[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / GVNSink.cpp
blobe612a82fc89a4dea8e6f9382ab8a1310d6303ebe
1 //===- GVNSink.cpp - sink expressions into successors ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file GVNSink.cpp
10 /// This pass attempts to sink instructions into successors, reducing static
11 /// instruction count and enabling if-conversion.
12 ///
13 /// We use a variant of global value numbering to decide what can be sunk.
14 /// Consider:
15 ///
16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
18 /// \ /
19 /// [ %e = phi i32 %a2, %c2 ]
20 /// [ add i32 %e, 4 ]
21 ///
22 ///
23 /// GVN would number %a1 and %c1 differently because they compute different
24 /// results - the VN of an instruction is a function of its opcode and the
25 /// transitive closure of its operands. This is the key property for hoisting
26 /// and CSE.
27 ///
28 /// What we want when sinking however is for a numbering that is a function of
29 /// the *uses* of an instruction, which allows us to answer the question "if I
30 /// replace %a1 with %c1, will it contribute in an equivalent way to all
31 /// successive instructions?". The PostValueTable class in GVN provides this
32 /// mapping.
34 //===----------------------------------------------------------------------===//
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseMapInfo.h"
39 #include "llvm/ADT/DenseSet.h"
40 #include "llvm/ADT/Hashing.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/PostOrderIterator.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringExtras.h"
49 #include "llvm/Analysis/GlobalsModRef.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/CFG.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/PassManager.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Allocator.h"
64 #include "llvm/Support/ArrayRecycler.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar.h"
71 #include "llvm/Transforms/Scalar/GVN.h"
72 #include "llvm/Transforms/Scalar/GVNExpression.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <utility>
82 using namespace llvm;
84 #define DEBUG_TYPE "gvn-sink"
86 STATISTIC(NumRemoved, "Number of instructions removed");
88 namespace llvm {
89 namespace GVNExpression {
91 LLVM_DUMP_METHOD void Expression::dump() const {
92 print(dbgs());
93 dbgs() << "\n";
96 } // end namespace GVNExpression
97 } // end namespace llvm
99 namespace {
101 static bool isMemoryInst(const Instruction *I) {
102 return isa<LoadInst>(I) || isa<StoreInst>(I) ||
103 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
104 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
107 /// Iterates through instructions in a set of blocks in reverse order from the
108 /// first non-terminator. For example (assume all blocks have size n):
109 /// LockstepReverseIterator I([B1, B2, B3]);
110 /// *I-- = [B1[n], B2[n], B3[n]];
111 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
112 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
113 /// ...
115 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
116 /// to
117 /// determine which blocks are still going and the order they appear in the
118 /// list returned by operator*.
119 class LockstepReverseIterator {
120 ArrayRef<BasicBlock *> Blocks;
121 SmallSetVector<BasicBlock *, 4> ActiveBlocks;
122 SmallVector<Instruction *, 4> Insts;
123 bool Fail;
125 public:
126 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
127 reset();
130 void reset() {
131 Fail = false;
132 ActiveBlocks.clear();
133 for (BasicBlock *BB : Blocks)
134 ActiveBlocks.insert(BB);
135 Insts.clear();
136 for (BasicBlock *BB : Blocks) {
137 if (BB->size() <= 1) {
138 // Block wasn't big enough - only contained a terminator.
139 ActiveBlocks.remove(BB);
140 continue;
142 Insts.push_back(BB->getTerminator()->getPrevNode());
144 if (Insts.empty())
145 Fail = true;
148 bool isValid() const { return !Fail; }
149 ArrayRef<Instruction *> operator*() const { return Insts; }
151 // Note: This needs to return a SmallSetVector as the elements of
152 // ActiveBlocks will be later copied to Blocks using std::copy. The
153 // resultant order of elements in Blocks needs to be deterministic.
154 // Using SmallPtrSet instead causes non-deterministic order while
155 // copying. And we cannot simply sort Blocks as they need to match the
156 // corresponding Values.
157 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
159 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
160 for (auto II = Insts.begin(); II != Insts.end();) {
161 if (!llvm::is_contained(Blocks, (*II)->getParent())) {
162 ActiveBlocks.remove((*II)->getParent());
163 II = Insts.erase(II);
164 } else {
165 ++II;
170 void operator--() {
171 if (Fail)
172 return;
173 SmallVector<Instruction *, 4> NewInsts;
174 for (auto *Inst : Insts) {
175 if (Inst == &Inst->getParent()->front())
176 ActiveBlocks.remove(Inst->getParent());
177 else
178 NewInsts.push_back(Inst->getPrevNode());
180 if (NewInsts.empty()) {
181 Fail = true;
182 return;
184 Insts = NewInsts;
188 //===----------------------------------------------------------------------===//
190 /// Candidate solution for sinking. There may be different ways to
191 /// sink instructions, differing in the number of instructions sunk,
192 /// the number of predecessors sunk from and the number of PHIs
193 /// required.
194 struct SinkingInstructionCandidate {
195 unsigned NumBlocks;
196 unsigned NumInstructions;
197 unsigned NumPHIs;
198 unsigned NumMemoryInsts;
199 int Cost = -1;
200 SmallVector<BasicBlock *, 4> Blocks;
202 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
203 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
204 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
205 Cost = (NumInstructions * (NumBlocks - 1)) -
206 (NumExtraPHIs *
207 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
208 - SplitEdgeCost;
211 bool operator>(const SinkingInstructionCandidate &Other) const {
212 return Cost > Other.Cost;
216 #ifndef NDEBUG
217 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
218 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
219 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
220 return OS;
222 #endif
224 //===----------------------------------------------------------------------===//
226 /// Describes a PHI node that may or may not exist. These track the PHIs
227 /// that must be created if we sunk a sequence of instructions. It provides
228 /// a hash function for efficient equality comparisons.
229 class ModelledPHI {
230 SmallVector<Value *, 4> Values;
231 SmallVector<BasicBlock *, 4> Blocks;
233 public:
234 ModelledPHI() = default;
236 ModelledPHI(const PHINode *PN) {
237 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
238 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
239 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
240 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
241 llvm::sort(Ops);
242 for (auto &P : Ops) {
243 Blocks.push_back(P.first);
244 Values.push_back(P.second);
248 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
249 /// without the same ID.
250 /// \note This is specifically for DenseMapInfo - do not use this!
251 static ModelledPHI createDummy(size_t ID) {
252 ModelledPHI M;
253 M.Values.push_back(reinterpret_cast<Value*>(ID));
254 return M;
257 /// Create a PHI from an array of incoming values and incoming blocks.
258 template <typename VArray, typename BArray>
259 ModelledPHI(const VArray &V, const BArray &B) {
260 llvm::copy(V, std::back_inserter(Values));
261 llvm::copy(B, std::back_inserter(Blocks));
264 /// Create a PHI from [I[OpNum] for I in Insts].
265 template <typename BArray>
266 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
267 llvm::copy(B, std::back_inserter(Blocks));
268 for (auto *I : Insts)
269 Values.push_back(I->getOperand(OpNum));
272 /// Restrict the PHI's contents down to only \c NewBlocks.
273 /// \c NewBlocks must be a subset of \c this->Blocks.
274 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
275 auto BI = Blocks.begin();
276 auto VI = Values.begin();
277 while (BI != Blocks.end()) {
278 assert(VI != Values.end());
279 if (!llvm::is_contained(NewBlocks, *BI)) {
280 BI = Blocks.erase(BI);
281 VI = Values.erase(VI);
282 } else {
283 ++BI;
284 ++VI;
287 assert(Blocks.size() == NewBlocks.size());
290 ArrayRef<Value *> getValues() const { return Values; }
292 bool areAllIncomingValuesSame() const {
293 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
296 bool areAllIncomingValuesSameType() const {
297 return llvm::all_of(
298 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
301 bool areAnyIncomingValuesConstant() const {
302 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
305 // Hash functor
306 unsigned hash() const {
307 return (unsigned)hash_combine_range(Values.begin(), Values.end());
310 bool operator==(const ModelledPHI &Other) const {
311 return Values == Other.Values && Blocks == Other.Blocks;
315 template <typename ModelledPHI> struct DenseMapInfo {
316 static inline ModelledPHI &getEmptyKey() {
317 static ModelledPHI Dummy = ModelledPHI::createDummy(0);
318 return Dummy;
321 static inline ModelledPHI &getTombstoneKey() {
322 static ModelledPHI Dummy = ModelledPHI::createDummy(1);
323 return Dummy;
326 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
328 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
329 return LHS == RHS;
333 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
335 //===----------------------------------------------------------------------===//
336 // ValueTable
337 //===----------------------------------------------------------------------===//
338 // This is a value number table where the value number is a function of the
339 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
340 // that the program would be equivalent if we replaced A with PHI(A, B).
341 //===----------------------------------------------------------------------===//
343 /// A GVN expression describing how an instruction is used. The operands
344 /// field of BasicExpression is used to store uses, not operands.
346 /// This class also contains fields for discriminators used when determining
347 /// equivalence of instructions with sideeffects.
348 class InstructionUseExpr : public GVNExpression::BasicExpression {
349 unsigned MemoryUseOrder = -1;
350 bool Volatile = false;
351 ArrayRef<int> ShuffleMask;
353 public:
354 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
355 BumpPtrAllocator &A)
356 : GVNExpression::BasicExpression(I->getNumUses()) {
357 allocateOperands(R, A);
358 setOpcode(I->getOpcode());
359 setType(I->getType());
361 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
362 ShuffleMask = SVI->getShuffleMask().copy(A);
364 for (auto &U : I->uses())
365 op_push_back(U.getUser());
366 llvm::sort(op_begin(), op_end());
369 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
370 void setVolatile(bool V) { Volatile = V; }
372 hash_code getHashValue() const override {
373 return hash_combine(GVNExpression::BasicExpression::getHashValue(),
374 MemoryUseOrder, Volatile, ShuffleMask);
377 template <typename Function> hash_code getHashValue(Function MapFn) {
378 hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile,
379 ShuffleMask);
380 for (auto *V : operands())
381 H = hash_combine(H, MapFn(V));
382 return H;
386 class ValueTable {
387 DenseMap<Value *, uint32_t> ValueNumbering;
388 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
389 DenseMap<size_t, uint32_t> HashNumbering;
390 BumpPtrAllocator Allocator;
391 ArrayRecycler<Value *> Recycler;
392 uint32_t nextValueNumber = 1;
394 /// Create an expression for I based on its opcode and its uses. If I
395 /// touches or reads memory, the expression is also based upon its memory
396 /// order - see \c getMemoryUseOrder().
397 InstructionUseExpr *createExpr(Instruction *I) {
398 InstructionUseExpr *E =
399 new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
400 if (isMemoryInst(I))
401 E->setMemoryUseOrder(getMemoryUseOrder(I));
403 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
404 CmpInst::Predicate Predicate = C->getPredicate();
405 E->setOpcode((C->getOpcode() << 8) | Predicate);
407 return E;
410 /// Helper to compute the value number for a memory instruction
411 /// (LoadInst/StoreInst), including checking the memory ordering and
412 /// volatility.
413 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
414 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
415 return nullptr;
416 InstructionUseExpr *E = createExpr(I);
417 E->setVolatile(I->isVolatile());
418 return E;
421 public:
422 ValueTable() = default;
424 /// Returns the value number for the specified value, assigning
425 /// it a new number if it did not have one before.
426 uint32_t lookupOrAdd(Value *V) {
427 auto VI = ValueNumbering.find(V);
428 if (VI != ValueNumbering.end())
429 return VI->second;
431 if (!isa<Instruction>(V)) {
432 ValueNumbering[V] = nextValueNumber;
433 return nextValueNumber++;
436 Instruction *I = cast<Instruction>(V);
437 InstructionUseExpr *exp = nullptr;
438 switch (I->getOpcode()) {
439 case Instruction::Load:
440 exp = createMemoryExpr(cast<LoadInst>(I));
441 break;
442 case Instruction::Store:
443 exp = createMemoryExpr(cast<StoreInst>(I));
444 break;
445 case Instruction::Call:
446 case Instruction::Invoke:
447 case Instruction::FNeg:
448 case Instruction::Add:
449 case Instruction::FAdd:
450 case Instruction::Sub:
451 case Instruction::FSub:
452 case Instruction::Mul:
453 case Instruction::FMul:
454 case Instruction::UDiv:
455 case Instruction::SDiv:
456 case Instruction::FDiv:
457 case Instruction::URem:
458 case Instruction::SRem:
459 case Instruction::FRem:
460 case Instruction::Shl:
461 case Instruction::LShr:
462 case Instruction::AShr:
463 case Instruction::And:
464 case Instruction::Or:
465 case Instruction::Xor:
466 case Instruction::ICmp:
467 case Instruction::FCmp:
468 case Instruction::Trunc:
469 case Instruction::ZExt:
470 case Instruction::SExt:
471 case Instruction::FPToUI:
472 case Instruction::FPToSI:
473 case Instruction::UIToFP:
474 case Instruction::SIToFP:
475 case Instruction::FPTrunc:
476 case Instruction::FPExt:
477 case Instruction::PtrToInt:
478 case Instruction::IntToPtr:
479 case Instruction::BitCast:
480 case Instruction::AddrSpaceCast:
481 case Instruction::Select:
482 case Instruction::ExtractElement:
483 case Instruction::InsertElement:
484 case Instruction::ShuffleVector:
485 case Instruction::InsertValue:
486 case Instruction::GetElementPtr:
487 exp = createExpr(I);
488 break;
489 default:
490 break;
493 if (!exp) {
494 ValueNumbering[V] = nextValueNumber;
495 return nextValueNumber++;
498 uint32_t e = ExpressionNumbering[exp];
499 if (!e) {
500 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
501 auto I = HashNumbering.find(H);
502 if (I != HashNumbering.end()) {
503 e = I->second;
504 } else {
505 e = nextValueNumber++;
506 HashNumbering[H] = e;
507 ExpressionNumbering[exp] = e;
510 ValueNumbering[V] = e;
511 return e;
514 /// Returns the value number of the specified value. Fails if the value has
515 /// not yet been numbered.
516 uint32_t lookup(Value *V) const {
517 auto VI = ValueNumbering.find(V);
518 assert(VI != ValueNumbering.end() && "Value not numbered?");
519 return VI->second;
522 /// Removes all value numberings and resets the value table.
523 void clear() {
524 ValueNumbering.clear();
525 ExpressionNumbering.clear();
526 HashNumbering.clear();
527 Recycler.clear(Allocator);
528 nextValueNumber = 1;
531 /// \c Inst uses or touches memory. Return an ID describing the memory state
532 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
533 /// the exact same memory operations happen after I1 and I2.
535 /// This is a very hard problem in general, so we use domain-specific
536 /// knowledge that we only ever check for equivalence between blocks sharing a
537 /// single immediate successor that is common, and when determining if I1 ==
538 /// I2 we will have already determined that next(I1) == next(I2). This
539 /// inductive property allows us to simply return the value number of the next
540 /// instruction that defines memory.
541 uint32_t getMemoryUseOrder(Instruction *Inst) {
542 auto *BB = Inst->getParent();
543 for (auto I = std::next(Inst->getIterator()), E = BB->end();
544 I != E && !I->isTerminator(); ++I) {
545 if (!isMemoryInst(&*I))
546 continue;
547 if (isa<LoadInst>(&*I))
548 continue;
549 CallInst *CI = dyn_cast<CallInst>(&*I);
550 if (CI && CI->onlyReadsMemory())
551 continue;
552 InvokeInst *II = dyn_cast<InvokeInst>(&*I);
553 if (II && II->onlyReadsMemory())
554 continue;
555 return lookupOrAdd(&*I);
557 return 0;
561 //===----------------------------------------------------------------------===//
563 class GVNSink {
564 public:
565 GVNSink() = default;
567 bool run(Function &F) {
568 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
569 << "\n");
571 unsigned NumSunk = 0;
572 ReversePostOrderTraversal<Function*> RPOT(&F);
573 for (auto *N : RPOT)
574 NumSunk += sinkBB(N);
576 return NumSunk > 0;
579 private:
580 ValueTable VN;
582 bool shouldAvoidSinkingInstruction(Instruction *I) {
583 // These instructions may change or break semantics if moved.
584 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
585 I->getType()->isTokenTy())
586 return true;
587 return false;
590 /// The main heuristic function. Analyze the set of instructions pointed to by
591 /// LRI and return a candidate solution if these instructions can be sunk, or
592 /// None otherwise.
593 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
594 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
595 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
597 /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
598 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
599 SmallPtrSetImpl<Value *> &PHIContents) {
600 for (PHINode &PN : BB->phis()) {
601 auto MPHI = ModelledPHI(&PN);
602 PHIs.insert(MPHI);
603 for (auto *V : MPHI.getValues())
604 PHIContents.insert(V);
608 /// The main instruction sinking driver. Set up state and try and sink
609 /// instructions into BBEnd from its predecessors.
610 unsigned sinkBB(BasicBlock *BBEnd);
612 /// Perform the actual mechanics of sinking an instruction from Blocks into
613 /// BBEnd, which is their only successor.
614 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
616 /// Remove PHIs that all have the same incoming value.
617 void foldPointlessPHINodes(BasicBlock *BB) {
618 auto I = BB->begin();
619 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
620 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
621 return V == PN->getIncomingValue(0);
623 continue;
624 if (PN->getIncomingValue(0) != PN)
625 PN->replaceAllUsesWith(PN->getIncomingValue(0));
626 else
627 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
628 PN->eraseFromParent();
633 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
634 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
635 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
636 auto Insts = *LRI;
637 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
638 : Insts) {
639 I->dump();
640 } dbgs() << " ]\n";);
642 DenseMap<uint32_t, unsigned> VNums;
643 for (auto *I : Insts) {
644 uint32_t N = VN.lookupOrAdd(I);
645 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
646 if (N == ~0U)
647 return None;
648 VNums[N]++;
650 unsigned VNumToSink =
651 std::max_element(VNums.begin(), VNums.end(),
652 [](const std::pair<uint32_t, unsigned> &I,
653 const std::pair<uint32_t, unsigned> &J) {
654 return I.second < J.second;
656 ->first;
658 if (VNums[VNumToSink] == 1)
659 // Can't sink anything!
660 return None;
662 // Now restrict the number of incoming blocks down to only those with
663 // VNumToSink.
664 auto &ActivePreds = LRI.getActiveBlocks();
665 unsigned InitialActivePredSize = ActivePreds.size();
666 SmallVector<Instruction *, 4> NewInsts;
667 for (auto *I : Insts) {
668 if (VN.lookup(I) != VNumToSink)
669 ActivePreds.remove(I->getParent());
670 else
671 NewInsts.push_back(I);
673 for (auto *I : NewInsts)
674 if (shouldAvoidSinkingInstruction(I))
675 return None;
677 // If we've restricted the incoming blocks, restrict all needed PHIs also
678 // to that set.
679 bool RecomputePHIContents = false;
680 if (ActivePreds.size() != InitialActivePredSize) {
681 ModelledPHISet NewNeededPHIs;
682 for (auto P : NeededPHIs) {
683 P.restrictToBlocks(ActivePreds);
684 NewNeededPHIs.insert(P);
686 NeededPHIs = NewNeededPHIs;
687 LRI.restrictToBlocks(ActivePreds);
688 RecomputePHIContents = true;
691 // The sunk instruction's results.
692 ModelledPHI NewPHI(NewInsts, ActivePreds);
694 // Does sinking this instruction render previous PHIs redundant?
695 if (NeededPHIs.erase(NewPHI))
696 RecomputePHIContents = true;
698 if (RecomputePHIContents) {
699 // The needed PHIs have changed, so recompute the set of all needed
700 // values.
701 PHIContents.clear();
702 for (auto &PHI : NeededPHIs)
703 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
706 // Is this instruction required by a later PHI that doesn't match this PHI?
707 // if so, we can't sink this instruction.
708 for (auto *V : NewPHI.getValues())
709 if (PHIContents.count(V))
710 // V exists in this PHI, but the whole PHI is different to NewPHI
711 // (else it would have been removed earlier). We cannot continue
712 // because this isn't representable.
713 return None;
715 // Which operands need PHIs?
716 // FIXME: If any of these fail, we should partition up the candidates to
717 // try and continue making progress.
718 Instruction *I0 = NewInsts[0];
720 // If all instructions that are going to participate don't have the same
721 // number of operands, we can't do any useful PHI analysis for all operands.
722 auto hasDifferentNumOperands = [&I0](Instruction *I) {
723 return I->getNumOperands() != I0->getNumOperands();
725 if (any_of(NewInsts, hasDifferentNumOperands))
726 return None;
728 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
729 ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
730 if (PHI.areAllIncomingValuesSame())
731 continue;
732 if (!canReplaceOperandWithVariable(I0, OpNum))
733 // We can 't create a PHI from this instruction!
734 return None;
735 if (NeededPHIs.count(PHI))
736 continue;
737 if (!PHI.areAllIncomingValuesSameType())
738 return None;
739 // Don't create indirect calls! The called value is the final operand.
740 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
741 PHI.areAnyIncomingValuesConstant())
742 return None;
744 NeededPHIs.reserve(NeededPHIs.size());
745 NeededPHIs.insert(PHI);
746 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
749 if (isMemoryInst(NewInsts[0]))
750 ++MemoryInstNum;
752 SinkingInstructionCandidate Cand;
753 Cand.NumInstructions = ++InstNum;
754 Cand.NumMemoryInsts = MemoryInstNum;
755 Cand.NumBlocks = ActivePreds.size();
756 Cand.NumPHIs = NeededPHIs.size();
757 append_range(Cand.Blocks, ActivePreds);
759 return Cand;
762 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
763 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
764 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
765 SmallVector<BasicBlock *, 4> Preds;
766 for (auto *B : predecessors(BBEnd)) {
767 auto *T = B->getTerminator();
768 if (isa<BranchInst>(T) || isa<SwitchInst>(T))
769 Preds.push_back(B);
770 else
771 return 0;
773 if (Preds.size() < 2)
774 return 0;
775 llvm::sort(Preds);
777 unsigned NumOrigPreds = Preds.size();
778 // We can only sink instructions through unconditional branches.
779 for (auto I = Preds.begin(); I != Preds.end();) {
780 if ((*I)->getTerminator()->getNumSuccessors() != 1)
781 I = Preds.erase(I);
782 else
783 ++I;
786 LockstepReverseIterator LRI(Preds);
787 SmallVector<SinkingInstructionCandidate, 4> Candidates;
788 unsigned InstNum = 0, MemoryInstNum = 0;
789 ModelledPHISet NeededPHIs;
790 SmallPtrSet<Value *, 4> PHIContents;
791 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
792 unsigned NumOrigPHIs = NeededPHIs.size();
794 while (LRI.isValid()) {
795 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
796 NeededPHIs, PHIContents);
797 if (!Cand)
798 break;
799 Cand->calculateCost(NumOrigPHIs, Preds.size());
800 Candidates.emplace_back(*Cand);
801 --LRI;
804 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
805 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
806 : Candidates) dbgs()
807 << " " << C << "\n";);
809 // Pick the top candidate, as long it is positive!
810 if (Candidates.empty() || Candidates.front().Cost <= 0)
811 return 0;
812 auto C = Candidates.front();
814 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
815 BasicBlock *InsertBB = BBEnd;
816 if (C.Blocks.size() < NumOrigPreds) {
817 LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
818 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
819 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
820 if (!InsertBB) {
821 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
822 // Edge couldn't be split.
823 return 0;
827 for (unsigned I = 0; I < C.NumInstructions; ++I)
828 sinkLastInstruction(C.Blocks, InsertBB);
830 return C.NumInstructions;
833 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
834 BasicBlock *BBEnd) {
835 SmallVector<Instruction *, 4> Insts;
836 for (BasicBlock *BB : Blocks)
837 Insts.push_back(BB->getTerminator()->getPrevNode());
838 Instruction *I0 = Insts.front();
840 SmallVector<Value *, 4> NewOperands;
841 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
842 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
843 return I->getOperand(O) != I0->getOperand(O);
845 if (!NeedPHI) {
846 NewOperands.push_back(I0->getOperand(O));
847 continue;
850 // Create a new PHI in the successor block and populate it.
851 auto *Op = I0->getOperand(O);
852 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
853 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
854 Op->getName() + ".sink", &BBEnd->front());
855 for (auto *I : Insts)
856 PN->addIncoming(I->getOperand(O), I->getParent());
857 NewOperands.push_back(PN);
860 // Arbitrarily use I0 as the new "common" instruction; remap its operands
861 // and move it to the start of the successor block.
862 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
863 I0->getOperandUse(O).set(NewOperands[O]);
864 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
866 // Update metadata and IR flags.
867 for (auto *I : Insts)
868 if (I != I0) {
869 combineMetadataForCSE(I0, I, true);
870 I0->andIRFlags(I);
873 for (auto *I : Insts)
874 if (I != I0)
875 I->replaceAllUsesWith(I0);
876 foldPointlessPHINodes(BBEnd);
878 // Finally nuke all instructions apart from the common instruction.
879 for (auto *I : Insts)
880 if (I != I0)
881 I->eraseFromParent();
883 NumRemoved += Insts.size() - 1;
886 ////////////////////////////////////////////////////////////////////////////////
887 // Pass machinery / boilerplate
889 class GVNSinkLegacyPass : public FunctionPass {
890 public:
891 static char ID;
893 GVNSinkLegacyPass() : FunctionPass(ID) {
894 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
897 bool runOnFunction(Function &F) override {
898 if (skipFunction(F))
899 return false;
900 GVNSink G;
901 return G.run(F);
904 void getAnalysisUsage(AnalysisUsage &AU) const override {
905 AU.addPreserved<GlobalsAAWrapperPass>();
909 } // end anonymous namespace
911 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
912 GVNSink G;
913 if (!G.run(F))
914 return PreservedAnalyses::all();
915 return PreservedAnalyses::none();
918 char GVNSinkLegacyPass::ID = 0;
920 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
921 "Early GVN sinking of Expressions", false, false)
922 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
923 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
924 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
925 "Early GVN sinking of Expressions", false, false)
927 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }