[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / GVN.cpp
blob16368aec7c3f0b048095fd5ba9799ca876d04806
1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global value numbering to eliminate fully redundant
10 // instructions. It also performs simple dead load elimination.
12 // Note that this pass does the value numbering itself; it does not use the
13 // ValueNumbering analysis passes.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Scalar/GVN.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/Hashing.h"
21 #include "llvm/ADT/MapVector.h"
22 #include "llvm/ADT/PointerIntPair.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/AssumeBundleQueries.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/CFG.h"
33 #include "llvm/Analysis/DomTreeUpdater.h"
34 #include "llvm/Analysis/GlobalsModRef.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/MemoryBuiltins.h"
38 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
42 #include "llvm/Analysis/PHITransAddr.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/Config/llvm-config.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Utils.h"
76 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/SSAUpdater.h"
80 #include "llvm/Transforms/Utils/VNCoercion.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
86 using namespace llvm;
87 using namespace llvm::gvn;
88 using namespace llvm::VNCoercion;
89 using namespace PatternMatch;
91 #define DEBUG_TYPE "gvn"
93 STATISTIC(NumGVNInstr, "Number of instructions deleted");
94 STATISTIC(NumGVNLoad, "Number of loads deleted");
95 STATISTIC(NumGVNPRE, "Number of instructions PRE'd");
96 STATISTIC(NumGVNBlocks, "Number of blocks merged");
97 STATISTIC(NumGVNSimpl, "Number of instructions simplified");
98 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
99 STATISTIC(NumPRELoad, "Number of loads PRE'd");
100 STATISTIC(NumPRELoopLoad, "Number of loop loads PRE'd");
102 STATISTIC(IsValueFullyAvailableInBlockNumSpeculationsMax,
103 "Number of blocks speculated as available in "
104 "IsValueFullyAvailableInBlock(), max");
105 STATISTIC(MaxBBSpeculationCutoffReachedTimes,
106 "Number of times we we reached gvn-max-block-speculations cut-off "
107 "preventing further exploration");
109 static cl::opt<bool> GVNEnablePRE("enable-pre", cl::init(true), cl::Hidden);
110 static cl::opt<bool> GVNEnableLoadPRE("enable-load-pre", cl::init(true));
111 static cl::opt<bool> GVNEnableLoadInLoopPRE("enable-load-in-loop-pre",
112 cl::init(true));
113 static cl::opt<bool>
114 GVNEnableSplitBackedgeInLoadPRE("enable-split-backedge-in-load-pre",
115 cl::init(true));
116 static cl::opt<bool> GVNEnableMemDep("enable-gvn-memdep", cl::init(true));
118 static cl::opt<uint32_t> MaxNumDeps(
119 "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore,
120 cl::desc("Max number of dependences to attempt Load PRE (default = 100)"));
122 // This is based on IsValueFullyAvailableInBlockNumSpeculationsMax stat.
123 static cl::opt<uint32_t> MaxBBSpeculations(
124 "gvn-max-block-speculations", cl::Hidden, cl::init(600), cl::ZeroOrMore,
125 cl::desc("Max number of blocks we're willing to speculate on (and recurse "
126 "into) when deducing if a value is fully available or not in GVN "
127 "(default = 600)"));
129 struct llvm::GVN::Expression {
130 uint32_t opcode;
131 bool commutative = false;
132 Type *type = nullptr;
133 SmallVector<uint32_t, 4> varargs;
135 Expression(uint32_t o = ~2U) : opcode(o) {}
137 bool operator==(const Expression &other) const {
138 if (opcode != other.opcode)
139 return false;
140 if (opcode == ~0U || opcode == ~1U)
141 return true;
142 if (type != other.type)
143 return false;
144 if (varargs != other.varargs)
145 return false;
146 return true;
149 friend hash_code hash_value(const Expression &Value) {
150 return hash_combine(
151 Value.opcode, Value.type,
152 hash_combine_range(Value.varargs.begin(), Value.varargs.end()));
156 namespace llvm {
158 template <> struct DenseMapInfo<GVN::Expression> {
159 static inline GVN::Expression getEmptyKey() { return ~0U; }
160 static inline GVN::Expression getTombstoneKey() { return ~1U; }
162 static unsigned getHashValue(const GVN::Expression &e) {
163 using llvm::hash_value;
165 return static_cast<unsigned>(hash_value(e));
168 static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) {
169 return LHS == RHS;
173 } // end namespace llvm
175 /// Represents a particular available value that we know how to materialize.
176 /// Materialization of an AvailableValue never fails. An AvailableValue is
177 /// implicitly associated with a rematerialization point which is the
178 /// location of the instruction from which it was formed.
179 struct llvm::gvn::AvailableValue {
180 enum ValType {
181 SimpleVal, // A simple offsetted value that is accessed.
182 LoadVal, // A value produced by a load.
183 MemIntrin, // A memory intrinsic which is loaded from.
184 UndefVal // A UndefValue representing a value from dead block (which
185 // is not yet physically removed from the CFG).
188 /// V - The value that is live out of the block.
189 PointerIntPair<Value *, 2, ValType> Val;
191 /// Offset - The byte offset in Val that is interesting for the load query.
192 unsigned Offset = 0;
194 static AvailableValue get(Value *V, unsigned Offset = 0) {
195 AvailableValue Res;
196 Res.Val.setPointer(V);
197 Res.Val.setInt(SimpleVal);
198 Res.Offset = Offset;
199 return Res;
202 static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) {
203 AvailableValue Res;
204 Res.Val.setPointer(MI);
205 Res.Val.setInt(MemIntrin);
206 Res.Offset = Offset;
207 return Res;
210 static AvailableValue getLoad(LoadInst *Load, unsigned Offset = 0) {
211 AvailableValue Res;
212 Res.Val.setPointer(Load);
213 Res.Val.setInt(LoadVal);
214 Res.Offset = Offset;
215 return Res;
218 static AvailableValue getUndef() {
219 AvailableValue Res;
220 Res.Val.setPointer(nullptr);
221 Res.Val.setInt(UndefVal);
222 Res.Offset = 0;
223 return Res;
226 bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
227 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
228 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
229 bool isUndefValue() const { return Val.getInt() == UndefVal; }
231 Value *getSimpleValue() const {
232 assert(isSimpleValue() && "Wrong accessor");
233 return Val.getPointer();
236 LoadInst *getCoercedLoadValue() const {
237 assert(isCoercedLoadValue() && "Wrong accessor");
238 return cast<LoadInst>(Val.getPointer());
241 MemIntrinsic *getMemIntrinValue() const {
242 assert(isMemIntrinValue() && "Wrong accessor");
243 return cast<MemIntrinsic>(Val.getPointer());
246 /// Emit code at the specified insertion point to adjust the value defined
247 /// here to the specified type. This handles various coercion cases.
248 Value *MaterializeAdjustedValue(LoadInst *Load, Instruction *InsertPt,
249 GVN &gvn) const;
252 /// Represents an AvailableValue which can be rematerialized at the end of
253 /// the associated BasicBlock.
254 struct llvm::gvn::AvailableValueInBlock {
255 /// BB - The basic block in question.
256 BasicBlock *BB = nullptr;
258 /// AV - The actual available value
259 AvailableValue AV;
261 static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) {
262 AvailableValueInBlock Res;
263 Res.BB = BB;
264 Res.AV = std::move(AV);
265 return Res;
268 static AvailableValueInBlock get(BasicBlock *BB, Value *V,
269 unsigned Offset = 0) {
270 return get(BB, AvailableValue::get(V, Offset));
273 static AvailableValueInBlock getUndef(BasicBlock *BB) {
274 return get(BB, AvailableValue::getUndef());
277 /// Emit code at the end of this block to adjust the value defined here to
278 /// the specified type. This handles various coercion cases.
279 Value *MaterializeAdjustedValue(LoadInst *Load, GVN &gvn) const {
280 return AV.MaterializeAdjustedValue(Load, BB->getTerminator(), gvn);
284 //===----------------------------------------------------------------------===//
285 // ValueTable Internal Functions
286 //===----------------------------------------------------------------------===//
288 GVN::Expression GVN::ValueTable::createExpr(Instruction *I) {
289 Expression e;
290 e.type = I->getType();
291 e.opcode = I->getOpcode();
292 if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(I)) {
293 // gc.relocate is 'special' call: its second and third operands are
294 // not real values, but indices into statepoint's argument list.
295 // Use the refered to values for purposes of identity.
296 e.varargs.push_back(lookupOrAdd(GCR->getOperand(0)));
297 e.varargs.push_back(lookupOrAdd(GCR->getBasePtr()));
298 e.varargs.push_back(lookupOrAdd(GCR->getDerivedPtr()));
299 } else {
300 for (Use &Op : I->operands())
301 e.varargs.push_back(lookupOrAdd(Op));
303 if (I->isCommutative()) {
304 // Ensure that commutative instructions that only differ by a permutation
305 // of their operands get the same value number by sorting the operand value
306 // numbers. Since commutative operands are the 1st two operands it is more
307 // efficient to sort by hand rather than using, say, std::sort.
308 assert(I->getNumOperands() >= 2 && "Unsupported commutative instruction!");
309 if (e.varargs[0] > e.varargs[1])
310 std::swap(e.varargs[0], e.varargs[1]);
311 e.commutative = true;
314 if (auto *C = dyn_cast<CmpInst>(I)) {
315 // Sort the operand value numbers so x<y and y>x get the same value number.
316 CmpInst::Predicate Predicate = C->getPredicate();
317 if (e.varargs[0] > e.varargs[1]) {
318 std::swap(e.varargs[0], e.varargs[1]);
319 Predicate = CmpInst::getSwappedPredicate(Predicate);
321 e.opcode = (C->getOpcode() << 8) | Predicate;
322 e.commutative = true;
323 } else if (auto *E = dyn_cast<InsertValueInst>(I)) {
324 e.varargs.append(E->idx_begin(), E->idx_end());
325 } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
326 ArrayRef<int> ShuffleMask = SVI->getShuffleMask();
327 e.varargs.append(ShuffleMask.begin(), ShuffleMask.end());
330 return e;
333 GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode,
334 CmpInst::Predicate Predicate,
335 Value *LHS, Value *RHS) {
336 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
337 "Not a comparison!");
338 Expression e;
339 e.type = CmpInst::makeCmpResultType(LHS->getType());
340 e.varargs.push_back(lookupOrAdd(LHS));
341 e.varargs.push_back(lookupOrAdd(RHS));
343 // Sort the operand value numbers so x<y and y>x get the same value number.
344 if (e.varargs[0] > e.varargs[1]) {
345 std::swap(e.varargs[0], e.varargs[1]);
346 Predicate = CmpInst::getSwappedPredicate(Predicate);
348 e.opcode = (Opcode << 8) | Predicate;
349 e.commutative = true;
350 return e;
353 GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) {
354 assert(EI && "Not an ExtractValueInst?");
355 Expression e;
356 e.type = EI->getType();
357 e.opcode = 0;
359 WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
360 if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
361 // EI is an extract from one of our with.overflow intrinsics. Synthesize
362 // a semantically equivalent expression instead of an extract value
363 // expression.
364 e.opcode = WO->getBinaryOp();
365 e.varargs.push_back(lookupOrAdd(WO->getLHS()));
366 e.varargs.push_back(lookupOrAdd(WO->getRHS()));
367 return e;
370 // Not a recognised intrinsic. Fall back to producing an extract value
371 // expression.
372 e.opcode = EI->getOpcode();
373 for (Use &Op : EI->operands())
374 e.varargs.push_back(lookupOrAdd(Op));
376 append_range(e.varargs, EI->indices());
378 return e;
381 //===----------------------------------------------------------------------===//
382 // ValueTable External Functions
383 //===----------------------------------------------------------------------===//
385 GVN::ValueTable::ValueTable() = default;
386 GVN::ValueTable::ValueTable(const ValueTable &) = default;
387 GVN::ValueTable::ValueTable(ValueTable &&) = default;
388 GVN::ValueTable::~ValueTable() = default;
389 GVN::ValueTable &GVN::ValueTable::operator=(const GVN::ValueTable &Arg) = default;
391 /// add - Insert a value into the table with a specified value number.
392 void GVN::ValueTable::add(Value *V, uint32_t num) {
393 valueNumbering.insert(std::make_pair(V, num));
394 if (PHINode *PN = dyn_cast<PHINode>(V))
395 NumberingPhi[num] = PN;
398 uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) {
399 if (AA->doesNotAccessMemory(C)) {
400 Expression exp = createExpr(C);
401 uint32_t e = assignExpNewValueNum(exp).first;
402 valueNumbering[C] = e;
403 return e;
404 } else if (MD && AA->onlyReadsMemory(C)) {
405 Expression exp = createExpr(C);
406 auto ValNum = assignExpNewValueNum(exp);
407 if (ValNum.second) {
408 valueNumbering[C] = ValNum.first;
409 return ValNum.first;
412 MemDepResult local_dep = MD->getDependency(C);
414 if (!local_dep.isDef() && !local_dep.isNonLocal()) {
415 valueNumbering[C] = nextValueNumber;
416 return nextValueNumber++;
419 if (local_dep.isDef()) {
420 // For masked load/store intrinsics, the local_dep may actully be
421 // a normal load or store instruction.
422 CallInst *local_cdep = dyn_cast<CallInst>(local_dep.getInst());
424 if (!local_cdep ||
425 local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
426 valueNumbering[C] = nextValueNumber;
427 return nextValueNumber++;
430 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
431 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
432 uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i));
433 if (c_vn != cd_vn) {
434 valueNumbering[C] = nextValueNumber;
435 return nextValueNumber++;
439 uint32_t v = lookupOrAdd(local_cdep);
440 valueNumbering[C] = v;
441 return v;
444 // Non-local case.
445 const MemoryDependenceResults::NonLocalDepInfo &deps =
446 MD->getNonLocalCallDependency(C);
447 // FIXME: Move the checking logic to MemDep!
448 CallInst* cdep = nullptr;
450 // Check to see if we have a single dominating call instruction that is
451 // identical to C.
452 for (unsigned i = 0, e = deps.size(); i != e; ++i) {
453 const NonLocalDepEntry *I = &deps[i];
454 if (I->getResult().isNonLocal())
455 continue;
457 // We don't handle non-definitions. If we already have a call, reject
458 // instruction dependencies.
459 if (!I->getResult().isDef() || cdep != nullptr) {
460 cdep = nullptr;
461 break;
464 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
465 // FIXME: All duplicated with non-local case.
466 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
467 cdep = NonLocalDepCall;
468 continue;
471 cdep = nullptr;
472 break;
475 if (!cdep) {
476 valueNumbering[C] = nextValueNumber;
477 return nextValueNumber++;
480 if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
481 valueNumbering[C] = nextValueNumber;
482 return nextValueNumber++;
484 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
485 uint32_t c_vn = lookupOrAdd(C->getArgOperand(i));
486 uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i));
487 if (c_vn != cd_vn) {
488 valueNumbering[C] = nextValueNumber;
489 return nextValueNumber++;
493 uint32_t v = lookupOrAdd(cdep);
494 valueNumbering[C] = v;
495 return v;
496 } else {
497 valueNumbering[C] = nextValueNumber;
498 return nextValueNumber++;
502 /// Returns true if a value number exists for the specified value.
503 bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; }
505 /// lookup_or_add - Returns the value number for the specified value, assigning
506 /// it a new number if it did not have one before.
507 uint32_t GVN::ValueTable::lookupOrAdd(Value *V) {
508 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
509 if (VI != valueNumbering.end())
510 return VI->second;
512 if (!isa<Instruction>(V)) {
513 valueNumbering[V] = nextValueNumber;
514 return nextValueNumber++;
517 Instruction* I = cast<Instruction>(V);
518 Expression exp;
519 switch (I->getOpcode()) {
520 case Instruction::Call:
521 return lookupOrAddCall(cast<CallInst>(I));
522 case Instruction::FNeg:
523 case Instruction::Add:
524 case Instruction::FAdd:
525 case Instruction::Sub:
526 case Instruction::FSub:
527 case Instruction::Mul:
528 case Instruction::FMul:
529 case Instruction::UDiv:
530 case Instruction::SDiv:
531 case Instruction::FDiv:
532 case Instruction::URem:
533 case Instruction::SRem:
534 case Instruction::FRem:
535 case Instruction::Shl:
536 case Instruction::LShr:
537 case Instruction::AShr:
538 case Instruction::And:
539 case Instruction::Or:
540 case Instruction::Xor:
541 case Instruction::ICmp:
542 case Instruction::FCmp:
543 case Instruction::Trunc:
544 case Instruction::ZExt:
545 case Instruction::SExt:
546 case Instruction::FPToUI:
547 case Instruction::FPToSI:
548 case Instruction::UIToFP:
549 case Instruction::SIToFP:
550 case Instruction::FPTrunc:
551 case Instruction::FPExt:
552 case Instruction::PtrToInt:
553 case Instruction::IntToPtr:
554 case Instruction::AddrSpaceCast:
555 case Instruction::BitCast:
556 case Instruction::Select:
557 case Instruction::Freeze:
558 case Instruction::ExtractElement:
559 case Instruction::InsertElement:
560 case Instruction::ShuffleVector:
561 case Instruction::InsertValue:
562 case Instruction::GetElementPtr:
563 exp = createExpr(I);
564 break;
565 case Instruction::ExtractValue:
566 exp = createExtractvalueExpr(cast<ExtractValueInst>(I));
567 break;
568 case Instruction::PHI:
569 valueNumbering[V] = nextValueNumber;
570 NumberingPhi[nextValueNumber] = cast<PHINode>(V);
571 return nextValueNumber++;
572 default:
573 valueNumbering[V] = nextValueNumber;
574 return nextValueNumber++;
577 uint32_t e = assignExpNewValueNum(exp).first;
578 valueNumbering[V] = e;
579 return e;
582 /// Returns the value number of the specified value. Fails if
583 /// the value has not yet been numbered.
584 uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const {
585 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
586 if (Verify) {
587 assert(VI != valueNumbering.end() && "Value not numbered?");
588 return VI->second;
590 return (VI != valueNumbering.end()) ? VI->second : 0;
593 /// Returns the value number of the given comparison,
594 /// assigning it a new number if it did not have one before. Useful when
595 /// we deduced the result of a comparison, but don't immediately have an
596 /// instruction realizing that comparison to hand.
597 uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode,
598 CmpInst::Predicate Predicate,
599 Value *LHS, Value *RHS) {
600 Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS);
601 return assignExpNewValueNum(exp).first;
604 /// Remove all entries from the ValueTable.
605 void GVN::ValueTable::clear() {
606 valueNumbering.clear();
607 expressionNumbering.clear();
608 NumberingPhi.clear();
609 PhiTranslateTable.clear();
610 nextValueNumber = 1;
611 Expressions.clear();
612 ExprIdx.clear();
613 nextExprNumber = 0;
616 /// Remove a value from the value numbering.
617 void GVN::ValueTable::erase(Value *V) {
618 uint32_t Num = valueNumbering.lookup(V);
619 valueNumbering.erase(V);
620 // If V is PHINode, V <--> value number is an one-to-one mapping.
621 if (isa<PHINode>(V))
622 NumberingPhi.erase(Num);
625 /// verifyRemoved - Verify that the value is removed from all internal data
626 /// structures.
627 void GVN::ValueTable::verifyRemoved(const Value *V) const {
628 for (DenseMap<Value*, uint32_t>::const_iterator
629 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
630 assert(I->first != V && "Inst still occurs in value numbering map!");
634 //===----------------------------------------------------------------------===//
635 // GVN Pass
636 //===----------------------------------------------------------------------===//
638 bool GVN::isPREEnabled() const {
639 return Options.AllowPRE.getValueOr(GVNEnablePRE);
642 bool GVN::isLoadPREEnabled() const {
643 return Options.AllowLoadPRE.getValueOr(GVNEnableLoadPRE);
646 bool GVN::isLoadInLoopPREEnabled() const {
647 return Options.AllowLoadInLoopPRE.getValueOr(GVNEnableLoadInLoopPRE);
650 bool GVN::isLoadPRESplitBackedgeEnabled() const {
651 return Options.AllowLoadPRESplitBackedge.getValueOr(
652 GVNEnableSplitBackedgeInLoadPRE);
655 bool GVN::isMemDepEnabled() const {
656 return Options.AllowMemDep.getValueOr(GVNEnableMemDep);
659 PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) {
660 // FIXME: The order of evaluation of these 'getResult' calls is very
661 // significant! Re-ordering these variables will cause GVN when run alone to
662 // be less effective! We should fix memdep and basic-aa to not exhibit this
663 // behavior, but until then don't change the order here.
664 auto &AC = AM.getResult<AssumptionAnalysis>(F);
665 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
666 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
667 auto &AA = AM.getResult<AAManager>(F);
668 auto *MemDep =
669 isMemDepEnabled() ? &AM.getResult<MemoryDependenceAnalysis>(F) : nullptr;
670 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
671 auto *MSSA = AM.getCachedResult<MemorySSAAnalysis>(F);
672 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
673 bool Changed = runImpl(F, AC, DT, TLI, AA, MemDep, LI, &ORE,
674 MSSA ? &MSSA->getMSSA() : nullptr);
675 if (!Changed)
676 return PreservedAnalyses::all();
677 PreservedAnalyses PA;
678 PA.preserve<DominatorTreeAnalysis>();
679 PA.preserve<TargetLibraryAnalysis>();
680 if (MSSA)
681 PA.preserve<MemorySSAAnalysis>();
682 if (LI)
683 PA.preserve<LoopAnalysis>();
684 return PA;
687 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
688 LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const {
689 errs() << "{\n";
690 for (auto &I : d) {
691 errs() << I.first << "\n";
692 I.second->dump();
694 errs() << "}\n";
696 #endif
698 enum class AvailabilityState : char {
699 /// We know the block *is not* fully available. This is a fixpoint.
700 Unavailable = 0,
701 /// We know the block *is* fully available. This is a fixpoint.
702 Available = 1,
703 /// We do not know whether the block is fully available or not,
704 /// but we are currently speculating that it will be.
705 /// If it would have turned out that the block was, in fact, not fully
706 /// available, this would have been cleaned up into an Unavailable.
707 SpeculativelyAvailable = 2,
710 /// Return true if we can prove that the value
711 /// we're analyzing is fully available in the specified block. As we go, keep
712 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This
713 /// map is actually a tri-state map with the following values:
714 /// 0) we know the block *is not* fully available.
715 /// 1) we know the block *is* fully available.
716 /// 2) we do not know whether the block is fully available or not, but we are
717 /// currently speculating that it will be.
718 static bool IsValueFullyAvailableInBlock(
719 BasicBlock *BB,
720 DenseMap<BasicBlock *, AvailabilityState> &FullyAvailableBlocks) {
721 SmallVector<BasicBlock *, 32> Worklist;
722 Optional<BasicBlock *> UnavailableBB;
724 // The number of times we didn't find an entry for a block in a map and
725 // optimistically inserted an entry marking block as speculatively available.
726 unsigned NumNewNewSpeculativelyAvailableBBs = 0;
728 #ifndef NDEBUG
729 SmallSet<BasicBlock *, 32> NewSpeculativelyAvailableBBs;
730 SmallVector<BasicBlock *, 32> AvailableBBs;
731 #endif
733 Worklist.emplace_back(BB);
734 while (!Worklist.empty()) {
735 BasicBlock *CurrBB = Worklist.pop_back_val(); // LoadFO - depth-first!
736 // Optimistically assume that the block is Speculatively Available and check
737 // to see if we already know about this block in one lookup.
738 std::pair<DenseMap<BasicBlock *, AvailabilityState>::iterator, bool> IV =
739 FullyAvailableBlocks.try_emplace(
740 CurrBB, AvailabilityState::SpeculativelyAvailable);
741 AvailabilityState &State = IV.first->second;
743 // Did the entry already exist for this block?
744 if (!IV.second) {
745 if (State == AvailabilityState::Unavailable) {
746 UnavailableBB = CurrBB;
747 break; // Backpropagate unavailability info.
750 #ifndef NDEBUG
751 AvailableBBs.emplace_back(CurrBB);
752 #endif
753 continue; // Don't recurse further, but continue processing worklist.
756 // No entry found for block.
757 ++NumNewNewSpeculativelyAvailableBBs;
758 bool OutOfBudget = NumNewNewSpeculativelyAvailableBBs > MaxBBSpeculations;
760 // If we have exhausted our budget, mark this block as unavailable.
761 // Also, if this block has no predecessors, the value isn't live-in here.
762 if (OutOfBudget || pred_empty(CurrBB)) {
763 MaxBBSpeculationCutoffReachedTimes += (int)OutOfBudget;
764 State = AvailabilityState::Unavailable;
765 UnavailableBB = CurrBB;
766 break; // Backpropagate unavailability info.
769 // Tentatively consider this block as speculatively available.
770 #ifndef NDEBUG
771 NewSpeculativelyAvailableBBs.insert(CurrBB);
772 #endif
773 // And further recurse into block's predecessors, in depth-first order!
774 Worklist.append(pred_begin(CurrBB), pred_end(CurrBB));
777 #if LLVM_ENABLE_STATS
778 IsValueFullyAvailableInBlockNumSpeculationsMax.updateMax(
779 NumNewNewSpeculativelyAvailableBBs);
780 #endif
782 // If the block isn't marked as fixpoint yet
783 // (the Unavailable and Available states are fixpoints)
784 auto MarkAsFixpointAndEnqueueSuccessors =
785 [&](BasicBlock *BB, AvailabilityState FixpointState) {
786 auto It = FullyAvailableBlocks.find(BB);
787 if (It == FullyAvailableBlocks.end())
788 return; // Never queried this block, leave as-is.
789 switch (AvailabilityState &State = It->second) {
790 case AvailabilityState::Unavailable:
791 case AvailabilityState::Available:
792 return; // Don't backpropagate further, continue processing worklist.
793 case AvailabilityState::SpeculativelyAvailable: // Fix it!
794 State = FixpointState;
795 #ifndef NDEBUG
796 assert(NewSpeculativelyAvailableBBs.erase(BB) &&
797 "Found a speculatively available successor leftover?");
798 #endif
799 // Queue successors for further processing.
800 Worklist.append(succ_begin(BB), succ_end(BB));
801 return;
805 if (UnavailableBB) {
806 // Okay, we have encountered an unavailable block.
807 // Mark speculatively available blocks reachable from UnavailableBB as
808 // unavailable as well. Paths are terminated when they reach blocks not in
809 // FullyAvailableBlocks or they are not marked as speculatively available.
810 Worklist.clear();
811 Worklist.append(succ_begin(*UnavailableBB), succ_end(*UnavailableBB));
812 while (!Worklist.empty())
813 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
814 AvailabilityState::Unavailable);
817 #ifndef NDEBUG
818 Worklist.clear();
819 for (BasicBlock *AvailableBB : AvailableBBs)
820 Worklist.append(succ_begin(AvailableBB), succ_end(AvailableBB));
821 while (!Worklist.empty())
822 MarkAsFixpointAndEnqueueSuccessors(Worklist.pop_back_val(),
823 AvailabilityState::Available);
825 assert(NewSpeculativelyAvailableBBs.empty() &&
826 "Must have fixed all the new speculatively available blocks.");
827 #endif
829 return !UnavailableBB;
832 /// Given a set of loads specified by ValuesPerBlock,
833 /// construct SSA form, allowing us to eliminate Load. This returns the value
834 /// that should be used at Load's definition site.
835 static Value *
836 ConstructSSAForLoadSet(LoadInst *Load,
837 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
838 GVN &gvn) {
839 // Check for the fully redundant, dominating load case. In this case, we can
840 // just use the dominating value directly.
841 if (ValuesPerBlock.size() == 1 &&
842 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
843 Load->getParent())) {
844 assert(!ValuesPerBlock[0].AV.isUndefValue() &&
845 "Dead BB dominate this block");
846 return ValuesPerBlock[0].MaterializeAdjustedValue(Load, gvn);
849 // Otherwise, we have to construct SSA form.
850 SmallVector<PHINode*, 8> NewPHIs;
851 SSAUpdater SSAUpdate(&NewPHIs);
852 SSAUpdate.Initialize(Load->getType(), Load->getName());
854 for (const AvailableValueInBlock &AV : ValuesPerBlock) {
855 BasicBlock *BB = AV.BB;
857 if (AV.AV.isUndefValue())
858 continue;
860 if (SSAUpdate.HasValueForBlock(BB))
861 continue;
863 // If the value is the load that we will be eliminating, and the block it's
864 // available in is the block that the load is in, then don't add it as
865 // SSAUpdater will resolve the value to the relevant phi which may let it
866 // avoid phi construction entirely if there's actually only one value.
867 if (BB == Load->getParent() &&
868 ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == Load) ||
869 (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == Load)))
870 continue;
872 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(Load, gvn));
875 // Perform PHI construction.
876 return SSAUpdate.GetValueInMiddleOfBlock(Load->getParent());
879 Value *AvailableValue::MaterializeAdjustedValue(LoadInst *Load,
880 Instruction *InsertPt,
881 GVN &gvn) const {
882 Value *Res;
883 Type *LoadTy = Load->getType();
884 const DataLayout &DL = Load->getModule()->getDataLayout();
885 if (isSimpleValue()) {
886 Res = getSimpleValue();
887 if (Res->getType() != LoadTy) {
888 Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL);
890 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset
891 << " " << *getSimpleValue() << '\n'
892 << *Res << '\n'
893 << "\n\n\n");
895 } else if (isCoercedLoadValue()) {
896 LoadInst *CoercedLoad = getCoercedLoadValue();
897 if (CoercedLoad->getType() == LoadTy && Offset == 0) {
898 Res = CoercedLoad;
899 } else {
900 Res = getLoadValueForLoad(CoercedLoad, Offset, LoadTy, InsertPt, DL);
901 // We would like to use gvn.markInstructionForDeletion here, but we can't
902 // because the load is already memoized into the leader map table that GVN
903 // tracks. It is potentially possible to remove the load from the table,
904 // but then there all of the operations based on it would need to be
905 // rehashed. Just leave the dead load around.
906 gvn.getMemDep().removeInstruction(CoercedLoad);
907 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset
908 << " " << *getCoercedLoadValue() << '\n'
909 << *Res << '\n'
910 << "\n\n\n");
912 } else if (isMemIntrinValue()) {
913 Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
914 InsertPt, DL);
915 LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
916 << " " << *getMemIntrinValue() << '\n'
917 << *Res << '\n'
918 << "\n\n\n");
919 } else {
920 llvm_unreachable("Should not materialize value from dead block");
922 assert(Res && "failed to materialize?");
923 return Res;
926 static bool isLifetimeStart(const Instruction *Inst) {
927 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
928 return II->getIntrinsicID() == Intrinsic::lifetime_start;
929 return false;
932 /// Assuming To can be reached from both From and Between, does Between lie on
933 /// every path from From to To?
934 static bool liesBetween(const Instruction *From, Instruction *Between,
935 const Instruction *To, DominatorTree *DT) {
936 if (From->getParent() == Between->getParent())
937 return DT->dominates(From, Between);
938 SmallSet<BasicBlock *, 1> Exclusion;
939 Exclusion.insert(Between->getParent());
940 return !isPotentiallyReachable(From, To, &Exclusion, DT);
943 /// Try to locate the three instruction involved in a missed
944 /// load-elimination case that is due to an intervening store.
945 static void reportMayClobberedLoad(LoadInst *Load, MemDepResult DepInfo,
946 DominatorTree *DT,
947 OptimizationRemarkEmitter *ORE) {
948 using namespace ore;
950 User *OtherAccess = nullptr;
952 OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", Load);
953 R << "load of type " << NV("Type", Load->getType()) << " not eliminated"
954 << setExtraArgs();
956 for (auto *U : Load->getPointerOperand()->users()) {
957 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
958 cast<Instruction>(U)->getFunction() == Load->getFunction() &&
959 DT->dominates(cast<Instruction>(U), Load)) {
960 // Use the most immediately dominating value
961 if (OtherAccess) {
962 if (DT->dominates(cast<Instruction>(OtherAccess), cast<Instruction>(U)))
963 OtherAccess = U;
964 else
965 assert(DT->dominates(cast<Instruction>(U),
966 cast<Instruction>(OtherAccess)));
967 } else
968 OtherAccess = U;
972 if (!OtherAccess) {
973 // There is no dominating use, check if we can find a closest non-dominating
974 // use that lies between any other potentially available use and Load.
975 for (auto *U : Load->getPointerOperand()->users()) {
976 if (U != Load && (isa<LoadInst>(U) || isa<StoreInst>(U)) &&
977 cast<Instruction>(U)->getFunction() == Load->getFunction() &&
978 isPotentiallyReachable(cast<Instruction>(U), Load, nullptr, DT)) {
979 if (OtherAccess) {
980 if (liesBetween(cast<Instruction>(OtherAccess), cast<Instruction>(U),
981 Load, DT)) {
982 OtherAccess = U;
983 } else if (!liesBetween(cast<Instruction>(U),
984 cast<Instruction>(OtherAccess), Load, DT)) {
985 // These uses are both partially available at Load were it not for
986 // the clobber, but neither lies strictly after the other.
987 OtherAccess = nullptr;
988 break;
989 } // else: keep current OtherAccess since it lies between U and Load
990 } else {
991 OtherAccess = U;
997 if (OtherAccess)
998 R << " in favor of " << NV("OtherAccess", OtherAccess);
1000 R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst());
1002 ORE->emit(R);
1005 bool GVN::AnalyzeLoadAvailability(LoadInst *Load, MemDepResult DepInfo,
1006 Value *Address, AvailableValue &Res) {
1007 assert((DepInfo.isDef() || DepInfo.isClobber()) &&
1008 "expected a local dependence");
1009 assert(Load->isUnordered() && "rules below are incorrect for ordered access");
1011 const DataLayout &DL = Load->getModule()->getDataLayout();
1013 Instruction *DepInst = DepInfo.getInst();
1014 if (DepInfo.isClobber()) {
1015 // If the dependence is to a store that writes to a superset of the bits
1016 // read by the load, we can extract the bits we need for the load from the
1017 // stored value.
1018 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
1019 // Can't forward from non-atomic to atomic without violating memory model.
1020 if (Address && Load->isAtomic() <= DepSI->isAtomic()) {
1021 int Offset =
1022 analyzeLoadFromClobberingStore(Load->getType(), Address, DepSI, DL);
1023 if (Offset != -1) {
1024 Res = AvailableValue::get(DepSI->getValueOperand(), Offset);
1025 return true;
1030 // Check to see if we have something like this:
1031 // load i32* P
1032 // load i8* (P+1)
1033 // if we have this, replace the later with an extraction from the former.
1034 if (LoadInst *DepLoad = dyn_cast<LoadInst>(DepInst)) {
1035 // If this is a clobber and L is the first instruction in its block, then
1036 // we have the first instruction in the entry block.
1037 // Can't forward from non-atomic to atomic without violating memory model.
1038 if (DepLoad != Load && Address &&
1039 Load->isAtomic() <= DepLoad->isAtomic()) {
1040 Type *LoadType = Load->getType();
1041 int Offset = -1;
1043 // If MD reported clobber, check it was nested.
1044 if (DepInfo.isClobber() &&
1045 canCoerceMustAliasedValueToLoad(DepLoad, LoadType, DL)) {
1046 const auto ClobberOff = MD->getClobberOffset(DepLoad);
1047 // GVN has no deal with a negative offset.
1048 Offset = (ClobberOff == None || ClobberOff.getValue() < 0)
1049 ? -1
1050 : ClobberOff.getValue();
1052 if (Offset == -1)
1053 Offset =
1054 analyzeLoadFromClobberingLoad(LoadType, Address, DepLoad, DL);
1055 if (Offset != -1) {
1056 Res = AvailableValue::getLoad(DepLoad, Offset);
1057 return true;
1062 // If the clobbering value is a memset/memcpy/memmove, see if we can
1063 // forward a value on from it.
1064 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1065 if (Address && !Load->isAtomic()) {
1066 int Offset = analyzeLoadFromClobberingMemInst(Load->getType(), Address,
1067 DepMI, DL);
1068 if (Offset != -1) {
1069 Res = AvailableValue::getMI(DepMI, Offset);
1070 return true;
1074 // Nothing known about this clobber, have to be conservative
1075 LLVM_DEBUG(
1076 // fast print dep, using operator<< on instruction is too slow.
1077 dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1078 dbgs() << " is clobbered by " << *DepInst << '\n';);
1079 if (ORE->allowExtraAnalysis(DEBUG_TYPE))
1080 reportMayClobberedLoad(Load, DepInfo, DT, ORE);
1082 return false;
1084 assert(DepInfo.isDef() && "follows from above");
1086 // Loading the allocation -> undef.
1087 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
1088 isAlignedAllocLikeFn(DepInst, TLI) ||
1089 // Loading immediately after lifetime begin -> undef.
1090 isLifetimeStart(DepInst)) {
1091 Res = AvailableValue::get(UndefValue::get(Load->getType()));
1092 return true;
1095 // Loading from calloc (which zero initializes memory) -> zero
1096 if (isCallocLikeFn(DepInst, TLI)) {
1097 Res = AvailableValue::get(Constant::getNullValue(Load->getType()));
1098 return true;
1101 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
1102 // Reject loads and stores that are to the same address but are of
1103 // different types if we have to. If the stored value is convertable to
1104 // the loaded value, we can reuse it.
1105 if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), Load->getType(),
1106 DL))
1107 return false;
1109 // Can't forward from non-atomic to atomic without violating memory model.
1110 if (S->isAtomic() < Load->isAtomic())
1111 return false;
1113 Res = AvailableValue::get(S->getValueOperand());
1114 return true;
1117 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
1118 // If the types mismatch and we can't handle it, reject reuse of the load.
1119 // If the stored value is larger or equal to the loaded value, we can reuse
1120 // it.
1121 if (!canCoerceMustAliasedValueToLoad(LD, Load->getType(), DL))
1122 return false;
1124 // Can't forward from non-atomic to atomic without violating memory model.
1125 if (LD->isAtomic() < Load->isAtomic())
1126 return false;
1128 Res = AvailableValue::getLoad(LD);
1129 return true;
1132 // Unknown def - must be conservative
1133 LLVM_DEBUG(
1134 // fast print dep, using operator<< on instruction is too slow.
1135 dbgs() << "GVN: load "; Load->printAsOperand(dbgs());
1136 dbgs() << " has unknown def " << *DepInst << '\n';);
1137 return false;
1140 void GVN::AnalyzeLoadAvailability(LoadInst *Load, LoadDepVect &Deps,
1141 AvailValInBlkVect &ValuesPerBlock,
1142 UnavailBlkVect &UnavailableBlocks) {
1143 // Filter out useless results (non-locals, etc). Keep track of the blocks
1144 // where we have a value available in repl, also keep track of whether we see
1145 // dependencies that produce an unknown value for the load (such as a call
1146 // that could potentially clobber the load).
1147 unsigned NumDeps = Deps.size();
1148 for (unsigned i = 0, e = NumDeps; i != e; ++i) {
1149 BasicBlock *DepBB = Deps[i].getBB();
1150 MemDepResult DepInfo = Deps[i].getResult();
1152 if (DeadBlocks.count(DepBB)) {
1153 // Dead dependent mem-op disguise as a load evaluating the same value
1154 // as the load in question.
1155 ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
1156 continue;
1159 if (!DepInfo.isDef() && !DepInfo.isClobber()) {
1160 UnavailableBlocks.push_back(DepBB);
1161 continue;
1164 // The address being loaded in this non-local block may not be the same as
1165 // the pointer operand of the load if PHI translation occurs. Make sure
1166 // to consider the right address.
1167 Value *Address = Deps[i].getAddress();
1169 AvailableValue AV;
1170 if (AnalyzeLoadAvailability(Load, DepInfo, Address, AV)) {
1171 // subtlety: because we know this was a non-local dependency, we know
1172 // it's safe to materialize anywhere between the instruction within
1173 // DepInfo and the end of it's block.
1174 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
1175 std::move(AV)));
1176 } else {
1177 UnavailableBlocks.push_back(DepBB);
1181 assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() &&
1182 "post condition violation");
1185 void GVN::eliminatePartiallyRedundantLoad(
1186 LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1187 MapVector<BasicBlock *, Value *> &AvailableLoads) {
1188 for (const auto &AvailableLoad : AvailableLoads) {
1189 BasicBlock *UnavailableBlock = AvailableLoad.first;
1190 Value *LoadPtr = AvailableLoad.second;
1192 auto *NewLoad =
1193 new LoadInst(Load->getType(), LoadPtr, Load->getName() + ".pre",
1194 Load->isVolatile(), Load->getAlign(), Load->getOrdering(),
1195 Load->getSyncScopeID(), UnavailableBlock->getTerminator());
1196 NewLoad->setDebugLoc(Load->getDebugLoc());
1197 if (MSSAU) {
1198 auto *MSSA = MSSAU->getMemorySSA();
1199 // Get the defining access of the original load or use the load if it is a
1200 // MemoryDef (e.g. because it is volatile). The inserted loads are
1201 // guaranteed to load from the same definition.
1202 auto *LoadAcc = MSSA->getMemoryAccess(Load);
1203 auto *DefiningAcc =
1204 isa<MemoryDef>(LoadAcc) ? LoadAcc : LoadAcc->getDefiningAccess();
1205 auto *NewAccess = MSSAU->createMemoryAccessInBB(
1206 NewLoad, DefiningAcc, NewLoad->getParent(),
1207 MemorySSA::BeforeTerminator);
1208 if (auto *NewDef = dyn_cast<MemoryDef>(NewAccess))
1209 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
1210 else
1211 MSSAU->insertUse(cast<MemoryUse>(NewAccess), /*RenameUses=*/true);
1214 // Transfer the old load's AA tags to the new load.
1215 AAMDNodes Tags;
1216 Load->getAAMetadata(Tags);
1217 if (Tags)
1218 NewLoad->setAAMetadata(Tags);
1220 if (auto *MD = Load->getMetadata(LLVMContext::MD_invariant_load))
1221 NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD);
1222 if (auto *InvGroupMD = Load->getMetadata(LLVMContext::MD_invariant_group))
1223 NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD);
1224 if (auto *RangeMD = Load->getMetadata(LLVMContext::MD_range))
1225 NewLoad->setMetadata(LLVMContext::MD_range, RangeMD);
1226 if (auto *AccessMD = Load->getMetadata(LLVMContext::MD_access_group))
1227 if (LI &&
1228 LI->getLoopFor(Load->getParent()) == LI->getLoopFor(UnavailableBlock))
1229 NewLoad->setMetadata(LLVMContext::MD_access_group, AccessMD);
1231 // We do not propagate the old load's debug location, because the new
1232 // load now lives in a different BB, and we want to avoid a jumpy line
1233 // table.
1234 // FIXME: How do we retain source locations without causing poor debugging
1235 // behavior?
1237 // Add the newly created load.
1238 ValuesPerBlock.push_back(
1239 AvailableValueInBlock::get(UnavailableBlock, NewLoad));
1240 MD->invalidateCachedPointerInfo(LoadPtr);
1241 LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
1244 // Perform PHI construction.
1245 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1246 Load->replaceAllUsesWith(V);
1247 if (isa<PHINode>(V))
1248 V->takeName(Load);
1249 if (Instruction *I = dyn_cast<Instruction>(V))
1250 I->setDebugLoc(Load->getDebugLoc());
1251 if (V->getType()->isPtrOrPtrVectorTy())
1252 MD->invalidateCachedPointerInfo(V);
1253 markInstructionForDeletion(Load);
1254 ORE->emit([&]() {
1255 return OptimizationRemark(DEBUG_TYPE, "LoadPRE", Load)
1256 << "load eliminated by PRE";
1260 bool GVN::PerformLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1261 UnavailBlkVect &UnavailableBlocks) {
1262 // Okay, we have *some* definitions of the value. This means that the value
1263 // is available in some of our (transitive) predecessors. Lets think about
1264 // doing PRE of this load. This will involve inserting a new load into the
1265 // predecessor when it's not available. We could do this in general, but
1266 // prefer to not increase code size. As such, we only do this when we know
1267 // that we only have to insert *one* load (which means we're basically moving
1268 // the load, not inserting a new one).
1270 SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(),
1271 UnavailableBlocks.end());
1273 // Let's find the first basic block with more than one predecessor. Walk
1274 // backwards through predecessors if needed.
1275 BasicBlock *LoadBB = Load->getParent();
1276 BasicBlock *TmpBB = LoadBB;
1278 // Check that there is no implicit control flow instructions above our load in
1279 // its block. If there is an instruction that doesn't always pass the
1280 // execution to the following instruction, then moving through it may become
1281 // invalid. For example:
1283 // int arr[LEN];
1284 // int index = ???;
1285 // ...
1286 // guard(0 <= index && index < LEN);
1287 // use(arr[index]);
1289 // It is illegal to move the array access to any point above the guard,
1290 // because if the index is out of bounds we should deoptimize rather than
1291 // access the array.
1292 // Check that there is no guard in this block above our instruction.
1293 bool MustEnsureSafetyOfSpeculativeExecution =
1294 ICF->isDominatedByICFIFromSameBlock(Load);
1296 while (TmpBB->getSinglePredecessor()) {
1297 TmpBB = TmpBB->getSinglePredecessor();
1298 if (TmpBB == LoadBB) // Infinite (unreachable) loop.
1299 return false;
1300 if (Blockers.count(TmpBB))
1301 return false;
1303 // If any of these blocks has more than one successor (i.e. if the edge we
1304 // just traversed was critical), then there are other paths through this
1305 // block along which the load may not be anticipated. Hoisting the load
1306 // above this block would be adding the load to execution paths along
1307 // which it was not previously executed.
1308 if (TmpBB->getTerminator()->getNumSuccessors() != 1)
1309 return false;
1311 // Check that there is no implicit control flow in a block above.
1312 MustEnsureSafetyOfSpeculativeExecution =
1313 MustEnsureSafetyOfSpeculativeExecution || ICF->hasICF(TmpBB);
1316 assert(TmpBB);
1317 LoadBB = TmpBB;
1319 // Check to see how many predecessors have the loaded value fully
1320 // available.
1321 MapVector<BasicBlock *, Value *> PredLoads;
1322 DenseMap<BasicBlock *, AvailabilityState> FullyAvailableBlocks;
1323 for (const AvailableValueInBlock &AV : ValuesPerBlock)
1324 FullyAvailableBlocks[AV.BB] = AvailabilityState::Available;
1325 for (BasicBlock *UnavailableBB : UnavailableBlocks)
1326 FullyAvailableBlocks[UnavailableBB] = AvailabilityState::Unavailable;
1328 SmallVector<BasicBlock *, 4> CriticalEdgePred;
1329 for (BasicBlock *Pred : predecessors(LoadBB)) {
1330 // If any predecessor block is an EH pad that does not allow non-PHI
1331 // instructions before the terminator, we can't PRE the load.
1332 if (Pred->getTerminator()->isEHPad()) {
1333 LLVM_DEBUG(
1334 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '"
1335 << Pred->getName() << "': " << *Load << '\n');
1336 return false;
1339 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks)) {
1340 continue;
1343 if (Pred->getTerminator()->getNumSuccessors() != 1) {
1344 if (isa<IndirectBrInst>(Pred->getTerminator())) {
1345 LLVM_DEBUG(
1346 dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
1347 << Pred->getName() << "': " << *Load << '\n');
1348 return false;
1351 // FIXME: Can we support the fallthrough edge?
1352 if (isa<CallBrInst>(Pred->getTerminator())) {
1353 LLVM_DEBUG(
1354 dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '"
1355 << Pred->getName() << "': " << *Load << '\n');
1356 return false;
1359 if (LoadBB->isEHPad()) {
1360 LLVM_DEBUG(
1361 dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '"
1362 << Pred->getName() << "': " << *Load << '\n');
1363 return false;
1366 // Do not split backedge as it will break the canonical loop form.
1367 if (!isLoadPRESplitBackedgeEnabled())
1368 if (DT->dominates(LoadBB, Pred)) {
1369 LLVM_DEBUG(
1370 dbgs()
1371 << "COULD NOT PRE LOAD BECAUSE OF A BACKEDGE CRITICAL EDGE '"
1372 << Pred->getName() << "': " << *Load << '\n');
1373 return false;
1376 CriticalEdgePred.push_back(Pred);
1377 } else {
1378 // Only add the predecessors that will not be split for now.
1379 PredLoads[Pred] = nullptr;
1383 // Decide whether PRE is profitable for this load.
1384 unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
1385 assert(NumUnavailablePreds != 0 &&
1386 "Fully available value should already be eliminated!");
1388 // If this load is unavailable in multiple predecessors, reject it.
1389 // FIXME: If we could restructure the CFG, we could make a common pred with
1390 // all the preds that don't have an available Load and insert a new load into
1391 // that one block.
1392 if (NumUnavailablePreds != 1)
1393 return false;
1395 // Now we know where we will insert load. We must ensure that it is safe
1396 // to speculatively execute the load at that points.
1397 if (MustEnsureSafetyOfSpeculativeExecution) {
1398 if (CriticalEdgePred.size())
1399 if (!isSafeToSpeculativelyExecute(Load, LoadBB->getFirstNonPHI(), DT))
1400 return false;
1401 for (auto &PL : PredLoads)
1402 if (!isSafeToSpeculativelyExecute(Load, PL.first->getTerminator(), DT))
1403 return false;
1406 // Split critical edges, and update the unavailable predecessors accordingly.
1407 for (BasicBlock *OrigPred : CriticalEdgePred) {
1408 BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
1409 assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
1410 PredLoads[NewPred] = nullptr;
1411 LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
1412 << LoadBB->getName() << '\n');
1415 // Check if the load can safely be moved to all the unavailable predecessors.
1416 bool CanDoPRE = true;
1417 const DataLayout &DL = Load->getModule()->getDataLayout();
1418 SmallVector<Instruction*, 8> NewInsts;
1419 for (auto &PredLoad : PredLoads) {
1420 BasicBlock *UnavailablePred = PredLoad.first;
1422 // Do PHI translation to get its value in the predecessor if necessary. The
1423 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
1424 // We do the translation for each edge we skipped by going from Load's block
1425 // to LoadBB, otherwise we might miss pieces needing translation.
1427 // If all preds have a single successor, then we know it is safe to insert
1428 // the load on the pred (?!?), so we can insert code to materialize the
1429 // pointer if it is not available.
1430 Value *LoadPtr = Load->getPointerOperand();
1431 BasicBlock *Cur = Load->getParent();
1432 while (Cur != LoadBB) {
1433 PHITransAddr Address(LoadPtr, DL, AC);
1434 LoadPtr = Address.PHITranslateWithInsertion(
1435 Cur, Cur->getSinglePredecessor(), *DT, NewInsts);
1436 if (!LoadPtr) {
1437 CanDoPRE = false;
1438 break;
1440 Cur = Cur->getSinglePredecessor();
1443 if (LoadPtr) {
1444 PHITransAddr Address(LoadPtr, DL, AC);
1445 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT,
1446 NewInsts);
1448 // If we couldn't find or insert a computation of this phi translated value,
1449 // we fail PRE.
1450 if (!LoadPtr) {
1451 LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
1452 << *Load->getPointerOperand() << "\n");
1453 CanDoPRE = false;
1454 break;
1457 PredLoad.second = LoadPtr;
1460 if (!CanDoPRE) {
1461 while (!NewInsts.empty()) {
1462 // Erase instructions generated by the failed PHI translation before
1463 // trying to number them. PHI translation might insert instructions
1464 // in basic blocks other than the current one, and we delete them
1465 // directly, as markInstructionForDeletion only allows removing from the
1466 // current basic block.
1467 NewInsts.pop_back_val()->eraseFromParent();
1469 // HINT: Don't revert the edge-splitting as following transformation may
1470 // also need to split these critical edges.
1471 return !CriticalEdgePred.empty();
1474 // Okay, we can eliminate this load by inserting a reload in the predecessor
1475 // and using PHI construction to get the value in the other predecessors, do
1476 // it.
1477 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *Load << '\n');
1478 LLVM_DEBUG(if (!NewInsts.empty()) dbgs() << "INSERTED " << NewInsts.size()
1479 << " INSTS: " << *NewInsts.back()
1480 << '\n');
1482 // Assign value numbers to the new instructions.
1483 for (Instruction *I : NewInsts) {
1484 // Instructions that have been inserted in predecessor(s) to materialize
1485 // the load address do not retain their original debug locations. Doing
1486 // so could lead to confusing (but correct) source attributions.
1487 I->updateLocationAfterHoist();
1489 // FIXME: We really _ought_ to insert these value numbers into their
1490 // parent's availability map. However, in doing so, we risk getting into
1491 // ordering issues. If a block hasn't been processed yet, we would be
1492 // marking a value as AVAIL-IN, which isn't what we intend.
1493 VN.lookupOrAdd(I);
1496 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, PredLoads);
1497 ++NumPRELoad;
1498 return true;
1501 bool GVN::performLoopLoadPRE(LoadInst *Load, AvailValInBlkVect &ValuesPerBlock,
1502 UnavailBlkVect &UnavailableBlocks) {
1503 if (!LI)
1504 return false;
1506 const Loop *L = LI->getLoopFor(Load->getParent());
1507 // TODO: Generalize to other loop blocks that dominate the latch.
1508 if (!L || L->getHeader() != Load->getParent())
1509 return false;
1511 BasicBlock *Preheader = L->getLoopPreheader();
1512 BasicBlock *Latch = L->getLoopLatch();
1513 if (!Preheader || !Latch)
1514 return false;
1516 Value *LoadPtr = Load->getPointerOperand();
1517 // Must be available in preheader.
1518 if (!L->isLoopInvariant(LoadPtr))
1519 return false;
1521 // We plan to hoist the load to preheader without introducing a new fault.
1522 // In order to do it, we need to prove that we cannot side-exit the loop
1523 // once loop header is first entered before execution of the load.
1524 if (ICF->isDominatedByICFIFromSameBlock(Load))
1525 return false;
1527 BasicBlock *LoopBlock = nullptr;
1528 for (auto *Blocker : UnavailableBlocks) {
1529 // Blockers from outside the loop are handled in preheader.
1530 if (!L->contains(Blocker))
1531 continue;
1533 // Only allow one loop block. Loop header is not less frequently executed
1534 // than each loop block, and likely it is much more frequently executed. But
1535 // in case of multiple loop blocks, we need extra information (such as block
1536 // frequency info) to understand whether it is profitable to PRE into
1537 // multiple loop blocks.
1538 if (LoopBlock)
1539 return false;
1541 // Do not sink into inner loops. This may be non-profitable.
1542 if (L != LI->getLoopFor(Blocker))
1543 return false;
1545 // Blocks that dominate the latch execute on every single iteration, maybe
1546 // except the last one. So PREing into these blocks doesn't make much sense
1547 // in most cases. But the blocks that do not necessarily execute on each
1548 // iteration are sometimes much colder than the header, and this is when
1549 // PRE is potentially profitable.
1550 if (DT->dominates(Blocker, Latch))
1551 return false;
1553 // Make sure that the terminator itself doesn't clobber.
1554 if (Blocker->getTerminator()->mayWriteToMemory())
1555 return false;
1557 LoopBlock = Blocker;
1560 if (!LoopBlock)
1561 return false;
1563 // Make sure the memory at this pointer cannot be freed, therefore we can
1564 // safely reload from it after clobber.
1565 if (LoadPtr->canBeFreed())
1566 return false;
1568 // TODO: Support critical edge splitting if blocker has more than 1 successor.
1569 MapVector<BasicBlock *, Value *> AvailableLoads;
1570 AvailableLoads[LoopBlock] = LoadPtr;
1571 AvailableLoads[Preheader] = LoadPtr;
1573 LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOOP LOAD: " << *Load << '\n');
1574 eliminatePartiallyRedundantLoad(Load, ValuesPerBlock, AvailableLoads);
1575 ++NumPRELoopLoad;
1576 return true;
1579 static void reportLoadElim(LoadInst *Load, Value *AvailableValue,
1580 OptimizationRemarkEmitter *ORE) {
1581 using namespace ore;
1583 ORE->emit([&]() {
1584 return OptimizationRemark(DEBUG_TYPE, "LoadElim", Load)
1585 << "load of type " << NV("Type", Load->getType()) << " eliminated"
1586 << setExtraArgs() << " in favor of "
1587 << NV("InfavorOfValue", AvailableValue);
1591 /// Attempt to eliminate a load whose dependencies are
1592 /// non-local by performing PHI construction.
1593 bool GVN::processNonLocalLoad(LoadInst *Load) {
1594 // non-local speculations are not allowed under asan.
1595 if (Load->getParent()->getParent()->hasFnAttribute(
1596 Attribute::SanitizeAddress) ||
1597 Load->getParent()->getParent()->hasFnAttribute(
1598 Attribute::SanitizeHWAddress))
1599 return false;
1601 // Step 1: Find the non-local dependencies of the load.
1602 LoadDepVect Deps;
1603 MD->getNonLocalPointerDependency(Load, Deps);
1605 // If we had to process more than one hundred blocks to find the
1606 // dependencies, this load isn't worth worrying about. Optimizing
1607 // it will be too expensive.
1608 unsigned NumDeps = Deps.size();
1609 if (NumDeps > MaxNumDeps)
1610 return false;
1612 // If we had a phi translation failure, we'll have a single entry which is a
1613 // clobber in the current block. Reject this early.
1614 if (NumDeps == 1 &&
1615 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
1616 LLVM_DEBUG(dbgs() << "GVN: non-local load "; Load->printAsOperand(dbgs());
1617 dbgs() << " has unknown dependencies\n";);
1618 return false;
1621 bool Changed = false;
1622 // If this load follows a GEP, see if we can PRE the indices before analyzing.
1623 if (GetElementPtrInst *GEP =
1624 dyn_cast<GetElementPtrInst>(Load->getOperand(0))) {
1625 for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
1626 OE = GEP->idx_end();
1627 OI != OE; ++OI)
1628 if (Instruction *I = dyn_cast<Instruction>(OI->get()))
1629 Changed |= performScalarPRE(I);
1632 // Step 2: Analyze the availability of the load
1633 AvailValInBlkVect ValuesPerBlock;
1634 UnavailBlkVect UnavailableBlocks;
1635 AnalyzeLoadAvailability(Load, Deps, ValuesPerBlock, UnavailableBlocks);
1637 // If we have no predecessors that produce a known value for this load, exit
1638 // early.
1639 if (ValuesPerBlock.empty())
1640 return Changed;
1642 // Step 3: Eliminate fully redundancy.
1644 // If all of the instructions we depend on produce a known value for this
1645 // load, then it is fully redundant and we can use PHI insertion to compute
1646 // its value. Insert PHIs and remove the fully redundant value now.
1647 if (UnavailableBlocks.empty()) {
1648 LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *Load << '\n');
1650 // Perform PHI construction.
1651 Value *V = ConstructSSAForLoadSet(Load, ValuesPerBlock, *this);
1652 Load->replaceAllUsesWith(V);
1654 if (isa<PHINode>(V))
1655 V->takeName(Load);
1656 if (Instruction *I = dyn_cast<Instruction>(V))
1657 // If instruction I has debug info, then we should not update it.
1658 // Also, if I has a null DebugLoc, then it is still potentially incorrect
1659 // to propagate Load's DebugLoc because Load may not post-dominate I.
1660 if (Load->getDebugLoc() && Load->getParent() == I->getParent())
1661 I->setDebugLoc(Load->getDebugLoc());
1662 if (V->getType()->isPtrOrPtrVectorTy())
1663 MD->invalidateCachedPointerInfo(V);
1664 markInstructionForDeletion(Load);
1665 ++NumGVNLoad;
1666 reportLoadElim(Load, V, ORE);
1667 return true;
1670 // Step 4: Eliminate partial redundancy.
1671 if (!isPREEnabled() || !isLoadPREEnabled())
1672 return Changed;
1673 if (!isLoadInLoopPREEnabled() && LI && LI->getLoopFor(Load->getParent()))
1674 return Changed;
1676 return Changed || PerformLoadPRE(Load, ValuesPerBlock, UnavailableBlocks) ||
1677 performLoopLoadPRE(Load, ValuesPerBlock, UnavailableBlocks);
1680 static bool impliesEquivalanceIfTrue(CmpInst* Cmp) {
1681 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_EQ)
1682 return true;
1684 // Floating point comparisons can be equal, but not equivalent. Cases:
1685 // NaNs for unordered operators
1686 // +0.0 vs 0.0 for all operators
1687 if (Cmp->getPredicate() == CmpInst::Predicate::FCMP_OEQ ||
1688 (Cmp->getPredicate() == CmpInst::Predicate::FCMP_UEQ &&
1689 Cmp->getFastMathFlags().noNaNs())) {
1690 Value *LHS = Cmp->getOperand(0);
1691 Value *RHS = Cmp->getOperand(1);
1692 // If we can prove either side non-zero, then equality must imply
1693 // equivalence.
1694 // FIXME: We should do this optimization if 'no signed zeros' is
1695 // applicable via an instruction-level fast-math-flag or some other
1696 // indicator that relaxed FP semantics are being used.
1697 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1698 return true;
1699 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1700 return true;;
1701 // TODO: Handle vector floating point constants
1703 return false;
1706 static bool impliesEquivalanceIfFalse(CmpInst* Cmp) {
1707 if (Cmp->getPredicate() == CmpInst::Predicate::ICMP_NE)
1708 return true;
1710 // Floating point comparisons can be equal, but not equivelent. Cases:
1711 // NaNs for unordered operators
1712 // +0.0 vs 0.0 for all operators
1713 if ((Cmp->getPredicate() == CmpInst::Predicate::FCMP_ONE &&
1714 Cmp->getFastMathFlags().noNaNs()) ||
1715 Cmp->getPredicate() == CmpInst::Predicate::FCMP_UNE) {
1716 Value *LHS = Cmp->getOperand(0);
1717 Value *RHS = Cmp->getOperand(1);
1718 // If we can prove either side non-zero, then equality must imply
1719 // equivalence.
1720 // FIXME: We should do this optimization if 'no signed zeros' is
1721 // applicable via an instruction-level fast-math-flag or some other
1722 // indicator that relaxed FP semantics are being used.
1723 if (isa<ConstantFP>(LHS) && !cast<ConstantFP>(LHS)->isZero())
1724 return true;
1725 if (isa<ConstantFP>(RHS) && !cast<ConstantFP>(RHS)->isZero())
1726 return true;;
1727 // TODO: Handle vector floating point constants
1729 return false;
1733 static bool hasUsersIn(Value *V, BasicBlock *BB) {
1734 for (User *U : V->users())
1735 if (isa<Instruction>(U) &&
1736 cast<Instruction>(U)->getParent() == BB)
1737 return true;
1738 return false;
1741 bool GVN::processAssumeIntrinsic(AssumeInst *IntrinsicI) {
1742 Value *V = IntrinsicI->getArgOperand(0);
1744 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
1745 if (Cond->isZero()) {
1746 Type *Int8Ty = Type::getInt8Ty(V->getContext());
1747 // Insert a new store to null instruction before the load to indicate that
1748 // this code is not reachable. FIXME: We could insert unreachable
1749 // instruction directly because we can modify the CFG.
1750 auto *NewS = new StoreInst(UndefValue::get(Int8Ty),
1751 Constant::getNullValue(Int8Ty->getPointerTo()),
1752 IntrinsicI);
1753 if (MSSAU) {
1754 const MemoryUseOrDef *FirstNonDom = nullptr;
1755 const auto *AL =
1756 MSSAU->getMemorySSA()->getBlockAccesses(IntrinsicI->getParent());
1758 // If there are accesses in the current basic block, find the first one
1759 // that does not come before NewS. The new memory access is inserted
1760 // after the found access or before the terminator if no such access is
1761 // found.
1762 if (AL) {
1763 for (auto &Acc : *AL) {
1764 if (auto *Current = dyn_cast<MemoryUseOrDef>(&Acc))
1765 if (!Current->getMemoryInst()->comesBefore(NewS)) {
1766 FirstNonDom = Current;
1767 break;
1772 // This added store is to null, so it will never executed and we can
1773 // just use the LiveOnEntry def as defining access.
1774 auto *NewDef =
1775 FirstNonDom ? MSSAU->createMemoryAccessBefore(
1776 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1777 const_cast<MemoryUseOrDef *>(FirstNonDom))
1778 : MSSAU->createMemoryAccessInBB(
1779 NewS, MSSAU->getMemorySSA()->getLiveOnEntryDef(),
1780 NewS->getParent(), MemorySSA::BeforeTerminator);
1782 MSSAU->insertDef(cast<MemoryDef>(NewDef), /*RenameUses=*/false);
1785 if (isAssumeWithEmptyBundle(*IntrinsicI))
1786 markInstructionForDeletion(IntrinsicI);
1787 return false;
1788 } else if (isa<Constant>(V)) {
1789 // If it's not false, and constant, it must evaluate to true. This means our
1790 // assume is assume(true), and thus, pointless, and we don't want to do
1791 // anything more here.
1792 return false;
1795 Constant *True = ConstantInt::getTrue(V->getContext());
1796 bool Changed = false;
1798 for (BasicBlock *Successor : successors(IntrinsicI->getParent())) {
1799 BasicBlockEdge Edge(IntrinsicI->getParent(), Successor);
1801 // This property is only true in dominated successors, propagateEquality
1802 // will check dominance for us.
1803 Changed |= propagateEquality(V, True, Edge, false);
1806 // We can replace assume value with true, which covers cases like this:
1807 // call void @llvm.assume(i1 %cmp)
1808 // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true
1809 ReplaceOperandsWithMap[V] = True;
1811 // Similarly, after assume(!NotV) we know that NotV == false.
1812 Value *NotV;
1813 if (match(V, m_Not(m_Value(NotV))))
1814 ReplaceOperandsWithMap[NotV] = ConstantInt::getFalse(V->getContext());
1816 // If we find an equality fact, canonicalize all dominated uses in this block
1817 // to one of the two values. We heuristically choice the "oldest" of the
1818 // two where age is determined by value number. (Note that propagateEquality
1819 // above handles the cross block case.)
1821 // Key case to cover are:
1822 // 1)
1823 // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen
1824 // call void @llvm.assume(i1 %cmp)
1825 // ret float %0 ; will change it to ret float 3.000000e+00
1826 // 2)
1827 // %load = load float, float* %addr
1828 // %cmp = fcmp oeq float %load, %0
1829 // call void @llvm.assume(i1 %cmp)
1830 // ret float %load ; will change it to ret float %0
1831 if (auto *CmpI = dyn_cast<CmpInst>(V)) {
1832 if (impliesEquivalanceIfTrue(CmpI)) {
1833 Value *CmpLHS = CmpI->getOperand(0);
1834 Value *CmpRHS = CmpI->getOperand(1);
1835 // Heuristically pick the better replacement -- the choice of heuristic
1836 // isn't terribly important here, but the fact we canonicalize on some
1837 // replacement is for exposing other simplifications.
1838 // TODO: pull this out as a helper function and reuse w/existing
1839 // (slightly different) logic.
1840 if (isa<Constant>(CmpLHS) && !isa<Constant>(CmpRHS))
1841 std::swap(CmpLHS, CmpRHS);
1842 if (!isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))
1843 std::swap(CmpLHS, CmpRHS);
1844 if ((isa<Argument>(CmpLHS) && isa<Argument>(CmpRHS)) ||
1845 (isa<Instruction>(CmpLHS) && isa<Instruction>(CmpRHS))) {
1846 // Move the 'oldest' value to the right-hand side, using the value
1847 // number as a proxy for age.
1848 uint32_t LVN = VN.lookupOrAdd(CmpLHS);
1849 uint32_t RVN = VN.lookupOrAdd(CmpRHS);
1850 if (LVN < RVN)
1851 std::swap(CmpLHS, CmpRHS);
1854 // Handle degenerate case where we either haven't pruned a dead path or a
1855 // removed a trivial assume yet.
1856 if (isa<Constant>(CmpLHS) && isa<Constant>(CmpRHS))
1857 return Changed;
1859 LLVM_DEBUG(dbgs() << "Replacing dominated uses of "
1860 << *CmpLHS << " with "
1861 << *CmpRHS << " in block "
1862 << IntrinsicI->getParent()->getName() << "\n");
1865 // Setup the replacement map - this handles uses within the same block
1866 if (hasUsersIn(CmpLHS, IntrinsicI->getParent()))
1867 ReplaceOperandsWithMap[CmpLHS] = CmpRHS;
1869 // NOTE: The non-block local cases are handled by the call to
1870 // propagateEquality above; this block is just about handling the block
1871 // local cases. TODO: There's a bunch of logic in propagateEqualiy which
1872 // isn't duplicated for the block local case, can we share it somehow?
1875 return Changed;
1878 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
1879 patchReplacementInstruction(I, Repl);
1880 I->replaceAllUsesWith(Repl);
1883 /// Attempt to eliminate a load, first by eliminating it
1884 /// locally, and then attempting non-local elimination if that fails.
1885 bool GVN::processLoad(LoadInst *L) {
1886 if (!MD)
1887 return false;
1889 // This code hasn't been audited for ordered or volatile memory access
1890 if (!L->isUnordered())
1891 return false;
1893 if (L->use_empty()) {
1894 markInstructionForDeletion(L);
1895 return true;
1898 // ... to a pointer that has been loaded from before...
1899 MemDepResult Dep = MD->getDependency(L);
1901 // If it is defined in another block, try harder.
1902 if (Dep.isNonLocal())
1903 return processNonLocalLoad(L);
1905 // Only handle the local case below
1906 if (!Dep.isDef() && !Dep.isClobber()) {
1907 // This might be a NonFuncLocal or an Unknown
1908 LLVM_DEBUG(
1909 // fast print dep, using operator<< on instruction is too slow.
1910 dbgs() << "GVN: load "; L->printAsOperand(dbgs());
1911 dbgs() << " has unknown dependence\n";);
1912 return false;
1915 AvailableValue AV;
1916 if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) {
1917 Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this);
1919 // Replace the load!
1920 patchAndReplaceAllUsesWith(L, AvailableValue);
1921 markInstructionForDeletion(L);
1922 if (MSSAU)
1923 MSSAU->removeMemoryAccess(L);
1924 ++NumGVNLoad;
1925 reportLoadElim(L, AvailableValue, ORE);
1926 // Tell MDA to reexamine the reused pointer since we might have more
1927 // information after forwarding it.
1928 if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy())
1929 MD->invalidateCachedPointerInfo(AvailableValue);
1930 return true;
1933 return false;
1936 /// Return a pair the first field showing the value number of \p Exp and the
1937 /// second field showing whether it is a value number newly created.
1938 std::pair<uint32_t, bool>
1939 GVN::ValueTable::assignExpNewValueNum(Expression &Exp) {
1940 uint32_t &e = expressionNumbering[Exp];
1941 bool CreateNewValNum = !e;
1942 if (CreateNewValNum) {
1943 Expressions.push_back(Exp);
1944 if (ExprIdx.size() < nextValueNumber + 1)
1945 ExprIdx.resize(nextValueNumber * 2);
1946 e = nextValueNumber;
1947 ExprIdx[nextValueNumber++] = nextExprNumber++;
1949 return {e, CreateNewValNum};
1952 /// Return whether all the values related with the same \p num are
1953 /// defined in \p BB.
1954 bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB,
1955 GVN &Gvn) {
1956 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1957 while (Vals && Vals->BB == BB)
1958 Vals = Vals->Next;
1959 return !Vals;
1962 /// Wrap phiTranslateImpl to provide caching functionality.
1963 uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred,
1964 const BasicBlock *PhiBlock, uint32_t Num,
1965 GVN &Gvn) {
1966 auto FindRes = PhiTranslateTable.find({Num, Pred});
1967 if (FindRes != PhiTranslateTable.end())
1968 return FindRes->second;
1969 uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn);
1970 PhiTranslateTable.insert({{Num, Pred}, NewNum});
1971 return NewNum;
1974 // Return true if the value number \p Num and NewNum have equal value.
1975 // Return false if the result is unknown.
1976 bool GVN::ValueTable::areCallValsEqual(uint32_t Num, uint32_t NewNum,
1977 const BasicBlock *Pred,
1978 const BasicBlock *PhiBlock, GVN &Gvn) {
1979 CallInst *Call = nullptr;
1980 LeaderTableEntry *Vals = &Gvn.LeaderTable[Num];
1981 while (Vals) {
1982 Call = dyn_cast<CallInst>(Vals->Val);
1983 if (Call && Call->getParent() == PhiBlock)
1984 break;
1985 Vals = Vals->Next;
1988 if (AA->doesNotAccessMemory(Call))
1989 return true;
1991 if (!MD || !AA->onlyReadsMemory(Call))
1992 return false;
1994 MemDepResult local_dep = MD->getDependency(Call);
1995 if (!local_dep.isNonLocal())
1996 return false;
1998 const MemoryDependenceResults::NonLocalDepInfo &deps =
1999 MD->getNonLocalCallDependency(Call);
2001 // Check to see if the Call has no function local clobber.
2002 for (const NonLocalDepEntry &D : deps) {
2003 if (D.getResult().isNonFuncLocal())
2004 return true;
2006 return false;
2009 /// Translate value number \p Num using phis, so that it has the values of
2010 /// the phis in BB.
2011 uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred,
2012 const BasicBlock *PhiBlock,
2013 uint32_t Num, GVN &Gvn) {
2014 if (PHINode *PN = NumberingPhi[Num]) {
2015 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
2016 if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred)
2017 if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false))
2018 return TransVal;
2020 return Num;
2023 // If there is any value related with Num is defined in a BB other than
2024 // PhiBlock, it cannot depend on a phi in PhiBlock without going through
2025 // a backedge. We can do an early exit in that case to save compile time.
2026 if (!areAllValsInBB(Num, PhiBlock, Gvn))
2027 return Num;
2029 if (Num >= ExprIdx.size() || ExprIdx[Num] == 0)
2030 return Num;
2031 Expression Exp = Expressions[ExprIdx[Num]];
2033 for (unsigned i = 0; i < Exp.varargs.size(); i++) {
2034 // For InsertValue and ExtractValue, some varargs are index numbers
2035 // instead of value numbers. Those index numbers should not be
2036 // translated.
2037 if ((i > 1 && Exp.opcode == Instruction::InsertValue) ||
2038 (i > 0 && Exp.opcode == Instruction::ExtractValue) ||
2039 (i > 1 && Exp.opcode == Instruction::ShuffleVector))
2040 continue;
2041 Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn);
2044 if (Exp.commutative) {
2045 assert(Exp.varargs.size() >= 2 && "Unsupported commutative instruction!");
2046 if (Exp.varargs[0] > Exp.varargs[1]) {
2047 std::swap(Exp.varargs[0], Exp.varargs[1]);
2048 uint32_t Opcode = Exp.opcode >> 8;
2049 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)
2050 Exp.opcode = (Opcode << 8) |
2051 CmpInst::getSwappedPredicate(
2052 static_cast<CmpInst::Predicate>(Exp.opcode & 255));
2056 if (uint32_t NewNum = expressionNumbering[Exp]) {
2057 if (Exp.opcode == Instruction::Call && NewNum != Num)
2058 return areCallValsEqual(Num, NewNum, Pred, PhiBlock, Gvn) ? NewNum : Num;
2059 return NewNum;
2061 return Num;
2064 /// Erase stale entry from phiTranslate cache so phiTranslate can be computed
2065 /// again.
2066 void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num,
2067 const BasicBlock &CurrBlock) {
2068 for (const BasicBlock *Pred : predecessors(&CurrBlock))
2069 PhiTranslateTable.erase({Num, Pred});
2072 // In order to find a leader for a given value number at a
2073 // specific basic block, we first obtain the list of all Values for that number,
2074 // and then scan the list to find one whose block dominates the block in
2075 // question. This is fast because dominator tree queries consist of only
2076 // a few comparisons of DFS numbers.
2077 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
2078 LeaderTableEntry Vals = LeaderTable[num];
2079 if (!Vals.Val) return nullptr;
2081 Value *Val = nullptr;
2082 if (DT->dominates(Vals.BB, BB)) {
2083 Val = Vals.Val;
2084 if (isa<Constant>(Val)) return Val;
2087 LeaderTableEntry* Next = Vals.Next;
2088 while (Next) {
2089 if (DT->dominates(Next->BB, BB)) {
2090 if (isa<Constant>(Next->Val)) return Next->Val;
2091 if (!Val) Val = Next->Val;
2094 Next = Next->Next;
2097 return Val;
2100 /// There is an edge from 'Src' to 'Dst'. Return
2101 /// true if every path from the entry block to 'Dst' passes via this edge. In
2102 /// particular 'Dst' must not be reachable via another edge from 'Src'.
2103 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
2104 DominatorTree *DT) {
2105 // While in theory it is interesting to consider the case in which Dst has
2106 // more than one predecessor, because Dst might be part of a loop which is
2107 // only reachable from Src, in practice it is pointless since at the time
2108 // GVN runs all such loops have preheaders, which means that Dst will have
2109 // been changed to have only one predecessor, namely Src.
2110 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
2111 assert((!Pred || Pred == E.getStart()) &&
2112 "No edge between these basic blocks!");
2113 return Pred != nullptr;
2116 void GVN::assignBlockRPONumber(Function &F) {
2117 BlockRPONumber.clear();
2118 uint32_t NextBlockNumber = 1;
2119 ReversePostOrderTraversal<Function *> RPOT(&F);
2120 for (BasicBlock *BB : RPOT)
2121 BlockRPONumber[BB] = NextBlockNumber++;
2122 InvalidBlockRPONumbers = false;
2125 bool GVN::replaceOperandsForInBlockEquality(Instruction *Instr) const {
2126 bool Changed = false;
2127 for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) {
2128 Value *Operand = Instr->getOperand(OpNum);
2129 auto it = ReplaceOperandsWithMap.find(Operand);
2130 if (it != ReplaceOperandsWithMap.end()) {
2131 LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with "
2132 << *it->second << " in instruction " << *Instr << '\n');
2133 Instr->setOperand(OpNum, it->second);
2134 Changed = true;
2137 return Changed;
2140 /// The given values are known to be equal in every block
2141 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with
2142 /// 'RHS' everywhere in the scope. Returns whether a change was made.
2143 /// If DominatesByEdge is false, then it means that we will propagate the RHS
2144 /// value starting from the end of Root.Start.
2145 bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root,
2146 bool DominatesByEdge) {
2147 SmallVector<std::pair<Value*, Value*>, 4> Worklist;
2148 Worklist.push_back(std::make_pair(LHS, RHS));
2149 bool Changed = false;
2150 // For speed, compute a conservative fast approximation to
2151 // DT->dominates(Root, Root.getEnd());
2152 const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
2154 while (!Worklist.empty()) {
2155 std::pair<Value*, Value*> Item = Worklist.pop_back_val();
2156 LHS = Item.first; RHS = Item.second;
2158 if (LHS == RHS)
2159 continue;
2160 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
2162 // Don't try to propagate equalities between constants.
2163 if (isa<Constant>(LHS) && isa<Constant>(RHS))
2164 continue;
2166 // Prefer a constant on the right-hand side, or an Argument if no constants.
2167 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
2168 std::swap(LHS, RHS);
2169 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
2171 // If there is no obvious reason to prefer the left-hand side over the
2172 // right-hand side, ensure the longest lived term is on the right-hand side,
2173 // so the shortest lived term will be replaced by the longest lived.
2174 // This tends to expose more simplifications.
2175 uint32_t LVN = VN.lookupOrAdd(LHS);
2176 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
2177 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
2178 // Move the 'oldest' value to the right-hand side, using the value number
2179 // as a proxy for age.
2180 uint32_t RVN = VN.lookupOrAdd(RHS);
2181 if (LVN < RVN) {
2182 std::swap(LHS, RHS);
2183 LVN = RVN;
2187 // If value numbering later sees that an instruction in the scope is equal
2188 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve
2189 // the invariant that instructions only occur in the leader table for their
2190 // own value number (this is used by removeFromLeaderTable), do not do this
2191 // if RHS is an instruction (if an instruction in the scope is morphed into
2192 // LHS then it will be turned into RHS by the next GVN iteration anyway, so
2193 // using the leader table is about compiling faster, not optimizing better).
2194 // The leader table only tracks basic blocks, not edges. Only add to if we
2195 // have the simple case where the edge dominates the end.
2196 if (RootDominatesEnd && !isa<Instruction>(RHS))
2197 addToLeaderTable(LVN, RHS, Root.getEnd());
2199 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As
2200 // LHS always has at least one use that is not dominated by Root, this will
2201 // never do anything if LHS has only one use.
2202 if (!LHS->hasOneUse()) {
2203 unsigned NumReplacements =
2204 DominatesByEdge
2205 ? replaceDominatedUsesWith(LHS, RHS, *DT, Root)
2206 : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart());
2208 Changed |= NumReplacements > 0;
2209 NumGVNEqProp += NumReplacements;
2210 // Cached information for anything that uses LHS will be invalid.
2211 if (MD)
2212 MD->invalidateCachedPointerInfo(LHS);
2215 // Now try to deduce additional equalities from this one. For example, if
2216 // the known equality was "(A != B)" == "false" then it follows that A and B
2217 // are equal in the scope. Only boolean equalities with an explicit true or
2218 // false RHS are currently supported.
2219 if (!RHS->getType()->isIntegerTy(1))
2220 // Not a boolean equality - bail out.
2221 continue;
2222 ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
2223 if (!CI)
2224 // RHS neither 'true' nor 'false' - bail out.
2225 continue;
2226 // Whether RHS equals 'true'. Otherwise it equals 'false'.
2227 bool isKnownTrue = CI->isMinusOne();
2228 bool isKnownFalse = !isKnownTrue;
2230 // If "A && B" is known true then both A and B are known true. If "A || B"
2231 // is known false then both A and B are known false.
2232 Value *A, *B;
2233 if ((isKnownTrue && match(LHS, m_LogicalAnd(m_Value(A), m_Value(B)))) ||
2234 (isKnownFalse && match(LHS, m_LogicalOr(m_Value(A), m_Value(B))))) {
2235 Worklist.push_back(std::make_pair(A, RHS));
2236 Worklist.push_back(std::make_pair(B, RHS));
2237 continue;
2240 // If we are propagating an equality like "(A == B)" == "true" then also
2241 // propagate the equality A == B. When propagating a comparison such as
2242 // "(A >= B)" == "true", replace all instances of "A < B" with "false".
2243 if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
2244 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
2246 // If "A == B" is known true, or "A != B" is known false, then replace
2247 // A with B everywhere in the scope. For floating point operations, we
2248 // have to be careful since equality does not always imply equivalance.
2249 if ((isKnownTrue && impliesEquivalanceIfTrue(Cmp)) ||
2250 (isKnownFalse && impliesEquivalanceIfFalse(Cmp)))
2251 Worklist.push_back(std::make_pair(Op0, Op1));
2253 // If "A >= B" is known true, replace "A < B" with false everywhere.
2254 CmpInst::Predicate NotPred = Cmp->getInversePredicate();
2255 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
2256 // Since we don't have the instruction "A < B" immediately to hand, work
2257 // out the value number that it would have and use that to find an
2258 // appropriate instruction (if any).
2259 uint32_t NextNum = VN.getNextUnusedValueNumber();
2260 uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1);
2261 // If the number we were assigned was brand new then there is no point in
2262 // looking for an instruction realizing it: there cannot be one!
2263 if (Num < NextNum) {
2264 Value *NotCmp = findLeader(Root.getEnd(), Num);
2265 if (NotCmp && isa<Instruction>(NotCmp)) {
2266 unsigned NumReplacements =
2267 DominatesByEdge
2268 ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root)
2269 : replaceDominatedUsesWith(NotCmp, NotVal, *DT,
2270 Root.getStart());
2271 Changed |= NumReplacements > 0;
2272 NumGVNEqProp += NumReplacements;
2273 // Cached information for anything that uses NotCmp will be invalid.
2274 if (MD)
2275 MD->invalidateCachedPointerInfo(NotCmp);
2278 // Ensure that any instruction in scope that gets the "A < B" value number
2279 // is replaced with false.
2280 // The leader table only tracks basic blocks, not edges. Only add to if we
2281 // have the simple case where the edge dominates the end.
2282 if (RootDominatesEnd)
2283 addToLeaderTable(Num, NotVal, Root.getEnd());
2285 continue;
2289 return Changed;
2292 /// When calculating availability, handle an instruction
2293 /// by inserting it into the appropriate sets
2294 bool GVN::processInstruction(Instruction *I) {
2295 // Ignore dbg info intrinsics.
2296 if (isa<DbgInfoIntrinsic>(I))
2297 return false;
2299 // If the instruction can be easily simplified then do so now in preference
2300 // to value numbering it. Value numbering often exposes redundancies, for
2301 // example if it determines that %y is equal to %x then the instruction
2302 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
2303 const DataLayout &DL = I->getModule()->getDataLayout();
2304 if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) {
2305 bool Changed = false;
2306 if (!I->use_empty()) {
2307 // Simplification can cause a special instruction to become not special.
2308 // For example, devirtualization to a willreturn function.
2309 ICF->removeUsersOf(I);
2310 I->replaceAllUsesWith(V);
2311 Changed = true;
2313 if (isInstructionTriviallyDead(I, TLI)) {
2314 markInstructionForDeletion(I);
2315 Changed = true;
2317 if (Changed) {
2318 if (MD && V->getType()->isPtrOrPtrVectorTy())
2319 MD->invalidateCachedPointerInfo(V);
2320 ++NumGVNSimpl;
2321 return true;
2325 if (auto *Assume = dyn_cast<AssumeInst>(I))
2326 return processAssumeIntrinsic(Assume);
2328 if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
2329 if (processLoad(Load))
2330 return true;
2332 unsigned Num = VN.lookupOrAdd(Load);
2333 addToLeaderTable(Num, Load, Load->getParent());
2334 return false;
2337 // For conditional branches, we can perform simple conditional propagation on
2338 // the condition value itself.
2339 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
2340 if (!BI->isConditional())
2341 return false;
2343 if (isa<Constant>(BI->getCondition()))
2344 return processFoldableCondBr(BI);
2346 Value *BranchCond = BI->getCondition();
2347 BasicBlock *TrueSucc = BI->getSuccessor(0);
2348 BasicBlock *FalseSucc = BI->getSuccessor(1);
2349 // Avoid multiple edges early.
2350 if (TrueSucc == FalseSucc)
2351 return false;
2353 BasicBlock *Parent = BI->getParent();
2354 bool Changed = false;
2356 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
2357 BasicBlockEdge TrueE(Parent, TrueSucc);
2358 Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true);
2360 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
2361 BasicBlockEdge FalseE(Parent, FalseSucc);
2362 Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true);
2364 return Changed;
2367 // For switches, propagate the case values into the case destinations.
2368 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
2369 Value *SwitchCond = SI->getCondition();
2370 BasicBlock *Parent = SI->getParent();
2371 bool Changed = false;
2373 // Remember how many outgoing edges there are to every successor.
2374 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2375 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
2376 ++SwitchEdges[SI->getSuccessor(i)];
2378 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2379 i != e; ++i) {
2380 BasicBlock *Dst = i->getCaseSuccessor();
2381 // If there is only a single edge, propagate the case value into it.
2382 if (SwitchEdges.lookup(Dst) == 1) {
2383 BasicBlockEdge E(Parent, Dst);
2384 Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true);
2387 return Changed;
2390 // Instructions with void type don't return a value, so there's
2391 // no point in trying to find redundancies in them.
2392 if (I->getType()->isVoidTy())
2393 return false;
2395 uint32_t NextNum = VN.getNextUnusedValueNumber();
2396 unsigned Num = VN.lookupOrAdd(I);
2398 // Allocations are always uniquely numbered, so we can save time and memory
2399 // by fast failing them.
2400 if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) {
2401 addToLeaderTable(Num, I, I->getParent());
2402 return false;
2405 // If the number we were assigned was a brand new VN, then we don't
2406 // need to do a lookup to see if the number already exists
2407 // somewhere in the domtree: it can't!
2408 if (Num >= NextNum) {
2409 addToLeaderTable(Num, I, I->getParent());
2410 return false;
2413 // Perform fast-path value-number based elimination of values inherited from
2414 // dominators.
2415 Value *Repl = findLeader(I->getParent(), Num);
2416 if (!Repl) {
2417 // Failure, just remember this instance for future use.
2418 addToLeaderTable(Num, I, I->getParent());
2419 return false;
2420 } else if (Repl == I) {
2421 // If I was the result of a shortcut PRE, it might already be in the table
2422 // and the best replacement for itself. Nothing to do.
2423 return false;
2426 // Remove it!
2427 patchAndReplaceAllUsesWith(I, Repl);
2428 if (MD && Repl->getType()->isPtrOrPtrVectorTy())
2429 MD->invalidateCachedPointerInfo(Repl);
2430 markInstructionForDeletion(I);
2431 return true;
2434 /// runOnFunction - This is the main transformation entry point for a function.
2435 bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT,
2436 const TargetLibraryInfo &RunTLI, AAResults &RunAA,
2437 MemoryDependenceResults *RunMD, LoopInfo *LI,
2438 OptimizationRemarkEmitter *RunORE, MemorySSA *MSSA) {
2439 AC = &RunAC;
2440 DT = &RunDT;
2441 VN.setDomTree(DT);
2442 TLI = &RunTLI;
2443 VN.setAliasAnalysis(&RunAA);
2444 MD = RunMD;
2445 ImplicitControlFlowTracking ImplicitCFT;
2446 ICF = &ImplicitCFT;
2447 this->LI = LI;
2448 VN.setMemDep(MD);
2449 ORE = RunORE;
2450 InvalidBlockRPONumbers = true;
2451 MemorySSAUpdater Updater(MSSA);
2452 MSSAU = MSSA ? &Updater : nullptr;
2454 bool Changed = false;
2455 bool ShouldContinue = true;
2457 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2458 // Merge unconditional branches, allowing PRE to catch more
2459 // optimization opportunities.
2460 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
2461 BasicBlock *BB = &*FI++;
2463 bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, MSSAU, MD);
2464 if (removedBlock)
2465 ++NumGVNBlocks;
2467 Changed |= removedBlock;
2470 unsigned Iteration = 0;
2471 while (ShouldContinue) {
2472 LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
2473 ShouldContinue = iterateOnFunction(F);
2474 Changed |= ShouldContinue;
2475 ++Iteration;
2478 if (isPREEnabled()) {
2479 // Fabricate val-num for dead-code in order to suppress assertion in
2480 // performPRE().
2481 assignValNumForDeadCode();
2482 bool PREChanged = true;
2483 while (PREChanged) {
2484 PREChanged = performPRE(F);
2485 Changed |= PREChanged;
2489 // FIXME: Should perform GVN again after PRE does something. PRE can move
2490 // computations into blocks where they become fully redundant. Note that
2491 // we can't do this until PRE's critical edge splitting updates memdep.
2492 // Actually, when this happens, we should just fully integrate PRE into GVN.
2494 cleanupGlobalSets();
2495 // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
2496 // iteration.
2497 DeadBlocks.clear();
2499 if (MSSA && VerifyMemorySSA)
2500 MSSA->verifyMemorySSA();
2502 return Changed;
2505 bool GVN::processBlock(BasicBlock *BB) {
2506 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
2507 // (and incrementing BI before processing an instruction).
2508 assert(InstrsToErase.empty() &&
2509 "We expect InstrsToErase to be empty across iterations");
2510 if (DeadBlocks.count(BB))
2511 return false;
2513 // Clearing map before every BB because it can be used only for single BB.
2514 ReplaceOperandsWithMap.clear();
2515 bool ChangedFunction = false;
2517 // Since we may not have visited the input blocks of the phis, we can't
2518 // use our normal hash approach for phis. Instead, simply look for
2519 // obvious duplicates. The first pass of GVN will tend to create
2520 // identical phis, and the second or later passes can eliminate them.
2521 ChangedFunction |= EliminateDuplicatePHINodes(BB);
2523 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
2524 BI != BE;) {
2525 if (!ReplaceOperandsWithMap.empty())
2526 ChangedFunction |= replaceOperandsForInBlockEquality(&*BI);
2527 ChangedFunction |= processInstruction(&*BI);
2529 if (InstrsToErase.empty()) {
2530 ++BI;
2531 continue;
2534 // If we need some instructions deleted, do it now.
2535 NumGVNInstr += InstrsToErase.size();
2537 // Avoid iterator invalidation.
2538 bool AtStart = BI == BB->begin();
2539 if (!AtStart)
2540 --BI;
2542 for (auto *I : InstrsToErase) {
2543 assert(I->getParent() == BB && "Removing instruction from wrong block?");
2544 LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n');
2545 salvageKnowledge(I, AC);
2546 salvageDebugInfo(*I);
2547 if (MD) MD->removeInstruction(I);
2548 if (MSSAU)
2549 MSSAU->removeMemoryAccess(I);
2550 LLVM_DEBUG(verifyRemoved(I));
2551 ICF->removeInstruction(I);
2552 I->eraseFromParent();
2554 InstrsToErase.clear();
2556 if (AtStart)
2557 BI = BB->begin();
2558 else
2559 ++BI;
2562 return ChangedFunction;
2565 // Instantiate an expression in a predecessor that lacked it.
2566 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
2567 BasicBlock *Curr, unsigned int ValNo) {
2568 // Because we are going top-down through the block, all value numbers
2569 // will be available in the predecessor by the time we need them. Any
2570 // that weren't originally present will have been instantiated earlier
2571 // in this loop.
2572 bool success = true;
2573 for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
2574 Value *Op = Instr->getOperand(i);
2575 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
2576 continue;
2577 // This could be a newly inserted instruction, in which case, we won't
2578 // find a value number, and should give up before we hurt ourselves.
2579 // FIXME: Rewrite the infrastructure to let it easier to value number
2580 // and process newly inserted instructions.
2581 if (!VN.exists(Op)) {
2582 success = false;
2583 break;
2585 uint32_t TValNo =
2586 VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this);
2587 if (Value *V = findLeader(Pred, TValNo)) {
2588 Instr->setOperand(i, V);
2589 } else {
2590 success = false;
2591 break;
2595 // Fail out if we encounter an operand that is not available in
2596 // the PRE predecessor. This is typically because of loads which
2597 // are not value numbered precisely.
2598 if (!success)
2599 return false;
2601 Instr->insertBefore(Pred->getTerminator());
2602 Instr->setName(Instr->getName() + ".pre");
2603 Instr->setDebugLoc(Instr->getDebugLoc());
2605 ICF->insertInstructionTo(Instr, Pred);
2607 unsigned Num = VN.lookupOrAdd(Instr);
2608 VN.add(Instr, Num);
2610 // Update the availability map to include the new instruction.
2611 addToLeaderTable(Num, Instr, Pred);
2612 return true;
2615 bool GVN::performScalarPRE(Instruction *CurInst) {
2616 if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() ||
2617 isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
2618 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
2619 isa<DbgInfoIntrinsic>(CurInst))
2620 return false;
2622 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
2623 // sinking the compare again, and it would force the code generator to
2624 // move the i1 from processor flags or predicate registers into a general
2625 // purpose register.
2626 if (isa<CmpInst>(CurInst))
2627 return false;
2629 // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from
2630 // sinking the addressing mode computation back to its uses. Extending the
2631 // GEP's live range increases the register pressure, and therefore it can
2632 // introduce unnecessary spills.
2634 // This doesn't prevent Load PRE. PHI translation will make the GEP available
2635 // to the load by moving it to the predecessor block if necessary.
2636 if (isa<GetElementPtrInst>(CurInst))
2637 return false;
2639 if (auto *CallB = dyn_cast<CallBase>(CurInst)) {
2640 // We don't currently value number ANY inline asm calls.
2641 if (CallB->isInlineAsm())
2642 return false;
2643 // Don't do PRE on convergent calls.
2644 if (CallB->isConvergent())
2645 return false;
2648 uint32_t ValNo = VN.lookup(CurInst);
2650 // Look for the predecessors for PRE opportunities. We're
2651 // only trying to solve the basic diamond case, where
2652 // a value is computed in the successor and one predecessor,
2653 // but not the other. We also explicitly disallow cases
2654 // where the successor is its own predecessor, because they're
2655 // more complicated to get right.
2656 unsigned NumWith = 0;
2657 unsigned NumWithout = 0;
2658 BasicBlock *PREPred = nullptr;
2659 BasicBlock *CurrentBlock = CurInst->getParent();
2661 // Update the RPO numbers for this function.
2662 if (InvalidBlockRPONumbers)
2663 assignBlockRPONumber(*CurrentBlock->getParent());
2665 SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap;
2666 for (BasicBlock *P : predecessors(CurrentBlock)) {
2667 // We're not interested in PRE where blocks with predecessors that are
2668 // not reachable.
2669 if (!DT->isReachableFromEntry(P)) {
2670 NumWithout = 2;
2671 break;
2673 // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and
2674 // when CurInst has operand defined in CurrentBlock (so it may be defined
2675 // by phi in the loop header).
2676 assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) &&
2677 "Invalid BlockRPONumber map.");
2678 if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] &&
2679 llvm::any_of(CurInst->operands(), [&](const Use &U) {
2680 if (auto *Inst = dyn_cast<Instruction>(U.get()))
2681 return Inst->getParent() == CurrentBlock;
2682 return false;
2683 })) {
2684 NumWithout = 2;
2685 break;
2688 uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this);
2689 Value *predV = findLeader(P, TValNo);
2690 if (!predV) {
2691 predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
2692 PREPred = P;
2693 ++NumWithout;
2694 } else if (predV == CurInst) {
2695 /* CurInst dominates this predecessor. */
2696 NumWithout = 2;
2697 break;
2698 } else {
2699 predMap.push_back(std::make_pair(predV, P));
2700 ++NumWith;
2704 // Don't do PRE when it might increase code size, i.e. when
2705 // we would need to insert instructions in more than one pred.
2706 if (NumWithout > 1 || NumWith == 0)
2707 return false;
2709 // We may have a case where all predecessors have the instruction,
2710 // and we just need to insert a phi node. Otherwise, perform
2711 // insertion.
2712 Instruction *PREInstr = nullptr;
2714 if (NumWithout != 0) {
2715 if (!isSafeToSpeculativelyExecute(CurInst)) {
2716 // It is only valid to insert a new instruction if the current instruction
2717 // is always executed. An instruction with implicit control flow could
2718 // prevent us from doing it. If we cannot speculate the execution, then
2719 // PRE should be prohibited.
2720 if (ICF->isDominatedByICFIFromSameBlock(CurInst))
2721 return false;
2724 // Don't do PRE across indirect branch.
2725 if (isa<IndirectBrInst>(PREPred->getTerminator()))
2726 return false;
2728 // Don't do PRE across callbr.
2729 // FIXME: Can we do this across the fallthrough edge?
2730 if (isa<CallBrInst>(PREPred->getTerminator()))
2731 return false;
2733 // We can't do PRE safely on a critical edge, so instead we schedule
2734 // the edge to be split and perform the PRE the next time we iterate
2735 // on the function.
2736 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
2737 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
2738 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
2739 return false;
2741 // We need to insert somewhere, so let's give it a shot
2742 PREInstr = CurInst->clone();
2743 if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) {
2744 // If we failed insertion, make sure we remove the instruction.
2745 LLVM_DEBUG(verifyRemoved(PREInstr));
2746 PREInstr->deleteValue();
2747 return false;
2751 // Either we should have filled in the PRE instruction, or we should
2752 // not have needed insertions.
2753 assert(PREInstr != nullptr || NumWithout == 0);
2755 ++NumGVNPRE;
2757 // Create a PHI to make the value available in this block.
2758 PHINode *Phi =
2759 PHINode::Create(CurInst->getType(), predMap.size(),
2760 CurInst->getName() + ".pre-phi", &CurrentBlock->front());
2761 for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
2762 if (Value *V = predMap[i].first) {
2763 // If we use an existing value in this phi, we have to patch the original
2764 // value because the phi will be used to replace a later value.
2765 patchReplacementInstruction(CurInst, V);
2766 Phi->addIncoming(V, predMap[i].second);
2767 } else
2768 Phi->addIncoming(PREInstr, PREPred);
2771 VN.add(Phi, ValNo);
2772 // After creating a new PHI for ValNo, the phi translate result for ValNo will
2773 // be changed, so erase the related stale entries in phi translate cache.
2774 VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock);
2775 addToLeaderTable(ValNo, Phi, CurrentBlock);
2776 Phi->setDebugLoc(CurInst->getDebugLoc());
2777 CurInst->replaceAllUsesWith(Phi);
2778 if (MD && Phi->getType()->isPtrOrPtrVectorTy())
2779 MD->invalidateCachedPointerInfo(Phi);
2780 VN.erase(CurInst);
2781 removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
2783 LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
2784 if (MD)
2785 MD->removeInstruction(CurInst);
2786 if (MSSAU)
2787 MSSAU->removeMemoryAccess(CurInst);
2788 LLVM_DEBUG(verifyRemoved(CurInst));
2789 // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes
2790 // some assertion failures.
2791 ICF->removeInstruction(CurInst);
2792 CurInst->eraseFromParent();
2793 ++NumGVNInstr;
2795 return true;
2798 /// Perform a purely local form of PRE that looks for diamond
2799 /// control flow patterns and attempts to perform simple PRE at the join point.
2800 bool GVN::performPRE(Function &F) {
2801 bool Changed = false;
2802 for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
2803 // Nothing to PRE in the entry block.
2804 if (CurrentBlock == &F.getEntryBlock())
2805 continue;
2807 // Don't perform PRE on an EH pad.
2808 if (CurrentBlock->isEHPad())
2809 continue;
2811 for (BasicBlock::iterator BI = CurrentBlock->begin(),
2812 BE = CurrentBlock->end();
2813 BI != BE;) {
2814 Instruction *CurInst = &*BI++;
2815 Changed |= performScalarPRE(CurInst);
2819 if (splitCriticalEdges())
2820 Changed = true;
2822 return Changed;
2825 /// Split the critical edge connecting the given two blocks, and return
2826 /// the block inserted to the critical edge.
2827 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
2828 // GVN does not require loop-simplify, do not try to preserve it if it is not
2829 // possible.
2830 BasicBlock *BB = SplitCriticalEdge(
2831 Pred, Succ,
2832 CriticalEdgeSplittingOptions(DT, LI, MSSAU).unsetPreserveLoopSimplify());
2833 if (BB) {
2834 if (MD)
2835 MD->invalidateCachedPredecessors();
2836 InvalidBlockRPONumbers = true;
2838 return BB;
2841 /// Split critical edges found during the previous
2842 /// iteration that may enable further optimization.
2843 bool GVN::splitCriticalEdges() {
2844 if (toSplit.empty())
2845 return false;
2847 bool Changed = false;
2848 do {
2849 std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val();
2850 Changed |= SplitCriticalEdge(Edge.first, Edge.second,
2851 CriticalEdgeSplittingOptions(DT, LI, MSSAU)) !=
2852 nullptr;
2853 } while (!toSplit.empty());
2854 if (Changed) {
2855 if (MD)
2856 MD->invalidateCachedPredecessors();
2857 InvalidBlockRPONumbers = true;
2859 return Changed;
2862 /// Executes one iteration of GVN
2863 bool GVN::iterateOnFunction(Function &F) {
2864 cleanupGlobalSets();
2866 // Top-down walk of the dominator tree
2867 bool Changed = false;
2868 // Needed for value numbering with phi construction to work.
2869 // RPOT walks the graph in its constructor and will not be invalidated during
2870 // processBlock.
2871 ReversePostOrderTraversal<Function *> RPOT(&F);
2873 for (BasicBlock *BB : RPOT)
2874 Changed |= processBlock(BB);
2876 return Changed;
2879 void GVN::cleanupGlobalSets() {
2880 VN.clear();
2881 LeaderTable.clear();
2882 BlockRPONumber.clear();
2883 TableAllocator.Reset();
2884 ICF->clear();
2885 InvalidBlockRPONumbers = true;
2888 /// Verify that the specified instruction does not occur in our
2889 /// internal data structures.
2890 void GVN::verifyRemoved(const Instruction *Inst) const {
2891 VN.verifyRemoved(Inst);
2893 // Walk through the value number scope to make sure the instruction isn't
2894 // ferreted away in it.
2895 for (const auto &I : LeaderTable) {
2896 const LeaderTableEntry *Node = &I.second;
2897 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2899 while (Node->Next) {
2900 Node = Node->Next;
2901 assert(Node->Val != Inst && "Inst still in value numbering scope!");
2906 /// BB is declared dead, which implied other blocks become dead as well. This
2907 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
2908 /// live successors, update their phi nodes by replacing the operands
2909 /// corresponding to dead blocks with UndefVal.
2910 void GVN::addDeadBlock(BasicBlock *BB) {
2911 SmallVector<BasicBlock *, 4> NewDead;
2912 SmallSetVector<BasicBlock *, 4> DF;
2914 NewDead.push_back(BB);
2915 while (!NewDead.empty()) {
2916 BasicBlock *D = NewDead.pop_back_val();
2917 if (DeadBlocks.count(D))
2918 continue;
2920 // All blocks dominated by D are dead.
2921 SmallVector<BasicBlock *, 8> Dom;
2922 DT->getDescendants(D, Dom);
2923 DeadBlocks.insert(Dom.begin(), Dom.end());
2925 // Figure out the dominance-frontier(D).
2926 for (BasicBlock *B : Dom) {
2927 for (BasicBlock *S : successors(B)) {
2928 if (DeadBlocks.count(S))
2929 continue;
2931 bool AllPredDead = true;
2932 for (BasicBlock *P : predecessors(S))
2933 if (!DeadBlocks.count(P)) {
2934 AllPredDead = false;
2935 break;
2938 if (!AllPredDead) {
2939 // S could be proved dead later on. That is why we don't update phi
2940 // operands at this moment.
2941 DF.insert(S);
2942 } else {
2943 // While S is not dominated by D, it is dead by now. This could take
2944 // place if S already have a dead predecessor before D is declared
2945 // dead.
2946 NewDead.push_back(S);
2952 // For the dead blocks' live successors, update their phi nodes by replacing
2953 // the operands corresponding to dead blocks with UndefVal.
2954 for (BasicBlock *B : DF) {
2955 if (DeadBlocks.count(B))
2956 continue;
2958 // First, split the critical edges. This might also create additional blocks
2959 // to preserve LoopSimplify form and adjust edges accordingly.
2960 SmallVector<BasicBlock *, 4> Preds(predecessors(B));
2961 for (BasicBlock *P : Preds) {
2962 if (!DeadBlocks.count(P))
2963 continue;
2965 if (llvm::is_contained(successors(P), B) &&
2966 isCriticalEdge(P->getTerminator(), B)) {
2967 if (BasicBlock *S = splitCriticalEdges(P, B))
2968 DeadBlocks.insert(P = S);
2972 // Now undef the incoming values from the dead predecessors.
2973 for (BasicBlock *P : predecessors(B)) {
2974 if (!DeadBlocks.count(P))
2975 continue;
2976 for (PHINode &Phi : B->phis()) {
2977 Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType()));
2978 if (MD)
2979 MD->invalidateCachedPointerInfo(&Phi);
2985 // If the given branch is recognized as a foldable branch (i.e. conditional
2986 // branch with constant condition), it will perform following analyses and
2987 // transformation.
2988 // 1) If the dead out-coming edge is a critical-edge, split it. Let
2989 // R be the target of the dead out-coming edge.
2990 // 1) Identify the set of dead blocks implied by the branch's dead outcoming
2991 // edge. The result of this step will be {X| X is dominated by R}
2992 // 2) Identify those blocks which haves at least one dead predecessor. The
2993 // result of this step will be dominance-frontier(R).
2994 // 3) Update the PHIs in DF(R) by replacing the operands corresponding to
2995 // dead blocks with "UndefVal" in an hope these PHIs will optimized away.
2997 // Return true iff *NEW* dead code are found.
2998 bool GVN::processFoldableCondBr(BranchInst *BI) {
2999 if (!BI || BI->isUnconditional())
3000 return false;
3002 // If a branch has two identical successors, we cannot declare either dead.
3003 if (BI->getSuccessor(0) == BI->getSuccessor(1))
3004 return false;
3006 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
3007 if (!Cond)
3008 return false;
3010 BasicBlock *DeadRoot =
3011 Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0);
3012 if (DeadBlocks.count(DeadRoot))
3013 return false;
3015 if (!DeadRoot->getSinglePredecessor())
3016 DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
3018 addDeadBlock(DeadRoot);
3019 return true;
3022 // performPRE() will trigger assert if it comes across an instruction without
3023 // associated val-num. As it normally has far more live instructions than dead
3024 // instructions, it makes more sense just to "fabricate" a val-number for the
3025 // dead code than checking if instruction involved is dead or not.
3026 void GVN::assignValNumForDeadCode() {
3027 for (BasicBlock *BB : DeadBlocks) {
3028 for (Instruction &Inst : *BB) {
3029 unsigned ValNum = VN.lookupOrAdd(&Inst);
3030 addToLeaderTable(ValNum, &Inst, BB);
3035 class llvm::gvn::GVNLegacyPass : public FunctionPass {
3036 public:
3037 static char ID; // Pass identification, replacement for typeid
3039 explicit GVNLegacyPass(bool NoMemDepAnalysis = !GVNEnableMemDep)
3040 : FunctionPass(ID), Impl(GVNOptions().setMemDep(!NoMemDepAnalysis)) {
3041 initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3044 bool runOnFunction(Function &F) override {
3045 if (skipFunction(F))
3046 return false;
3048 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3050 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
3051 return Impl.runImpl(
3052 F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3053 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3054 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
3055 getAnalysis<AAResultsWrapperPass>().getAAResults(),
3056 Impl.isMemDepEnabled()
3057 ? &getAnalysis<MemoryDependenceWrapperPass>().getMemDep()
3058 : nullptr,
3059 LIWP ? &LIWP->getLoopInfo() : nullptr,
3060 &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(),
3061 MSSAWP ? &MSSAWP->getMSSA() : nullptr);
3064 void getAnalysisUsage(AnalysisUsage &AU) const override {
3065 AU.addRequired<AssumptionCacheTracker>();
3066 AU.addRequired<DominatorTreeWrapperPass>();
3067 AU.addRequired<TargetLibraryInfoWrapperPass>();
3068 AU.addRequired<LoopInfoWrapperPass>();
3069 if (Impl.isMemDepEnabled())
3070 AU.addRequired<MemoryDependenceWrapperPass>();
3071 AU.addRequired<AAResultsWrapperPass>();
3072 AU.addPreserved<DominatorTreeWrapperPass>();
3073 AU.addPreserved<GlobalsAAWrapperPass>();
3074 AU.addPreserved<TargetLibraryInfoWrapperPass>();
3075 AU.addPreserved<LoopInfoWrapperPass>();
3076 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3077 AU.addPreserved<MemorySSAWrapperPass>();
3080 private:
3081 GVN Impl;
3084 char GVNLegacyPass::ID = 0;
3086 INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3087 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3088 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
3089 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3090 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3091 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
3092 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
3093 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3094 INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false)
3096 // The public interface to this file...
3097 FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) {
3098 return new GVNLegacyPass(NoMemDepAnalysis);