[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / DFAJumpThreading.cpp
blob111206b14641a5cdd6b40e89d7be53622dcaefc9
1 //===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Transform each threading path to effectively jump thread the DFA. For
10 // example, the CFG below could be transformed as follows, where the cloned
11 // blocks unconditionally branch to the next correct case based on what is
12 // identified in the analysis.
14 // sw.bb sw.bb
15 // / | \ / | \
16 // case1 case2 case3 case1 case2 case3
17 // \ | / | | |
18 // determinator det.2 det.3 det.1
19 // br sw.bb / | \
20 // sw.bb.2 sw.bb.3 sw.bb.1
21 // br case2 br case3 br case1ยง
23 // Definitions and Terminology:
25 // * Threading path:
26 // a list of basic blocks, the exit state, and the block that determines
27 // the next state, for which the following notation will be used:
28 // < path of BBs that form a cycle > [ state, determinator ]
30 // * Predictable switch:
31 // The switch variable is always a known constant so that all conditional
32 // jumps based on switch variable can be converted to unconditional jump.
34 // * Determinator:
35 // The basic block that determines the next state of the DFA.
37 // Representing the optimization in C-like pseudocode: the code pattern on the
38 // left could functionally be transformed to the right pattern if the switch
39 // condition is predictable.
41 // X = A goto A
42 // for (...) A:
43 // switch (X) ...
44 // case A goto B
45 // X = B B:
46 // case B ...
47 // X = C goto C
49 // The pass first checks that switch variable X is decided by the control flow
50 // path taken in the loop; for example, in case B, the next value of X is
51 // decided to be C. It then enumerates through all paths in the loop and labels
52 // the basic blocks where the next state is decided.
54 // Using this information it creates new paths that unconditionally branch to
55 // the next case. This involves cloning code, so it only gets triggered if the
56 // amount of code duplicated is below a threshold.
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Transforms/Scalar/DFAJumpThreading.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/ADT/DepthFirstIterator.h"
64 #include "llvm/ADT/SmallSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/CodeMetrics.h"
68 #include "llvm/Analysis/LoopIterator.h"
69 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
70 #include "llvm/Analysis/TargetTransformInfo.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/Constants.h"
73 #include "llvm/IR/IntrinsicInst.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/InitializePasses.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/Cloning.h"
82 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
83 #include "llvm/Transforms/Utils/ValueMapper.h"
84 #include <algorithm>
85 #include <deque>
87 using namespace llvm;
89 #define DEBUG_TYPE "dfa-jump-threading"
91 STATISTIC(NumTransforms, "Number of transformations done");
92 STATISTIC(NumCloned, "Number of blocks cloned");
93 STATISTIC(NumPaths, "Number of individual paths threaded");
95 static cl::opt<bool>
96 ClViewCfgBefore("dfa-jump-view-cfg-before",
97 cl::desc("View the CFG before DFA Jump Threading"),
98 cl::Hidden, cl::init(false));
100 static cl::opt<unsigned> MaxPathLength(
101 "dfa-max-path-length",
102 cl::desc("Max number of blocks searched to find a threading path"),
103 cl::Hidden, cl::init(20));
105 static cl::opt<unsigned>
106 CostThreshold("dfa-cost-threshold",
107 cl::desc("Maximum cost accepted for the transformation"),
108 cl::Hidden, cl::init(50));
110 namespace {
112 class SelectInstToUnfold {
113 SelectInst *SI;
114 PHINode *SIUse;
116 public:
117 SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {}
119 SelectInst *getInst() { return SI; }
120 PHINode *getUse() { return SIUse; }
122 explicit operator bool() const { return SI && SIUse; }
125 void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
126 std::vector<SelectInstToUnfold> *NewSIsToUnfold,
127 std::vector<BasicBlock *> *NewBBs);
129 class DFAJumpThreading {
130 public:
131 DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT,
132 TargetTransformInfo *TTI, OptimizationRemarkEmitter *ORE)
133 : AC(AC), DT(DT), TTI(TTI), ORE(ORE) {}
135 bool run(Function &F);
137 private:
138 void
139 unfoldSelectInstrs(DominatorTree *DT,
140 const SmallVector<SelectInstToUnfold, 4> &SelectInsts) {
141 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
142 SmallVector<SelectInstToUnfold, 4> Stack;
143 for (SelectInstToUnfold SIToUnfold : SelectInsts)
144 Stack.push_back(SIToUnfold);
146 while (!Stack.empty()) {
147 SelectInstToUnfold SIToUnfold = Stack.back();
148 Stack.pop_back();
150 std::vector<SelectInstToUnfold> NewSIsToUnfold;
151 std::vector<BasicBlock *> NewBBs;
152 unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs);
154 // Put newly discovered select instructions into the work list.
155 for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold)
156 Stack.push_back(NewSIToUnfold);
160 AssumptionCache *AC;
161 DominatorTree *DT;
162 TargetTransformInfo *TTI;
163 OptimizationRemarkEmitter *ORE;
166 class DFAJumpThreadingLegacyPass : public FunctionPass {
167 public:
168 static char ID; // Pass identification
169 DFAJumpThreadingLegacyPass() : FunctionPass(ID) {}
171 void getAnalysisUsage(AnalysisUsage &AU) const override {
172 AU.addRequired<AssumptionCacheTracker>();
173 AU.addRequired<DominatorTreeWrapperPass>();
174 AU.addPreserved<DominatorTreeWrapperPass>();
175 AU.addRequired<TargetTransformInfoWrapperPass>();
176 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
179 bool runOnFunction(Function &F) override {
180 if (skipFunction(F))
181 return false;
183 AssumptionCache *AC =
184 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
185 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
186 TargetTransformInfo *TTI =
187 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
188 OptimizationRemarkEmitter *ORE =
189 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
191 return DFAJumpThreading(AC, DT, TTI, ORE).run(F);
194 } // end anonymous namespace
196 char DFAJumpThreadingLegacyPass::ID = 0;
197 INITIALIZE_PASS_BEGIN(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
198 "DFA Jump Threading", false, false)
199 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
200 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
201 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
202 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
203 INITIALIZE_PASS_END(DFAJumpThreadingLegacyPass, "dfa-jump-threading",
204 "DFA Jump Threading", false, false)
206 // Public interface to the DFA Jump Threading pass
207 FunctionPass *llvm::createDFAJumpThreadingPass() {
208 return new DFAJumpThreadingLegacyPass();
211 namespace {
213 /// Create a new basic block and sink \p SIToSink into it.
214 void createBasicBlockAndSinkSelectInst(
215 DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink,
216 BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock,
217 BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold,
218 std::vector<BasicBlock *> *NewBBs) {
219 assert(SIToSink->hasOneUse());
220 assert(NewBlock);
221 assert(NewBranch);
222 *NewBlock = BasicBlock::Create(SI->getContext(), NewBBName,
223 EndBlock->getParent(), EndBlock);
224 NewBBs->push_back(*NewBlock);
225 *NewBranch = BranchInst::Create(EndBlock, *NewBlock);
226 SIToSink->moveBefore(*NewBranch);
227 NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse));
228 DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}});
231 /// Unfold the select instruction held in \p SIToUnfold by replacing it with
232 /// control flow.
234 /// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly
235 /// created basic blocks into \p NewBBs.
237 /// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible.
238 void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
239 std::vector<SelectInstToUnfold> *NewSIsToUnfold,
240 std::vector<BasicBlock *> *NewBBs) {
241 SelectInst *SI = SIToUnfold.getInst();
242 PHINode *SIUse = SIToUnfold.getUse();
243 BasicBlock *StartBlock = SI->getParent();
244 BasicBlock *EndBlock = SIUse->getParent();
245 BranchInst *StartBlockTerm =
246 dyn_cast<BranchInst>(StartBlock->getTerminator());
248 assert(StartBlockTerm && StartBlockTerm->isUnconditional());
249 assert(SI->hasOneUse());
251 // These are the new basic blocks for the conditional branch.
252 // At least one will become an actual new basic block.
253 BasicBlock *TrueBlock = nullptr;
254 BasicBlock *FalseBlock = nullptr;
255 BranchInst *TrueBranch = nullptr;
256 BranchInst *FalseBranch = nullptr;
258 // Sink select instructions to be able to unfold them later.
259 if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) {
260 createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
261 "si.unfold.true", &TrueBlock, &TrueBranch,
262 NewSIsToUnfold, NewBBs);
264 if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) {
265 createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
266 "si.unfold.false", &FalseBlock,
267 &FalseBranch, NewSIsToUnfold, NewBBs);
270 // If there was nothing to sink, then arbitrarily choose the 'false' side
271 // for a new input value to the PHI.
272 if (!TrueBlock && !FalseBlock) {
273 FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false",
274 EndBlock->getParent(), EndBlock);
275 NewBBs->push_back(FalseBlock);
276 BranchInst::Create(EndBlock, FalseBlock);
277 DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}});
280 // Insert the real conditional branch based on the original condition.
281 // If we did not create a new block for one of the 'true' or 'false' paths
282 // of the condition, it means that side of the branch goes to the end block
283 // directly and the path originates from the start block from the point of
284 // view of the new PHI.
285 BasicBlock *TT = EndBlock;
286 BasicBlock *FT = EndBlock;
287 if (TrueBlock && FalseBlock) {
288 // A diamond.
289 TT = TrueBlock;
290 FT = FalseBlock;
292 // Update the phi node of SI.
293 SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false);
294 SIUse->addIncoming(SI->getTrueValue(), TrueBlock);
295 SIUse->addIncoming(SI->getFalseValue(), FalseBlock);
297 // Update any other PHI nodes in EndBlock.
298 for (PHINode &Phi : EndBlock->phis()) {
299 if (&Phi != SIUse) {
300 Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock);
301 Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock);
304 } else {
305 BasicBlock *NewBlock = nullptr;
306 Value *SIOp1 = SI->getTrueValue();
307 Value *SIOp2 = SI->getFalseValue();
309 // A triangle pointing right.
310 if (!TrueBlock) {
311 NewBlock = FalseBlock;
312 FT = FalseBlock;
314 // A triangle pointing left.
315 else {
316 NewBlock = TrueBlock;
317 TT = TrueBlock;
318 std::swap(SIOp1, SIOp2);
321 // Update the phi node of SI.
322 for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) {
323 if (SIUse->getIncomingBlock(Idx) == StartBlock)
324 SIUse->setIncomingValue(Idx, SIOp1);
326 SIUse->addIncoming(SIOp2, NewBlock);
328 // Update any other PHI nodes in EndBlock.
329 for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
330 ++II) {
331 if (Phi != SIUse)
332 Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock);
335 StartBlockTerm->eraseFromParent();
336 BranchInst::Create(TT, FT, SI->getCondition(), StartBlock);
337 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT},
338 {DominatorTree::Insert, StartBlock, FT}});
340 // The select is now dead.
341 SI->eraseFromParent();
344 struct ClonedBlock {
345 BasicBlock *BB;
346 uint64_t State; ///< \p State corresponds to the next value of a switch stmnt.
349 typedef std::deque<BasicBlock *> PathType;
350 typedef std::vector<PathType> PathsType;
351 typedef SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
352 typedef std::vector<ClonedBlock> CloneList;
354 // This data structure keeps track of all blocks that have been cloned. If two
355 // different ThreadingPaths clone the same block for a certain state it should
356 // be reused, and it can be looked up in this map.
357 typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap;
359 // This map keeps track of all the new definitions for an instruction. This
360 // information is needed when restoring SSA form after cloning blocks.
361 typedef DenseMap<Instruction *, std::vector<Instruction *>> DefMap;
363 inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) {
364 OS << "< ";
365 for (const BasicBlock *BB : Path) {
366 std::string BBName;
367 if (BB->hasName())
368 raw_string_ostream(BBName) << BB->getName();
369 else
370 raw_string_ostream(BBName) << BB;
371 OS << BBName << " ";
373 OS << ">";
374 return OS;
377 /// ThreadingPath is a path in the control flow of a loop that can be threaded
378 /// by cloning necessary basic blocks and replacing conditional branches with
379 /// unconditional ones. A threading path includes a list of basic blocks, the
380 /// exit state, and the block that determines the next state.
381 struct ThreadingPath {
382 /// Exit value is DFA's exit state for the given path.
383 uint64_t getExitValue() const { return ExitVal; }
384 void setExitValue(const ConstantInt *V) {
385 ExitVal = V->getZExtValue();
386 IsExitValSet = true;
388 bool isExitValueSet() const { return IsExitValSet; }
390 /// Determinator is the basic block that determines the next state of the DFA.
391 const BasicBlock *getDeterminatorBB() const { return DBB; }
392 void setDeterminator(const BasicBlock *BB) { DBB = BB; }
394 /// Path is a list of basic blocks.
395 const PathType &getPath() const { return Path; }
396 void setPath(const PathType &NewPath) { Path = NewPath; }
398 void print(raw_ostream &OS) const {
399 OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]";
402 private:
403 PathType Path;
404 uint64_t ExitVal;
405 const BasicBlock *DBB = nullptr;
406 bool IsExitValSet = false;
409 #ifndef NDEBUG
410 inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) {
411 TPath.print(OS);
412 return OS;
414 #endif
416 struct MainSwitch {
417 MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) {
418 if (isPredictable(SI)) {
419 Instr = SI;
420 } else {
421 ORE->emit([&]() {
422 return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI)
423 << "Switch instruction is not predictable.";
428 virtual ~MainSwitch() = default;
430 SwitchInst *getInstr() const { return Instr; }
431 const SmallVector<SelectInstToUnfold, 4> getSelectInsts() {
432 return SelectInsts;
435 private:
436 /// Do a use-def chain traversal. Make sure the value of the switch variable
437 /// is always a known constant. This means that all conditional jumps based on
438 /// switch variable can be converted to unconditional jumps.
439 bool isPredictable(const SwitchInst *SI) {
440 std::deque<Instruction *> Q;
441 SmallSet<Value *, 16> SeenValues;
442 SelectInsts.clear();
444 Value *FirstDef = SI->getOperand(0);
445 auto *Inst = dyn_cast<Instruction>(FirstDef);
447 // If this is a function argument or another non-instruction, then give up.
448 // We are interested in loop local variables.
449 if (!Inst)
450 return false;
452 // Require the first definition to be a PHINode
453 if (!isa<PHINode>(Inst))
454 return false;
456 LLVM_DEBUG(dbgs() << "\tisPredictable() FirstDef: " << *Inst << "\n");
458 Q.push_back(Inst);
459 SeenValues.insert(FirstDef);
461 while (!Q.empty()) {
462 Instruction *Current = Q.front();
463 Q.pop_front();
465 if (auto *Phi = dyn_cast<PHINode>(Current)) {
466 for (Value *Incoming : Phi->incoming_values()) {
467 if (!isPredictableValue(Incoming, SeenValues))
468 return false;
469 addInstToQueue(Incoming, Q, SeenValues);
471 LLVM_DEBUG(dbgs() << "\tisPredictable() phi: " << *Phi << "\n");
472 } else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) {
473 if (!isValidSelectInst(SelI))
474 return false;
475 if (!isPredictableValue(SelI->getTrueValue(), SeenValues) ||
476 !isPredictableValue(SelI->getFalseValue(), SeenValues)) {
477 return false;
479 addInstToQueue(SelI->getTrueValue(), Q, SeenValues);
480 addInstToQueue(SelI->getFalseValue(), Q, SeenValues);
481 LLVM_DEBUG(dbgs() << "\tisPredictable() select: " << *SelI << "\n");
482 if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back()))
483 SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse));
484 } else {
485 // If it is neither a phi nor a select, then we give up.
486 return false;
490 return true;
493 bool isPredictableValue(Value *InpVal, SmallSet<Value *, 16> &SeenValues) {
494 if (SeenValues.find(InpVal) != SeenValues.end())
495 return true;
497 if (isa<ConstantInt>(InpVal))
498 return true;
500 // If this is a function argument or another non-instruction, then give up.
501 if (!isa<Instruction>(InpVal))
502 return false;
504 return true;
507 void addInstToQueue(Value *Val, std::deque<Instruction *> &Q,
508 SmallSet<Value *, 16> &SeenValues) {
509 if (SeenValues.find(Val) != SeenValues.end())
510 return;
511 if (Instruction *I = dyn_cast<Instruction>(Val))
512 Q.push_back(I);
513 SeenValues.insert(Val);
516 bool isValidSelectInst(SelectInst *SI) {
517 if (!SI->hasOneUse())
518 return false;
520 Instruction *SIUse = dyn_cast<Instruction>(SI->user_back());
521 // The use of the select inst should be either a phi or another select.
522 if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse)))
523 return false;
525 BasicBlock *SIBB = SI->getParent();
527 // Currently, we can only expand select instructions in basic blocks with
528 // one successor.
529 BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator());
530 if (!SITerm || !SITerm->isUnconditional())
531 return false;
533 if (isa<PHINode>(SIUse) &&
534 SIBB->getSingleSuccessor() != cast<Instruction>(SIUse)->getParent())
535 return false;
537 // If select will not be sunk during unfolding, and it is in the same basic
538 // block as another state defining select, then cannot unfold both.
539 for (SelectInstToUnfold SIToUnfold : SelectInsts) {
540 SelectInst *PrevSI = SIToUnfold.getInst();
541 if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI &&
542 PrevSI->getParent() == SI->getParent())
543 return false;
546 return true;
549 SwitchInst *Instr = nullptr;
550 SmallVector<SelectInstToUnfold, 4> SelectInsts;
553 struct AllSwitchPaths {
554 AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE)
555 : Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()),
556 ORE(ORE) {}
558 std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; }
559 unsigned getNumThreadingPaths() { return TPaths.size(); }
560 SwitchInst *getSwitchInst() { return Switch; }
561 BasicBlock *getSwitchBlock() { return SwitchBlock; }
563 void run() {
564 VisitedBlocks Visited;
565 PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1);
566 StateDefMap StateDef = getStateDefMap();
568 for (PathType Path : LoopPaths) {
569 ThreadingPath TPath;
571 const BasicBlock *PrevBB = Path.back();
572 for (const BasicBlock *BB : Path) {
573 if (StateDef.count(BB) != 0) {
574 const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]);
575 assert(Phi && "Expected a state-defining instr to be a phi node.");
577 const Value *V = Phi->getIncomingValueForBlock(PrevBB);
578 if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) {
579 TPath.setExitValue(C);
580 TPath.setDeterminator(BB);
581 TPath.setPath(Path);
585 // Switch block is the determinator, this is the final exit value.
586 if (TPath.isExitValueSet() && BB == Path.front())
587 break;
589 PrevBB = BB;
592 if (TPath.isExitValueSet())
593 TPaths.push_back(TPath);
597 private:
598 // Value: an instruction that defines a switch state;
599 // Key: the parent basic block of that instruction.
600 typedef DenseMap<const BasicBlock *, const PHINode *> StateDefMap;
602 PathsType paths(BasicBlock *BB, VisitedBlocks &Visited,
603 unsigned PathDepth) const {
604 PathsType Res;
606 // Stop exploring paths after visiting MaxPathLength blocks
607 if (PathDepth > MaxPathLength) {
608 ORE->emit([&]() {
609 return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached",
610 Switch)
611 << "Exploration stopped after visiting MaxPathLength="
612 << ore::NV("MaxPathLength", MaxPathLength) << " blocks.";
614 return Res;
617 Visited.insert(BB);
619 // Some blocks have multiple edges to the same successor, and this set
620 // is used to prevent a duplicate path from being generated
621 SmallSet<BasicBlock *, 4> Successors;
622 for (BasicBlock *Succ : successors(BB)) {
623 if (!Successors.insert(Succ).second)
624 continue;
626 // Found a cycle through the SwitchBlock
627 if (Succ == SwitchBlock) {
628 Res.push_back({BB});
629 continue;
632 // We have encountered a cycle, do not get caught in it
633 if (Visited.contains(Succ))
634 continue;
636 PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1);
637 for (PathType Path : SuccPaths) {
638 PathType NewPath(Path);
639 NewPath.push_front(BB);
640 Res.push_back(NewPath);
643 // This block could now be visited again from a different predecessor. Note
644 // that this will result in exponential runtime. Subpaths could possibly be
645 // cached but it takes a lot of memory to store them.
646 Visited.erase(BB);
647 return Res;
650 /// Walk the use-def chain and collect all the state-defining instructions.
651 StateDefMap getStateDefMap() const {
652 StateDefMap Res;
654 Value *FirstDef = Switch->getOperand(0);
656 assert(isa<PHINode>(FirstDef) && "After select unfolding, all state "
657 "definitions are expected to be phi "
658 "nodes.");
660 SmallVector<PHINode *, 8> Stack;
661 Stack.push_back(dyn_cast<PHINode>(FirstDef));
662 SmallSet<Value *, 16> SeenValues;
664 while (!Stack.empty()) {
665 PHINode *CurPhi = Stack.back();
666 Stack.pop_back();
668 Res[CurPhi->getParent()] = CurPhi;
669 SeenValues.insert(CurPhi);
671 for (Value *Incoming : CurPhi->incoming_values()) {
672 if (Incoming == FirstDef || isa<ConstantInt>(Incoming) ||
673 SeenValues.find(Incoming) != SeenValues.end()) {
674 continue;
677 assert(isa<PHINode>(Incoming) && "After select unfolding, all state "
678 "definitions are expected to be phi "
679 "nodes.");
681 Stack.push_back(cast<PHINode>(Incoming));
685 return Res;
688 SwitchInst *Switch;
689 BasicBlock *SwitchBlock;
690 OptimizationRemarkEmitter *ORE;
691 std::vector<ThreadingPath> TPaths;
694 struct TransformDFA {
695 TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT,
696 AssumptionCache *AC, TargetTransformInfo *TTI,
697 OptimizationRemarkEmitter *ORE,
698 SmallPtrSet<const Value *, 32> EphValues)
699 : SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE),
700 EphValues(EphValues) {}
702 void run() {
703 if (isLegalAndProfitableToTransform()) {
704 createAllExitPaths();
705 NumTransforms++;
709 private:
710 /// This function performs both a legality check and profitability check at
711 /// the same time since it is convenient to do so. It iterates through all
712 /// blocks that will be cloned, and keeps track of the duplication cost. It
713 /// also returns false if it is illegal to clone some required block.
714 bool isLegalAndProfitableToTransform() {
715 CodeMetrics Metrics;
716 SwitchInst *Switch = SwitchPaths->getSwitchInst();
718 // Note that DuplicateBlockMap is not being used as intended here. It is
719 // just being used to ensure (BB, State) pairs are only counted once.
720 DuplicateBlockMap DuplicateMap;
722 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
723 PathType PathBBs = TPath.getPath();
724 uint64_t NextState = TPath.getExitValue();
725 const BasicBlock *Determinator = TPath.getDeterminatorBB();
727 // Update Metrics for the Switch block, this is always cloned
728 BasicBlock *BB = SwitchPaths->getSwitchBlock();
729 BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
730 if (!VisitedBB) {
731 Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
732 DuplicateMap[BB].push_back({BB, NextState});
735 // If the Switch block is the Determinator, then we can continue since
736 // this is the only block that is cloned and we already counted for it.
737 if (PathBBs.front() == Determinator)
738 continue;
740 // Otherwise update Metrics for all blocks that will be cloned. If any
741 // block is already cloned and would be reused, don't double count it.
742 auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
743 for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
744 BB = *BBIt;
745 VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
746 if (VisitedBB)
747 continue;
748 Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
749 DuplicateMap[BB].push_back({BB, NextState});
752 if (Metrics.notDuplicatable) {
753 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
754 << "non-duplicatable instructions.\n");
755 ORE->emit([&]() {
756 return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst",
757 Switch)
758 << "Contains non-duplicatable instructions.";
760 return false;
763 if (Metrics.convergent) {
764 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
765 << "convergent instructions.\n");
766 ORE->emit([&]() {
767 return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
768 << "Contains convergent instructions.";
770 return false;
774 unsigned DuplicationCost = 0;
776 unsigned JumpTableSize = 0;
777 TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr,
778 nullptr);
779 if (JumpTableSize == 0) {
780 // Factor in the number of conditional branches reduced from jump
781 // threading. Assume that lowering the switch block is implemented by
782 // using binary search, hence the LogBase2().
783 unsigned CondBranches =
784 APInt(32, Switch->getNumSuccessors()).ceilLogBase2();
785 DuplicationCost = Metrics.NumInsts / CondBranches;
786 } else {
787 // Compared with jump tables, the DFA optimizer removes an indirect branch
788 // on each loop iteration, thus making branch prediction more precise. The
789 // more branch targets there are, the more likely it is for the branch
790 // predictor to make a mistake, and the more benefit there is in the DFA
791 // optimizer. Thus, the more branch targets there are, the lower is the
792 // cost of the DFA opt.
793 DuplicationCost = Metrics.NumInsts / JumpTableSize;
796 LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "
797 << SwitchPaths->getSwitchBlock()->getName()
798 << " is: " << DuplicationCost << "\n\n");
800 if (DuplicationCost > CostThreshold) {
801 LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "
802 << "cost threshold.\n");
803 ORE->emit([&]() {
804 return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch)
805 << "Duplication cost exceeds the cost threshold (cost="
806 << ore::NV("Cost", DuplicationCost)
807 << ", threshold=" << ore::NV("Threshold", CostThreshold) << ").";
809 return false;
812 ORE->emit([&]() {
813 return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch)
814 << "Switch statement jump-threaded.";
817 return true;
820 /// Transform each threading path to effectively jump thread the DFA.
821 void createAllExitPaths() {
822 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager);
824 // Move the switch block to the end of the path, since it will be duplicated
825 BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock();
826 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
827 LLVM_DEBUG(dbgs() << TPath << "\n");
828 PathType NewPath(TPath.getPath());
829 NewPath.push_back(SwitchBlock);
830 TPath.setPath(NewPath);
833 // Transform the ThreadingPaths and keep track of the cloned values
834 DuplicateBlockMap DuplicateMap;
835 DefMap NewDefs;
837 SmallSet<BasicBlock *, 16> BlocksToClean;
838 for (BasicBlock *BB : successors(SwitchBlock))
839 BlocksToClean.insert(BB);
841 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
842 createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU);
843 NumPaths++;
846 // After all paths are cloned, now update the last successor of the cloned
847 // path so it skips over the switch statement
848 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths())
849 updateLastSuccessor(TPath, DuplicateMap, &DTU);
851 // For each instruction that was cloned and used outside, update its uses
852 updateSSA(NewDefs);
854 // Clean PHI Nodes for the newly created blocks
855 for (BasicBlock *BB : BlocksToClean)
856 cleanPhiNodes(BB);
859 /// For a specific ThreadingPath \p Path, create an exit path starting from
860 /// the determinator block.
862 /// To remember the correct destination, we have to duplicate blocks
863 /// corresponding to each state. Also update the terminating instruction of
864 /// the predecessors, and phis in the successor blocks.
865 void createExitPath(DefMap &NewDefs, ThreadingPath &Path,
866 DuplicateBlockMap &DuplicateMap,
867 SmallSet<BasicBlock *, 16> &BlocksToClean,
868 DomTreeUpdater *DTU) {
869 uint64_t NextState = Path.getExitValue();
870 const BasicBlock *Determinator = Path.getDeterminatorBB();
871 PathType PathBBs = Path.getPath();
873 // Don't select the placeholder block in front
874 if (PathBBs.front() == Determinator)
875 PathBBs.pop_front();
877 auto DetIt = std::find(PathBBs.begin(), PathBBs.end(), Determinator);
878 auto Prev = std::prev(DetIt);
879 BasicBlock *PrevBB = *Prev;
880 for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
881 BasicBlock *BB = *BBIt;
882 BlocksToClean.insert(BB);
884 // We already cloned BB for this NextState, now just update the branch
885 // and continue.
886 BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap);
887 if (NextBB) {
888 updatePredecessor(PrevBB, BB, NextBB, DTU);
889 PrevBB = NextBB;
890 continue;
893 // Clone the BB and update the successor of Prev to jump to the new block
894 BasicBlock *NewBB = cloneBlockAndUpdatePredecessor(
895 BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU);
896 DuplicateMap[BB].push_back({NewBB, NextState});
897 BlocksToClean.insert(NewBB);
898 PrevBB = NewBB;
902 /// Restore SSA form after cloning blocks.
904 /// Each cloned block creates new defs for a variable, and the uses need to be
905 /// updated to reflect this. The uses may be replaced with a cloned value, or
906 /// some derived phi instruction. Note that all uses of a value defined in the
907 /// same block were already remapped when cloning the block.
908 void updateSSA(DefMap &NewDefs) {
909 SSAUpdaterBulk SSAUpdate;
910 SmallVector<Use *, 16> UsesToRename;
912 for (auto KV : NewDefs) {
913 Instruction *I = KV.first;
914 BasicBlock *BB = I->getParent();
915 std::vector<Instruction *> Cloned = KV.second;
917 // Scan all uses of this instruction to see if it is used outside of its
918 // block, and if so, record them in UsesToRename.
919 for (Use &U : I->uses()) {
920 Instruction *User = cast<Instruction>(U.getUser());
921 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
922 if (UserPN->getIncomingBlock(U) == BB)
923 continue;
924 } else if (User->getParent() == BB) {
925 continue;
928 UsesToRename.push_back(&U);
931 // If there are no uses outside the block, we're done with this
932 // instruction.
933 if (UsesToRename.empty())
934 continue;
935 LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I
936 << "\n");
938 // We found a use of I outside of BB. Rename all uses of I that are
939 // outside its block to be uses of the appropriate PHI node etc. See
940 // ValuesInBlocks with the values we know.
941 unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType());
942 SSAUpdate.AddAvailableValue(VarNum, BB, I);
943 for (Instruction *New : Cloned)
944 SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New);
946 while (!UsesToRename.empty())
947 SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val());
949 LLVM_DEBUG(dbgs() << "\n");
951 // SSAUpdater handles phi placement and renaming uses with the appropriate
952 // value.
953 SSAUpdate.RewriteAllUses(DT);
956 /// Clones a basic block, and adds it to the CFG.
958 /// This function also includes updating phi nodes in the successors of the
959 /// BB, and remapping uses that were defined locally in the cloned BB.
960 BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB,
961 uint64_t NextState,
962 DuplicateBlockMap &DuplicateMap,
963 DefMap &NewDefs,
964 DomTreeUpdater *DTU) {
965 ValueToValueMapTy VMap;
966 BasicBlock *NewBB = CloneBasicBlock(
967 BB, VMap, ".jt" + std::to_string(NextState), BB->getParent());
968 NewBB->moveAfter(BB);
969 NumCloned++;
971 for (Instruction &I : *NewBB) {
972 // Do not remap operands of PHINode in case a definition in BB is an
973 // incoming value to a phi in the same block. This incoming value will
974 // be renamed later while restoring SSA.
975 if (isa<PHINode>(&I))
976 continue;
977 RemapInstruction(&I, VMap,
978 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
979 if (AssumeInst *II = dyn_cast<AssumeInst>(&I))
980 AC->registerAssumption(II);
983 updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap);
984 updatePredecessor(PrevBB, BB, NewBB, DTU);
985 updateDefMap(NewDefs, VMap);
987 // Add all successors to the DominatorTree
988 SmallPtrSet<BasicBlock *, 4> SuccSet;
989 for (auto *SuccBB : successors(NewBB)) {
990 if (SuccSet.insert(SuccBB).second)
991 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}});
993 SuccSet.clear();
994 return NewBB;
997 /// Update the phi nodes in BB's successors.
999 /// This means creating a new incoming value from NewBB with the new
1000 /// instruction wherever there is an incoming value from BB.
1001 void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB,
1002 uint64_t NextState, ValueToValueMapTy &VMap,
1003 DuplicateBlockMap &DuplicateMap) {
1004 std::vector<BasicBlock *> BlocksToUpdate;
1006 // If BB is the last block in the path, we can simply update the one case
1007 // successor that will be reached.
1008 if (BB == SwitchPaths->getSwitchBlock()) {
1009 SwitchInst *Switch = SwitchPaths->getSwitchInst();
1010 BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
1011 BlocksToUpdate.push_back(NextCase);
1012 BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap);
1013 if (ClonedSucc)
1014 BlocksToUpdate.push_back(ClonedSucc);
1016 // Otherwise update phis in all successors.
1017 else {
1018 for (BasicBlock *Succ : successors(BB)) {
1019 BlocksToUpdate.push_back(Succ);
1021 // Check if a successor has already been cloned for the particular exit
1022 // value. In this case if a successor was already cloned, the phi nodes
1023 // in the cloned block should be updated directly.
1024 BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap);
1025 if (ClonedSucc)
1026 BlocksToUpdate.push_back(ClonedSucc);
1030 // If there is a phi with an incoming value from BB, create a new incoming
1031 // value for the new predecessor ClonedBB. The value will either be the same
1032 // value from BB or a cloned value.
1033 for (BasicBlock *Succ : BlocksToUpdate) {
1034 for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
1035 ++II) {
1036 Value *Incoming = Phi->getIncomingValueForBlock(BB);
1037 if (Incoming) {
1038 if (isa<Constant>(Incoming)) {
1039 Phi->addIncoming(Incoming, ClonedBB);
1040 continue;
1042 Value *ClonedVal = VMap[Incoming];
1043 if (ClonedVal)
1044 Phi->addIncoming(ClonedVal, ClonedBB);
1045 else
1046 Phi->addIncoming(Incoming, ClonedBB);
1052 /// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all
1053 /// other successors are kept as well.
1054 void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB,
1055 BasicBlock *NewBB, DomTreeUpdater *DTU) {
1056 // When a path is reused, there is a chance that predecessors were already
1057 // updated before. Check if the predecessor needs to be updated first.
1058 if (!isPredecessor(OldBB, PrevBB))
1059 return;
1061 Instruction *PrevTerm = PrevBB->getTerminator();
1062 for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) {
1063 if (PrevTerm->getSuccessor(Idx) == OldBB) {
1064 OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true);
1065 PrevTerm->setSuccessor(Idx, NewBB);
1068 DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB},
1069 {DominatorTree::Insert, PrevBB, NewBB}});
1072 /// Add new value mappings to the DefMap to keep track of all new definitions
1073 /// for a particular instruction. These will be used while updating SSA form.
1074 void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) {
1075 for (auto Entry : VMap) {
1076 Instruction *Inst =
1077 dyn_cast<Instruction>(const_cast<Value *>(Entry.first));
1078 if (!Inst || !Entry.second || isa<BranchInst>(Inst) ||
1079 isa<SwitchInst>(Inst)) {
1080 continue;
1083 Instruction *Cloned = dyn_cast<Instruction>(Entry.second);
1084 if (!Cloned)
1085 continue;
1087 if (NewDefs.find(Inst) == NewDefs.end())
1088 NewDefs[Inst] = {Cloned};
1089 else
1090 NewDefs[Inst].push_back(Cloned);
1094 /// Update the last branch of a particular cloned path to point to the correct
1095 /// case successor.
1097 /// Note that this is an optional step and would have been done in later
1098 /// optimizations, but it makes the CFG significantly easier to work with.
1099 void updateLastSuccessor(ThreadingPath &TPath,
1100 DuplicateBlockMap &DuplicateMap,
1101 DomTreeUpdater *DTU) {
1102 uint64_t NextState = TPath.getExitValue();
1103 BasicBlock *BB = TPath.getPath().back();
1104 BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap);
1106 // Note multiple paths can end at the same block so check that it is not
1107 // updated yet
1108 if (!isa<SwitchInst>(LastBlock->getTerminator()))
1109 return;
1110 SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator());
1111 BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
1113 std::vector<DominatorTree::UpdateType> DTUpdates;
1114 SmallPtrSet<BasicBlock *, 4> SuccSet;
1115 for (BasicBlock *Succ : successors(LastBlock)) {
1116 if (Succ != NextCase && SuccSet.insert(Succ).second)
1117 DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ});
1120 Switch->eraseFromParent();
1121 BranchInst::Create(NextCase, LastBlock);
1123 DTU->applyUpdates(DTUpdates);
1126 /// After cloning blocks, some of the phi nodes have extra incoming values
1127 /// that are no longer used. This function removes them.
1128 void cleanPhiNodes(BasicBlock *BB) {
1129 // If BB is no longer reachable, remove any remaining phi nodes
1130 if (pred_empty(BB)) {
1131 std::vector<PHINode *> PhiToRemove;
1132 for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
1133 PhiToRemove.push_back(Phi);
1135 for (PHINode *PN : PhiToRemove) {
1136 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1137 PN->eraseFromParent();
1139 return;
1142 // Remove any incoming values that come from an invalid predecessor
1143 for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
1144 std::vector<BasicBlock *> BlocksToRemove;
1145 for (BasicBlock *IncomingBB : Phi->blocks()) {
1146 if (!isPredecessor(BB, IncomingBB))
1147 BlocksToRemove.push_back(IncomingBB);
1149 for (BasicBlock *BB : BlocksToRemove)
1150 Phi->removeIncomingValue(BB);
1154 /// Checks if BB was already cloned for a particular next state value. If it
1155 /// was then it returns this cloned block, and otherwise null.
1156 BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState,
1157 DuplicateBlockMap &DuplicateMap) {
1158 CloneList ClonedBBs = DuplicateMap[BB];
1160 // Find an entry in the CloneList with this NextState. If it exists then
1161 // return the corresponding BB
1162 auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) {
1163 return C.State == NextState;
1165 return It != ClonedBBs.end() ? (*It).BB : nullptr;
1168 /// Helper to get the successor corresponding to a particular case value for
1169 /// a switch statement.
1170 BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) {
1171 BasicBlock *NextCase = nullptr;
1172 for (auto Case : Switch->cases()) {
1173 if (Case.getCaseValue()->getZExtValue() == NextState) {
1174 NextCase = Case.getCaseSuccessor();
1175 break;
1178 if (!NextCase)
1179 NextCase = Switch->getDefaultDest();
1180 return NextCase;
1183 /// Returns true if IncomingBB is a predecessor of BB.
1184 bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) {
1185 return llvm::find(predecessors(BB), IncomingBB) != pred_end(BB);
1188 AllSwitchPaths *SwitchPaths;
1189 DominatorTree *DT;
1190 AssumptionCache *AC;
1191 TargetTransformInfo *TTI;
1192 OptimizationRemarkEmitter *ORE;
1193 SmallPtrSet<const Value *, 32> EphValues;
1194 std::vector<ThreadingPath> TPaths;
1197 bool DFAJumpThreading::run(Function &F) {
1198 LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n");
1200 if (F.hasOptSize()) {
1201 LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n");
1202 return false;
1205 if (ClViewCfgBefore)
1206 F.viewCFG();
1208 SmallVector<AllSwitchPaths, 2> ThreadableLoops;
1209 bool MadeChanges = false;
1211 for (BasicBlock &BB : F) {
1212 auto *SI = dyn_cast<SwitchInst>(BB.getTerminator());
1213 if (!SI)
1214 continue;
1216 LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()
1217 << " is predictable\n");
1218 MainSwitch Switch(SI, ORE);
1220 if (!Switch.getInstr())
1221 continue;
1223 LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "
1224 << "candidate for jump threading\n");
1225 LLVM_DEBUG(SI->dump());
1227 unfoldSelectInstrs(DT, Switch.getSelectInsts());
1228 if (!Switch.getSelectInsts().empty())
1229 MadeChanges = true;
1231 AllSwitchPaths SwitchPaths(&Switch, ORE);
1232 SwitchPaths.run();
1234 if (SwitchPaths.getNumThreadingPaths() > 0) {
1235 ThreadableLoops.push_back(SwitchPaths);
1237 // For the time being limit this optimization to occurring once in a
1238 // function since it can change the CFG significantly. This is not a
1239 // strict requirement but it can cause buggy behavior if there is an
1240 // overlap of blocks in different opportunities. There is a lot of room to
1241 // experiment with catching more opportunities here.
1242 break;
1246 SmallPtrSet<const Value *, 32> EphValues;
1247 if (ThreadableLoops.size() > 0)
1248 CodeMetrics::collectEphemeralValues(&F, AC, EphValues);
1250 for (AllSwitchPaths SwitchPaths : ThreadableLoops) {
1251 TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues);
1252 Transform.run();
1253 MadeChanges = true;
1256 #ifdef EXPENSIVE_CHECKS
1257 assert(DT->verify(DominatorTree::VerificationLevel::Full));
1258 verifyFunction(F, &dbgs());
1259 #endif
1261 return MadeChanges;
1264 } // end anonymous namespace
1266 /// Integrate with the new Pass Manager
1267 PreservedAnalyses DFAJumpThreadingPass::run(Function &F,
1268 FunctionAnalysisManager &AM) {
1269 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
1270 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
1271 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
1272 OptimizationRemarkEmitter ORE(&F);
1274 if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F))
1275 return PreservedAnalyses::all();
1277 PreservedAnalyses PA;
1278 PA.preserve<DominatorTreeAnalysis>();
1279 return PA;