[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / DivRemPairs.cpp
blob66c9d9f0902a4d95e3d7673879965cbe6ce6203c
1 //===- DivRemPairs.cpp - Hoist/[dr]ecompose division and remainder --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass hoists and/or decomposes/recomposes integer division and remainder
10 // instructions to enable CFG improvements and better codegen.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/DivRemPairs.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/TargetTransformInfo.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Support/DebugCounter.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 #define DEBUG_TYPE "div-rem-pairs"
34 STATISTIC(NumPairs, "Number of div/rem pairs");
35 STATISTIC(NumRecomposed, "Number of instructions recomposed");
36 STATISTIC(NumHoisted, "Number of instructions hoisted");
37 STATISTIC(NumDecomposed, "Number of instructions decomposed");
38 DEBUG_COUNTER(DRPCounter, "div-rem-pairs-transform",
39 "Controls transformations in div-rem-pairs pass");
41 namespace {
42 struct ExpandedMatch {
43 DivRemMapKey Key;
44 Instruction *Value;
46 } // namespace
48 /// See if we can match: (which is the form we expand into)
49 /// X - ((X ?/ Y) * Y)
50 /// which is equivalent to:
51 /// X ?% Y
52 static llvm::Optional<ExpandedMatch> matchExpandedRem(Instruction &I) {
53 Value *Dividend, *XroundedDownToMultipleOfY;
54 if (!match(&I, m_Sub(m_Value(Dividend), m_Value(XroundedDownToMultipleOfY))))
55 return llvm::None;
57 Value *Divisor;
58 Instruction *Div;
59 // Look for ((X / Y) * Y)
60 if (!match(
61 XroundedDownToMultipleOfY,
62 m_c_Mul(m_CombineAnd(m_IDiv(m_Specific(Dividend), m_Value(Divisor)),
63 m_Instruction(Div)),
64 m_Deferred(Divisor))))
65 return llvm::None;
67 ExpandedMatch M;
68 M.Key.SignedOp = Div->getOpcode() == Instruction::SDiv;
69 M.Key.Dividend = Dividend;
70 M.Key.Divisor = Divisor;
71 M.Value = &I;
72 return M;
75 namespace {
76 /// A thin wrapper to store two values that we matched as div-rem pair.
77 /// We want this extra indirection to avoid dealing with RAUW'ing the map keys.
78 struct DivRemPairWorklistEntry {
79 /// The actual udiv/sdiv instruction. Source of truth.
80 AssertingVH<Instruction> DivInst;
82 /// The instruction that we have matched as a remainder instruction.
83 /// Should only be used as Value, don't introspect it.
84 AssertingVH<Instruction> RemInst;
86 DivRemPairWorklistEntry(Instruction *DivInst_, Instruction *RemInst_)
87 : DivInst(DivInst_), RemInst(RemInst_) {
88 assert((DivInst->getOpcode() == Instruction::UDiv ||
89 DivInst->getOpcode() == Instruction::SDiv) &&
90 "Not a division.");
91 assert(DivInst->getType() == RemInst->getType() && "Types should match.");
92 // We can't check anything else about remainder instruction,
93 // it's not strictly required to be a urem/srem.
96 /// The type for this pair, identical for both the div and rem.
97 Type *getType() const { return DivInst->getType(); }
99 /// Is this pair signed or unsigned?
100 bool isSigned() const { return DivInst->getOpcode() == Instruction::SDiv; }
102 /// In this pair, what are the divident and divisor?
103 Value *getDividend() const { return DivInst->getOperand(0); }
104 Value *getDivisor() const { return DivInst->getOperand(1); }
106 bool isRemExpanded() const {
107 switch (RemInst->getOpcode()) {
108 case Instruction::SRem:
109 case Instruction::URem:
110 return false; // single 'rem' instruction - unexpanded form.
111 default:
112 return true; // anything else means we have remainder in expanded form.
116 } // namespace
117 using DivRemWorklistTy = SmallVector<DivRemPairWorklistEntry, 4>;
119 /// Find matching pairs of integer div/rem ops (they have the same numerator,
120 /// denominator, and signedness). Place those pairs into a worklist for further
121 /// processing. This indirection is needed because we have to use TrackingVH<>
122 /// because we will be doing RAUW, and if one of the rem instructions we change
123 /// happens to be an input to another div/rem in the maps, we'd have problems.
124 static DivRemWorklistTy getWorklist(Function &F) {
125 // Insert all divide and remainder instructions into maps keyed by their
126 // operands and opcode (signed or unsigned).
127 DenseMap<DivRemMapKey, Instruction *> DivMap;
128 // Use a MapVector for RemMap so that instructions are moved/inserted in a
129 // deterministic order.
130 MapVector<DivRemMapKey, Instruction *> RemMap;
131 for (auto &BB : F) {
132 for (auto &I : BB) {
133 if (I.getOpcode() == Instruction::SDiv)
134 DivMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
135 else if (I.getOpcode() == Instruction::UDiv)
136 DivMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
137 else if (I.getOpcode() == Instruction::SRem)
138 RemMap[DivRemMapKey(true, I.getOperand(0), I.getOperand(1))] = &I;
139 else if (I.getOpcode() == Instruction::URem)
140 RemMap[DivRemMapKey(false, I.getOperand(0), I.getOperand(1))] = &I;
141 else if (auto Match = matchExpandedRem(I))
142 RemMap[Match->Key] = Match->Value;
146 // We'll accumulate the matching pairs of div-rem instructions here.
147 DivRemWorklistTy Worklist;
149 // We can iterate over either map because we are only looking for matched
150 // pairs. Choose remainders for efficiency because they are usually even more
151 // rare than division.
152 for (auto &RemPair : RemMap) {
153 // Find the matching division instruction from the division map.
154 auto It = DivMap.find(RemPair.first);
155 if (It == DivMap.end())
156 continue;
158 // We have a matching pair of div/rem instructions.
159 NumPairs++;
160 Instruction *RemInst = RemPair.second;
162 // Place it in the worklist.
163 Worklist.emplace_back(It->second, RemInst);
166 return Worklist;
169 /// Find matching pairs of integer div/rem ops (they have the same numerator,
170 /// denominator, and signedness). If they exist in different basic blocks, bring
171 /// them together by hoisting or replace the common division operation that is
172 /// implicit in the remainder:
173 /// X % Y <--> X - ((X / Y) * Y).
175 /// We can largely ignore the normal safety and cost constraints on speculation
176 /// of these ops when we find a matching pair. This is because we are already
177 /// guaranteed that any exceptions and most cost are already incurred by the
178 /// first member of the pair.
180 /// Note: This transform could be an oddball enhancement to EarlyCSE, GVN, or
181 /// SimplifyCFG, but it's split off on its own because it's different enough
182 /// that it doesn't quite match the stated objectives of those passes.
183 static bool optimizeDivRem(Function &F, const TargetTransformInfo &TTI,
184 const DominatorTree &DT) {
185 bool Changed = false;
187 // Get the matching pairs of div-rem instructions. We want this extra
188 // indirection to avoid dealing with having to RAUW the keys of the maps.
189 DivRemWorklistTy Worklist = getWorklist(F);
191 // Process each entry in the worklist.
192 for (DivRemPairWorklistEntry &E : Worklist) {
193 if (!DebugCounter::shouldExecute(DRPCounter))
194 continue;
196 bool HasDivRemOp = TTI.hasDivRemOp(E.getType(), E.isSigned());
198 auto &DivInst = E.DivInst;
199 auto &RemInst = E.RemInst;
201 const bool RemOriginallyWasInExpandedForm = E.isRemExpanded();
202 (void)RemOriginallyWasInExpandedForm; // suppress unused variable warning
204 if (HasDivRemOp && E.isRemExpanded()) {
205 // The target supports div+rem but the rem is expanded.
206 // We should recompose it first.
207 Value *X = E.getDividend();
208 Value *Y = E.getDivisor();
209 Instruction *RealRem = E.isSigned() ? BinaryOperator::CreateSRem(X, Y)
210 : BinaryOperator::CreateURem(X, Y);
211 // Note that we place it right next to the original expanded instruction,
212 // and letting further handling to move it if needed.
213 RealRem->setName(RemInst->getName() + ".recomposed");
214 RealRem->insertAfter(RemInst);
215 Instruction *OrigRemInst = RemInst;
216 // Update AssertingVH<> with new instruction so it doesn't assert.
217 RemInst = RealRem;
218 // And replace the original instruction with the new one.
219 OrigRemInst->replaceAllUsesWith(RealRem);
220 OrigRemInst->eraseFromParent();
221 NumRecomposed++;
222 // Note that we have left ((X / Y) * Y) around.
223 // If it had other uses we could rewrite it as X - X % Y
224 Changed = true;
227 assert((!E.isRemExpanded() || !HasDivRemOp) &&
228 "*If* the target supports div-rem, then by now the RemInst *is* "
229 "Instruction::[US]Rem.");
231 // If the target supports div+rem and the instructions are in the same block
232 // already, there's nothing to do. The backend should handle this. If the
233 // target does not support div+rem, then we will decompose the rem.
234 if (HasDivRemOp && RemInst->getParent() == DivInst->getParent())
235 continue;
237 bool DivDominates = DT.dominates(DivInst, RemInst);
238 if (!DivDominates && !DT.dominates(RemInst, DivInst)) {
239 // We have matching div-rem pair, but they are in two different blocks,
240 // neither of which dominates one another.
242 BasicBlock *PredBB = nullptr;
243 BasicBlock *DivBB = DivInst->getParent();
244 BasicBlock *RemBB = RemInst->getParent();
246 // It's only safe to hoist if every instruction before the Div/Rem in the
247 // basic block is guaranteed to transfer execution.
248 auto IsSafeToHoist = [](Instruction *DivOrRem, BasicBlock *ParentBB) {
249 for (auto I = ParentBB->begin(), E = DivOrRem->getIterator(); I != E;
250 ++I)
251 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
252 return false;
254 return true;
257 // Look for something like this
258 // PredBB
259 // | \
260 // | Rem
261 // | /
262 // Div
264 // If the Rem block has a single predecessor and successor, and all paths
265 // from PredBB go to either RemBB or DivBB, and execution of RemBB and
266 // DivBB will always reach the Div/Rem, we can hoist Div to PredBB. If
267 // we have a DivRem operation we can also hoist Rem. Otherwise we'll leave
268 // Rem where it is and rewrite it to mul/sub.
269 // FIXME: We could handle more hoisting cases.
270 if (RemBB->getSingleSuccessor() == DivBB)
271 PredBB = RemBB->getUniquePredecessor();
273 if (PredBB && IsSafeToHoist(RemInst, RemBB) &&
274 IsSafeToHoist(DivInst, DivBB) &&
275 all_of(successors(PredBB),
276 [&](BasicBlock *BB) { return BB == DivBB || BB == RemBB; }) &&
277 all_of(predecessors(DivBB),
278 [&](BasicBlock *BB) { return BB == RemBB || BB == PredBB; })) {
279 DivDominates = true;
280 DivInst->moveBefore(PredBB->getTerminator());
281 Changed = true;
282 if (HasDivRemOp) {
283 RemInst->moveBefore(PredBB->getTerminator());
284 continue;
286 } else
287 continue;
290 // The target does not have a single div/rem operation,
291 // and the rem is already in expanded form. Nothing to do.
292 if (!HasDivRemOp && E.isRemExpanded())
293 continue;
295 if (HasDivRemOp) {
296 // The target has a single div/rem operation. Hoist the lower instruction
297 // to make the matched pair visible to the backend.
298 if (DivDominates)
299 RemInst->moveAfter(DivInst);
300 else
301 DivInst->moveAfter(RemInst);
302 NumHoisted++;
303 } else {
304 // The target does not have a single div/rem operation,
305 // and the rem is *not* in a already-expanded form.
306 // Decompose the remainder calculation as:
307 // X % Y --> X - ((X / Y) * Y).
309 assert(!RemOriginallyWasInExpandedForm &&
310 "We should not be expanding if the rem was in expanded form to "
311 "begin with.");
313 Value *X = E.getDividend();
314 Value *Y = E.getDivisor();
315 Instruction *Mul = BinaryOperator::CreateMul(DivInst, Y);
316 Instruction *Sub = BinaryOperator::CreateSub(X, Mul);
318 // If the remainder dominates, then hoist the division up to that block:
320 // bb1:
321 // %rem = srem %x, %y
322 // bb2:
323 // %div = sdiv %x, %y
324 // -->
325 // bb1:
326 // %div = sdiv %x, %y
327 // %mul = mul %div, %y
328 // %rem = sub %x, %mul
330 // If the division dominates, it's already in the right place. The mul+sub
331 // will be in a different block because we don't assume that they are
332 // cheap to speculatively execute:
334 // bb1:
335 // %div = sdiv %x, %y
336 // bb2:
337 // %rem = srem %x, %y
338 // -->
339 // bb1:
340 // %div = sdiv %x, %y
341 // bb2:
342 // %mul = mul %div, %y
343 // %rem = sub %x, %mul
345 // If the div and rem are in the same block, we do the same transform,
346 // but any code movement would be within the same block.
348 if (!DivDominates)
349 DivInst->moveBefore(RemInst);
350 Mul->insertAfter(RemInst);
351 Sub->insertAfter(Mul);
353 // If X can be undef, X should be frozen first.
354 // For example, let's assume that Y = 1 & X = undef:
355 // %div = sdiv undef, 1 // %div = undef
356 // %rem = srem undef, 1 // %rem = 0
357 // =>
358 // %div = sdiv undef, 1 // %div = undef
359 // %mul = mul %div, 1 // %mul = undef
360 // %rem = sub %x, %mul // %rem = undef - undef = undef
361 // If X is not frozen, %rem becomes undef after transformation.
362 // TODO: We need a undef-specific checking function in ValueTracking
363 if (!isGuaranteedNotToBeUndefOrPoison(X, nullptr, DivInst, &DT)) {
364 auto *FrX = new FreezeInst(X, X->getName() + ".frozen", DivInst);
365 DivInst->setOperand(0, FrX);
366 Sub->setOperand(0, FrX);
368 // Same for Y. If X = 1 and Y = (undef | 1), %rem in src is either 1 or 0,
369 // but %rem in tgt can be one of many integer values.
370 if (!isGuaranteedNotToBeUndefOrPoison(Y, nullptr, DivInst, &DT)) {
371 auto *FrY = new FreezeInst(Y, Y->getName() + ".frozen", DivInst);
372 DivInst->setOperand(1, FrY);
373 Mul->setOperand(1, FrY);
376 // Now kill the explicit remainder. We have replaced it with:
377 // (sub X, (mul (div X, Y), Y)
378 Sub->setName(RemInst->getName() + ".decomposed");
379 Instruction *OrigRemInst = RemInst;
380 // Update AssertingVH<> with new instruction so it doesn't assert.
381 RemInst = Sub;
382 // And replace the original instruction with the new one.
383 OrigRemInst->replaceAllUsesWith(Sub);
384 OrigRemInst->eraseFromParent();
385 NumDecomposed++;
387 Changed = true;
390 return Changed;
393 // Pass manager boilerplate below here.
395 namespace {
396 struct DivRemPairsLegacyPass : public FunctionPass {
397 static char ID;
398 DivRemPairsLegacyPass() : FunctionPass(ID) {
399 initializeDivRemPairsLegacyPassPass(*PassRegistry::getPassRegistry());
402 void getAnalysisUsage(AnalysisUsage &AU) const override {
403 AU.addRequired<DominatorTreeWrapperPass>();
404 AU.addRequired<TargetTransformInfoWrapperPass>();
405 AU.setPreservesCFG();
406 AU.addPreserved<DominatorTreeWrapperPass>();
407 AU.addPreserved<GlobalsAAWrapperPass>();
408 FunctionPass::getAnalysisUsage(AU);
411 bool runOnFunction(Function &F) override {
412 if (skipFunction(F))
413 return false;
414 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
415 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
416 return optimizeDivRem(F, TTI, DT);
419 } // namespace
421 char DivRemPairsLegacyPass::ID = 0;
422 INITIALIZE_PASS_BEGIN(DivRemPairsLegacyPass, "div-rem-pairs",
423 "Hoist/decompose integer division and remainder", false,
424 false)
425 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
426 INITIALIZE_PASS_END(DivRemPairsLegacyPass, "div-rem-pairs",
427 "Hoist/decompose integer division and remainder", false,
428 false)
429 FunctionPass *llvm::createDivRemPairsPass() {
430 return new DivRemPairsLegacyPass();
433 PreservedAnalyses DivRemPairsPass::run(Function &F,
434 FunctionAnalysisManager &FAM) {
435 TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
436 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
437 if (!optimizeDivRem(F, TTI, DT))
438 return PreservedAnalyses::all();
439 // TODO: This pass just hoists/replaces math ops - all analyses are preserved?
440 PreservedAnalyses PA;
441 PA.preserveSet<CFGAnalyses>();
442 return PA;