording conditions once we reached the immediate dominator
462 // for the block containing the call site. Conditions in predecessors of the
463 // that node will be the same for all paths to the call site and splitting
464 // is not beneficial.
465 assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
466 auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent());
467 BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
469 SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
470 for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
471 ConditionsTy Conditions;
472 // Record condition on edge BB(CS) <- Pred
473 recordCondition(CB, Pred, CB.getParent(), Conditions);
474 // Record conditions following Pred's single predecessors.
475 recordConditions(CB, Pred, Conditions, StopAt);
476 PredsCS.push_back({Pred, Conditions});
479 if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
480 return P.second.empty();
482 return {};
484 return PredsCS;
487 static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI,
488 DomTreeUpdater &DTU) {
489 // Check if we can split the call site.
490 if (!CB.arg_size() || !canSplitCallSite(CB, TTI))
491 return false;
493 auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU);
494 if (PredsWithConds.empty())
495 PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB);
496 if (PredsWithConds.empty())
497 return false;
499 splitCallSite(CB, PredsWithConds, DTU);
500 return true;
503 static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
504 TargetTransformInfo &TTI, DominatorTree &DT) {
506 DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
507 bool Changed = false;
508 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
509 BasicBlock &BB = *BI++;
510 auto II = BB.getFirstNonPHIOrDbg()->getIterator();
511 auto IE = BB.getTerminator()->getIterator();
512 // Iterate until we reach the terminator instruction. tryToSplitCallSite
513 // can replace BB's terminator in case BB is a successor of itself. In that
514 // case, IE will be invalidated and we also have to check the current
515 // terminator.
516 while (II != IE && &*II != BB.getTerminator()) {
517 CallBase *CB = dyn_cast<CallBase>(&*II++);
518 if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI))
519 continue;
521 Function *Callee = CB->getCalledFunction();
522 if (!Callee || Callee->isDeclaration())
523 continue;
525 // Successful musttail call-site splits result in erased CI and erased BB.
526 // Check if such path is possible before attempting the splitting.
527 bool IsMustTail = CB->isMustTailCall();
529 Changed |= tryToSplitCallSite(*CB, TTI, DTU);
531 // There're no interesting instructions after this. The call site
532 // itself might have been erased on splitting.
533 if (IsMustTail)
534 break;
537 return Changed;
540 namespace {
541 struct CallSiteSplittingLegacyPass : public FunctionPass {
542 static char ID;
543 CallSiteSplittingLegacyPass() : FunctionPass(ID) {
544 initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
547 void getAnalysisUsage(AnalysisUsage &AU) const override {
548 AU.addRequired<TargetLibraryInfoWrapperPass>();
549 AU.addRequired<TargetTransformInfoWrapperPass>();
550 AU.addRequired<DominatorTreeWrapperPass>();
551 AU.addPreserved<DominatorTreeWrapperPass>();
552 FunctionPass::getAnalysisUsage(AU);
555 bool runOnFunction(Function &F) override {
556 if (skipFunction(F))
557 return false;
559 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
560 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
561 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
562 return doCallSiteSplitting(F, TLI, TTI, DT);
565 } // namespace
567 char CallSiteSplittingLegacyPass::ID = 0;
568 INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
569 "Call-site splitting", false, false)
570 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
571 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
572 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
573 INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
574 "Call-site splitting", false, false)
575 FunctionPass *llvm::createCallSiteSplittingPass() {
576 return new CallSiteSplittingLegacyPass();
579 PreservedAnalyses CallSiteSplittingPass::run(Function &F,
580 FunctionAnalysisManager &AM) {
581 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
582 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
583 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
585 if (!doCallSiteSplitting(F, TLI, TTI, DT))
586 return PreservedAnalyses::all();
587 PreservedAnalyses PA;
588 PA.preserve<DominatorTreeAnalysis>();
589 return PA;