1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/DebugCounter.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
31 using namespace llvm::PatternMatch
;
33 #define DEBUG_TYPE "div-rem-pairs"
34 STATISTIC(NumPairs
, "Number of div/rem pairs");
35 STATISTIC(NumRecomposed
, "Number of instructions recomposed");
36 STATISTIC(NumHoisted
, "Number of instructions hoisted");
37 STATISTIC(NumDecomposed
, "Number of instructions decomposed");
38 DEBUG_COUNTER(DRPCounter
, "div-rem-pairs-transform",
39 "Controls transformations in div-rem-pairs pass");
42 struct ExpandedMatch
{
48 /// See if we can match: (which is the form we expand into)
49 /// X - ((X ?/ Y) * Y)
50 /// which is equivalent to:
52 static llvm::Optional
<ExpandedMatch
> matchExpandedRem(Instruction
&I
) {
53 Value
*Dividend
, *XroundedDownToMultipleOfY
;
54 if (!match(&I
, m_Sub(m_Value(Dividend
), m_Value(XroundedDownToMultipleOfY
))))
59 // Look for ((X / Y) * Y)
61 XroundedDownToMultipleOfY
,
62 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend
), m_Value(Divisor
)),
64 m_Deferred(Divisor
))))
68 M
.Key
.SignedOp
= Div
->getOpcode() == Instruction::SDiv
;
69 M
.Key
.Dividend
= Dividend
;
70 M
.Key
.Divisor
= Divisor
;
76 /// A thin wrapper to store two values that we matched as div-rem pair.
77 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
78 struct DivRemPairWorklistEntry
{
79 /// The actual udiv/sdiv instruction. Source of truth.
80 AssertingVH
<Instruction
> DivInst
;
82 /// The instruction that we have matched as a remainder instruction.
83 /// Should only be used as Value, don't introspect it.
84 AssertingVH
<Instruction
> RemInst
;
86 DivRemPairWorklistEntry(Instruction
*DivInst_
, Instruction
*RemInst_
)
87 : DivInst(DivInst_
), RemInst(RemInst_
) {
88 assert((DivInst
->getOpcode() == Instruction::UDiv
||
89 DivInst
->getOpcode() == Instruction::SDiv
) &&
91 assert(DivInst
->getType() == RemInst
->getType() && "Types should match.");
92 // We can't check anything else about remainder instruction,
93 // it's not strictly required to be a urem/srem.
96 /// The type for this pair, identical for both the div and rem.
97 Type
*getType() const { return DivInst
->getType(); }
99 /// Is this pair signed or unsigned?
100 bool isSigned() const { return DivInst
->getOpcode() == Instruction::SDiv
; }
102 /// In this pair, what are the divident and divisor?
103 Value
*getDividend() const { return DivInst
->getOperand(0); }
104 Value
*getDivisor() const { return DivInst
->getOperand(1); }
106 bool isRemExpanded() const {
107 switch (RemInst
->getOpcode()) {
108 case Instruction::SRem
:
109 case Instruction::URem
:
110 return false; // single 'rem' instruction - unexpanded form.
112 return true; // anything else means we have remainder in expanded form.
117 using DivRemWorklistTy
= SmallVector
<DivRemPairWorklistEntry
, 4>;
119 /// Find matching pairs of integer div/rem ops (they have the same numerator,
120 /// denominator, and signedness). Place those pairs into a worklist for further
121 /// processing. This indirection is needed because we have to use TrackingVH<>
122 /// because we will be doing RAUW, and if one of the rem instructions we change
123 /// happens to be an input to another div/rem in the maps, we'd have problems.
124 static DivRemWorklistTy
getWorklist(Function
&F
) {
125 // Insert all divide and remainder instructions into maps keyed by their
126 // operands and opcode (signed or unsigned).
127 DenseMap
<DivRemMapKey
, Instruction
*> DivMap
;
128 // Use a MapVector for RemMap so that instructions are moved/inserted in a
129 // deterministic order.
130 MapVector
<DivRemMapKey
, Instruction
*> RemMap
;
133 if (I
.getOpcode() == Instruction::SDiv
)
134 DivMap
[DivRemMapKey(true, I
.getOperand(0), I
.getOperand(1))] = &I
;
135 else if (I
.getOpcode() == Instruction::UDiv
)
136 DivMap
[DivRemMapKey(false, I
.getOperand(0), I
.getOperand(1))] = &I
;
137 else if (I
.getOpcode() == Instruction::SRem
)
138 RemMap
[DivRemMapKey(true, I
.getOperand(0), I
.getOperand(1))] = &I
;
139 else if (I
.getOpcode() == Instruction::URem
)
140 RemMap
[DivRemMapKey(false, I
.getOperand(0), I
.getOperand(1))] = &I
;
141 else if (auto Match
= matchExpandedRem(I
))
142 RemMap
[Match
->Key
] = Match
->Value
;
146 // We'll accumulate the matching pairs of div-rem instructions here.
147 DivRemWorklistTy Worklist
;
149 // We can iterate over either map because we are only looking for matched
150 // pairs. Choose remainders for efficiency because they are usually even more
151 // rare than division.
152 for (auto &RemPair
: RemMap
) {
153 // Find the matching division instruction from the division map.
154 auto It
= DivMap
.find(RemPair
.first
);
155 if (It
== DivMap
.end())
158 // We have a matching pair of div/rem instructions.
160 Instruction
*RemInst
= RemPair
.second
;
162 // Place it in the worklist.
163 Worklist
.emplace_back(It
->second
, RemInst
);
169 /// Find matching pairs of integer div/rem ops (they have the same numerator,
170 /// denominator, and signedness). If they exist in different basic blocks, bring
171 /// them together by hoisting or replace the common division operation that is
172 /// implicit in the remainder:
173 /// X % Y <--> X - ((X / Y) * Y).
175 /// We can largely ignore the normal safety and cost constraints on speculation
176 /// of these ops when we find a matching pair. This is because we are already
177 /// guaranteed that any exceptions and most cost are already incurred by the
178 /// first member of the pair.
180 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
181 /// SimplifyCFG, but it's split off on its own because it's different enough
182 /// that it doesn't quite match the stated objectives of those passes.
183 static bool optimizeDivRem(Function
&F
, const TargetTransformInfo
&TTI
,
184 const DominatorTree
&DT
) {
185 bool Changed
= false;
187 // Get the matching pairs of div-rem instructions. We want this extra
188 // indirection to avoid dealing with having to RAUW the keys of the maps.
189 DivRemWorklistTy Worklist
= getWorklist(F
);
191 // Process each entry in the worklist.
192 for (DivRemPairWorklistEntry
&E
: Worklist
) {
193 if (!DebugCounter::shouldExecute(DRPCounter
))
196 bool HasDivRemOp
= TTI
.hasDivRemOp(E
.getType(), E
.isSigned());
198 auto &DivInst
= E
.DivInst
;
199 auto &RemInst
= E
.RemInst
;
201 const bool RemOriginallyWasInExpandedForm
= E
.isRemExpanded();
202 (void)RemOriginallyWasInExpandedForm
; // suppress unused variable warning
204 if (HasDivRemOp
&& E
.isRemExpanded()) {
205 // The target supports div+rem but the rem is expanded.
206 // We should recompose it first.
207 Value
*X
= E
.getDividend();
208 Value
*Y
= E
.getDivisor();
209 Instruction
*RealRem
= E
.isSigned() ? BinaryOperator::CreateSRem(X
, Y
)
210 : BinaryOperator::CreateURem(X
, Y
);
211 // Note that we place it right next to the original expanded instruction,
212 // and letting further handling to move it if needed.
213 RealRem
->setName(RemInst
->getName() + ".recomposed");
214 RealRem
->insertAfter(RemInst
);
215 Instruction
*OrigRemInst
= RemInst
;
216 // Update AssertingVH<> with new instruction so it doesn't assert.
218 // And replace the original instruction with the new one.
219 OrigRemInst
->replaceAllUsesWith(RealRem
);
220 OrigRemInst
->eraseFromParent();
222 // Note that we have left ((X / Y) * Y) around.
223 // If it had other uses we could rewrite it as X - X % Y
227 assert((!E
.isRemExpanded() || !HasDivRemOp
) &&
228 "*If* the target supports div-rem, then by now the RemInst *is* "
229 "Instruction::[US]Rem.");
231 // If the target supports div+rem and the instructions are in the same block
232 // already, there's nothing to do. The backend should handle this. If the
233 // target does not support div+rem, then we will decompose the rem.
234 if (HasDivRemOp
&& RemInst
->getParent() == DivInst
->getParent())
237 bool DivDominates
= DT
.dominates(DivInst
, RemInst
);
238 if (!DivDominates
&& !DT
.dominates(RemInst
, DivInst
)) {
239 // We have matching div-rem pair, but they are in two different blocks,
240 // neither of which dominates one another.
242 BasicBlock
*PredBB
= nullptr;
243 BasicBlock
*DivBB
= DivInst
->getParent();
244 BasicBlock
*RemBB
= RemInst
->getParent();
246 // It's only safe to hoist if every instruction before the Div/Rem in the
247 // basic block is guaranteed to transfer execution.
248 auto IsSafeToHoist
= [](Instruction
*DivOrRem
, BasicBlock
*ParentBB
) {
249 for (auto I
= ParentBB
->begin(), E
= DivOrRem
->getIterator(); I
!= E
;
251 if (!isGuaranteedToTransferExecutionToSuccessor(&*I
))
257 // Look for something like this
264 // If the Rem block has a single predecessor and successor, and all paths
265 // from PredBB go to either RemBB or DivBB, and execution of RemBB and
266 // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If
267 // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave
268 // Rem where it is and rewrite it to mul/sub.
269 // FIXME: We could handle more hoisting cases.
270 if (RemBB
->getSingleSuccessor() == DivBB
)
271 PredBB
= RemBB
->getUniquePredecessor();
273 if (PredBB
&& IsSafeToHoist(RemInst
, RemBB
) &&
274 IsSafeToHoist(DivInst
, DivBB
) &&
275 all_of(successors(PredBB
),
276 [&](BasicBlock
*BB
) { return BB
== DivBB
|| BB
== RemBB
; }) &&
277 all_of(predecessors(DivBB
),
278 [&](BasicBlock
*BB
) { return BB
== RemBB
|| BB
== PredBB
; })) {
280 DivInst
->moveBefore(PredBB
->getTerminator());
283 RemInst
->moveBefore(PredBB
->getTerminator());
290 // The target does not have a single div/rem operation,
291 // and the rem is already in expanded form. Nothing to do.
292 if (!HasDivRemOp
&& E
.isRemExpanded())
296 // The target has a single div/rem operation. Hoist the lower instruction
297 // to make the matched pair visible to the backend.
299 RemInst
->moveAfter(DivInst
);
301 DivInst
->moveAfter(RemInst
);
304 // The target does not have a single div/rem operation,
305 // and the rem is *not* in a already-expanded form.
306 // Decompose the remainder calculation as:
307 // X % Y --> X - ((X / Y) * Y).
309 assert(!RemOriginallyWasInExpandedForm
&&
310 "We should not be expanding if the rem was in expanded form to "
313 Value
*X
= E
.getDividend();
314 Value
*Y
= E
.getDivisor();
315 Instruction
*Mul
= BinaryOperator::CreateMul(DivInst
, Y
);
316 Instruction
*Sub
= BinaryOperator::CreateSub(X
, Mul
);
318 // If the remainder dominates, then hoist the division up to that block:
321 // %rem = srem %x, %y
323 // %div = sdiv %x, %y
326 // %div = sdiv %x, %y
327 // %mul = mul %div, %y
328 // %rem = sub %x, %mul
330 // If the division dominates, it's already in the right place. The mul+sub
331 // will be in a different block because we don't assume that they are
332 // cheap to speculatively execute:
335 // %div = sdiv %x, %y
337 // %rem = srem %x, %y
340 // %div = sdiv %x, %y
342 // %mul = mul %div, %y
343 // %rem = sub %x, %mul
345 // If the div and rem are in the same block, we do the same transform,
346 // but any code movement would be within the same block.
349 DivInst
->moveBefore(RemInst
);
350 Mul
->insertAfter(RemInst
);
351 Sub
->insertAfter(Mul
);
353 // If X can be undef, X should be frozen first.
354 // For example, let's assume that Y = 1 & X = undef:
355 // %div = sdiv undef, 1 // %div = undef
356 // %rem = srem undef, 1 // %rem = 0
358 // %div = sdiv undef, 1 // %div = undef
359 // %mul = mul %div, 1 // %mul = undef
360 // %rem = sub %x, %mul // %rem = undef - undef = undef
361 // If X is not frozen, %rem becomes undef after transformation.
362 // TODO: We need a undef-specific checking function in ValueTracking
363 if (!isGuaranteedNotToBeUndefOrPoison(X
, nullptr, DivInst
, &DT
)) {
364 auto *FrX
= new FreezeInst(X
, X
->getName() + ".frozen", DivInst
);
365 DivInst
->setOperand(0, FrX
);
366 Sub
->setOperand(0, FrX
);
368 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
369 // but %rem in tgt can be one of many integer values.
370 if (!isGuaranteedNotToBeUndefOrPoison(Y
, nullptr, DivInst
, &DT
)) {
371 auto *FrY
= new FreezeInst(Y
, Y
->getName() + ".frozen", DivInst
);
372 DivInst
->setOperand(1, FrY
);
373 Mul
->setOperand(1, FrY
);
376 // Now kill the explicit remainder. We have replaced it with:
377 // (sub X, (mul (div X, Y), Y)
378 Sub
->setName(RemInst
->getName() + ".decomposed");
379 Instruction
*OrigRemInst
= RemInst
;
380 // Update AssertingVH<> with new instruction so it doesn't assert.
382 // And replace the original instruction with the new one.
383 OrigRemInst
->replaceAllUsesWith(Sub
);
384 OrigRemInst
->eraseFromParent();
393 // Pass manager boilerplate below here.
396 struct DivRemPairsLegacyPass
: public FunctionPass
{
398 DivRemPairsLegacyPass() : FunctionPass(ID
) {
399 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
402 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
403 AU
.addRequired
<DominatorTreeWrapperPass
>();
404 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
405 AU
.setPreservesCFG();
406 AU
.addPreserved
<DominatorTreeWrapperPass
>();
407 AU
.addPreserved
<GlobalsAAWrapperPass
>();
408 FunctionPass::getAnalysisUsage(AU
);
411 bool runOnFunction(Function
&F
) override
{
414 auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
415 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
416 return optimizeDivRem(F
, TTI
, DT
);
421 char DivRemPairsLegacyPass::ID
= 0;
422 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass
, "div-rem-pairs",
423 "Hoist/decompose integer division and remainder", false,
425 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
426 INITIALIZE_PASS_END(DivRemPairsLegacyPass
, "div-rem-pairs",
427 "Hoist/decompose integer division and remainder", false,
429 FunctionPass
*llvm::createDivRemPairsPass() {
430 return new DivRemPairsLegacyPass();
433 PreservedAnalyses
DivRemPairsPass::run(Function
&F
,
434 FunctionAnalysisManager
&FAM
) {
435 TargetTransformInfo
&TTI
= FAM
.getResult
<TargetIRAnalysis
>(F
);
436 DominatorTree
&DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
437 if (!optimizeDivRem(F
, TTI
, DT
))
438 return PreservedAnalyses::all();
439 // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
440 PreservedAnalyses PA
;
441 PA
.preserveSet
<CFGAnalyses
>();