[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / InductiveRangeCheckElimination.cpp
blob0e5653eeb7d56a0f2af069ec34d34985cd8f2442
1 //===- InductiveRangeCheckElimination.cpp - -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The InductiveRangeCheckElimination pass splits a loop's iteration space into
10 // three disjoint ranges. It does that in a way such that the loop running in
11 // the middle loop provably does not need range checks. As an example, it will
12 // convert
14 // len = < known positive >
15 // for (i = 0; i < n; i++) {
16 // if (0 <= i && i < len) {
17 // do_something();
18 // } else {
19 // throw_out_of_bounds();
20 // }
21 // }
23 // to
25 // len = < known positive >
26 // limit = smin(n, len)
27 // // no first segment
28 // for (i = 0; i < limit; i++) {
29 // if (0 <= i && i < len) { // this check is fully redundant
30 // do_something();
31 // } else {
32 // throw_out_of_bounds();
33 // }
34 // }
35 // for (i = limit; i < n; i++) {
36 // if (0 <= i && i < len) {
37 // do_something();
38 // } else {
39 // throw_out_of_bounds();
40 // }
41 // }
43 //===----------------------------------------------------------------------===//
45 #include "llvm/Transforms/Scalar/InductiveRangeCheckElimination.h"
46 #include "llvm/ADT/APInt.h"
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/None.h"
49 #include "llvm/ADT/Optional.h"
50 #include "llvm/ADT/PriorityWorklist.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringRef.h"
54 #include "llvm/ADT/Twine.h"
55 #include "llvm/Analysis/BlockFrequencyInfo.h"
56 #include "llvm/Analysis/BranchProbabilityInfo.h"
57 #include "llvm/Analysis/LoopAnalysisManager.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/LoopPass.h"
60 #include "llvm/Analysis/PostDominators.h"
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/IRBuilder.h"
70 #include "llvm/IR/InstrTypes.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/Metadata.h"
73 #include "llvm/IR/Module.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/Type.h"
76 #include "llvm/IR/Use.h"
77 #include "llvm/IR/User.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CommandLine.h"
84 #include "llvm/Support/Compiler.h"
85 #include "llvm/Support/Debug.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Transforms/Scalar.h"
89 #include "llvm/Transforms/Utils/Cloning.h"
90 #include "llvm/Transforms/Utils/LoopSimplify.h"
91 #include "llvm/Transforms/Utils/LoopUtils.h"
92 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
93 #include "llvm/Transforms/Utils/ValueMapper.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <iterator>
97 #include <limits>
98 #include <utility>
99 #include <vector>
101 using namespace llvm;
102 using namespace llvm::PatternMatch;
104 static cl::opt<unsigned> LoopSizeCutoff("irce-loop-size-cutoff", cl::Hidden,
105 cl::init(64));
107 static cl::opt<bool> PrintChangedLoops("irce-print-changed-loops", cl::Hidden,
108 cl::init(false));
110 static cl::opt<bool> PrintRangeChecks("irce-print-range-checks", cl::Hidden,
111 cl::init(false));
113 static cl::opt<bool> SkipProfitabilityChecks("irce-skip-profitability-checks",
114 cl::Hidden, cl::init(false));
116 static cl::opt<unsigned> MinRuntimeIterations("irce-min-runtime-iterations",
117 cl::Hidden, cl::init(10));
119 static cl::opt<bool> AllowUnsignedLatchCondition("irce-allow-unsigned-latch",
120 cl::Hidden, cl::init(true));
122 static cl::opt<bool> AllowNarrowLatchCondition(
123 "irce-allow-narrow-latch", cl::Hidden, cl::init(true),
124 cl::desc("If set to true, IRCE may eliminate wide range checks in loops "
125 "with narrow latch condition."));
127 static const char *ClonedLoopTag = "irce.loop.clone";
129 #define DEBUG_TYPE "irce"
131 namespace {
133 /// An inductive range check is conditional branch in a loop with
135 /// 1. a very cold successor (i.e. the branch jumps to that successor very
136 /// rarely)
138 /// and
140 /// 2. a condition that is provably true for some contiguous range of values
141 /// taken by the containing loop's induction variable.
143 class InductiveRangeCheck {
145 const SCEV *Begin = nullptr;
146 const SCEV *Step = nullptr;
147 const SCEV *End = nullptr;
148 Use *CheckUse = nullptr;
150 static bool parseRangeCheckICmp(Loop *L, ICmpInst *ICI, ScalarEvolution &SE,
151 Value *&Index, Value *&Length,
152 bool &IsSigned);
154 static void
155 extractRangeChecksFromCond(Loop *L, ScalarEvolution &SE, Use &ConditionUse,
156 SmallVectorImpl<InductiveRangeCheck> &Checks,
157 SmallPtrSetImpl<Value *> &Visited);
159 public:
160 const SCEV *getBegin() const { return Begin; }
161 const SCEV *getStep() const { return Step; }
162 const SCEV *getEnd() const { return End; }
164 void print(raw_ostream &OS) const {
165 OS << "InductiveRangeCheck:\n";
166 OS << " Begin: ";
167 Begin->print(OS);
168 OS << " Step: ";
169 Step->print(OS);
170 OS << " End: ";
171 End->print(OS);
172 OS << "\n CheckUse: ";
173 getCheckUse()->getUser()->print(OS);
174 OS << " Operand: " << getCheckUse()->getOperandNo() << "\n";
177 LLVM_DUMP_METHOD
178 void dump() {
179 print(dbgs());
182 Use *getCheckUse() const { return CheckUse; }
184 /// Represents an signed integer range [Range.getBegin(), Range.getEnd()). If
185 /// R.getEnd() le R.getBegin(), then R denotes the empty range.
187 class Range {
188 const SCEV *Begin;
189 const SCEV *End;
191 public:
192 Range(const SCEV *Begin, const SCEV *End) : Begin(Begin), End(End) {
193 assert(Begin->getType() == End->getType() && "ill-typed range!");
196 Type *getType() const { return Begin->getType(); }
197 const SCEV *getBegin() const { return Begin; }
198 const SCEV *getEnd() const { return End; }
199 bool isEmpty(ScalarEvolution &SE, bool IsSigned) const {
200 if (Begin == End)
201 return true;
202 if (IsSigned)
203 return SE.isKnownPredicate(ICmpInst::ICMP_SGE, Begin, End);
204 else
205 return SE.isKnownPredicate(ICmpInst::ICMP_UGE, Begin, End);
209 /// This is the value the condition of the branch needs to evaluate to for the
210 /// branch to take the hot successor (see (1) above).
211 bool getPassingDirection() { return true; }
213 /// Computes a range for the induction variable (IndVar) in which the range
214 /// check is redundant and can be constant-folded away. The induction
215 /// variable is not required to be the canonical {0,+,1} induction variable.
216 Optional<Range> computeSafeIterationSpace(ScalarEvolution &SE,
217 const SCEVAddRecExpr *IndVar,
218 bool IsLatchSigned) const;
220 /// Parse out a set of inductive range checks from \p BI and append them to \p
221 /// Checks.
223 /// NB! There may be conditions feeding into \p BI that aren't inductive range
224 /// checks, and hence don't end up in \p Checks.
225 static void
226 extractRangeChecksFromBranch(BranchInst *BI, Loop *L, ScalarEvolution &SE,
227 BranchProbabilityInfo *BPI,
228 SmallVectorImpl<InductiveRangeCheck> &Checks);
231 struct LoopStructure;
233 class InductiveRangeCheckElimination {
234 ScalarEvolution &SE;
235 BranchProbabilityInfo *BPI;
236 DominatorTree &DT;
237 LoopInfo &LI;
239 using GetBFIFunc =
240 llvm::Optional<llvm::function_ref<llvm::BlockFrequencyInfo &()> >;
241 GetBFIFunc GetBFI;
243 // Returns true if it is profitable to do a transform basing on estimation of
244 // number of iterations.
245 bool isProfitableToTransform(const Loop &L, LoopStructure &LS);
247 public:
248 InductiveRangeCheckElimination(ScalarEvolution &SE,
249 BranchProbabilityInfo *BPI, DominatorTree &DT,
250 LoopInfo &LI, GetBFIFunc GetBFI = None)
251 : SE(SE), BPI(BPI), DT(DT), LI(LI), GetBFI(GetBFI) {}
253 bool run(Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop);
256 class IRCELegacyPass : public FunctionPass {
257 public:
258 static char ID;
260 IRCELegacyPass() : FunctionPass(ID) {
261 initializeIRCELegacyPassPass(*PassRegistry::getPassRegistry());
264 void getAnalysisUsage(AnalysisUsage &AU) const override {
265 AU.addRequired<BranchProbabilityInfoWrapperPass>();
266 AU.addRequired<DominatorTreeWrapperPass>();
267 AU.addPreserved<DominatorTreeWrapperPass>();
268 AU.addRequired<LoopInfoWrapperPass>();
269 AU.addPreserved<LoopInfoWrapperPass>();
270 AU.addRequired<ScalarEvolutionWrapperPass>();
271 AU.addPreserved<ScalarEvolutionWrapperPass>();
274 bool runOnFunction(Function &F) override;
277 } // end anonymous namespace
279 char IRCELegacyPass::ID = 0;
281 INITIALIZE_PASS_BEGIN(IRCELegacyPass, "irce",
282 "Inductive range check elimination", false, false)
283 INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
284 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
285 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
286 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
287 INITIALIZE_PASS_END(IRCELegacyPass, "irce", "Inductive range check elimination",
288 false, false)
290 /// Parse a single ICmp instruction, `ICI`, into a range check. If `ICI` cannot
291 /// be interpreted as a range check, return false and set `Index` and `Length`
292 /// to `nullptr`. Otherwise set `Index` to the value being range checked, and
293 /// set `Length` to the upper limit `Index` is being range checked.
294 bool
295 InductiveRangeCheck::parseRangeCheckICmp(Loop *L, ICmpInst *ICI,
296 ScalarEvolution &SE, Value *&Index,
297 Value *&Length, bool &IsSigned) {
298 auto IsLoopInvariant = [&SE, L](Value *V) {
299 return SE.isLoopInvariant(SE.getSCEV(V), L);
302 ICmpInst::Predicate Pred = ICI->getPredicate();
303 Value *LHS = ICI->getOperand(0);
304 Value *RHS = ICI->getOperand(1);
306 switch (Pred) {
307 default:
308 return false;
310 case ICmpInst::ICMP_SLE:
311 std::swap(LHS, RHS);
312 LLVM_FALLTHROUGH;
313 case ICmpInst::ICMP_SGE:
314 IsSigned = true;
315 if (match(RHS, m_ConstantInt<0>())) {
316 Index = LHS;
317 return true; // Lower.
319 return false;
321 case ICmpInst::ICMP_SLT:
322 std::swap(LHS, RHS);
323 LLVM_FALLTHROUGH;
324 case ICmpInst::ICMP_SGT:
325 IsSigned = true;
326 if (match(RHS, m_ConstantInt<-1>())) {
327 Index = LHS;
328 return true; // Lower.
331 if (IsLoopInvariant(LHS)) {
332 Index = RHS;
333 Length = LHS;
334 return true; // Upper.
336 return false;
338 case ICmpInst::ICMP_ULT:
339 std::swap(LHS, RHS);
340 LLVM_FALLTHROUGH;
341 case ICmpInst::ICMP_UGT:
342 IsSigned = false;
343 if (IsLoopInvariant(LHS)) {
344 Index = RHS;
345 Length = LHS;
346 return true; // Both lower and upper.
348 return false;
351 llvm_unreachable("default clause returns!");
354 void InductiveRangeCheck::extractRangeChecksFromCond(
355 Loop *L, ScalarEvolution &SE, Use &ConditionUse,
356 SmallVectorImpl<InductiveRangeCheck> &Checks,
357 SmallPtrSetImpl<Value *> &Visited) {
358 Value *Condition = ConditionUse.get();
359 if (!Visited.insert(Condition).second)
360 return;
362 // TODO: Do the same for OR, XOR, NOT etc?
363 if (match(Condition, m_LogicalAnd(m_Value(), m_Value()))) {
364 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(0),
365 Checks, Visited);
366 extractRangeChecksFromCond(L, SE, cast<User>(Condition)->getOperandUse(1),
367 Checks, Visited);
368 return;
371 ICmpInst *ICI = dyn_cast<ICmpInst>(Condition);
372 if (!ICI)
373 return;
375 Value *Length = nullptr, *Index;
376 bool IsSigned;
377 if (!parseRangeCheckICmp(L, ICI, SE, Index, Length, IsSigned))
378 return;
380 const auto *IndexAddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Index));
381 bool IsAffineIndex =
382 IndexAddRec && (IndexAddRec->getLoop() == L) && IndexAddRec->isAffine();
384 if (!IsAffineIndex)
385 return;
387 const SCEV *End = nullptr;
388 // We strengthen "0 <= I" to "0 <= I < INT_SMAX" and "I < L" to "0 <= I < L".
389 // We can potentially do much better here.
390 if (Length)
391 End = SE.getSCEV(Length);
392 else {
393 // So far we can only reach this point for Signed range check. This may
394 // change in future. In this case we will need to pick Unsigned max for the
395 // unsigned range check.
396 unsigned BitWidth = cast<IntegerType>(IndexAddRec->getType())->getBitWidth();
397 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
398 End = SIntMax;
401 InductiveRangeCheck IRC;
402 IRC.End = End;
403 IRC.Begin = IndexAddRec->getStart();
404 IRC.Step = IndexAddRec->getStepRecurrence(SE);
405 IRC.CheckUse = &ConditionUse;
406 Checks.push_back(IRC);
409 void InductiveRangeCheck::extractRangeChecksFromBranch(
410 BranchInst *BI, Loop *L, ScalarEvolution &SE, BranchProbabilityInfo *BPI,
411 SmallVectorImpl<InductiveRangeCheck> &Checks) {
412 if (BI->isUnconditional() || BI->getParent() == L->getLoopLatch())
413 return;
415 BranchProbability LikelyTaken(15, 16);
417 if (!SkipProfitabilityChecks && BPI &&
418 BPI->getEdgeProbability(BI->getParent(), (unsigned)0) < LikelyTaken)
419 return;
421 SmallPtrSet<Value *, 8> Visited;
422 InductiveRangeCheck::extractRangeChecksFromCond(L, SE, BI->getOperandUse(0),
423 Checks, Visited);
426 // Add metadata to the loop L to disable loop optimizations. Callers need to
427 // confirm that optimizing loop L is not beneficial.
428 static void DisableAllLoopOptsOnLoop(Loop &L) {
429 // We do not care about any existing loopID related metadata for L, since we
430 // are setting all loop metadata to false.
431 LLVMContext &Context = L.getHeader()->getContext();
432 // Reserve first location for self reference to the LoopID metadata node.
433 MDNode *Dummy = MDNode::get(Context, {});
434 MDNode *DisableUnroll = MDNode::get(
435 Context, {MDString::get(Context, "llvm.loop.unroll.disable")});
436 Metadata *FalseVal =
437 ConstantAsMetadata::get(ConstantInt::get(Type::getInt1Ty(Context), 0));
438 MDNode *DisableVectorize = MDNode::get(
439 Context,
440 {MDString::get(Context, "llvm.loop.vectorize.enable"), FalseVal});
441 MDNode *DisableLICMVersioning = MDNode::get(
442 Context, {MDString::get(Context, "llvm.loop.licm_versioning.disable")});
443 MDNode *DisableDistribution= MDNode::get(
444 Context,
445 {MDString::get(Context, "llvm.loop.distribute.enable"), FalseVal});
446 MDNode *NewLoopID =
447 MDNode::get(Context, {Dummy, DisableUnroll, DisableVectorize,
448 DisableLICMVersioning, DisableDistribution});
449 // Set operand 0 to refer to the loop id itself.
450 NewLoopID->replaceOperandWith(0, NewLoopID);
451 L.setLoopID(NewLoopID);
454 namespace {
456 // Keeps track of the structure of a loop. This is similar to llvm::Loop,
457 // except that it is more lightweight and can track the state of a loop through
458 // changing and potentially invalid IR. This structure also formalizes the
459 // kinds of loops we can deal with -- ones that have a single latch that is also
460 // an exiting block *and* have a canonical induction variable.
461 struct LoopStructure {
462 const char *Tag = "";
464 BasicBlock *Header = nullptr;
465 BasicBlock *Latch = nullptr;
467 // `Latch's terminator instruction is `LatchBr', and it's `LatchBrExitIdx'th
468 // successor is `LatchExit', the exit block of the loop.
469 BranchInst *LatchBr = nullptr;
470 BasicBlock *LatchExit = nullptr;
471 unsigned LatchBrExitIdx = std::numeric_limits<unsigned>::max();
473 // The loop represented by this instance of LoopStructure is semantically
474 // equivalent to:
476 // intN_ty inc = IndVarIncreasing ? 1 : -1;
477 // pred_ty predicate = IndVarIncreasing ? ICMP_SLT : ICMP_SGT;
479 // for (intN_ty iv = IndVarStart; predicate(iv, LoopExitAt); iv = IndVarBase)
480 // ... body ...
482 Value *IndVarBase = nullptr;
483 Value *IndVarStart = nullptr;
484 Value *IndVarStep = nullptr;
485 Value *LoopExitAt = nullptr;
486 bool IndVarIncreasing = false;
487 bool IsSignedPredicate = true;
489 LoopStructure() = default;
491 template <typename M> LoopStructure map(M Map) const {
492 LoopStructure Result;
493 Result.Tag = Tag;
494 Result.Header = cast<BasicBlock>(Map(Header));
495 Result.Latch = cast<BasicBlock>(Map(Latch));
496 Result.LatchBr = cast<BranchInst>(Map(LatchBr));
497 Result.LatchExit = cast<BasicBlock>(Map(LatchExit));
498 Result.LatchBrExitIdx = LatchBrExitIdx;
499 Result.IndVarBase = Map(IndVarBase);
500 Result.IndVarStart = Map(IndVarStart);
501 Result.IndVarStep = Map(IndVarStep);
502 Result.LoopExitAt = Map(LoopExitAt);
503 Result.IndVarIncreasing = IndVarIncreasing;
504 Result.IsSignedPredicate = IsSignedPredicate;
505 return Result;
508 static Optional<LoopStructure> parseLoopStructure(ScalarEvolution &, Loop &,
509 const char *&);
512 /// This class is used to constrain loops to run within a given iteration space.
513 /// The algorithm this class implements is given a Loop and a range [Begin,
514 /// End). The algorithm then tries to break out a "main loop" out of the loop
515 /// it is given in a way that the "main loop" runs with the induction variable
516 /// in a subset of [Begin, End). The algorithm emits appropriate pre and post
517 /// loops to run any remaining iterations. The pre loop runs any iterations in
518 /// which the induction variable is < Begin, and the post loop runs any
519 /// iterations in which the induction variable is >= End.
520 class LoopConstrainer {
521 // The representation of a clone of the original loop we started out with.
522 struct ClonedLoop {
523 // The cloned blocks
524 std::vector<BasicBlock *> Blocks;
526 // `Map` maps values in the clonee into values in the cloned version
527 ValueToValueMapTy Map;
529 // An instance of `LoopStructure` for the cloned loop
530 LoopStructure Structure;
533 // Result of rewriting the range of a loop. See changeIterationSpaceEnd for
534 // more details on what these fields mean.
535 struct RewrittenRangeInfo {
536 BasicBlock *PseudoExit = nullptr;
537 BasicBlock *ExitSelector = nullptr;
538 std::vector<PHINode *> PHIValuesAtPseudoExit;
539 PHINode *IndVarEnd = nullptr;
541 RewrittenRangeInfo() = default;
544 // Calculated subranges we restrict the iteration space of the main loop to.
545 // See the implementation of `calculateSubRanges' for more details on how
546 // these fields are computed. `LowLimit` is None if there is no restriction
547 // on low end of the restricted iteration space of the main loop. `HighLimit`
548 // is None if there is no restriction on high end of the restricted iteration
549 // space of the main loop.
551 struct SubRanges {
552 Optional<const SCEV *> LowLimit;
553 Optional<const SCEV *> HighLimit;
556 // Compute a safe set of limits for the main loop to run in -- effectively the
557 // intersection of `Range' and the iteration space of the original loop.
558 // Return None if unable to compute the set of subranges.
559 Optional<SubRanges> calculateSubRanges(bool IsSignedPredicate) const;
561 // Clone `OriginalLoop' and return the result in CLResult. The IR after
562 // running `cloneLoop' is well formed except for the PHI nodes in CLResult --
563 // the PHI nodes say that there is an incoming edge from `OriginalPreheader`
564 // but there is no such edge.
565 void cloneLoop(ClonedLoop &CLResult, const char *Tag) const;
567 // Create the appropriate loop structure needed to describe a cloned copy of
568 // `Original`. The clone is described by `VM`.
569 Loop *createClonedLoopStructure(Loop *Original, Loop *Parent,
570 ValueToValueMapTy &VM, bool IsSubloop);
572 // Rewrite the iteration space of the loop denoted by (LS, Preheader). The
573 // iteration space of the rewritten loop ends at ExitLoopAt. The start of the
574 // iteration space is not changed. `ExitLoopAt' is assumed to be slt
575 // `OriginalHeaderCount'.
577 // If there are iterations left to execute, control is made to jump to
578 // `ContinuationBlock', otherwise they take the normal loop exit. The
579 // returned `RewrittenRangeInfo' object is populated as follows:
581 // .PseudoExit is a basic block that unconditionally branches to
582 // `ContinuationBlock'.
584 // .ExitSelector is a basic block that decides, on exit from the loop,
585 // whether to branch to the "true" exit or to `PseudoExit'.
587 // .PHIValuesAtPseudoExit are PHINodes in `PseudoExit' that compute the value
588 // for each PHINode in the loop header on taking the pseudo exit.
590 // After changeIterationSpaceEnd, `Preheader' is no longer a legitimate
591 // preheader because it is made to branch to the loop header only
592 // conditionally.
593 RewrittenRangeInfo
594 changeIterationSpaceEnd(const LoopStructure &LS, BasicBlock *Preheader,
595 Value *ExitLoopAt,
596 BasicBlock *ContinuationBlock) const;
598 // The loop denoted by `LS' has `OldPreheader' as its preheader. This
599 // function creates a new preheader for `LS' and returns it.
600 BasicBlock *createPreheader(const LoopStructure &LS, BasicBlock *OldPreheader,
601 const char *Tag) const;
603 // `ContinuationBlockAndPreheader' was the continuation block for some call to
604 // `changeIterationSpaceEnd' and is the preheader to the loop denoted by `LS'.
605 // This function rewrites the PHI nodes in `LS.Header' to start with the
606 // correct value.
607 void rewriteIncomingValuesForPHIs(
608 LoopStructure &LS, BasicBlock *ContinuationBlockAndPreheader,
609 const LoopConstrainer::RewrittenRangeInfo &RRI) const;
611 // Even though we do not preserve any passes at this time, we at least need to
612 // keep the parent loop structure consistent. The `LPPassManager' seems to
613 // verify this after running a loop pass. This function adds the list of
614 // blocks denoted by BBs to this loops parent loop if required.
615 void addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs);
617 // Some global state.
618 Function &F;
619 LLVMContext &Ctx;
620 ScalarEvolution &SE;
621 DominatorTree &DT;
622 LoopInfo &LI;
623 function_ref<void(Loop *, bool)> LPMAddNewLoop;
625 // Information about the original loop we started out with.
626 Loop &OriginalLoop;
628 const SCEV *LatchTakenCount = nullptr;
629 BasicBlock *OriginalPreheader = nullptr;
631 // The preheader of the main loop. This may or may not be different from
632 // `OriginalPreheader'.
633 BasicBlock *MainLoopPreheader = nullptr;
635 // The range we need to run the main loop in.
636 InductiveRangeCheck::Range Range;
638 // The structure of the main loop (see comment at the beginning of this class
639 // for a definition)
640 LoopStructure MainLoopStructure;
642 public:
643 LoopConstrainer(Loop &L, LoopInfo &LI,
644 function_ref<void(Loop *, bool)> LPMAddNewLoop,
645 const LoopStructure &LS, ScalarEvolution &SE,
646 DominatorTree &DT, InductiveRangeCheck::Range R)
647 : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()),
648 SE(SE), DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L),
649 Range(R), MainLoopStructure(LS) {}
651 // Entry point for the algorithm. Returns true on success.
652 bool run();
655 } // end anonymous namespace
657 /// Given a loop with an deccreasing induction variable, is it possible to
658 /// safely calculate the bounds of a new loop using the given Predicate.
659 static bool isSafeDecreasingBound(const SCEV *Start,
660 const SCEV *BoundSCEV, const SCEV *Step,
661 ICmpInst::Predicate Pred,
662 unsigned LatchBrExitIdx,
663 Loop *L, ScalarEvolution &SE) {
664 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
665 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
666 return false;
668 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
669 return false;
671 assert(SE.isKnownNegative(Step) && "expecting negative step");
673 LLVM_DEBUG(dbgs() << "irce: isSafeDecreasingBound with:\n");
674 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
675 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
676 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
677 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
678 << "\n");
679 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
681 bool IsSigned = ICmpInst::isSigned(Pred);
682 // The predicate that we need to check that the induction variable lies
683 // within bounds.
684 ICmpInst::Predicate BoundPred =
685 IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT;
687 if (LatchBrExitIdx == 1)
688 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
690 assert(LatchBrExitIdx == 0 &&
691 "LatchBrExitIdx should be either 0 or 1");
693 const SCEV *StepPlusOne = SE.getAddExpr(Step, SE.getOne(Step->getType()));
694 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
695 APInt Min = IsSigned ? APInt::getSignedMinValue(BitWidth) :
696 APInt::getMinValue(BitWidth);
697 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Min), StepPlusOne);
699 const SCEV *MinusOne =
700 SE.getMinusSCEV(BoundSCEV, SE.getOne(BoundSCEV->getType()));
702 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, MinusOne) &&
703 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit);
707 /// Given a loop with an increasing induction variable, is it possible to
708 /// safely calculate the bounds of a new loop using the given Predicate.
709 static bool isSafeIncreasingBound(const SCEV *Start,
710 const SCEV *BoundSCEV, const SCEV *Step,
711 ICmpInst::Predicate Pred,
712 unsigned LatchBrExitIdx,
713 Loop *L, ScalarEvolution &SE) {
714 if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT &&
715 Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT)
716 return false;
718 if (!SE.isAvailableAtLoopEntry(BoundSCEV, L))
719 return false;
721 LLVM_DEBUG(dbgs() << "irce: isSafeIncreasingBound with:\n");
722 LLVM_DEBUG(dbgs() << "irce: Start: " << *Start << "\n");
723 LLVM_DEBUG(dbgs() << "irce: Step: " << *Step << "\n");
724 LLVM_DEBUG(dbgs() << "irce: BoundSCEV: " << *BoundSCEV << "\n");
725 LLVM_DEBUG(dbgs() << "irce: Pred: " << ICmpInst::getPredicateName(Pred)
726 << "\n");
727 LLVM_DEBUG(dbgs() << "irce: LatchExitBrIdx: " << LatchBrExitIdx << "\n");
729 bool IsSigned = ICmpInst::isSigned(Pred);
730 // The predicate that we need to check that the induction variable lies
731 // within bounds.
732 ICmpInst::Predicate BoundPred =
733 IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
735 if (LatchBrExitIdx == 1)
736 return SE.isLoopEntryGuardedByCond(L, BoundPred, Start, BoundSCEV);
738 assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1");
740 const SCEV *StepMinusOne =
741 SE.getMinusSCEV(Step, SE.getOne(Step->getType()));
742 unsigned BitWidth = cast<IntegerType>(BoundSCEV->getType())->getBitWidth();
743 APInt Max = IsSigned ? APInt::getSignedMaxValue(BitWidth) :
744 APInt::getMaxValue(BitWidth);
745 const SCEV *Limit = SE.getMinusSCEV(SE.getConstant(Max), StepMinusOne);
747 return (SE.isLoopEntryGuardedByCond(L, BoundPred, Start,
748 SE.getAddExpr(BoundSCEV, Step)) &&
749 SE.isLoopEntryGuardedByCond(L, BoundPred, BoundSCEV, Limit));
752 Optional<LoopStructure>
753 LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L,
754 const char *&FailureReason) {
755 if (!L.isLoopSimplifyForm()) {
756 FailureReason = "loop not in LoopSimplify form";
757 return None;
760 BasicBlock *Latch = L.getLoopLatch();
761 assert(Latch && "Simplified loops only have one latch!");
763 if (Latch->getTerminator()->getMetadata(ClonedLoopTag)) {
764 FailureReason = "loop has already been cloned";
765 return None;
768 if (!L.isLoopExiting(Latch)) {
769 FailureReason = "no loop latch";
770 return None;
773 BasicBlock *Header = L.getHeader();
774 BasicBlock *Preheader = L.getLoopPreheader();
775 if (!Preheader) {
776 FailureReason = "no preheader";
777 return None;
780 BranchInst *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
781 if (!LatchBr || LatchBr->isUnconditional()) {
782 FailureReason = "latch terminator not conditional branch";
783 return None;
786 unsigned LatchBrExitIdx = LatchBr->getSuccessor(0) == Header ? 1 : 0;
788 ICmpInst *ICI = dyn_cast<ICmpInst>(LatchBr->getCondition());
789 if (!ICI || !isa<IntegerType>(ICI->getOperand(0)->getType())) {
790 FailureReason = "latch terminator branch not conditional on integral icmp";
791 return None;
794 const SCEV *LatchCount = SE.getExitCount(&L, Latch);
795 if (isa<SCEVCouldNotCompute>(LatchCount)) {
796 FailureReason = "could not compute latch count";
797 return None;
800 ICmpInst::Predicate Pred = ICI->getPredicate();
801 Value *LeftValue = ICI->getOperand(0);
802 const SCEV *LeftSCEV = SE.getSCEV(LeftValue);
803 IntegerType *IndVarTy = cast<IntegerType>(LeftValue->getType());
805 Value *RightValue = ICI->getOperand(1);
806 const SCEV *RightSCEV = SE.getSCEV(RightValue);
808 // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence.
809 if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
810 if (isa<SCEVAddRecExpr>(RightSCEV)) {
811 std::swap(LeftSCEV, RightSCEV);
812 std::swap(LeftValue, RightValue);
813 Pred = ICmpInst::getSwappedPredicate(Pred);
814 } else {
815 FailureReason = "no add recurrences in the icmp";
816 return None;
820 auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) {
821 if (AR->getNoWrapFlags(SCEV::FlagNSW))
822 return true;
824 IntegerType *Ty = cast<IntegerType>(AR->getType());
825 IntegerType *WideTy =
826 IntegerType::get(Ty->getContext(), Ty->getBitWidth() * 2);
828 const SCEVAddRecExpr *ExtendAfterOp =
829 dyn_cast<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
830 if (ExtendAfterOp) {
831 const SCEV *ExtendedStart = SE.getSignExtendExpr(AR->getStart(), WideTy);
832 const SCEV *ExtendedStep =
833 SE.getSignExtendExpr(AR->getStepRecurrence(SE), WideTy);
835 bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart &&
836 ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep;
838 if (NoSignedWrap)
839 return true;
842 // We may have proved this when computing the sign extension above.
843 return AR->getNoWrapFlags(SCEV::FlagNSW) != SCEV::FlagAnyWrap;
846 // `ICI` is interpreted as taking the backedge if the *next* value of the
847 // induction variable satisfies some constraint.
849 const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(LeftSCEV);
850 if (!IndVarBase->isAffine()) {
851 FailureReason = "LHS in icmp not induction variable";
852 return None;
854 const SCEV* StepRec = IndVarBase->getStepRecurrence(SE);
855 if (!isa<SCEVConstant>(StepRec)) {
856 FailureReason = "LHS in icmp not induction variable";
857 return None;
859 ConstantInt *StepCI = cast<SCEVConstant>(StepRec)->getValue();
861 if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) {
862 FailureReason = "LHS in icmp needs nsw for equality predicates";
863 return None;
866 assert(!StepCI->isZero() && "Zero step?");
867 bool IsIncreasing = !StepCI->isNegative();
868 bool IsSignedPredicate;
869 const SCEV *StartNext = IndVarBase->getStart();
870 const SCEV *Addend = SE.getNegativeSCEV(IndVarBase->getStepRecurrence(SE));
871 const SCEV *IndVarStart = SE.getAddExpr(StartNext, Addend);
872 const SCEV *Step = SE.getSCEV(StepCI);
874 const SCEV *FixedRightSCEV = nullptr;
876 // If RightValue resides within loop (but still being loop invariant),
877 // regenerate it as preheader.
878 if (auto *I = dyn_cast<Instruction>(RightValue))
879 if (L.contains(I->getParent()))
880 FixedRightSCEV = RightSCEV;
882 if (IsIncreasing) {
883 bool DecreasedRightValueByOne = false;
884 if (StepCI->isOne()) {
885 // Try to turn eq/ne predicates to those we can work with.
886 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
887 // while (++i != len) { while (++i < len) {
888 // ... ---> ...
889 // } }
890 // If both parts are known non-negative, it is profitable to use
891 // unsigned comparison in increasing loop. This allows us to make the
892 // comparison check against "RightSCEV + 1" more optimistic.
893 if (isKnownNonNegativeInLoop(IndVarStart, &L, SE) &&
894 isKnownNonNegativeInLoop(RightSCEV, &L, SE))
895 Pred = ICmpInst::ICMP_ULT;
896 else
897 Pred = ICmpInst::ICMP_SLT;
898 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
899 // while (true) { while (true) {
900 // if (++i == len) ---> if (++i > len - 1)
901 // break; break;
902 // ... ...
903 // } }
904 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
905 cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/false)) {
906 Pred = ICmpInst::ICMP_UGT;
907 RightSCEV = SE.getMinusSCEV(RightSCEV,
908 SE.getOne(RightSCEV->getType()));
909 DecreasedRightValueByOne = true;
910 } else if (cannotBeMinInLoop(RightSCEV, &L, SE, /*Signed*/true)) {
911 Pred = ICmpInst::ICMP_SGT;
912 RightSCEV = SE.getMinusSCEV(RightSCEV,
913 SE.getOne(RightSCEV->getType()));
914 DecreasedRightValueByOne = true;
919 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
920 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
921 bool FoundExpectedPred =
922 (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0);
924 if (!FoundExpectedPred) {
925 FailureReason = "expected icmp slt semantically, found something else";
926 return None;
929 IsSignedPredicate = ICmpInst::isSigned(Pred);
930 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
931 FailureReason = "unsigned latch conditions are explicitly prohibited";
932 return None;
935 if (!isSafeIncreasingBound(IndVarStart, RightSCEV, Step, Pred,
936 LatchBrExitIdx, &L, SE)) {
937 FailureReason = "Unsafe loop bounds";
938 return None;
940 if (LatchBrExitIdx == 0) {
941 // We need to increase the right value unless we have already decreased
942 // it virtually when we replaced EQ with SGT.
943 if (!DecreasedRightValueByOne)
944 FixedRightSCEV =
945 SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
946 } else {
947 assert(!DecreasedRightValueByOne &&
948 "Right value can be decreased only for LatchBrExitIdx == 0!");
950 } else {
951 bool IncreasedRightValueByOne = false;
952 if (StepCI->isMinusOne()) {
953 // Try to turn eq/ne predicates to those we can work with.
954 if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1)
955 // while (--i != len) { while (--i > len) {
956 // ... ---> ...
957 // } }
958 // We intentionally don't turn the predicate into UGT even if we know
959 // that both operands are non-negative, because it will only pessimize
960 // our check against "RightSCEV - 1".
961 Pred = ICmpInst::ICMP_SGT;
962 else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) {
963 // while (true) { while (true) {
964 // if (--i == len) ---> if (--i < len + 1)
965 // break; break;
966 // ... ...
967 // } }
968 if (IndVarBase->getNoWrapFlags(SCEV::FlagNUW) &&
969 cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ false)) {
970 Pred = ICmpInst::ICMP_ULT;
971 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
972 IncreasedRightValueByOne = true;
973 } else if (cannotBeMaxInLoop(RightSCEV, &L, SE, /* Signed */ true)) {
974 Pred = ICmpInst::ICMP_SLT;
975 RightSCEV = SE.getAddExpr(RightSCEV, SE.getOne(RightSCEV->getType()));
976 IncreasedRightValueByOne = true;
981 bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT);
982 bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT);
984 bool FoundExpectedPred =
985 (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0);
987 if (!FoundExpectedPred) {
988 FailureReason = "expected icmp sgt semantically, found something else";
989 return None;
992 IsSignedPredicate =
993 Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT;
995 if (!IsSignedPredicate && !AllowUnsignedLatchCondition) {
996 FailureReason = "unsigned latch conditions are explicitly prohibited";
997 return None;
1000 if (!isSafeDecreasingBound(IndVarStart, RightSCEV, Step, Pred,
1001 LatchBrExitIdx, &L, SE)) {
1002 FailureReason = "Unsafe bounds";
1003 return None;
1006 if (LatchBrExitIdx == 0) {
1007 // We need to decrease the right value unless we have already increased
1008 // it virtually when we replaced EQ with SLT.
1009 if (!IncreasedRightValueByOne)
1010 FixedRightSCEV =
1011 SE.getMinusSCEV(RightSCEV, SE.getOne(RightSCEV->getType()));
1012 } else {
1013 assert(!IncreasedRightValueByOne &&
1014 "Right value can be increased only for LatchBrExitIdx == 0!");
1017 BasicBlock *LatchExit = LatchBr->getSuccessor(LatchBrExitIdx);
1019 assert(SE.getLoopDisposition(LatchCount, &L) ==
1020 ScalarEvolution::LoopInvariant &&
1021 "loop variant exit count doesn't make sense!");
1023 assert(!L.contains(LatchExit) && "expected an exit block!");
1024 const DataLayout &DL = Preheader->getModule()->getDataLayout();
1025 SCEVExpander Expander(SE, DL, "irce");
1026 Instruction *Ins = Preheader->getTerminator();
1028 if (FixedRightSCEV)
1029 RightValue =
1030 Expander.expandCodeFor(FixedRightSCEV, FixedRightSCEV->getType(), Ins);
1032 Value *IndVarStartV = Expander.expandCodeFor(IndVarStart, IndVarTy, Ins);
1033 IndVarStartV->setName("indvar.start");
1035 LoopStructure Result;
1037 Result.Tag = "main";
1038 Result.Header = Header;
1039 Result.Latch = Latch;
1040 Result.LatchBr = LatchBr;
1041 Result.LatchExit = LatchExit;
1042 Result.LatchBrExitIdx = LatchBrExitIdx;
1043 Result.IndVarStart = IndVarStartV;
1044 Result.IndVarStep = StepCI;
1045 Result.IndVarBase = LeftValue;
1046 Result.IndVarIncreasing = IsIncreasing;
1047 Result.LoopExitAt = RightValue;
1048 Result.IsSignedPredicate = IsSignedPredicate;
1050 FailureReason = nullptr;
1052 return Result;
1055 /// If the type of \p S matches with \p Ty, return \p S. Otherwise, return
1056 /// signed or unsigned extension of \p S to type \p Ty.
1057 static const SCEV *NoopOrExtend(const SCEV *S, Type *Ty, ScalarEvolution &SE,
1058 bool Signed) {
1059 return Signed ? SE.getNoopOrSignExtend(S, Ty) : SE.getNoopOrZeroExtend(S, Ty);
1062 Optional<LoopConstrainer::SubRanges>
1063 LoopConstrainer::calculateSubRanges(bool IsSignedPredicate) const {
1064 IntegerType *Ty = cast<IntegerType>(LatchTakenCount->getType());
1066 auto *RTy = cast<IntegerType>(Range.getType());
1068 // We only support wide range checks and narrow latches.
1069 if (!AllowNarrowLatchCondition && RTy != Ty)
1070 return None;
1071 if (RTy->getBitWidth() < Ty->getBitWidth())
1072 return None;
1074 LoopConstrainer::SubRanges Result;
1076 // I think we can be more aggressive here and make this nuw / nsw if the
1077 // addition that feeds into the icmp for the latch's terminating branch is nuw
1078 // / nsw. In any case, a wrapping 2's complement addition is safe.
1079 const SCEV *Start = NoopOrExtend(SE.getSCEV(MainLoopStructure.IndVarStart),
1080 RTy, SE, IsSignedPredicate);
1081 const SCEV *End = NoopOrExtend(SE.getSCEV(MainLoopStructure.LoopExitAt), RTy,
1082 SE, IsSignedPredicate);
1084 bool Increasing = MainLoopStructure.IndVarIncreasing;
1086 // We compute `Smallest` and `Greatest` such that [Smallest, Greatest), or
1087 // [Smallest, GreatestSeen] is the range of values the induction variable
1088 // takes.
1090 const SCEV *Smallest = nullptr, *Greatest = nullptr, *GreatestSeen = nullptr;
1092 const SCEV *One = SE.getOne(RTy);
1093 if (Increasing) {
1094 Smallest = Start;
1095 Greatest = End;
1096 // No overflow, because the range [Smallest, GreatestSeen] is not empty.
1097 GreatestSeen = SE.getMinusSCEV(End, One);
1098 } else {
1099 // These two computations may sign-overflow. Here is why that is okay:
1101 // We know that the induction variable does not sign-overflow on any
1102 // iteration except the last one, and it starts at `Start` and ends at
1103 // `End`, decrementing by one every time.
1105 // * if `Smallest` sign-overflows we know `End` is `INT_SMAX`. Since the
1106 // induction variable is decreasing we know that that the smallest value
1107 // the loop body is actually executed with is `INT_SMIN` == `Smallest`.
1109 // * if `Greatest` sign-overflows, we know it can only be `INT_SMIN`. In
1110 // that case, `Clamp` will always return `Smallest` and
1111 // [`Result.LowLimit`, `Result.HighLimit`) = [`Smallest`, `Smallest`)
1112 // will be an empty range. Returning an empty range is always safe.
1114 Smallest = SE.getAddExpr(End, One);
1115 Greatest = SE.getAddExpr(Start, One);
1116 GreatestSeen = Start;
1119 auto Clamp = [this, Smallest, Greatest, IsSignedPredicate](const SCEV *S) {
1120 return IsSignedPredicate
1121 ? SE.getSMaxExpr(Smallest, SE.getSMinExpr(Greatest, S))
1122 : SE.getUMaxExpr(Smallest, SE.getUMinExpr(Greatest, S));
1125 // In some cases we can prove that we don't need a pre or post loop.
1126 ICmpInst::Predicate PredLE =
1127 IsSignedPredicate ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1128 ICmpInst::Predicate PredLT =
1129 IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1131 bool ProvablyNoPreloop =
1132 SE.isKnownPredicate(PredLE, Range.getBegin(), Smallest);
1133 if (!ProvablyNoPreloop)
1134 Result.LowLimit = Clamp(Range.getBegin());
1136 bool ProvablyNoPostLoop =
1137 SE.isKnownPredicate(PredLT, GreatestSeen, Range.getEnd());
1138 if (!ProvablyNoPostLoop)
1139 Result.HighLimit = Clamp(Range.getEnd());
1141 return Result;
1144 void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result,
1145 const char *Tag) const {
1146 for (BasicBlock *BB : OriginalLoop.getBlocks()) {
1147 BasicBlock *Clone = CloneBasicBlock(BB, Result.Map, Twine(".") + Tag, &F);
1148 Result.Blocks.push_back(Clone);
1149 Result.Map[BB] = Clone;
1152 auto GetClonedValue = [&Result](Value *V) {
1153 assert(V && "null values not in domain!");
1154 auto It = Result.Map.find(V);
1155 if (It == Result.Map.end())
1156 return V;
1157 return static_cast<Value *>(It->second);
1160 auto *ClonedLatch =
1161 cast<BasicBlock>(GetClonedValue(OriginalLoop.getLoopLatch()));
1162 ClonedLatch->getTerminator()->setMetadata(ClonedLoopTag,
1163 MDNode::get(Ctx, {}));
1165 Result.Structure = MainLoopStructure.map(GetClonedValue);
1166 Result.Structure.Tag = Tag;
1168 for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) {
1169 BasicBlock *ClonedBB = Result.Blocks[i];
1170 BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i];
1172 assert(Result.Map[OriginalBB] == ClonedBB && "invariant!");
1174 for (Instruction &I : *ClonedBB)
1175 RemapInstruction(&I, Result.Map,
1176 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1178 // Exit blocks will now have one more predecessor and their PHI nodes need
1179 // to be edited to reflect that. No phi nodes need to be introduced because
1180 // the loop is in LCSSA.
1182 for (auto *SBB : successors(OriginalBB)) {
1183 if (OriginalLoop.contains(SBB))
1184 continue; // not an exit block
1186 for (PHINode &PN : SBB->phis()) {
1187 Value *OldIncoming = PN.getIncomingValueForBlock(OriginalBB);
1188 PN.addIncoming(GetClonedValue(OldIncoming), ClonedBB);
1194 LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd(
1195 const LoopStructure &LS, BasicBlock *Preheader, Value *ExitSubloopAt,
1196 BasicBlock *ContinuationBlock) const {
1197 // We start with a loop with a single latch:
1199 // +--------------------+
1200 // | |
1201 // | preheader |
1202 // | |
1203 // +--------+-----------+
1204 // | ----------------\
1205 // | / |
1206 // +--------v----v------+ |
1207 // | | |
1208 // | header | |
1209 // | | |
1210 // +--------------------+ |
1211 // |
1212 // ..... |
1213 // |
1214 // +--------------------+ |
1215 // | | |
1216 // | latch >----------/
1217 // | |
1218 // +-------v------------+
1219 // |
1220 // |
1221 // | +--------------------+
1222 // | | |
1223 // +---> original exit |
1224 // | |
1225 // +--------------------+
1227 // We change the control flow to look like
1230 // +--------------------+
1231 // | |
1232 // | preheader >-------------------------+
1233 // | | |
1234 // +--------v-----------+ |
1235 // | /-------------+ |
1236 // | / | |
1237 // +--------v--v--------+ | |
1238 // | | | |
1239 // | header | | +--------+ |
1240 // | | | | | |
1241 // +--------------------+ | | +-----v-----v-----------+
1242 // | | | |
1243 // | | | .pseudo.exit |
1244 // | | | |
1245 // | | +-----------v-----------+
1246 // | | |
1247 // ..... | | |
1248 // | | +--------v-------------+
1249 // +--------------------+ | | | |
1250 // | | | | | ContinuationBlock |
1251 // | latch >------+ | | |
1252 // | | | +----------------------+
1253 // +---------v----------+ |
1254 // | |
1255 // | |
1256 // | +---------------^-----+
1257 // | | |
1258 // +-----> .exit.selector |
1259 // | |
1260 // +----------v----------+
1261 // |
1262 // +--------------------+ |
1263 // | | |
1264 // | original exit <----+
1265 // | |
1266 // +--------------------+
1268 RewrittenRangeInfo RRI;
1270 BasicBlock *BBInsertLocation = LS.Latch->getNextNode();
1271 RRI.ExitSelector = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".exit.selector",
1272 &F, BBInsertLocation);
1273 RRI.PseudoExit = BasicBlock::Create(Ctx, Twine(LS.Tag) + ".pseudo.exit", &F,
1274 BBInsertLocation);
1276 BranchInst *PreheaderJump = cast<BranchInst>(Preheader->getTerminator());
1277 bool Increasing = LS.IndVarIncreasing;
1278 bool IsSignedPredicate = LS.IsSignedPredicate;
1280 IRBuilder<> B(PreheaderJump);
1281 auto *RangeTy = Range.getBegin()->getType();
1282 auto NoopOrExt = [&](Value *V) {
1283 if (V->getType() == RangeTy)
1284 return V;
1285 return IsSignedPredicate ? B.CreateSExt(V, RangeTy, "wide." + V->getName())
1286 : B.CreateZExt(V, RangeTy, "wide." + V->getName());
1289 // EnterLoopCond - is it okay to start executing this `LS'?
1290 Value *EnterLoopCond = nullptr;
1291 auto Pred =
1292 Increasing
1293 ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT)
1294 : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
1295 Value *IndVarStart = NoopOrExt(LS.IndVarStart);
1296 EnterLoopCond = B.CreateICmp(Pred, IndVarStart, ExitSubloopAt);
1298 B.CreateCondBr(EnterLoopCond, LS.Header, RRI.PseudoExit);
1299 PreheaderJump->eraseFromParent();
1301 LS.LatchBr->setSuccessor(LS.LatchBrExitIdx, RRI.ExitSelector);
1302 B.SetInsertPoint(LS.LatchBr);
1303 Value *IndVarBase = NoopOrExt(LS.IndVarBase);
1304 Value *TakeBackedgeLoopCond = B.CreateICmp(Pred, IndVarBase, ExitSubloopAt);
1306 Value *CondForBranch = LS.LatchBrExitIdx == 1
1307 ? TakeBackedgeLoopCond
1308 : B.CreateNot(TakeBackedgeLoopCond);
1310 LS.LatchBr->setCondition(CondForBranch);
1312 B.SetInsertPoint(RRI.ExitSelector);
1314 // IterationsLeft - are there any more iterations left, given the original
1315 // upper bound on the induction variable? If not, we branch to the "real"
1316 // exit.
1317 Value *LoopExitAt = NoopOrExt(LS.LoopExitAt);
1318 Value *IterationsLeft = B.CreateICmp(Pred, IndVarBase, LoopExitAt);
1319 B.CreateCondBr(IterationsLeft, RRI.PseudoExit, LS.LatchExit);
1321 BranchInst *BranchToContinuation =
1322 BranchInst::Create(ContinuationBlock, RRI.PseudoExit);
1324 // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of
1325 // each of the PHI nodes in the loop header. This feeds into the initial
1326 // value of the same PHI nodes if/when we continue execution.
1327 for (PHINode &PN : LS.Header->phis()) {
1328 PHINode *NewPHI = PHINode::Create(PN.getType(), 2, PN.getName() + ".copy",
1329 BranchToContinuation);
1331 NewPHI->addIncoming(PN.getIncomingValueForBlock(Preheader), Preheader);
1332 NewPHI->addIncoming(PN.getIncomingValueForBlock(LS.Latch),
1333 RRI.ExitSelector);
1334 RRI.PHIValuesAtPseudoExit.push_back(NewPHI);
1337 RRI.IndVarEnd = PHINode::Create(IndVarBase->getType(), 2, "indvar.end",
1338 BranchToContinuation);
1339 RRI.IndVarEnd->addIncoming(IndVarStart, Preheader);
1340 RRI.IndVarEnd->addIncoming(IndVarBase, RRI.ExitSelector);
1342 // The latch exit now has a branch from `RRI.ExitSelector' instead of
1343 // `LS.Latch'. The PHI nodes need to be updated to reflect that.
1344 LS.LatchExit->replacePhiUsesWith(LS.Latch, RRI.ExitSelector);
1346 return RRI;
1349 void LoopConstrainer::rewriteIncomingValuesForPHIs(
1350 LoopStructure &LS, BasicBlock *ContinuationBlock,
1351 const LoopConstrainer::RewrittenRangeInfo &RRI) const {
1352 unsigned PHIIndex = 0;
1353 for (PHINode &PN : LS.Header->phis())
1354 PN.setIncomingValueForBlock(ContinuationBlock,
1355 RRI.PHIValuesAtPseudoExit[PHIIndex++]);
1357 LS.IndVarStart = RRI.IndVarEnd;
1360 BasicBlock *LoopConstrainer::createPreheader(const LoopStructure &LS,
1361 BasicBlock *OldPreheader,
1362 const char *Tag) const {
1363 BasicBlock *Preheader = BasicBlock::Create(Ctx, Tag, &F, LS.Header);
1364 BranchInst::Create(LS.Header, Preheader);
1366 LS.Header->replacePhiUsesWith(OldPreheader, Preheader);
1368 return Preheader;
1371 void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) {
1372 Loop *ParentLoop = OriginalLoop.getParentLoop();
1373 if (!ParentLoop)
1374 return;
1376 for (BasicBlock *BB : BBs)
1377 ParentLoop->addBasicBlockToLoop(BB, LI);
1380 Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent,
1381 ValueToValueMapTy &VM,
1382 bool IsSubloop) {
1383 Loop &New = *LI.AllocateLoop();
1384 if (Parent)
1385 Parent->addChildLoop(&New);
1386 else
1387 LI.addTopLevelLoop(&New);
1388 LPMAddNewLoop(&New, IsSubloop);
1390 // Add all of the blocks in Original to the new loop.
1391 for (auto *BB : Original->blocks())
1392 if (LI.getLoopFor(BB) == Original)
1393 New.addBasicBlockToLoop(cast<BasicBlock>(VM[BB]), LI);
1395 // Add all of the subloops to the new loop.
1396 for (Loop *SubLoop : *Original)
1397 createClonedLoopStructure(SubLoop, &New, VM, /* IsSubloop */ true);
1399 return &New;
1402 bool LoopConstrainer::run() {
1403 BasicBlock *Preheader = nullptr;
1404 LatchTakenCount = SE.getExitCount(&OriginalLoop, MainLoopStructure.Latch);
1405 Preheader = OriginalLoop.getLoopPreheader();
1406 assert(!isa<SCEVCouldNotCompute>(LatchTakenCount) && Preheader != nullptr &&
1407 "preconditions!");
1409 OriginalPreheader = Preheader;
1410 MainLoopPreheader = Preheader;
1412 bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate;
1413 Optional<SubRanges> MaybeSR = calculateSubRanges(IsSignedPredicate);
1414 if (!MaybeSR.hasValue()) {
1415 LLVM_DEBUG(dbgs() << "irce: could not compute subranges\n");
1416 return false;
1419 SubRanges SR = MaybeSR.getValue();
1420 bool Increasing = MainLoopStructure.IndVarIncreasing;
1421 IntegerType *IVTy =
1422 cast<IntegerType>(Range.getBegin()->getType());
1424 SCEVExpander Expander(SE, F.getParent()->getDataLayout(), "irce");
1425 Instruction *InsertPt = OriginalPreheader->getTerminator();
1427 // It would have been better to make `PreLoop' and `PostLoop'
1428 // `Optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy
1429 // constructor.
1430 ClonedLoop PreLoop, PostLoop;
1431 bool NeedsPreLoop =
1432 Increasing ? SR.LowLimit.hasValue() : SR.HighLimit.hasValue();
1433 bool NeedsPostLoop =
1434 Increasing ? SR.HighLimit.hasValue() : SR.LowLimit.hasValue();
1436 Value *ExitPreLoopAt = nullptr;
1437 Value *ExitMainLoopAt = nullptr;
1438 const SCEVConstant *MinusOneS =
1439 cast<SCEVConstant>(SE.getConstant(IVTy, -1, true /* isSigned */));
1441 if (NeedsPreLoop) {
1442 const SCEV *ExitPreLoopAtSCEV = nullptr;
1444 if (Increasing)
1445 ExitPreLoopAtSCEV = *SR.LowLimit;
1446 else if (cannotBeMinInLoop(*SR.HighLimit, &OriginalLoop, SE,
1447 IsSignedPredicate))
1448 ExitPreLoopAtSCEV = SE.getAddExpr(*SR.HighLimit, MinusOneS);
1449 else {
1450 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1451 << "preloop exit limit. HighLimit = "
1452 << *(*SR.HighLimit) << "\n");
1453 return false;
1456 if (!isSafeToExpandAt(ExitPreLoopAtSCEV, InsertPt, SE)) {
1457 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1458 << " preloop exit limit " << *ExitPreLoopAtSCEV
1459 << " at block " << InsertPt->getParent()->getName()
1460 << "\n");
1461 return false;
1464 ExitPreLoopAt = Expander.expandCodeFor(ExitPreLoopAtSCEV, IVTy, InsertPt);
1465 ExitPreLoopAt->setName("exit.preloop.at");
1468 if (NeedsPostLoop) {
1469 const SCEV *ExitMainLoopAtSCEV = nullptr;
1471 if (Increasing)
1472 ExitMainLoopAtSCEV = *SR.HighLimit;
1473 else if (cannotBeMinInLoop(*SR.LowLimit, &OriginalLoop, SE,
1474 IsSignedPredicate))
1475 ExitMainLoopAtSCEV = SE.getAddExpr(*SR.LowLimit, MinusOneS);
1476 else {
1477 LLVM_DEBUG(dbgs() << "irce: could not prove no-overflow when computing "
1478 << "mainloop exit limit. LowLimit = "
1479 << *(*SR.LowLimit) << "\n");
1480 return false;
1483 if (!isSafeToExpandAt(ExitMainLoopAtSCEV, InsertPt, SE)) {
1484 LLVM_DEBUG(dbgs() << "irce: could not prove that it is safe to expand the"
1485 << " main loop exit limit " << *ExitMainLoopAtSCEV
1486 << " at block " << InsertPt->getParent()->getName()
1487 << "\n");
1488 return false;
1491 ExitMainLoopAt = Expander.expandCodeFor(ExitMainLoopAtSCEV, IVTy, InsertPt);
1492 ExitMainLoopAt->setName("exit.mainloop.at");
1495 // We clone these ahead of time so that we don't have to deal with changing
1496 // and temporarily invalid IR as we transform the loops.
1497 if (NeedsPreLoop)
1498 cloneLoop(PreLoop, "preloop");
1499 if (NeedsPostLoop)
1500 cloneLoop(PostLoop, "postloop");
1502 RewrittenRangeInfo PreLoopRRI;
1504 if (NeedsPreLoop) {
1505 Preheader->getTerminator()->replaceUsesOfWith(MainLoopStructure.Header,
1506 PreLoop.Structure.Header);
1508 MainLoopPreheader =
1509 createPreheader(MainLoopStructure, Preheader, "mainloop");
1510 PreLoopRRI = changeIterationSpaceEnd(PreLoop.Structure, Preheader,
1511 ExitPreLoopAt, MainLoopPreheader);
1512 rewriteIncomingValuesForPHIs(MainLoopStructure, MainLoopPreheader,
1513 PreLoopRRI);
1516 BasicBlock *PostLoopPreheader = nullptr;
1517 RewrittenRangeInfo PostLoopRRI;
1519 if (NeedsPostLoop) {
1520 PostLoopPreheader =
1521 createPreheader(PostLoop.Structure, Preheader, "postloop");
1522 PostLoopRRI = changeIterationSpaceEnd(MainLoopStructure, MainLoopPreheader,
1523 ExitMainLoopAt, PostLoopPreheader);
1524 rewriteIncomingValuesForPHIs(PostLoop.Structure, PostLoopPreheader,
1525 PostLoopRRI);
1528 BasicBlock *NewMainLoopPreheader =
1529 MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr;
1530 BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit,
1531 PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit,
1532 PostLoopRRI.ExitSelector, NewMainLoopPreheader};
1534 // Some of the above may be nullptr, filter them out before passing to
1535 // addToParentLoopIfNeeded.
1536 auto NewBlocksEnd =
1537 std::remove(std::begin(NewBlocks), std::end(NewBlocks), nullptr);
1539 addToParentLoopIfNeeded(makeArrayRef(std::begin(NewBlocks), NewBlocksEnd));
1541 DT.recalculate(F);
1543 // We need to first add all the pre and post loop blocks into the loop
1544 // structures (as part of createClonedLoopStructure), and then update the
1545 // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating
1546 // LI when LoopSimplifyForm is generated.
1547 Loop *PreL = nullptr, *PostL = nullptr;
1548 if (!PreLoop.Blocks.empty()) {
1549 PreL = createClonedLoopStructure(&OriginalLoop,
1550 OriginalLoop.getParentLoop(), PreLoop.Map,
1551 /* IsSubLoop */ false);
1554 if (!PostLoop.Blocks.empty()) {
1555 PostL =
1556 createClonedLoopStructure(&OriginalLoop, OriginalLoop.getParentLoop(),
1557 PostLoop.Map, /* IsSubLoop */ false);
1560 // This function canonicalizes the loop into Loop-Simplify and LCSSA forms.
1561 auto CanonicalizeLoop = [&] (Loop *L, bool IsOriginalLoop) {
1562 formLCSSARecursively(*L, DT, &LI, &SE);
1563 simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr, true);
1564 // Pre/post loops are slow paths, we do not need to perform any loop
1565 // optimizations on them.
1566 if (!IsOriginalLoop)
1567 DisableAllLoopOptsOnLoop(*L);
1569 if (PreL)
1570 CanonicalizeLoop(PreL, false);
1571 if (PostL)
1572 CanonicalizeLoop(PostL, false);
1573 CanonicalizeLoop(&OriginalLoop, true);
1575 return true;
1578 /// Computes and returns a range of values for the induction variable (IndVar)
1579 /// in which the range check can be safely elided. If it cannot compute such a
1580 /// range, returns None.
1581 Optional<InductiveRangeCheck::Range>
1582 InductiveRangeCheck::computeSafeIterationSpace(
1583 ScalarEvolution &SE, const SCEVAddRecExpr *IndVar,
1584 bool IsLatchSigned) const {
1585 // We can deal when types of latch check and range checks don't match in case
1586 // if latch check is more narrow.
1587 auto *IVType = cast<IntegerType>(IndVar->getType());
1588 auto *RCType = cast<IntegerType>(getBegin()->getType());
1589 if (IVType->getBitWidth() > RCType->getBitWidth())
1590 return None;
1591 // IndVar is of the form "A + B * I" (where "I" is the canonical induction
1592 // variable, that may or may not exist as a real llvm::Value in the loop) and
1593 // this inductive range check is a range check on the "C + D * I" ("C" is
1594 // getBegin() and "D" is getStep()). We rewrite the value being range
1595 // checked to "M + N * IndVar" where "N" = "D * B^(-1)" and "M" = "C - NA".
1597 // The actual inequalities we solve are of the form
1599 // 0 <= M + 1 * IndVar < L given L >= 0 (i.e. N == 1)
1601 // Here L stands for upper limit of the safe iteration space.
1602 // The inequality is satisfied by (0 - M) <= IndVar < (L - M). To avoid
1603 // overflows when calculating (0 - M) and (L - M) we, depending on type of
1604 // IV's iteration space, limit the calculations by borders of the iteration
1605 // space. For example, if IndVar is unsigned, (0 - M) overflows for any M > 0.
1606 // If we figured out that "anything greater than (-M) is safe", we strengthen
1607 // this to "everything greater than 0 is safe", assuming that values between
1608 // -M and 0 just do not exist in unsigned iteration space, and we don't want
1609 // to deal with overflown values.
1611 if (!IndVar->isAffine())
1612 return None;
1614 const SCEV *A = NoopOrExtend(IndVar->getStart(), RCType, SE, IsLatchSigned);
1615 const SCEVConstant *B = dyn_cast<SCEVConstant>(
1616 NoopOrExtend(IndVar->getStepRecurrence(SE), RCType, SE, IsLatchSigned));
1617 if (!B)
1618 return None;
1619 assert(!B->isZero() && "Recurrence with zero step?");
1621 const SCEV *C = getBegin();
1622 const SCEVConstant *D = dyn_cast<SCEVConstant>(getStep());
1623 if (D != B)
1624 return None;
1626 assert(!D->getValue()->isZero() && "Recurrence with zero step?");
1627 unsigned BitWidth = RCType->getBitWidth();
1628 const SCEV *SIntMax = SE.getConstant(APInt::getSignedMaxValue(BitWidth));
1630 // Subtract Y from X so that it does not go through border of the IV
1631 // iteration space. Mathematically, it is equivalent to:
1633 // ClampedSubtract(X, Y) = min(max(X - Y, INT_MIN), INT_MAX). [1]
1635 // In [1], 'X - Y' is a mathematical subtraction (result is not bounded to
1636 // any width of bit grid). But after we take min/max, the result is
1637 // guaranteed to be within [INT_MIN, INT_MAX].
1639 // In [1], INT_MAX and INT_MIN are respectively signed and unsigned max/min
1640 // values, depending on type of latch condition that defines IV iteration
1641 // space.
1642 auto ClampedSubtract = [&](const SCEV *X, const SCEV *Y) {
1643 // FIXME: The current implementation assumes that X is in [0, SINT_MAX].
1644 // This is required to ensure that SINT_MAX - X does not overflow signed and
1645 // that X - Y does not overflow unsigned if Y is negative. Can we lift this
1646 // restriction and make it work for negative X either?
1647 if (IsLatchSigned) {
1648 // X is a number from signed range, Y is interpreted as signed.
1649 // Even if Y is SINT_MAX, (X - Y) does not reach SINT_MIN. So the only
1650 // thing we should care about is that we didn't cross SINT_MAX.
1651 // So, if Y is positive, we subtract Y safely.
1652 // Rule 1: Y > 0 ---> Y.
1653 // If 0 <= -Y <= (SINT_MAX - X), we subtract Y safely.
1654 // Rule 2: Y >=s (X - SINT_MAX) ---> Y.
1655 // If 0 <= (SINT_MAX - X) < -Y, we can only subtract (X - SINT_MAX).
1656 // Rule 3: Y <s (X - SINT_MAX) ---> (X - SINT_MAX).
1657 // It gives us smax(Y, X - SINT_MAX) to subtract in all cases.
1658 const SCEV *XMinusSIntMax = SE.getMinusSCEV(X, SIntMax);
1659 return SE.getMinusSCEV(X, SE.getSMaxExpr(Y, XMinusSIntMax),
1660 SCEV::FlagNSW);
1661 } else
1662 // X is a number from unsigned range, Y is interpreted as signed.
1663 // Even if Y is SINT_MIN, (X - Y) does not reach UINT_MAX. So the only
1664 // thing we should care about is that we didn't cross zero.
1665 // So, if Y is negative, we subtract Y safely.
1666 // Rule 1: Y <s 0 ---> Y.
1667 // If 0 <= Y <= X, we subtract Y safely.
1668 // Rule 2: Y <=s X ---> Y.
1669 // If 0 <= X < Y, we should stop at 0 and can only subtract X.
1670 // Rule 3: Y >s X ---> X.
1671 // It gives us smin(X, Y) to subtract in all cases.
1672 return SE.getMinusSCEV(X, SE.getSMinExpr(X, Y), SCEV::FlagNUW);
1674 const SCEV *M = SE.getMinusSCEV(C, A);
1675 const SCEV *Zero = SE.getZero(M->getType());
1677 // This function returns SCEV equal to 1 if X is non-negative 0 otherwise.
1678 auto SCEVCheckNonNegative = [&](const SCEV *X) {
1679 const Loop *L = IndVar->getLoop();
1680 const SCEV *One = SE.getOne(X->getType());
1681 // Can we trivially prove that X is a non-negative or negative value?
1682 if (isKnownNonNegativeInLoop(X, L, SE))
1683 return One;
1684 else if (isKnownNegativeInLoop(X, L, SE))
1685 return Zero;
1686 // If not, we will have to figure it out during the execution.
1687 // Function smax(smin(X, 0), -1) + 1 equals to 1 if X >= 0 and 0 if X < 0.
1688 const SCEV *NegOne = SE.getNegativeSCEV(One);
1689 return SE.getAddExpr(SE.getSMaxExpr(SE.getSMinExpr(X, Zero), NegOne), One);
1691 // FIXME: Current implementation of ClampedSubtract implicitly assumes that
1692 // X is non-negative (in sense of a signed value). We need to re-implement
1693 // this function in a way that it will correctly handle negative X as well.
1694 // We use it twice: for X = 0 everything is fine, but for X = getEnd() we can
1695 // end up with a negative X and produce wrong results. So currently we ensure
1696 // that if getEnd() is negative then both ends of the safe range are zero.
1697 // Note that this may pessimize elimination of unsigned range checks against
1698 // negative values.
1699 const SCEV *REnd = getEnd();
1700 const SCEV *EndIsNonNegative = SCEVCheckNonNegative(REnd);
1702 const SCEV *Begin = SE.getMulExpr(ClampedSubtract(Zero, M), EndIsNonNegative);
1703 const SCEV *End = SE.getMulExpr(ClampedSubtract(REnd, M), EndIsNonNegative);
1704 return InductiveRangeCheck::Range(Begin, End);
1707 static Optional<InductiveRangeCheck::Range>
1708 IntersectSignedRange(ScalarEvolution &SE,
1709 const Optional<InductiveRangeCheck::Range> &R1,
1710 const InductiveRangeCheck::Range &R2) {
1711 if (R2.isEmpty(SE, /* IsSigned */ true))
1712 return None;
1713 if (!R1.hasValue())
1714 return R2;
1715 auto &R1Value = R1.getValue();
1716 // We never return empty ranges from this function, and R1 is supposed to be
1717 // a result of intersection. Thus, R1 is never empty.
1718 assert(!R1Value.isEmpty(SE, /* IsSigned */ true) &&
1719 "We should never have empty R1!");
1721 // TODO: we could widen the smaller range and have this work; but for now we
1722 // bail out to keep things simple.
1723 if (R1Value.getType() != R2.getType())
1724 return None;
1726 const SCEV *NewBegin = SE.getSMaxExpr(R1Value.getBegin(), R2.getBegin());
1727 const SCEV *NewEnd = SE.getSMinExpr(R1Value.getEnd(), R2.getEnd());
1729 // If the resulting range is empty, just return None.
1730 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1731 if (Ret.isEmpty(SE, /* IsSigned */ true))
1732 return None;
1733 return Ret;
1736 static Optional<InductiveRangeCheck::Range>
1737 IntersectUnsignedRange(ScalarEvolution &SE,
1738 const Optional<InductiveRangeCheck::Range> &R1,
1739 const InductiveRangeCheck::Range &R2) {
1740 if (R2.isEmpty(SE, /* IsSigned */ false))
1741 return None;
1742 if (!R1.hasValue())
1743 return R2;
1744 auto &R1Value = R1.getValue();
1745 // We never return empty ranges from this function, and R1 is supposed to be
1746 // a result of intersection. Thus, R1 is never empty.
1747 assert(!R1Value.isEmpty(SE, /* IsSigned */ false) &&
1748 "We should never have empty R1!");
1750 // TODO: we could widen the smaller range and have this work; but for now we
1751 // bail out to keep things simple.
1752 if (R1Value.getType() != R2.getType())
1753 return None;
1755 const SCEV *NewBegin = SE.getUMaxExpr(R1Value.getBegin(), R2.getBegin());
1756 const SCEV *NewEnd = SE.getUMinExpr(R1Value.getEnd(), R2.getEnd());
1758 // If the resulting range is empty, just return None.
1759 auto Ret = InductiveRangeCheck::Range(NewBegin, NewEnd);
1760 if (Ret.isEmpty(SE, /* IsSigned */ false))
1761 return None;
1762 return Ret;
1765 PreservedAnalyses IRCEPass::run(Function &F, FunctionAnalysisManager &AM) {
1766 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1767 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1768 auto &BPI = AM.getResult<BranchProbabilityAnalysis>(F);
1769 LoopInfo &LI = AM.getResult<LoopAnalysis>(F);
1771 // Get BFI analysis result on demand. Please note that modification of
1772 // CFG invalidates this analysis and we should handle it.
1773 auto getBFI = [&F, &AM ]()->BlockFrequencyInfo & {
1774 return AM.getResult<BlockFrequencyAnalysis>(F);
1776 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI, { getBFI });
1778 bool Changed = false;
1780 bool CFGChanged = false;
1781 for (const auto &L : LI) {
1782 CFGChanged |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1783 /*PreserveLCSSA=*/false);
1784 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1786 Changed |= CFGChanged;
1788 if (CFGChanged && !SkipProfitabilityChecks) {
1789 PreservedAnalyses PA = PreservedAnalyses::all();
1790 PA.abandon<BlockFrequencyAnalysis>();
1791 AM.invalidate(F, PA);
1795 SmallPriorityWorklist<Loop *, 4> Worklist;
1796 appendLoopsToWorklist(LI, Worklist);
1797 auto LPMAddNewLoop = [&Worklist](Loop *NL, bool IsSubloop) {
1798 if (!IsSubloop)
1799 appendLoopsToWorklist(*NL, Worklist);
1802 while (!Worklist.empty()) {
1803 Loop *L = Worklist.pop_back_val();
1804 if (IRCE.run(L, LPMAddNewLoop)) {
1805 Changed = true;
1806 if (!SkipProfitabilityChecks) {
1807 PreservedAnalyses PA = PreservedAnalyses::all();
1808 PA.abandon<BlockFrequencyAnalysis>();
1809 AM.invalidate(F, PA);
1814 if (!Changed)
1815 return PreservedAnalyses::all();
1816 return getLoopPassPreservedAnalyses();
1819 bool IRCELegacyPass::runOnFunction(Function &F) {
1820 if (skipFunction(F))
1821 return false;
1823 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1824 BranchProbabilityInfo &BPI =
1825 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
1826 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1827 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1828 InductiveRangeCheckElimination IRCE(SE, &BPI, DT, LI);
1830 bool Changed = false;
1832 for (const auto &L : LI) {
1833 Changed |= simplifyLoop(L, &DT, &LI, &SE, nullptr, nullptr,
1834 /*PreserveLCSSA=*/false);
1835 Changed |= formLCSSARecursively(*L, DT, &LI, &SE);
1838 SmallPriorityWorklist<Loop *, 4> Worklist;
1839 appendLoopsToWorklist(LI, Worklist);
1840 auto LPMAddNewLoop = [&](Loop *NL, bool IsSubloop) {
1841 if (!IsSubloop)
1842 appendLoopsToWorklist(*NL, Worklist);
1845 while (!Worklist.empty()) {
1846 Loop *L = Worklist.pop_back_val();
1847 Changed |= IRCE.run(L, LPMAddNewLoop);
1849 return Changed;
1852 bool
1853 InductiveRangeCheckElimination::isProfitableToTransform(const Loop &L,
1854 LoopStructure &LS) {
1855 if (SkipProfitabilityChecks)
1856 return true;
1857 if (GetBFI.hasValue()) {
1858 BlockFrequencyInfo &BFI = (*GetBFI)();
1859 uint64_t hFreq = BFI.getBlockFreq(LS.Header).getFrequency();
1860 uint64_t phFreq = BFI.getBlockFreq(L.getLoopPreheader()).getFrequency();
1861 if (phFreq != 0 && hFreq != 0 && (hFreq / phFreq < MinRuntimeIterations)) {
1862 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1863 << "the estimated number of iterations basing on "
1864 "frequency info is " << (hFreq / phFreq) << "\n";);
1865 return false;
1867 return true;
1870 if (!BPI)
1871 return true;
1872 BranchProbability ExitProbability =
1873 BPI->getEdgeProbability(LS.Latch, LS.LatchBrExitIdx);
1874 if (ExitProbability > BranchProbability(1, MinRuntimeIterations)) {
1875 LLVM_DEBUG(dbgs() << "irce: could not prove profitability: "
1876 << "the exit probability is too big " << ExitProbability
1877 << "\n";);
1878 return false;
1880 return true;
1883 bool InductiveRangeCheckElimination::run(
1884 Loop *L, function_ref<void(Loop *, bool)> LPMAddNewLoop) {
1885 if (L->getBlocks().size() >= LoopSizeCutoff) {
1886 LLVM_DEBUG(dbgs() << "irce: giving up constraining loop, too large\n");
1887 return false;
1890 BasicBlock *Preheader = L->getLoopPreheader();
1891 if (!Preheader) {
1892 LLVM_DEBUG(dbgs() << "irce: loop has no preheader, leaving\n");
1893 return false;
1896 LLVMContext &Context = Preheader->getContext();
1897 SmallVector<InductiveRangeCheck, 16> RangeChecks;
1899 for (auto BBI : L->getBlocks())
1900 if (BranchInst *TBI = dyn_cast<BranchInst>(BBI->getTerminator()))
1901 InductiveRangeCheck::extractRangeChecksFromBranch(TBI, L, SE, BPI,
1902 RangeChecks);
1904 if (RangeChecks.empty())
1905 return false;
1907 auto PrintRecognizedRangeChecks = [&](raw_ostream &OS) {
1908 OS << "irce: looking at loop "; L->print(OS);
1909 OS << "irce: loop has " << RangeChecks.size()
1910 << " inductive range checks: \n";
1911 for (InductiveRangeCheck &IRC : RangeChecks)
1912 IRC.print(OS);
1915 LLVM_DEBUG(PrintRecognizedRangeChecks(dbgs()));
1917 if (PrintRangeChecks)
1918 PrintRecognizedRangeChecks(errs());
1920 const char *FailureReason = nullptr;
1921 Optional<LoopStructure> MaybeLoopStructure =
1922 LoopStructure::parseLoopStructure(SE, *L, FailureReason);
1923 if (!MaybeLoopStructure.hasValue()) {
1924 LLVM_DEBUG(dbgs() << "irce: could not parse loop structure: "
1925 << FailureReason << "\n";);
1926 return false;
1928 LoopStructure LS = MaybeLoopStructure.getValue();
1929 if (!isProfitableToTransform(*L, LS))
1930 return false;
1931 const SCEVAddRecExpr *IndVar =
1932 cast<SCEVAddRecExpr>(SE.getMinusSCEV(SE.getSCEV(LS.IndVarBase), SE.getSCEV(LS.IndVarStep)));
1934 Optional<InductiveRangeCheck::Range> SafeIterRange;
1935 Instruction *ExprInsertPt = Preheader->getTerminator();
1937 SmallVector<InductiveRangeCheck, 4> RangeChecksToEliminate;
1938 // Basing on the type of latch predicate, we interpret the IV iteration range
1939 // as signed or unsigned range. We use different min/max functions (signed or
1940 // unsigned) when intersecting this range with safe iteration ranges implied
1941 // by range checks.
1942 auto IntersectRange =
1943 LS.IsSignedPredicate ? IntersectSignedRange : IntersectUnsignedRange;
1945 IRBuilder<> B(ExprInsertPt);
1946 for (InductiveRangeCheck &IRC : RangeChecks) {
1947 auto Result = IRC.computeSafeIterationSpace(SE, IndVar,
1948 LS.IsSignedPredicate);
1949 if (Result.hasValue()) {
1950 auto MaybeSafeIterRange =
1951 IntersectRange(SE, SafeIterRange, Result.getValue());
1952 if (MaybeSafeIterRange.hasValue()) {
1953 assert(
1954 !MaybeSafeIterRange.getValue().isEmpty(SE, LS.IsSignedPredicate) &&
1955 "We should never return empty ranges!");
1956 RangeChecksToEliminate.push_back(IRC);
1957 SafeIterRange = MaybeSafeIterRange.getValue();
1962 if (!SafeIterRange.hasValue())
1963 return false;
1965 LoopConstrainer LC(*L, LI, LPMAddNewLoop, LS, SE, DT,
1966 SafeIterRange.getValue());
1967 bool Changed = LC.run();
1969 if (Changed) {
1970 auto PrintConstrainedLoopInfo = [L]() {
1971 dbgs() << "irce: in function ";
1972 dbgs() << L->getHeader()->getParent()->getName() << ": ";
1973 dbgs() << "constrained ";
1974 L->print(dbgs());
1977 LLVM_DEBUG(PrintConstrainedLoopInfo());
1979 if (PrintChangedLoops)
1980 PrintConstrainedLoopInfo();
1982 // Optimize away the now-redundant range checks.
1984 for (InductiveRangeCheck &IRC : RangeChecksToEliminate) {
1985 ConstantInt *FoldedRangeCheck = IRC.getPassingDirection()
1986 ? ConstantInt::getTrue(Context)
1987 : ConstantInt::getFalse(Context);
1988 IRC.getCheckUse()->set(FoldedRangeCheck);
1992 return Changed;
1995 Pass *llvm::createInductiveRangeCheckEliminationPass() {
1996 return new IRCELegacyPass();