[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / DeadStoreElimination.cpp
blob1bc4a3886dec1372805bdbc2c4210f4836b695d3
1 //===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The code below implements dead store elimination using MemorySSA. It uses
10 // the following general approach: given a MemoryDef, walk upwards to find
11 // clobbering MemoryDefs that may be killed by the starting def. Then check
12 // that there are no uses that may read the location of the original MemoryDef
13 // in between both MemoryDefs. A bit more concretely:
15 // For all MemoryDefs StartDef:
16 // 1. Get the next dominating clobbering MemoryDef (EarlierAccess) by walking
17 // upwards.
18 // 2. Check that there are no reads between EarlierAccess and the StartDef by
19 // checking all uses starting at EarlierAccess and walking until we see
20 // StartDef.
21 // 3. For each found CurrentDef, check that:
22 // 1. There are no barrier instructions between CurrentDef and StartDef (like
23 // throws or stores with ordering constraints).
24 // 2. StartDef is executed whenever CurrentDef is executed.
25 // 3. StartDef completely overwrites CurrentDef.
26 // 4. Erase CurrentDef from the function and MemorySSA.
28 //===----------------------------------------------------------------------===//
30 #include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/MapVector.h"
34 #include "llvm/ADT/PostOrderIterator.h"
35 #include "llvm/ADT/SetVector.h"
36 #include "llvm/ADT/SmallPtrSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/ADT/StringRef.h"
40 #include "llvm/Analysis/AliasAnalysis.h"
41 #include "llvm/Analysis/CaptureTracking.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/MemoryBuiltins.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/MemorySSA.h"
47 #include "llvm/Analysis/MemorySSAUpdater.h"
48 #include "llvm/Analysis/MustExecute.h"
49 #include "llvm/Analysis/PostDominators.h"
50 #include "llvm/Analysis/TargetLibraryInfo.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/Argument.h"
53 #include "llvm/IR/BasicBlock.h"
54 #include "llvm/IR/Constant.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstIterator.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/DebugCounter.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82 #include "llvm/Transforms/Utils/BuildLibCalls.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstddef>
87 #include <cstdint>
88 #include <iterator>
89 #include <map>
90 #include <utility>
92 using namespace llvm;
93 using namespace PatternMatch;
95 #define DEBUG_TYPE "dse"
97 STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
98 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
99 STATISTIC(NumFastStores, "Number of stores deleted");
100 STATISTIC(NumFastOther, "Number of other instrs removed");
101 STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
102 STATISTIC(NumModifiedStores, "Number of stores modified");
103 STATISTIC(NumCFGChecks, "Number of stores modified");
104 STATISTIC(NumCFGTries, "Number of stores modified");
105 STATISTIC(NumCFGSuccess, "Number of stores modified");
106 STATISTIC(NumGetDomMemoryDefPassed,
107 "Number of times a valid candidate is returned from getDomMemoryDef");
108 STATISTIC(NumDomMemDefChecks,
109 "Number iterations check for reads in getDomMemoryDef");
111 DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
112 "Controls which MemoryDefs are eliminated.");
114 static cl::opt<bool>
115 EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
116 cl::init(true), cl::Hidden,
117 cl::desc("Enable partial-overwrite tracking in DSE"));
119 static cl::opt<bool>
120 EnablePartialStoreMerging("enable-dse-partial-store-merging",
121 cl::init(true), cl::Hidden,
122 cl::desc("Enable partial store merging in DSE"));
124 static cl::opt<unsigned>
125 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(150), cl::Hidden,
126 cl::desc("The number of memory instructions to scan for "
127 "dead store elimination (default = 150)"));
128 static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
129 "dse-memoryssa-walklimit", cl::init(90), cl::Hidden,
130 cl::desc("The maximum number of steps while walking upwards to find "
131 "MemoryDefs that may be killed (default = 90)"));
133 static cl::opt<unsigned> MemorySSAPartialStoreLimit(
134 "dse-memoryssa-partial-store-limit", cl::init(5), cl::Hidden,
135 cl::desc("The maximum number candidates that only partially overwrite the "
136 "killing MemoryDef to consider"
137 " (default = 5)"));
139 static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
140 "dse-memoryssa-defs-per-block-limit", cl::init(5000), cl::Hidden,
141 cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
142 "other stores per basic block (default = 5000)"));
144 static cl::opt<unsigned> MemorySSASameBBStepCost(
145 "dse-memoryssa-samebb-cost", cl::init(1), cl::Hidden,
146 cl::desc(
147 "The cost of a step in the same basic block as the killing MemoryDef"
148 "(default = 1)"));
150 static cl::opt<unsigned>
151 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(5),
152 cl::Hidden,
153 cl::desc("The cost of a step in a different basic "
154 "block than the killing MemoryDef"
155 "(default = 5)"));
157 static cl::opt<unsigned> MemorySSAPathCheckLimit(
158 "dse-memoryssa-path-check-limit", cl::init(50), cl::Hidden,
159 cl::desc("The maximum number of blocks to check when trying to prove that "
160 "all paths to an exit go through a killing block (default = 50)"));
162 //===----------------------------------------------------------------------===//
163 // Helper functions
164 //===----------------------------------------------------------------------===//
165 using OverlapIntervalsTy = std::map<int64_t, int64_t>;
166 using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
168 /// Does this instruction write some memory? This only returns true for things
169 /// that we can analyze with other helpers below.
170 static bool hasAnalyzableMemoryWrite(Instruction *I,
171 const TargetLibraryInfo &TLI) {
172 if (isa<StoreInst>(I))
173 return true;
174 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
175 switch (II->getIntrinsicID()) {
176 default:
177 return false;
178 case Intrinsic::memset:
179 case Intrinsic::memmove:
180 case Intrinsic::memcpy:
181 case Intrinsic::memcpy_inline:
182 case Intrinsic::memcpy_element_unordered_atomic:
183 case Intrinsic::memmove_element_unordered_atomic:
184 case Intrinsic::memset_element_unordered_atomic:
185 case Intrinsic::init_trampoline:
186 case Intrinsic::lifetime_end:
187 case Intrinsic::masked_store:
188 return true;
191 if (auto *CB = dyn_cast<CallBase>(I)) {
192 LibFunc LF;
193 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
194 switch (LF) {
195 case LibFunc_strcpy:
196 case LibFunc_strncpy:
197 case LibFunc_strcat:
198 case LibFunc_strncat:
199 return true;
200 default:
201 return false;
205 return false;
208 /// Return a Location stored to by the specified instruction. If isRemovable
209 /// returns true, this function and getLocForRead completely describe the memory
210 /// operations for this instruction.
211 static MemoryLocation getLocForWrite(Instruction *Inst,
212 const TargetLibraryInfo &TLI) {
213 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
214 return MemoryLocation::get(SI);
216 // memcpy/memmove/memset.
217 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Inst))
218 return MemoryLocation::getForDest(MI);
220 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
221 switch (II->getIntrinsicID()) {
222 default:
223 return MemoryLocation(); // Unhandled intrinsic.
224 case Intrinsic::init_trampoline:
225 return MemoryLocation::getAfter(II->getArgOperand(0));
226 case Intrinsic::masked_store:
227 return MemoryLocation::getForArgument(II, 1, TLI);
228 case Intrinsic::lifetime_end: {
229 uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
230 return MemoryLocation(II->getArgOperand(1), Len);
234 if (auto *CB = dyn_cast<CallBase>(Inst))
235 // All the supported TLI functions so far happen to have dest as their
236 // first argument.
237 return MemoryLocation::getAfter(CB->getArgOperand(0));
238 return MemoryLocation();
241 /// If the value of this instruction and the memory it writes to is unused, may
242 /// we delete this instruction?
243 static bool isRemovable(Instruction *I) {
244 // Don't remove volatile/atomic stores.
245 if (StoreInst *SI = dyn_cast<StoreInst>(I))
246 return SI->isUnordered();
248 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
249 switch (II->getIntrinsicID()) {
250 default: llvm_unreachable("doesn't pass 'hasAnalyzableMemoryWrite' predicate");
251 case Intrinsic::lifetime_end:
252 // Never remove dead lifetime_end's, e.g. because it is followed by a
253 // free.
254 return false;
255 case Intrinsic::init_trampoline:
256 // Always safe to remove init_trampoline.
257 return true;
258 case Intrinsic::memset:
259 case Intrinsic::memmove:
260 case Intrinsic::memcpy:
261 case Intrinsic::memcpy_inline:
262 // Don't remove volatile memory intrinsics.
263 return !cast<MemIntrinsic>(II)->isVolatile();
264 case Intrinsic::memcpy_element_unordered_atomic:
265 case Intrinsic::memmove_element_unordered_atomic:
266 case Intrinsic::memset_element_unordered_atomic:
267 case Intrinsic::masked_store:
268 return true;
272 // note: only get here for calls with analyzable writes - i.e. libcalls
273 if (auto *CB = dyn_cast<CallBase>(I))
274 return CB->use_empty();
276 return false;
279 /// Returns true if the end of this instruction can be safely shortened in
280 /// length.
281 static bool isShortenableAtTheEnd(Instruction *I) {
282 // Don't shorten stores for now
283 if (isa<StoreInst>(I))
284 return false;
286 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
287 switch (II->getIntrinsicID()) {
288 default: return false;
289 case Intrinsic::memset:
290 case Intrinsic::memcpy:
291 case Intrinsic::memcpy_element_unordered_atomic:
292 case Intrinsic::memset_element_unordered_atomic:
293 // Do shorten memory intrinsics.
294 // FIXME: Add memmove if it's also safe to transform.
295 return true;
299 // Don't shorten libcalls calls for now.
301 return false;
304 /// Returns true if the beginning of this instruction can be safely shortened
305 /// in length.
306 static bool isShortenableAtTheBeginning(Instruction *I) {
307 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
308 // easily done by offsetting the source address.
309 return isa<AnyMemSetInst>(I);
312 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
313 const TargetLibraryInfo &TLI,
314 const Function *F) {
315 uint64_t Size;
316 ObjectSizeOpts Opts;
317 Opts.NullIsUnknownSize = NullPointerIsDefined(F);
319 if (getObjectSize(V, Size, DL, &TLI, Opts))
320 return Size;
321 return MemoryLocation::UnknownSize;
324 namespace {
326 enum OverwriteResult {
327 OW_Begin,
328 OW_Complete,
329 OW_End,
330 OW_PartialEarlierWithFullLater,
331 OW_MaybePartial,
332 OW_Unknown
335 } // end anonymous namespace
337 /// Check if two instruction are masked stores that completely
338 /// overwrite one another. More specifically, \p Later has to
339 /// overwrite \p Earlier.
340 static OverwriteResult isMaskedStoreOverwrite(const Instruction *Later,
341 const Instruction *Earlier,
342 BatchAAResults &AA) {
343 const auto *IIL = dyn_cast<IntrinsicInst>(Later);
344 const auto *IIE = dyn_cast<IntrinsicInst>(Earlier);
345 if (IIL == nullptr || IIE == nullptr)
346 return OW_Unknown;
347 if (IIL->getIntrinsicID() != Intrinsic::masked_store ||
348 IIE->getIntrinsicID() != Intrinsic::masked_store)
349 return OW_Unknown;
350 // Pointers.
351 Value *LP = IIL->getArgOperand(1)->stripPointerCasts();
352 Value *EP = IIE->getArgOperand(1)->stripPointerCasts();
353 if (LP != EP && !AA.isMustAlias(LP, EP))
354 return OW_Unknown;
355 // Masks.
356 // TODO: check that Later's mask is a superset of the Earlier's mask.
357 if (IIL->getArgOperand(3) != IIE->getArgOperand(3))
358 return OW_Unknown;
359 return OW_Complete;
362 /// Return 'OW_Complete' if a store to the 'Later' location completely
363 /// overwrites a store to the 'Earlier' location, 'OW_End' if the end of the
364 /// 'Earlier' location is completely overwritten by 'Later', 'OW_Begin' if the
365 /// beginning of the 'Earlier' location is overwritten by 'Later'.
366 /// 'OW_PartialEarlierWithFullLater' means that an earlier (big) store was
367 /// overwritten by a latter (smaller) store which doesn't write outside the big
368 /// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
369 /// NOTE: This function must only be called if both \p Later and \p Earlier
370 /// write to the same underlying object with valid \p EarlierOff and \p
371 /// LaterOff.
372 static OverwriteResult isPartialOverwrite(const MemoryLocation &Later,
373 const MemoryLocation &Earlier,
374 int64_t EarlierOff, int64_t LaterOff,
375 Instruction *DepWrite,
376 InstOverlapIntervalsTy &IOL) {
377 const uint64_t LaterSize = Later.Size.getValue();
378 const uint64_t EarlierSize = Earlier.Size.getValue();
379 // We may now overlap, although the overlap is not complete. There might also
380 // be other incomplete overlaps, and together, they might cover the complete
381 // earlier write.
382 // Note: The correctness of this logic depends on the fact that this function
383 // is not even called providing DepWrite when there are any intervening reads.
384 if (EnablePartialOverwriteTracking &&
385 LaterOff < int64_t(EarlierOff + EarlierSize) &&
386 int64_t(LaterOff + LaterSize) >= EarlierOff) {
388 // Insert our part of the overlap into the map.
389 auto &IM = IOL[DepWrite];
390 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: Earlier [" << EarlierOff
391 << ", " << int64_t(EarlierOff + EarlierSize)
392 << ") Later [" << LaterOff << ", "
393 << int64_t(LaterOff + LaterSize) << ")\n");
395 // Make sure that we only insert non-overlapping intervals and combine
396 // adjacent intervals. The intervals are stored in the map with the ending
397 // offset as the key (in the half-open sense) and the starting offset as
398 // the value.
399 int64_t LaterIntStart = LaterOff, LaterIntEnd = LaterOff + LaterSize;
401 // Find any intervals ending at, or after, LaterIntStart which start
402 // before LaterIntEnd.
403 auto ILI = IM.lower_bound(LaterIntStart);
404 if (ILI != IM.end() && ILI->second <= LaterIntEnd) {
405 // This existing interval is overlapped with the current store somewhere
406 // in [LaterIntStart, LaterIntEnd]. Merge them by erasing the existing
407 // intervals and adjusting our start and end.
408 LaterIntStart = std::min(LaterIntStart, ILI->second);
409 LaterIntEnd = std::max(LaterIntEnd, ILI->first);
410 ILI = IM.erase(ILI);
412 // Continue erasing and adjusting our end in case other previous
413 // intervals are also overlapped with the current store.
415 // |--- ealier 1 ---| |--- ealier 2 ---|
416 // |------- later---------|
418 while (ILI != IM.end() && ILI->second <= LaterIntEnd) {
419 assert(ILI->second > LaterIntStart && "Unexpected interval");
420 LaterIntEnd = std::max(LaterIntEnd, ILI->first);
421 ILI = IM.erase(ILI);
425 IM[LaterIntEnd] = LaterIntStart;
427 ILI = IM.begin();
428 if (ILI->second <= EarlierOff &&
429 ILI->first >= int64_t(EarlierOff + EarlierSize)) {
430 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: Earlier ["
431 << EarlierOff << ", "
432 << int64_t(EarlierOff + EarlierSize)
433 << ") Composite Later [" << ILI->second << ", "
434 << ILI->first << ")\n");
435 ++NumCompletePartials;
436 return OW_Complete;
440 // Check for an earlier store which writes to all the memory locations that
441 // the later store writes to.
442 if (EnablePartialStoreMerging && LaterOff >= EarlierOff &&
443 int64_t(EarlierOff + EarlierSize) > LaterOff &&
444 uint64_t(LaterOff - EarlierOff) + LaterSize <= EarlierSize) {
445 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite an earlier load ["
446 << EarlierOff << ", "
447 << int64_t(EarlierOff + EarlierSize)
448 << ") by a later store [" << LaterOff << ", "
449 << int64_t(LaterOff + LaterSize) << ")\n");
450 // TODO: Maybe come up with a better name?
451 return OW_PartialEarlierWithFullLater;
454 // Another interesting case is if the later store overwrites the end of the
455 // earlier store.
457 // |--earlier--|
458 // |-- later --|
460 // In this case we may want to trim the size of earlier to avoid generating
461 // writes to addresses which will definitely be overwritten later
462 if (!EnablePartialOverwriteTracking &&
463 (LaterOff > EarlierOff && LaterOff < int64_t(EarlierOff + EarlierSize) &&
464 int64_t(LaterOff + LaterSize) >= int64_t(EarlierOff + EarlierSize)))
465 return OW_End;
467 // Finally, we also need to check if the later store overwrites the beginning
468 // of the earlier store.
470 // |--earlier--|
471 // |-- later --|
473 // In this case we may want to move the destination address and trim the size
474 // of earlier to avoid generating writes to addresses which will definitely
475 // be overwritten later.
476 if (!EnablePartialOverwriteTracking &&
477 (LaterOff <= EarlierOff && int64_t(LaterOff + LaterSize) > EarlierOff)) {
478 assert(int64_t(LaterOff + LaterSize) < int64_t(EarlierOff + EarlierSize) &&
479 "Expect to be handled as OW_Complete");
480 return OW_Begin;
482 // Otherwise, they don't completely overlap.
483 return OW_Unknown;
486 /// Returns true if the memory which is accessed by the second instruction is not
487 /// modified between the first and the second instruction.
488 /// Precondition: Second instruction must be dominated by the first
489 /// instruction.
490 static bool
491 memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
492 BatchAAResults &AA, const DataLayout &DL,
493 DominatorTree *DT) {
494 // Do a backwards scan through the CFG from SecondI to FirstI. Look for
495 // instructions which can modify the memory location accessed by SecondI.
497 // While doing the walk keep track of the address to check. It might be
498 // different in different basic blocks due to PHI translation.
499 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
500 SmallVector<BlockAddressPair, 16> WorkList;
501 // Keep track of the address we visited each block with. Bail out if we
502 // visit a block with different addresses.
503 DenseMap<BasicBlock *, Value *> Visited;
505 BasicBlock::iterator FirstBBI(FirstI);
506 ++FirstBBI;
507 BasicBlock::iterator SecondBBI(SecondI);
508 BasicBlock *FirstBB = FirstI->getParent();
509 BasicBlock *SecondBB = SecondI->getParent();
510 MemoryLocation MemLoc;
511 if (auto *MemSet = dyn_cast<MemSetInst>(SecondI))
512 MemLoc = MemoryLocation::getForDest(MemSet);
513 else
514 MemLoc = MemoryLocation::get(SecondI);
516 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
518 // Start checking the SecondBB.
519 WorkList.push_back(
520 std::make_pair(SecondBB, PHITransAddr(MemLocPtr, DL, nullptr)));
521 bool isFirstBlock = true;
523 // Check all blocks going backward until we reach the FirstBB.
524 while (!WorkList.empty()) {
525 BlockAddressPair Current = WorkList.pop_back_val();
526 BasicBlock *B = Current.first;
527 PHITransAddr &Addr = Current.second;
528 Value *Ptr = Addr.getAddr();
530 // Ignore instructions before FirstI if this is the FirstBB.
531 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
533 BasicBlock::iterator EI;
534 if (isFirstBlock) {
535 // Ignore instructions after SecondI if this is the first visit of SecondBB.
536 assert(B == SecondBB && "first block is not the store block");
537 EI = SecondBBI;
538 isFirstBlock = false;
539 } else {
540 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
541 // In this case we also have to look at instructions after SecondI.
542 EI = B->end();
544 for (; BI != EI; ++BI) {
545 Instruction *I = &*BI;
546 if (I->mayWriteToMemory() && I != SecondI)
547 if (isModSet(AA.getModRefInfo(I, MemLoc.getWithNewPtr(Ptr))))
548 return false;
550 if (B != FirstBB) {
551 assert(B != &FirstBB->getParent()->getEntryBlock() &&
552 "Should not hit the entry block because SI must be dominated by LI");
553 for (BasicBlock *Pred : predecessors(B)) {
554 PHITransAddr PredAddr = Addr;
555 if (PredAddr.NeedsPHITranslationFromBlock(B)) {
556 if (!PredAddr.IsPotentiallyPHITranslatable())
557 return false;
558 if (PredAddr.PHITranslateValue(B, Pred, DT, false))
559 return false;
561 Value *TranslatedPtr = PredAddr.getAddr();
562 auto Inserted = Visited.insert(std::make_pair(Pred, TranslatedPtr));
563 if (!Inserted.second) {
564 // We already visited this block before. If it was with a different
565 // address - bail out!
566 if (TranslatedPtr != Inserted.first->second)
567 return false;
568 // ... otherwise just skip it.
569 continue;
571 WorkList.push_back(std::make_pair(Pred, PredAddr));
575 return true;
578 static bool tryToShorten(Instruction *EarlierWrite, int64_t &EarlierStart,
579 uint64_t &EarlierSize, int64_t LaterStart,
580 uint64_t LaterSize, bool IsOverwriteEnd) {
581 auto *EarlierIntrinsic = cast<AnyMemIntrinsic>(EarlierWrite);
582 Align PrefAlign = EarlierIntrinsic->getDestAlign().valueOrOne();
584 // We assume that memet/memcpy operates in chunks of the "largest" native
585 // type size and aligned on the same value. That means optimal start and size
586 // of memset/memcpy should be modulo of preferred alignment of that type. That
587 // is it there is no any sense in trying to reduce store size any further
588 // since any "extra" stores comes for free anyway.
589 // On the other hand, maximum alignment we can achieve is limited by alignment
590 // of initial store.
592 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
593 // "largest" native type.
594 // Note: What is the proper way to get that value?
595 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
596 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
598 int64_t ToRemoveStart = 0;
599 uint64_t ToRemoveSize = 0;
600 // Compute start and size of the region to remove. Make sure 'PrefAlign' is
601 // maintained on the remaining store.
602 if (IsOverwriteEnd) {
603 // Calculate required adjustment for 'LaterStart'in order to keep remaining
604 // store size aligned on 'PerfAlign'.
605 uint64_t Off =
606 offsetToAlignment(uint64_t(LaterStart - EarlierStart), PrefAlign);
607 ToRemoveStart = LaterStart + Off;
608 if (EarlierSize <= uint64_t(ToRemoveStart - EarlierStart))
609 return false;
610 ToRemoveSize = EarlierSize - uint64_t(ToRemoveStart - EarlierStart);
611 } else {
612 ToRemoveStart = EarlierStart;
613 assert(LaterSize >= uint64_t(EarlierStart - LaterStart) &&
614 "Not overlapping accesses?");
615 ToRemoveSize = LaterSize - uint64_t(EarlierStart - LaterStart);
616 // Calculate required adjustment for 'ToRemoveSize'in order to keep
617 // start of the remaining store aligned on 'PerfAlign'.
618 uint64_t Off = offsetToAlignment(ToRemoveSize, PrefAlign);
619 if (Off != 0) {
620 if (ToRemoveSize <= (PrefAlign.value() - Off))
621 return false;
622 ToRemoveSize -= PrefAlign.value() - Off;
624 assert(isAligned(PrefAlign, ToRemoveSize) &&
625 "Should preserve selected alignment");
628 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
629 assert(EarlierSize > ToRemoveSize && "Can't remove more than original size");
631 uint64_t NewSize = EarlierSize - ToRemoveSize;
632 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(EarlierWrite)) {
633 // When shortening an atomic memory intrinsic, the newly shortened
634 // length must remain an integer multiple of the element size.
635 const uint32_t ElementSize = AMI->getElementSizeInBytes();
636 if (0 != NewSize % ElementSize)
637 return false;
640 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
641 << (IsOverwriteEnd ? "END" : "BEGIN") << ": "
642 << *EarlierWrite << "\n KILLER [" << ToRemoveStart << ", "
643 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
645 Value *EarlierWriteLength = EarlierIntrinsic->getLength();
646 Value *TrimmedLength =
647 ConstantInt::get(EarlierWriteLength->getType(), NewSize);
648 EarlierIntrinsic->setLength(TrimmedLength);
649 EarlierIntrinsic->setDestAlignment(PrefAlign);
651 if (!IsOverwriteEnd) {
652 Value *OrigDest = EarlierIntrinsic->getRawDest();
653 Type *Int8PtrTy =
654 Type::getInt8PtrTy(EarlierIntrinsic->getContext(),
655 OrigDest->getType()->getPointerAddressSpace());
656 Value *Dest = OrigDest;
657 if (OrigDest->getType() != Int8PtrTy)
658 Dest = CastInst::CreatePointerCast(OrigDest, Int8PtrTy, "", EarlierWrite);
659 Value *Indices[1] = {
660 ConstantInt::get(EarlierWriteLength->getType(), ToRemoveSize)};
661 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
662 Type::getInt8Ty(EarlierIntrinsic->getContext()),
663 Dest, Indices, "", EarlierWrite);
664 NewDestGEP->setDebugLoc(EarlierIntrinsic->getDebugLoc());
665 if (NewDestGEP->getType() != OrigDest->getType())
666 NewDestGEP = CastInst::CreatePointerCast(NewDestGEP, OrigDest->getType(),
667 "", EarlierWrite);
668 EarlierIntrinsic->setDest(NewDestGEP);
671 // Finally update start and size of earlier access.
672 if (!IsOverwriteEnd)
673 EarlierStart += ToRemoveSize;
674 EarlierSize = NewSize;
676 return true;
679 static bool tryToShortenEnd(Instruction *EarlierWrite,
680 OverlapIntervalsTy &IntervalMap,
681 int64_t &EarlierStart, uint64_t &EarlierSize) {
682 if (IntervalMap.empty() || !isShortenableAtTheEnd(EarlierWrite))
683 return false;
685 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
686 int64_t LaterStart = OII->second;
687 uint64_t LaterSize = OII->first - LaterStart;
689 assert(OII->first - LaterStart >= 0 && "Size expected to be positive");
691 if (LaterStart > EarlierStart &&
692 // Note: "LaterStart - EarlierStart" is known to be positive due to
693 // preceding check.
694 (uint64_t)(LaterStart - EarlierStart) < EarlierSize &&
695 // Note: "EarlierSize - (uint64_t)(LaterStart - EarlierStart)" is known to
696 // be non negative due to preceding checks.
697 LaterSize >= EarlierSize - (uint64_t)(LaterStart - EarlierStart)) {
698 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
699 LaterSize, true)) {
700 IntervalMap.erase(OII);
701 return true;
704 return false;
707 static bool tryToShortenBegin(Instruction *EarlierWrite,
708 OverlapIntervalsTy &IntervalMap,
709 int64_t &EarlierStart, uint64_t &EarlierSize) {
710 if (IntervalMap.empty() || !isShortenableAtTheBeginning(EarlierWrite))
711 return false;
713 OverlapIntervalsTy::iterator OII = IntervalMap.begin();
714 int64_t LaterStart = OII->second;
715 uint64_t LaterSize = OII->first - LaterStart;
717 assert(OII->first - LaterStart >= 0 && "Size expected to be positive");
719 if (LaterStart <= EarlierStart &&
720 // Note: "EarlierStart - LaterStart" is known to be non negative due to
721 // preceding check.
722 LaterSize > (uint64_t)(EarlierStart - LaterStart)) {
723 // Note: "LaterSize - (uint64_t)(EarlierStart - LaterStart)" is known to be
724 // positive due to preceding checks.
725 assert(LaterSize - (uint64_t)(EarlierStart - LaterStart) < EarlierSize &&
726 "Should have been handled as OW_Complete");
727 if (tryToShorten(EarlierWrite, EarlierStart, EarlierSize, LaterStart,
728 LaterSize, false)) {
729 IntervalMap.erase(OII);
730 return true;
733 return false;
736 static bool removePartiallyOverlappedStores(const DataLayout &DL,
737 InstOverlapIntervalsTy &IOL,
738 const TargetLibraryInfo &TLI) {
739 bool Changed = false;
740 for (auto OI : IOL) {
741 Instruction *EarlierWrite = OI.first;
742 MemoryLocation Loc = getLocForWrite(EarlierWrite, TLI);
743 assert(isRemovable(EarlierWrite) && "Expect only removable instruction");
745 const Value *Ptr = Loc.Ptr->stripPointerCasts();
746 int64_t EarlierStart = 0;
747 uint64_t EarlierSize = Loc.Size.getValue();
748 GetPointerBaseWithConstantOffset(Ptr, EarlierStart, DL);
749 OverlapIntervalsTy &IntervalMap = OI.second;
750 Changed |=
751 tryToShortenEnd(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
752 if (IntervalMap.empty())
753 continue;
754 Changed |=
755 tryToShortenBegin(EarlierWrite, IntervalMap, EarlierStart, EarlierSize);
757 return Changed;
760 static Constant *tryToMergePartialOverlappingStores(
761 StoreInst *Earlier, StoreInst *Later, int64_t InstWriteOffset,
762 int64_t DepWriteOffset, const DataLayout &DL, BatchAAResults &AA,
763 DominatorTree *DT) {
765 if (Earlier && isa<ConstantInt>(Earlier->getValueOperand()) &&
766 DL.typeSizeEqualsStoreSize(Earlier->getValueOperand()->getType()) &&
767 Later && isa<ConstantInt>(Later->getValueOperand()) &&
768 DL.typeSizeEqualsStoreSize(Later->getValueOperand()->getType()) &&
769 memoryIsNotModifiedBetween(Earlier, Later, AA, DL, DT)) {
770 // If the store we find is:
771 // a) partially overwritten by the store to 'Loc'
772 // b) the later store is fully contained in the earlier one and
773 // c) they both have a constant value
774 // d) none of the two stores need padding
775 // Merge the two stores, replacing the earlier store's value with a
776 // merge of both values.
777 // TODO: Deal with other constant types (vectors, etc), and probably
778 // some mem intrinsics (if needed)
780 APInt EarlierValue =
781 cast<ConstantInt>(Earlier->getValueOperand())->getValue();
782 APInt LaterValue = cast<ConstantInt>(Later->getValueOperand())->getValue();
783 unsigned LaterBits = LaterValue.getBitWidth();
784 assert(EarlierValue.getBitWidth() > LaterValue.getBitWidth());
785 LaterValue = LaterValue.zext(EarlierValue.getBitWidth());
787 // Offset of the smaller store inside the larger store
788 unsigned BitOffsetDiff = (InstWriteOffset - DepWriteOffset) * 8;
789 unsigned LShiftAmount = DL.isBigEndian() ? EarlierValue.getBitWidth() -
790 BitOffsetDiff - LaterBits
791 : BitOffsetDiff;
792 APInt Mask = APInt::getBitsSet(EarlierValue.getBitWidth(), LShiftAmount,
793 LShiftAmount + LaterBits);
794 // Clear the bits we'll be replacing, then OR with the smaller
795 // store, shifted appropriately.
796 APInt Merged = (EarlierValue & ~Mask) | (LaterValue << LShiftAmount);
797 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Earlier: " << *Earlier
798 << "\n Later: " << *Later
799 << "\n Merged Value: " << Merged << '\n');
800 return ConstantInt::get(Earlier->getValueOperand()->getType(), Merged);
802 return nullptr;
805 namespace {
806 // Returns true if \p I is an intrisnic that does not read or write memory.
807 bool isNoopIntrinsic(Instruction *I) {
808 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
809 switch (II->getIntrinsicID()) {
810 case Intrinsic::lifetime_start:
811 case Intrinsic::lifetime_end:
812 case Intrinsic::invariant_end:
813 case Intrinsic::launder_invariant_group:
814 case Intrinsic::assume:
815 return true;
816 case Intrinsic::dbg_addr:
817 case Intrinsic::dbg_declare:
818 case Intrinsic::dbg_label:
819 case Intrinsic::dbg_value:
820 llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
821 default:
822 return false;
825 return false;
828 // Check if we can ignore \p D for DSE.
829 bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller,
830 const TargetLibraryInfo &TLI) {
831 Instruction *DI = D->getMemoryInst();
832 // Calls that only access inaccessible memory cannot read or write any memory
833 // locations we consider for elimination.
834 if (auto *CB = dyn_cast<CallBase>(DI))
835 if (CB->onlyAccessesInaccessibleMemory()) {
836 if (isAllocLikeFn(DI, &TLI))
837 return false;
838 return true;
840 // We can eliminate stores to locations not visible to the caller across
841 // throwing instructions.
842 if (DI->mayThrow() && !DefVisibleToCaller)
843 return true;
845 // We can remove the dead stores, irrespective of the fence and its ordering
846 // (release/acquire/seq_cst). Fences only constraints the ordering of
847 // already visible stores, it does not make a store visible to other
848 // threads. So, skipping over a fence does not change a store from being
849 // dead.
850 if (isa<FenceInst>(DI))
851 return true;
853 // Skip intrinsics that do not really read or modify memory.
854 if (isNoopIntrinsic(DI))
855 return true;
857 return false;
860 struct DSEState {
861 Function &F;
862 AliasAnalysis &AA;
864 /// The single BatchAA instance that is used to cache AA queries. It will
865 /// not be invalidated over the whole run. This is safe, because:
866 /// 1. Only memory writes are removed, so the alias cache for memory
867 /// locations remains valid.
868 /// 2. No new instructions are added (only instructions removed), so cached
869 /// information for a deleted value cannot be accessed by a re-used new
870 /// value pointer.
871 BatchAAResults BatchAA;
873 MemorySSA &MSSA;
874 DominatorTree &DT;
875 PostDominatorTree &PDT;
876 const TargetLibraryInfo &TLI;
877 const DataLayout &DL;
878 const LoopInfo &LI;
880 // Whether the function contains any irreducible control flow, useful for
881 // being accurately able to detect loops.
882 bool ContainsIrreducibleLoops;
884 // All MemoryDefs that potentially could kill other MemDefs.
885 SmallVector<MemoryDef *, 64> MemDefs;
886 // Any that should be skipped as they are already deleted
887 SmallPtrSet<MemoryAccess *, 4> SkipStores;
888 // Keep track of all of the objects that are invisible to the caller before
889 // the function returns.
890 // SmallPtrSet<const Value *, 16> InvisibleToCallerBeforeRet;
891 DenseMap<const Value *, bool> InvisibleToCallerBeforeRet;
892 // Keep track of all of the objects that are invisible to the caller after
893 // the function returns.
894 DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
895 // Keep track of blocks with throwing instructions not modeled in MemorySSA.
896 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
897 // Post-order numbers for each basic block. Used to figure out if memory
898 // accesses are executed before another access.
899 DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
901 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
902 /// basic block.
903 DenseMap<BasicBlock *, InstOverlapIntervalsTy> IOLs;
905 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
906 PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
907 const LoopInfo &LI)
908 : F(F), AA(AA), BatchAA(AA), MSSA(MSSA), DT(DT), PDT(PDT), TLI(TLI),
909 DL(F.getParent()->getDataLayout()), LI(LI) {}
911 static DSEState get(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
912 DominatorTree &DT, PostDominatorTree &PDT,
913 const TargetLibraryInfo &TLI, const LoopInfo &LI) {
914 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
915 // Collect blocks with throwing instructions not modeled in MemorySSA and
916 // alloc-like objects.
917 unsigned PO = 0;
918 for (BasicBlock *BB : post_order(&F)) {
919 State.PostOrderNumbers[BB] = PO++;
920 for (Instruction &I : *BB) {
921 MemoryAccess *MA = MSSA.getMemoryAccess(&I);
922 if (I.mayThrow() && !MA)
923 State.ThrowingBlocks.insert(I.getParent());
925 auto *MD = dyn_cast_or_null<MemoryDef>(MA);
926 if (MD && State.MemDefs.size() < MemorySSADefsPerBlockLimit &&
927 (State.getLocForWriteEx(&I) || State.isMemTerminatorInst(&I)))
928 State.MemDefs.push_back(MD);
932 // Treat byval or inalloca arguments the same as Allocas, stores to them are
933 // dead at the end of the function.
934 for (Argument &AI : F.args())
935 if (AI.hasPassPointeeByValueCopyAttr()) {
936 // For byval, the caller doesn't know the address of the allocation.
937 if (AI.hasByValAttr())
938 State.InvisibleToCallerBeforeRet.insert({&AI, true});
939 State.InvisibleToCallerAfterRet.insert({&AI, true});
942 // Collect whether there is any irreducible control flow in the function.
943 State.ContainsIrreducibleLoops = mayContainIrreducibleControl(F, &LI);
945 return State;
948 /// Return 'OW_Complete' if a store to the 'Later' location (by \p LaterI
949 /// instruction) completely overwrites a store to the 'Earlier' location.
950 /// (by \p EarlierI instruction).
951 /// Return OW_MaybePartial if \p Later does not completely overwrite
952 /// \p Earlier, but they both write to the same underlying object. In that
953 /// case, use isPartialOverwrite to check if \p Later partially overwrites
954 /// \p Earlier. Returns 'OW_Unknown' if nothing can be determined.
955 OverwriteResult
956 isOverwrite(const Instruction *LaterI, const Instruction *EarlierI,
957 const MemoryLocation &Later, const MemoryLocation &Earlier,
958 int64_t &EarlierOff, int64_t &LaterOff) {
959 // AliasAnalysis does not always account for loops. Limit overwrite checks
960 // to dependencies for which we can guarantee they are independant of any
961 // loops they are in.
962 if (!isGuaranteedLoopIndependent(EarlierI, LaterI, Earlier))
963 return OW_Unknown;
965 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
966 // get imprecise values here, though (except for unknown sizes).
967 if (!Later.Size.isPrecise() || !Earlier.Size.isPrecise()) {
968 // In case no constant size is known, try to an IR values for the number
969 // of bytes written and check if they match.
970 const auto *LaterMemI = dyn_cast<MemIntrinsic>(LaterI);
971 const auto *EarlierMemI = dyn_cast<MemIntrinsic>(EarlierI);
972 if (LaterMemI && EarlierMemI) {
973 const Value *LaterV = LaterMemI->getLength();
974 const Value *EarlierV = EarlierMemI->getLength();
975 if (LaterV == EarlierV && BatchAA.isMustAlias(Earlier, Later))
976 return OW_Complete;
979 // Masked stores have imprecise locations, but we can reason about them
980 // to some extent.
981 return isMaskedStoreOverwrite(LaterI, EarlierI, BatchAA);
984 const uint64_t LaterSize = Later.Size.getValue();
985 const uint64_t EarlierSize = Earlier.Size.getValue();
987 // Query the alias information
988 AliasResult AAR = BatchAA.alias(Later, Earlier);
990 // If the start pointers are the same, we just have to compare sizes to see if
991 // the later store was larger than the earlier store.
992 if (AAR == AliasResult::MustAlias) {
993 // Make sure that the Later size is >= the Earlier size.
994 if (LaterSize >= EarlierSize)
995 return OW_Complete;
998 // If we hit a partial alias we may have a full overwrite
999 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
1000 int32_t Off = AAR.getOffset();
1001 if (Off >= 0 && (uint64_t)Off + EarlierSize <= LaterSize)
1002 return OW_Complete;
1005 // Check to see if the later store is to the entire object (either a global,
1006 // an alloca, or a byval/inalloca argument). If so, then it clearly
1007 // overwrites any other store to the same object.
1008 const Value *P1 = Earlier.Ptr->stripPointerCasts();
1009 const Value *P2 = Later.Ptr->stripPointerCasts();
1010 const Value *UO1 = getUnderlyingObject(P1), *UO2 = getUnderlyingObject(P2);
1012 // If we can't resolve the same pointers to the same object, then we can't
1013 // analyze them at all.
1014 if (UO1 != UO2)
1015 return OW_Unknown;
1017 // If the "Later" store is to a recognizable object, get its size.
1018 uint64_t ObjectSize = getPointerSize(UO2, DL, TLI, &F);
1019 if (ObjectSize != MemoryLocation::UnknownSize)
1020 if (ObjectSize == LaterSize && ObjectSize >= EarlierSize)
1021 return OW_Complete;
1023 // Okay, we have stores to two completely different pointers. Try to
1024 // decompose the pointer into a "base + constant_offset" form. If the base
1025 // pointers are equal, then we can reason about the two stores.
1026 EarlierOff = 0;
1027 LaterOff = 0;
1028 const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
1029 const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
1031 // If the base pointers still differ, we have two completely different stores.
1032 if (BP1 != BP2)
1033 return OW_Unknown;
1035 // The later access completely overlaps the earlier store if and only if
1036 // both start and end of the earlier one is "inside" the later one:
1037 // |<->|--earlier--|<->|
1038 // |-------later-------|
1039 // Accesses may overlap if and only if start of one of them is "inside"
1040 // another one:
1041 // |<->|--earlier--|<----->|
1042 // |-------later-------|
1043 // OR
1044 // |----- earlier -----|
1045 // |<->|---later---|<----->|
1047 // We have to be careful here as *Off is signed while *.Size is unsigned.
1049 // Check if the earlier access starts "not before" the later one.
1050 if (EarlierOff >= LaterOff) {
1051 // If the earlier access ends "not after" the later access then the earlier
1052 // one is completely overwritten by the later one.
1053 if (uint64_t(EarlierOff - LaterOff) + EarlierSize <= LaterSize)
1054 return OW_Complete;
1055 // If start of the earlier access is "before" end of the later access then
1056 // accesses overlap.
1057 else if ((uint64_t)(EarlierOff - LaterOff) < LaterSize)
1058 return OW_MaybePartial;
1060 // If start of the later access is "before" end of the earlier access then
1061 // accesses overlap.
1062 else if ((uint64_t)(LaterOff - EarlierOff) < EarlierSize) {
1063 return OW_MaybePartial;
1066 // Can reach here only if accesses are known not to overlap. There is no
1067 // dedicated code to indicate no overlap so signal "unknown".
1068 return OW_Unknown;
1071 bool isInvisibleToCallerAfterRet(const Value *V) {
1072 if (isa<AllocaInst>(V))
1073 return true;
1074 auto I = InvisibleToCallerAfterRet.insert({V, false});
1075 if (I.second) {
1076 if (!isInvisibleToCallerBeforeRet(V)) {
1077 I.first->second = false;
1078 } else {
1079 auto *Inst = dyn_cast<Instruction>(V);
1080 if (Inst && isAllocLikeFn(Inst, &TLI))
1081 I.first->second = !PointerMayBeCaptured(V, true, false);
1084 return I.first->second;
1087 bool isInvisibleToCallerBeforeRet(const Value *V) {
1088 if (isa<AllocaInst>(V))
1089 return true;
1090 auto I = InvisibleToCallerBeforeRet.insert({V, false});
1091 if (I.second) {
1092 auto *Inst = dyn_cast<Instruction>(V);
1093 if (Inst && isAllocLikeFn(Inst, &TLI))
1094 // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1095 // with the killing MemoryDef. But we refrain from doing so for now to
1096 // limit compile-time and this does not cause any changes to the number
1097 // of stores removed on a large test set in practice.
1098 I.first->second = !PointerMayBeCaptured(V, false, true);
1100 return I.first->second;
1103 Optional<MemoryLocation> getLocForWriteEx(Instruction *I) const {
1104 if (!I->mayWriteToMemory())
1105 return None;
1107 if (auto *MTI = dyn_cast<AnyMemIntrinsic>(I))
1108 return {MemoryLocation::getForDest(MTI)};
1110 if (auto *CB = dyn_cast<CallBase>(I)) {
1111 // If the functions may write to memory we do not know about, bail out.
1112 if (!CB->onlyAccessesArgMemory() &&
1113 !CB->onlyAccessesInaccessibleMemOrArgMem())
1114 return None;
1116 LibFunc LF;
1117 if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
1118 switch (LF) {
1119 case LibFunc_strcpy:
1120 case LibFunc_strncpy:
1121 case LibFunc_strcat:
1122 case LibFunc_strncat:
1123 return {MemoryLocation::getAfter(CB->getArgOperand(0))};
1124 default:
1125 break;
1128 switch (CB->getIntrinsicID()) {
1129 case Intrinsic::init_trampoline:
1130 return {MemoryLocation::getAfter(CB->getArgOperand(0))};
1131 case Intrinsic::masked_store:
1132 return {MemoryLocation::getForArgument(CB, 1, TLI)};
1133 default:
1134 break;
1136 return None;
1139 return MemoryLocation::getOrNone(I);
1142 /// Returns true if \p UseInst completely overwrites \p DefLoc
1143 /// (stored by \p DefInst).
1144 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1145 Instruction *UseInst) {
1146 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1147 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1148 // MemoryDef.
1149 if (!UseInst->mayWriteToMemory())
1150 return false;
1152 if (auto *CB = dyn_cast<CallBase>(UseInst))
1153 if (CB->onlyAccessesInaccessibleMemory())
1154 return false;
1156 int64_t InstWriteOffset, DepWriteOffset;
1157 if (auto CC = getLocForWriteEx(UseInst))
1158 return isOverwrite(UseInst, DefInst, *CC, DefLoc, DepWriteOffset,
1159 InstWriteOffset) == OW_Complete;
1160 return false;
1163 /// Returns true if \p Def is not read before returning from the function.
1164 bool isWriteAtEndOfFunction(MemoryDef *Def) {
1165 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " ("
1166 << *Def->getMemoryInst()
1167 << ") is at the end the function \n");
1169 auto MaybeLoc = getLocForWriteEx(Def->getMemoryInst());
1170 if (!MaybeLoc) {
1171 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n");
1172 return false;
1175 SmallVector<MemoryAccess *, 4> WorkList;
1176 SmallPtrSet<MemoryAccess *, 8> Visited;
1177 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1178 if (!Visited.insert(Acc).second)
1179 return;
1180 for (Use &U : Acc->uses())
1181 WorkList.push_back(cast<MemoryAccess>(U.getUser()));
1183 PushMemUses(Def);
1184 for (unsigned I = 0; I < WorkList.size(); I++) {
1185 if (WorkList.size() >= MemorySSAScanLimit) {
1186 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
1187 return false;
1190 MemoryAccess *UseAccess = WorkList[I];
1191 // Simply adding the users of MemoryPhi to the worklist is not enough,
1192 // because we might miss read clobbers in different iterations of a loop,
1193 // for example.
1194 // TODO: Add support for phi translation to handle the loop case.
1195 if (isa<MemoryPhi>(UseAccess))
1196 return false;
1198 // TODO: Checking for aliasing is expensive. Consider reducing the amount
1199 // of times this is called and/or caching it.
1200 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1201 if (isReadClobber(*MaybeLoc, UseInst)) {
1202 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n");
1203 return false;
1206 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess))
1207 PushMemUses(UseDef);
1209 return true;
1212 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a
1213 /// pair with the MemoryLocation terminated by \p I and a boolean flag
1214 /// indicating whether \p I is a free-like call.
1215 Optional<std::pair<MemoryLocation, bool>>
1216 getLocForTerminator(Instruction *I) const {
1217 uint64_t Len;
1218 Value *Ptr;
1219 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1220 m_Value(Ptr))))
1221 return {std::make_pair(MemoryLocation(Ptr, Len), false)};
1223 if (auto *CB = dyn_cast<CallBase>(I)) {
1224 if (isFreeCall(I, &TLI))
1225 return {std::make_pair(MemoryLocation::getAfter(CB->getArgOperand(0)),
1226 true)};
1229 return None;
1232 /// Returns true if \p I is a memory terminator instruction like
1233 /// llvm.lifetime.end or free.
1234 bool isMemTerminatorInst(Instruction *I) const {
1235 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1236 return (II && II->getIntrinsicID() == Intrinsic::lifetime_end) ||
1237 isFreeCall(I, &TLI);
1240 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1241 /// instruction \p AccessI.
1242 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1243 Instruction *MaybeTerm) {
1244 Optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1245 getLocForTerminator(MaybeTerm);
1247 if (!MaybeTermLoc)
1248 return false;
1250 // If the terminator is a free-like call, all accesses to the underlying
1251 // object can be considered terminated.
1252 if (getUnderlyingObject(Loc.Ptr) !=
1253 getUnderlyingObject(MaybeTermLoc->first.Ptr))
1254 return false;
1256 auto TermLoc = MaybeTermLoc->first;
1257 if (MaybeTermLoc->second) {
1258 const Value *LocUO = getUnderlyingObject(Loc.Ptr);
1259 return BatchAA.isMustAlias(TermLoc.Ptr, LocUO);
1261 int64_t InstWriteOffset, DepWriteOffset;
1262 return isOverwrite(MaybeTerm, AccessI, TermLoc, Loc, DepWriteOffset,
1263 InstWriteOffset) == OW_Complete;
1266 // Returns true if \p Use may read from \p DefLoc.
1267 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1268 if (isNoopIntrinsic(UseInst))
1269 return false;
1271 // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1272 // treated as read clobber.
1273 if (auto SI = dyn_cast<StoreInst>(UseInst))
1274 return isStrongerThan(SI->getOrdering(), AtomicOrdering::Monotonic);
1276 if (!UseInst->mayReadFromMemory())
1277 return false;
1279 if (auto *CB = dyn_cast<CallBase>(UseInst))
1280 if (CB->onlyAccessesInaccessibleMemory())
1281 return false;
1283 // NOTE: For calls, the number of stores removed could be slightly improved
1284 // by using AA.callCapturesBefore(UseInst, DefLoc, &DT), but that showed to
1285 // be expensive compared to the benefits in practice. For now, avoid more
1286 // expensive analysis to limit compile-time.
1287 return isRefSet(BatchAA.getModRefInfo(UseInst, DefLoc));
1290 /// Returns true if a dependency between \p Current and \p KillingDef is
1291 /// guaranteed to be loop invariant for the loops that they are in. Either
1292 /// because they are known to be in the same block, in the same loop level or
1293 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1294 /// during execution of the containing function.
1295 bool isGuaranteedLoopIndependent(const Instruction *Current,
1296 const Instruction *KillingDef,
1297 const MemoryLocation &CurrentLoc) {
1298 // If the dependency is within the same block or loop level (being careful
1299 // of irreducible loops), we know that AA will return a valid result for the
1300 // memory dependency. (Both at the function level, outside of any loop,
1301 // would also be valid but we currently disable that to limit compile time).
1302 if (Current->getParent() == KillingDef->getParent())
1303 return true;
1304 const Loop *CurrentLI = LI.getLoopFor(Current->getParent());
1305 if (!ContainsIrreducibleLoops && CurrentLI &&
1306 CurrentLI == LI.getLoopFor(KillingDef->getParent()))
1307 return true;
1308 // Otherwise check the memory location is invariant to any loops.
1309 return isGuaranteedLoopInvariant(CurrentLoc.Ptr);
1312 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1313 /// loop. In particular, this guarantees that it only references a single
1314 /// MemoryLocation during execution of the containing function.
1315 bool isGuaranteedLoopInvariant(const Value *Ptr) {
1316 auto IsGuaranteedLoopInvariantBase = [this](const Value *Ptr) {
1317 Ptr = Ptr->stripPointerCasts();
1318 if (auto *I = dyn_cast<Instruction>(Ptr)) {
1319 if (isa<AllocaInst>(Ptr))
1320 return true;
1322 if (isAllocLikeFn(I, &TLI))
1323 return true;
1325 return false;
1327 return true;
1330 Ptr = Ptr->stripPointerCasts();
1331 if (auto *I = dyn_cast<Instruction>(Ptr)) {
1332 if (I->getParent()->isEntryBlock())
1333 return true;
1335 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
1336 return IsGuaranteedLoopInvariantBase(GEP->getPointerOperand()) &&
1337 GEP->hasAllConstantIndices();
1339 return IsGuaranteedLoopInvariantBase(Ptr);
1342 // Find a MemoryDef writing to \p DefLoc and dominating \p StartAccess, with
1343 // no read access between them or on any other path to a function exit block
1344 // if \p DefLoc is not accessible after the function returns. If there is no
1345 // such MemoryDef, return None. The returned value may not (completely)
1346 // overwrite \p DefLoc. Currently we bail out when we encounter an aliasing
1347 // MemoryUse (read).
1348 Optional<MemoryAccess *>
1349 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1350 const MemoryLocation &DefLoc, const Value *DefUO,
1351 unsigned &ScanLimit, unsigned &WalkerStepLimit,
1352 bool IsMemTerm, unsigned &PartialLimit) {
1353 if (ScanLimit == 0 || WalkerStepLimit == 0) {
1354 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1355 return None;
1358 MemoryAccess *Current = StartAccess;
1359 Instruction *KillingI = KillingDef->getMemoryInst();
1360 LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
1362 // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1363 Optional<MemoryLocation> CurrentLoc;
1364 for (;; Current = cast<MemoryDef>(Current)->getDefiningAccess()) {
1365 LLVM_DEBUG({
1366 dbgs() << " visiting " << *Current;
1367 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1368 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1369 << ")";
1370 dbgs() << "\n";
1373 // Reached TOP.
1374 if (MSSA.isLiveOnEntryDef(Current)) {
1375 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
1376 return None;
1379 // Cost of a step. Accesses in the same block are more likely to be valid
1380 // candidates for elimination, hence consider them cheaper.
1381 unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1382 ? MemorySSASameBBStepCost
1383 : MemorySSAOtherBBStepCost;
1384 if (WalkerStepLimit <= StepCost) {
1385 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
1386 return None;
1388 WalkerStepLimit -= StepCost;
1390 // Return for MemoryPhis. They cannot be eliminated directly and the
1391 // caller is responsible for traversing them.
1392 if (isa<MemoryPhi>(Current)) {
1393 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n");
1394 return Current;
1397 // Below, check if CurrentDef is a valid candidate to be eliminated by
1398 // KillingDef. If it is not, check the next candidate.
1399 MemoryDef *CurrentDef = cast<MemoryDef>(Current);
1400 Instruction *CurrentI = CurrentDef->getMemoryInst();
1402 if (canSkipDef(CurrentDef, !isInvisibleToCallerBeforeRet(DefUO), TLI))
1403 continue;
1405 // Before we try to remove anything, check for any extra throwing
1406 // instructions that block us from DSEing
1407 if (mayThrowBetween(KillingI, CurrentI, DefUO)) {
1408 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n");
1409 return None;
1412 // Check for anything that looks like it will be a barrier to further
1413 // removal
1414 if (isDSEBarrier(DefUO, CurrentI)) {
1415 LLVM_DEBUG(dbgs() << " ... skip, barrier\n");
1416 return None;
1419 // If Current is known to be on path that reads DefLoc or is a read
1420 // clobber, bail out, as the path is not profitable. We skip this check
1421 // for intrinsic calls, because the code knows how to handle memcpy
1422 // intrinsics.
1423 if (!isa<IntrinsicInst>(CurrentI) && isReadClobber(DefLoc, CurrentI))
1424 return None;
1426 // Quick check if there are direct uses that are read-clobbers.
1427 if (any_of(Current->uses(), [this, &DefLoc, StartAccess](Use &U) {
1428 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(U.getUser()))
1429 return !MSSA.dominates(StartAccess, UseOrDef) &&
1430 isReadClobber(DefLoc, UseOrDef->getMemoryInst());
1431 return false;
1432 })) {
1433 LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
1434 return None;
1437 // If Current cannot be analyzed or is not removable, check the next
1438 // candidate.
1439 if (!hasAnalyzableMemoryWrite(CurrentI, TLI) || !isRemovable(CurrentI))
1440 continue;
1442 // If Current does not have an analyzable write location, skip it
1443 CurrentLoc = getLocForWriteEx(CurrentI);
1444 if (!CurrentLoc)
1445 continue;
1447 // AliasAnalysis does not account for loops. Limit elimination to
1448 // candidates for which we can guarantee they always store to the same
1449 // memory location and not located in different loops.
1450 if (!isGuaranteedLoopIndependent(CurrentI, KillingI, *CurrentLoc)) {
1451 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
1452 WalkerStepLimit -= 1;
1453 continue;
1456 if (IsMemTerm) {
1457 // If the killing def is a memory terminator (e.g. lifetime.end), check
1458 // the next candidate if the current Current does not write the same
1459 // underlying object as the terminator.
1460 if (!isMemTerminator(*CurrentLoc, CurrentI, KillingI))
1461 continue;
1462 } else {
1463 int64_t InstWriteOffset, DepWriteOffset;
1464 auto OR = isOverwrite(KillingI, CurrentI, DefLoc, *CurrentLoc,
1465 DepWriteOffset, InstWriteOffset);
1466 // If Current does not write to the same object as KillingDef, check
1467 // the next candidate.
1468 if (OR == OW_Unknown)
1469 continue;
1470 else if (OR == OW_MaybePartial) {
1471 // If KillingDef only partially overwrites Current, check the next
1472 // candidate if the partial step limit is exceeded. This aggressively
1473 // limits the number of candidates for partial store elimination,
1474 // which are less likely to be removable in the end.
1475 if (PartialLimit <= 1) {
1476 WalkerStepLimit -= 1;
1477 continue;
1479 PartialLimit -= 1;
1482 break;
1485 // Accesses to objects accessible after the function returns can only be
1486 // eliminated if the access is killed along all paths to the exit. Collect
1487 // the blocks with killing (=completely overwriting MemoryDefs) and check if
1488 // they cover all paths from EarlierAccess to any function exit.
1489 SmallPtrSet<Instruction *, 16> KillingDefs;
1490 KillingDefs.insert(KillingDef->getMemoryInst());
1491 MemoryAccess *EarlierAccess = Current;
1492 Instruction *EarlierMemInst =
1493 cast<MemoryDef>(EarlierAccess)->getMemoryInst();
1494 LLVM_DEBUG(dbgs() << " Checking for reads of " << *EarlierAccess << " ("
1495 << *EarlierMemInst << ")\n");
1497 SmallSetVector<MemoryAccess *, 32> WorkList;
1498 auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1499 for (Use &U : Acc->uses())
1500 WorkList.insert(cast<MemoryAccess>(U.getUser()));
1502 PushMemUses(EarlierAccess);
1504 // Check if EarlierDef may be read.
1505 for (unsigned I = 0; I < WorkList.size(); I++) {
1506 MemoryAccess *UseAccess = WorkList[I];
1508 LLVM_DEBUG(dbgs() << " " << *UseAccess);
1509 // Bail out if the number of accesses to check exceeds the scan limit.
1510 if (ScanLimit < (WorkList.size() - I)) {
1511 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1512 return None;
1514 --ScanLimit;
1515 NumDomMemDefChecks++;
1517 if (isa<MemoryPhi>(UseAccess)) {
1518 if (any_of(KillingDefs, [this, UseAccess](Instruction *KI) {
1519 return DT.properlyDominates(KI->getParent(),
1520 UseAccess->getBlock());
1521 })) {
1522 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1523 continue;
1525 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n");
1526 PushMemUses(UseAccess);
1527 continue;
1530 Instruction *UseInst = cast<MemoryUseOrDef>(UseAccess)->getMemoryInst();
1531 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1533 if (any_of(KillingDefs, [this, UseInst](Instruction *KI) {
1534 return DT.dominates(KI, UseInst);
1535 })) {
1536 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1537 continue;
1540 // A memory terminator kills all preceeding MemoryDefs and all succeeding
1541 // MemoryAccesses. We do not have to check it's users.
1542 if (isMemTerminator(*CurrentLoc, EarlierMemInst, UseInst)) {
1543 LLVM_DEBUG(
1544 dbgs()
1545 << " ... skipping, memterminator invalidates following accesses\n");
1546 continue;
1549 if (isNoopIntrinsic(cast<MemoryUseOrDef>(UseAccess)->getMemoryInst())) {
1550 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
1551 PushMemUses(UseAccess);
1552 continue;
1555 if (UseInst->mayThrow() && !isInvisibleToCallerBeforeRet(DefUO)) {
1556 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
1557 return None;
1560 // Uses which may read the original MemoryDef mean we cannot eliminate the
1561 // original MD. Stop walk.
1562 if (isReadClobber(*CurrentLoc, UseInst)) {
1563 LLVM_DEBUG(dbgs() << " ... found read clobber\n");
1564 return None;
1567 // If this worklist walks back to the original memory access (and the
1568 // pointer is not guarenteed loop invariant) then we cannot assume that a
1569 // store kills itself.
1570 if (EarlierAccess == UseAccess &&
1571 !isGuaranteedLoopInvariant(CurrentLoc->Ptr)) {
1572 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
1573 return None;
1575 // Otherwise, for the KillingDef and EarlierAccess we only have to check
1576 // if it reads the memory location.
1577 // TODO: It would probably be better to check for self-reads before
1578 // calling the function.
1579 if (KillingDef == UseAccess || EarlierAccess == UseAccess) {
1580 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
1581 continue;
1584 // Check all uses for MemoryDefs, except for defs completely overwriting
1585 // the original location. Otherwise we have to check uses of *all*
1586 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1587 // miss cases like the following
1588 // 1 = Def(LoE) ; <----- EarlierDef stores [0,1]
1589 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3]
1590 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3].
1591 // (The Use points to the *first* Def it may alias)
1592 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias,
1593 // stores [0,1]
1594 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(UseAccess)) {
1595 if (isCompleteOverwrite(*CurrentLoc, EarlierMemInst, UseInst)) {
1596 BasicBlock *MaybeKillingBlock = UseInst->getParent();
1597 if (PostOrderNumbers.find(MaybeKillingBlock)->second <
1598 PostOrderNumbers.find(EarlierAccess->getBlock())->second) {
1599 if (!isInvisibleToCallerAfterRet(DefUO)) {
1600 LLVM_DEBUG(dbgs()
1601 << " ... found killing def " << *UseInst << "\n");
1602 KillingDefs.insert(UseInst);
1604 } else {
1605 LLVM_DEBUG(dbgs()
1606 << " ... found preceeding def " << *UseInst << "\n");
1607 return None;
1609 } else
1610 PushMemUses(UseDef);
1614 // For accesses to locations visible after the function returns, make sure
1615 // that the location is killed (=overwritten) along all paths from
1616 // EarlierAccess to the exit.
1617 if (!isInvisibleToCallerAfterRet(DefUO)) {
1618 SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1619 for (Instruction *KD : KillingDefs)
1620 KillingBlocks.insert(KD->getParent());
1621 assert(!KillingBlocks.empty() &&
1622 "Expected at least a single killing block");
1624 // Find the common post-dominator of all killing blocks.
1625 BasicBlock *CommonPred = *KillingBlocks.begin();
1626 for (auto I = std::next(KillingBlocks.begin()), E = KillingBlocks.end();
1627 I != E; I++) {
1628 if (!CommonPred)
1629 break;
1630 CommonPred = PDT.findNearestCommonDominator(CommonPred, *I);
1633 // If CommonPred is in the set of killing blocks, just check if it
1634 // post-dominates EarlierAccess.
1635 if (KillingBlocks.count(CommonPred)) {
1636 if (PDT.dominates(CommonPred, EarlierAccess->getBlock()))
1637 return {EarlierAccess};
1638 return None;
1641 // If the common post-dominator does not post-dominate EarlierAccess,
1642 // there is a path from EarlierAccess to an exit not going through a
1643 // killing block.
1644 if (PDT.dominates(CommonPred, EarlierAccess->getBlock())) {
1645 SetVector<BasicBlock *> WorkList;
1647 // If CommonPred is null, there are multiple exits from the function.
1648 // They all have to be added to the worklist.
1649 if (CommonPred)
1650 WorkList.insert(CommonPred);
1651 else
1652 for (BasicBlock *R : PDT.roots())
1653 WorkList.insert(R);
1655 NumCFGTries++;
1656 // Check if all paths starting from an exit node go through one of the
1657 // killing blocks before reaching EarlierAccess.
1658 for (unsigned I = 0; I < WorkList.size(); I++) {
1659 NumCFGChecks++;
1660 BasicBlock *Current = WorkList[I];
1661 if (KillingBlocks.count(Current))
1662 continue;
1663 if (Current == EarlierAccess->getBlock())
1664 return None;
1666 // EarlierAccess is reachable from the entry, so we don't have to
1667 // explore unreachable blocks further.
1668 if (!DT.isReachableFromEntry(Current))
1669 continue;
1671 for (BasicBlock *Pred : predecessors(Current))
1672 WorkList.insert(Pred);
1674 if (WorkList.size() >= MemorySSAPathCheckLimit)
1675 return None;
1677 NumCFGSuccess++;
1678 return {EarlierAccess};
1680 return None;
1683 // No aliasing MemoryUses of EarlierAccess found, EarlierAccess is
1684 // potentially dead.
1685 return {EarlierAccess};
1688 // Delete dead memory defs
1689 void deleteDeadInstruction(Instruction *SI) {
1690 MemorySSAUpdater Updater(&MSSA);
1691 SmallVector<Instruction *, 32> NowDeadInsts;
1692 NowDeadInsts.push_back(SI);
1693 --NumFastOther;
1695 while (!NowDeadInsts.empty()) {
1696 Instruction *DeadInst = NowDeadInsts.pop_back_val();
1697 ++NumFastOther;
1699 // Try to preserve debug information attached to the dead instruction.
1700 salvageDebugInfo(*DeadInst);
1701 salvageKnowledge(DeadInst);
1703 // Remove the Instruction from MSSA.
1704 if (MemoryAccess *MA = MSSA.getMemoryAccess(DeadInst)) {
1705 if (MemoryDef *MD = dyn_cast<MemoryDef>(MA)) {
1706 SkipStores.insert(MD);
1708 Updater.removeMemoryAccess(MA);
1711 auto I = IOLs.find(DeadInst->getParent());
1712 if (I != IOLs.end())
1713 I->second.erase(DeadInst);
1714 // Remove its operands
1715 for (Use &O : DeadInst->operands())
1716 if (Instruction *OpI = dyn_cast<Instruction>(O)) {
1717 O = nullptr;
1718 if (isInstructionTriviallyDead(OpI, &TLI))
1719 NowDeadInsts.push_back(OpI);
1722 DeadInst->eraseFromParent();
1726 // Check for any extra throws between SI and NI that block DSE. This only
1727 // checks extra maythrows (those that aren't MemoryDef's). MemoryDef that may
1728 // throw are handled during the walk from one def to the next.
1729 bool mayThrowBetween(Instruction *SI, Instruction *NI,
1730 const Value *SILocUnd) {
1731 // First see if we can ignore it by using the fact that SI is an
1732 // alloca/alloca like object that is not visible to the caller during
1733 // execution of the function.
1734 if (SILocUnd && isInvisibleToCallerBeforeRet(SILocUnd))
1735 return false;
1737 if (SI->getParent() == NI->getParent())
1738 return ThrowingBlocks.count(SI->getParent());
1739 return !ThrowingBlocks.empty();
1742 // Check if \p NI acts as a DSE barrier for \p SI. The following instructions
1743 // act as barriers:
1744 // * A memory instruction that may throw and \p SI accesses a non-stack
1745 // object.
1746 // * Atomic stores stronger that monotonic.
1747 bool isDSEBarrier(const Value *SILocUnd, Instruction *NI) {
1748 // If NI may throw it acts as a barrier, unless we are to an alloca/alloca
1749 // like object that does not escape.
1750 if (NI->mayThrow() && !isInvisibleToCallerBeforeRet(SILocUnd))
1751 return true;
1753 // If NI is an atomic load/store stronger than monotonic, do not try to
1754 // eliminate/reorder it.
1755 if (NI->isAtomic()) {
1756 if (auto *LI = dyn_cast<LoadInst>(NI))
1757 return isStrongerThanMonotonic(LI->getOrdering());
1758 if (auto *SI = dyn_cast<StoreInst>(NI))
1759 return isStrongerThanMonotonic(SI->getOrdering());
1760 if (auto *ARMW = dyn_cast<AtomicRMWInst>(NI))
1761 return isStrongerThanMonotonic(ARMW->getOrdering());
1762 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(NI))
1763 return isStrongerThanMonotonic(CmpXchg->getSuccessOrdering()) ||
1764 isStrongerThanMonotonic(CmpXchg->getFailureOrdering());
1765 llvm_unreachable("other instructions should be skipped in MemorySSA");
1767 return false;
1770 /// Eliminate writes to objects that are not visible in the caller and are not
1771 /// accessed before returning from the function.
1772 bool eliminateDeadWritesAtEndOfFunction() {
1773 bool MadeChange = false;
1774 LLVM_DEBUG(
1775 dbgs()
1776 << "Trying to eliminate MemoryDefs at the end of the function\n");
1777 for (int I = MemDefs.size() - 1; I >= 0; I--) {
1778 MemoryDef *Def = MemDefs[I];
1779 if (SkipStores.contains(Def) || !isRemovable(Def->getMemoryInst()))
1780 continue;
1782 Instruction *DefI = Def->getMemoryInst();
1783 auto DefLoc = getLocForWriteEx(DefI);
1784 if (!DefLoc)
1785 continue;
1787 // NOTE: Currently eliminating writes at the end of a function is limited
1788 // to MemoryDefs with a single underlying object, to save compile-time. In
1789 // practice it appears the case with multiple underlying objects is very
1790 // uncommon. If it turns out to be important, we can use
1791 // getUnderlyingObjects here instead.
1792 const Value *UO = getUnderlyingObject(DefLoc->Ptr);
1793 if (!UO || !isInvisibleToCallerAfterRet(UO))
1794 continue;
1796 if (isWriteAtEndOfFunction(Def)) {
1797 // See through pointer-to-pointer bitcasts
1798 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
1799 "of the function\n");
1800 deleteDeadInstruction(DefI);
1801 ++NumFastStores;
1802 MadeChange = true;
1805 return MadeChange;
1808 /// \returns true if \p Def is a no-op store, either because it
1809 /// directly stores back a loaded value or stores zero to a calloced object.
1810 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1811 StoreInst *Store = dyn_cast<StoreInst>(Def->getMemoryInst());
1812 MemSetInst *MemSet = dyn_cast<MemSetInst>(Def->getMemoryInst());
1813 Constant *StoredConstant = nullptr;
1814 if (Store)
1815 StoredConstant = dyn_cast<Constant>(Store->getOperand(0));
1816 if (MemSet)
1817 StoredConstant = dyn_cast<Constant>(MemSet->getValue());
1819 if (StoredConstant && StoredConstant->isNullValue()) {
1820 auto *DefUOInst = dyn_cast<Instruction>(DefUO);
1821 if (DefUOInst) {
1822 if (isCallocLikeFn(DefUOInst, &TLI)) {
1823 auto *UnderlyingDef =
1824 cast<MemoryDef>(MSSA.getMemoryAccess(DefUOInst));
1825 // If UnderlyingDef is the clobbering access of Def, no instructions
1826 // between them can modify the memory location.
1827 auto *ClobberDef =
1828 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def);
1829 return UnderlyingDef == ClobberDef;
1832 if (MemSet) {
1833 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1834 F.hasFnAttribute(Attribute::SanitizeAddress) ||
1835 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1836 F.getName() == "calloc")
1837 return false;
1838 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(DefUOInst));
1839 if (!Malloc)
1840 return false;
1841 auto *InnerCallee = Malloc->getCalledFunction();
1842 if (!InnerCallee)
1843 return false;
1844 LibFunc Func;
1845 if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
1846 Func != LibFunc_malloc)
1847 return false;
1848 if (Malloc->getOperand(0) == MemSet->getLength()) {
1849 if (DT.dominates(Malloc, MemSet) &&
1850 memoryIsNotModifiedBetween(Malloc, MemSet, BatchAA, DL, &DT)) {
1851 IRBuilder<> IRB(Malloc);
1852 const auto &DL = Malloc->getModule()->getDataLayout();
1853 if (auto *Calloc =
1854 emitCalloc(ConstantInt::get(IRB.getIntPtrTy(DL), 1),
1855 Malloc->getArgOperand(0), IRB, TLI)) {
1856 MemorySSAUpdater Updater(&MSSA);
1857 auto *LastDef = cast<MemoryDef>(
1858 Updater.getMemorySSA()->getMemoryAccess(Malloc));
1859 auto *NewAccess = Updater.createMemoryAccessAfter(
1860 cast<Instruction>(Calloc), LastDef, LastDef);
1861 auto *NewAccessMD = cast<MemoryDef>(NewAccess);
1862 Updater.insertDef(NewAccessMD, /*RenameUses=*/true);
1863 Updater.removeMemoryAccess(Malloc);
1864 Malloc->replaceAllUsesWith(Calloc);
1865 Malloc->eraseFromParent();
1866 return true;
1868 return false;
1875 if (!Store)
1876 return false;
1878 if (auto *LoadI = dyn_cast<LoadInst>(Store->getOperand(0))) {
1879 if (LoadI->getPointerOperand() == Store->getOperand(1)) {
1880 // Get the defining access for the load.
1881 auto *LoadAccess = MSSA.getMemoryAccess(LoadI)->getDefiningAccess();
1882 // Fast path: the defining accesses are the same.
1883 if (LoadAccess == Def->getDefiningAccess())
1884 return true;
1886 // Look through phi accesses. Recursively scan all phi accesses by
1887 // adding them to a worklist. Bail when we run into a memory def that
1888 // does not match LoadAccess.
1889 SetVector<MemoryAccess *> ToCheck;
1890 MemoryAccess *Current =
1891 MSSA.getWalker()->getClobberingMemoryAccess(Def);
1892 // We don't want to bail when we run into the store memory def. But,
1893 // the phi access may point to it. So, pretend like we've already
1894 // checked it.
1895 ToCheck.insert(Def);
1896 ToCheck.insert(Current);
1897 // Start at current (1) to simulate already having checked Def.
1898 for (unsigned I = 1; I < ToCheck.size(); ++I) {
1899 Current = ToCheck[I];
1900 if (auto PhiAccess = dyn_cast<MemoryPhi>(Current)) {
1901 // Check all the operands.
1902 for (auto &Use : PhiAccess->incoming_values())
1903 ToCheck.insert(cast<MemoryAccess>(&Use));
1904 continue;
1907 // If we found a memory def, bail. This happens when we have an
1908 // unrelated write in between an otherwise noop store.
1909 assert(isa<MemoryDef>(Current) &&
1910 "Only MemoryDefs should reach here.");
1911 // TODO: Skip no alias MemoryDefs that have no aliasing reads.
1912 // We are searching for the definition of the store's destination.
1913 // So, if that is the same definition as the load, then this is a
1914 // noop. Otherwise, fail.
1915 if (LoadAccess != Current)
1916 return false;
1918 return true;
1922 return false;
1926 static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
1927 DominatorTree &DT, PostDominatorTree &PDT,
1928 const TargetLibraryInfo &TLI,
1929 const LoopInfo &LI) {
1930 bool MadeChange = false;
1932 DSEState State = DSEState::get(F, AA, MSSA, DT, PDT, TLI, LI);
1933 // For each store:
1934 for (unsigned I = 0; I < State.MemDefs.size(); I++) {
1935 MemoryDef *KillingDef = State.MemDefs[I];
1936 if (State.SkipStores.count(KillingDef))
1937 continue;
1938 Instruction *SI = KillingDef->getMemoryInst();
1940 Optional<MemoryLocation> MaybeSILoc;
1941 if (State.isMemTerminatorInst(SI))
1942 MaybeSILoc = State.getLocForTerminator(SI).map(
1943 [](const std::pair<MemoryLocation, bool> &P) { return P.first; });
1944 else
1945 MaybeSILoc = State.getLocForWriteEx(SI);
1947 if (!MaybeSILoc) {
1948 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
1949 << *SI << "\n");
1950 continue;
1952 MemoryLocation SILoc = *MaybeSILoc;
1953 assert(SILoc.Ptr && "SILoc should not be null");
1954 const Value *SILocUnd = getUnderlyingObject(SILoc.Ptr);
1956 MemoryAccess *Current = KillingDef;
1957 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
1958 << *Current << " (" << *SI << ")\n");
1960 unsigned ScanLimit = MemorySSAScanLimit;
1961 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
1962 unsigned PartialLimit = MemorySSAPartialStoreLimit;
1963 // Worklist of MemoryAccesses that may be killed by KillingDef.
1964 SetVector<MemoryAccess *> ToCheck;
1966 if (SILocUnd)
1967 ToCheck.insert(KillingDef->getDefiningAccess());
1969 bool Shortend = false;
1970 bool IsMemTerm = State.isMemTerminatorInst(SI);
1971 // Check if MemoryAccesses in the worklist are killed by KillingDef.
1972 for (unsigned I = 0; I < ToCheck.size(); I++) {
1973 Current = ToCheck[I];
1974 if (State.SkipStores.count(Current))
1975 continue;
1977 Optional<MemoryAccess *> Next = State.getDomMemoryDef(
1978 KillingDef, Current, SILoc, SILocUnd, ScanLimit, WalkerStepLimit,
1979 IsMemTerm, PartialLimit);
1981 if (!Next) {
1982 LLVM_DEBUG(dbgs() << " finished walk\n");
1983 continue;
1986 MemoryAccess *EarlierAccess = *Next;
1987 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *EarlierAccess);
1988 if (isa<MemoryPhi>(EarlierAccess)) {
1989 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
1990 for (Value *V : cast<MemoryPhi>(EarlierAccess)->incoming_values()) {
1991 MemoryAccess *IncomingAccess = cast<MemoryAccess>(V);
1992 BasicBlock *IncomingBlock = IncomingAccess->getBlock();
1993 BasicBlock *PhiBlock = EarlierAccess->getBlock();
1995 // We only consider incoming MemoryAccesses that come before the
1996 // MemoryPhi. Otherwise we could discover candidates that do not
1997 // strictly dominate our starting def.
1998 if (State.PostOrderNumbers[IncomingBlock] >
1999 State.PostOrderNumbers[PhiBlock])
2000 ToCheck.insert(IncomingAccess);
2002 continue;
2004 auto *NextDef = cast<MemoryDef>(EarlierAccess);
2005 Instruction *NI = NextDef->getMemoryInst();
2006 LLVM_DEBUG(dbgs() << " (" << *NI << ")\n");
2007 ToCheck.insert(NextDef->getDefiningAccess());
2008 NumGetDomMemoryDefPassed++;
2010 if (!DebugCounter::shouldExecute(MemorySSACounter))
2011 continue;
2013 MemoryLocation NILoc = *State.getLocForWriteEx(NI);
2015 if (IsMemTerm) {
2016 const Value *NIUnd = getUnderlyingObject(NILoc.Ptr);
2017 if (SILocUnd != NIUnd)
2018 continue;
2019 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *NI
2020 << "\n KILLER: " << *SI << '\n');
2021 State.deleteDeadInstruction(NI);
2022 ++NumFastStores;
2023 MadeChange = true;
2024 } else {
2025 // Check if NI overwrites SI.
2026 int64_t InstWriteOffset, DepWriteOffset;
2027 OverwriteResult OR = State.isOverwrite(SI, NI, SILoc, NILoc,
2028 DepWriteOffset, InstWriteOffset);
2029 if (OR == OW_MaybePartial) {
2030 auto Iter = State.IOLs.insert(
2031 std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2032 NI->getParent(), InstOverlapIntervalsTy()));
2033 auto &IOL = Iter.first->second;
2034 OR = isPartialOverwrite(SILoc, NILoc, DepWriteOffset, InstWriteOffset,
2035 NI, IOL);
2038 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2039 auto *Earlier = dyn_cast<StoreInst>(NI);
2040 auto *Later = dyn_cast<StoreInst>(SI);
2041 // We are re-using tryToMergePartialOverlappingStores, which requires
2042 // Earlier to domiante Later.
2043 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2044 if (Earlier && Later && DT.dominates(Earlier, Later)) {
2045 if (Constant *Merged = tryToMergePartialOverlappingStores(
2046 Earlier, Later, InstWriteOffset, DepWriteOffset, State.DL,
2047 State.BatchAA, &DT)) {
2049 // Update stored value of earlier store to merged constant.
2050 Earlier->setOperand(0, Merged);
2051 ++NumModifiedStores;
2052 MadeChange = true;
2054 Shortend = true;
2055 // Remove later store and remove any outstanding overlap intervals
2056 // for the updated store.
2057 State.deleteDeadInstruction(Later);
2058 auto I = State.IOLs.find(Earlier->getParent());
2059 if (I != State.IOLs.end())
2060 I->second.erase(Earlier);
2061 break;
2066 if (OR == OW_Complete) {
2067 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *NI
2068 << "\n KILLER: " << *SI << '\n');
2069 State.deleteDeadInstruction(NI);
2070 ++NumFastStores;
2071 MadeChange = true;
2076 // Check if the store is a no-op.
2077 if (!Shortend && isRemovable(SI) &&
2078 State.storeIsNoop(KillingDef, SILocUnd)) {
2079 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *SI << '\n');
2080 State.deleteDeadInstruction(SI);
2081 NumRedundantStores++;
2082 MadeChange = true;
2083 continue;
2087 if (EnablePartialOverwriteTracking)
2088 for (auto &KV : State.IOLs)
2089 MadeChange |= removePartiallyOverlappedStores(State.DL, KV.second, TLI);
2091 MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2092 return MadeChange;
2094 } // end anonymous namespace
2096 //===----------------------------------------------------------------------===//
2097 // DSE Pass
2098 //===----------------------------------------------------------------------===//
2099 PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2100 AliasAnalysis &AA = AM.getResult<AAManager>(F);
2101 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2102 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
2103 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
2104 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
2105 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
2107 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2109 #ifdef LLVM_ENABLE_STATS
2110 if (AreStatisticsEnabled())
2111 for (auto &I : instructions(F))
2112 NumRemainingStores += isa<StoreInst>(&I);
2113 #endif
2115 if (!Changed)
2116 return PreservedAnalyses::all();
2118 PreservedAnalyses PA;
2119 PA.preserveSet<CFGAnalyses>();
2120 PA.preserve<MemorySSAAnalysis>();
2121 PA.preserve<LoopAnalysis>();
2122 return PA;
2125 namespace {
2127 /// A legacy pass for the legacy pass manager that wraps \c DSEPass.
2128 class DSELegacyPass : public FunctionPass {
2129 public:
2130 static char ID; // Pass identification, replacement for typeid
2132 DSELegacyPass() : FunctionPass(ID) {
2133 initializeDSELegacyPassPass(*PassRegistry::getPassRegistry());
2136 bool runOnFunction(Function &F) override {
2137 if (skipFunction(F))
2138 return false;
2140 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2141 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2142 const TargetLibraryInfo &TLI =
2143 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
2144 MemorySSA &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2145 PostDominatorTree &PDT =
2146 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
2147 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2149 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2151 #ifdef LLVM_ENABLE_STATS
2152 if (AreStatisticsEnabled())
2153 for (auto &I : instructions(F))
2154 NumRemainingStores += isa<StoreInst>(&I);
2155 #endif
2157 return Changed;
2160 void getAnalysisUsage(AnalysisUsage &AU) const override {
2161 AU.setPreservesCFG();
2162 AU.addRequired<AAResultsWrapperPass>();
2163 AU.addRequired<TargetLibraryInfoWrapperPass>();
2164 AU.addPreserved<GlobalsAAWrapperPass>();
2165 AU.addRequired<DominatorTreeWrapperPass>();
2166 AU.addPreserved<DominatorTreeWrapperPass>();
2167 AU.addRequired<PostDominatorTreeWrapperPass>();
2168 AU.addRequired<MemorySSAWrapperPass>();
2169 AU.addPreserved<PostDominatorTreeWrapperPass>();
2170 AU.addPreserved<MemorySSAWrapperPass>();
2171 AU.addRequired<LoopInfoWrapperPass>();
2172 AU.addPreserved<LoopInfoWrapperPass>();
2176 } // end anonymous namespace
2178 char DSELegacyPass::ID = 0;
2180 INITIALIZE_PASS_BEGIN(DSELegacyPass, "dse", "Dead Store Elimination", false,
2181 false)
2182 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2183 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
2184 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
2185 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
2186 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
2187 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
2188 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
2189 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2190 INITIALIZE_PASS_END(DSELegacyPass, "dse", "Dead Store Elimination", false,
2191 false)
2193 FunctionPass *llvm::createDeadStoreEliminationPass() {
2194 return new DSELegacyPass();