1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
56 #define DEBUG_TYPE "loop-interchange"
58 STATISTIC(LoopsInterchanged
, "Number of loops interchanged");
60 static cl::opt
<int> LoopInterchangeCostThreshold(
61 "loop-interchange-threshold", cl::init(0), cl::Hidden
,
62 cl::desc("Interchange if you gain more than this number"));
66 using LoopVector
= SmallVector
<Loop
*, 8>;
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix
= std::vector
<std::vector
<char>>;
71 } // end anonymous namespace
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount
= 100;
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth
= 10;
79 #ifdef DUMP_DEP_MATRICIES
80 static void printDepMatrix(CharMatrix
&DepMatrix
) {
81 for (auto &Row
: DepMatrix
) {
83 LLVM_DEBUG(dbgs() << D
<< " ");
84 LLVM_DEBUG(dbgs() << "\n");
89 static bool populateDependencyMatrix(CharMatrix
&DepMatrix
, unsigned Level
,
90 Loop
*L
, DependenceInfo
*DI
) {
91 using ValueVector
= SmallVector
<Value
*, 16>;
96 for (BasicBlock
*BB
: L
->blocks()) {
97 // Scan the BB and collect legal loads and stores.
98 for (Instruction
&I
: *BB
) {
99 if (!isa
<Instruction
>(I
))
101 if (auto *Ld
= dyn_cast
<LoadInst
>(&I
)) {
104 MemInstr
.push_back(&I
);
105 } else if (auto *St
= dyn_cast
<StoreInst
>(&I
)) {
108 MemInstr
.push_back(&I
);
113 LLVM_DEBUG(dbgs() << "Found " << MemInstr
.size()
114 << " Loads and Stores to analyze\n");
116 ValueVector::iterator I
, IE
, J
, JE
;
118 for (I
= MemInstr
.begin(), IE
= MemInstr
.end(); I
!= IE
; ++I
) {
119 for (J
= I
, JE
= MemInstr
.end(); J
!= JE
; ++J
) {
120 std::vector
<char> Dep
;
121 Instruction
*Src
= cast
<Instruction
>(*I
);
122 Instruction
*Dst
= cast
<Instruction
>(*J
);
125 // Ignore Input dependencies.
126 if (isa
<LoadInst
>(Src
) && isa
<LoadInst
>(Dst
))
128 // Track Output, Flow, and Anti dependencies.
129 if (auto D
= DI
->depends(Src
, Dst
, true)) {
130 assert(D
->isOrdered() && "Expected an output, flow or anti dep.");
131 LLVM_DEBUG(StringRef DepType
=
132 D
->isFlow() ? "flow" : D
->isAnti() ? "anti" : "output";
133 dbgs() << "Found " << DepType
134 << " dependency between Src and Dst\n"
135 << " Src:" << *Src
<< "\n Dst:" << *Dst
<< '\n');
136 unsigned Levels
= D
->getLevels();
138 for (unsigned II
= 1; II
<= Levels
; ++II
) {
139 const SCEV
*Distance
= D
->getDistance(II
);
140 const SCEVConstant
*SCEVConst
=
141 dyn_cast_or_null
<SCEVConstant
>(Distance
);
143 const ConstantInt
*CI
= SCEVConst
->getValue();
144 if (CI
->isNegative())
146 else if (CI
->isZero())
150 Dep
.push_back(Direction
);
151 } else if (D
->isScalar(II
)) {
153 Dep
.push_back(Direction
);
155 unsigned Dir
= D
->getDirection(II
);
156 if (Dir
== Dependence::DVEntry::LT
||
157 Dir
== Dependence::DVEntry::LE
)
159 else if (Dir
== Dependence::DVEntry::GT
||
160 Dir
== Dependence::DVEntry::GE
)
162 else if (Dir
== Dependence::DVEntry::EQ
)
166 Dep
.push_back(Direction
);
169 while (Dep
.size() != Level
) {
173 DepMatrix
.push_back(Dep
);
174 if (DepMatrix
.size() > MaxMemInstrCount
) {
175 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
176 << " dependencies inside loop\n");
186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
187 // matrix by exchanging the two columns.
188 static void interChangeDependencies(CharMatrix
&DepMatrix
, unsigned FromIndx
,
190 for (unsigned I
= 0, E
= DepMatrix
.size(); I
< E
; ++I
)
191 std::swap(DepMatrix
[I
][ToIndx
], DepMatrix
[I
][FromIndx
]);
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 static bool isOuterMostDepPositive(CharMatrix
&DepMatrix
, unsigned Row
,
198 for (unsigned i
= 0; i
<= Column
; ++i
) {
199 if (DepMatrix
[Row
][i
] == '<')
201 if (DepMatrix
[Row
][i
] == '>')
204 // All dependencies were '=','S' or 'I'
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix
&DepMatrix
, unsigned Row
,
211 for (unsigned i
= 0; i
< Column
; ++i
) {
212 if (DepMatrix
[Row
][i
] != '=' && DepMatrix
[Row
][i
] != 'S' &&
213 DepMatrix
[Row
][i
] != 'I')
219 static bool validDepInterchange(CharMatrix
&DepMatrix
, unsigned Row
,
220 unsigned OuterLoopId
, char InnerDep
,
222 if (isOuterMostDepPositive(DepMatrix
, Row
, OuterLoopId
))
225 if (InnerDep
== OuterDep
)
228 // It is legal to interchange if and only if after interchange no row has a
229 // '>' direction as the leftmost non-'='.
231 if (InnerDep
== '=' || InnerDep
== 'S' || InnerDep
== 'I')
237 if (InnerDep
== '>') {
238 // If OuterLoopId represents outermost loop then interchanging will make the
239 // 1st dependency as '>'
240 if (OuterLoopId
== 0)
243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244 // interchanging will result in this row having an outermost non '='
246 if (!containsNoDependence(DepMatrix
, Row
, OuterLoopId
))
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix
&DepMatrix
,
258 unsigned InnerLoopId
,
259 unsigned OuterLoopId
) {
260 unsigned NumRows
= DepMatrix
.size();
261 // For each row check if it is valid to interchange.
262 for (unsigned Row
= 0; Row
< NumRows
; ++Row
) {
263 char InnerDep
= DepMatrix
[Row
][InnerLoopId
];
264 char OuterDep
= DepMatrix
[Row
][OuterLoopId
];
265 if (InnerDep
== '*' || OuterDep
== '*')
267 if (!validDepInterchange(DepMatrix
, Row
, OuterLoopId
, InnerDep
, OuterDep
))
273 static LoopVector
populateWorklist(Loop
&L
) {
274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275 << L
.getHeader()->getParent()->getName() << " Loop: %"
276 << L
.getHeader()->getName() << '\n');
278 Loop
*CurrentLoop
= &L
;
279 const std::vector
<Loop
*> *Vec
= &CurrentLoop
->getSubLoops();
280 while (!Vec
->empty()) {
281 // The current loop has multiple subloops in it hence it is not tightly
283 // Discard all loops above it added into Worklist.
284 if (Vec
->size() != 1)
287 LoopList
.push_back(CurrentLoop
);
288 CurrentLoop
= Vec
->front();
289 Vec
= &CurrentLoop
->getSubLoops();
291 LoopList
.push_back(CurrentLoop
);
295 static PHINode
*getInductionVariable(Loop
*L
, ScalarEvolution
*SE
) {
296 PHINode
*InnerIndexVar
= L
->getCanonicalInductionVariable();
298 return InnerIndexVar
;
299 if (L
->getLoopLatch() == nullptr || L
->getLoopPredecessor() == nullptr)
301 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
302 PHINode
*PhiVar
= cast
<PHINode
>(I
);
303 Type
*PhiTy
= PhiVar
->getType();
304 if (!PhiTy
->isIntegerTy() && !PhiTy
->isFloatingPointTy() &&
305 !PhiTy
->isPointerTy())
307 const SCEVAddRecExpr
*AddRec
=
308 dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(PhiVar
));
309 if (!AddRec
|| !AddRec
->isAffine())
311 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
312 if (!isa
<SCEVConstant
>(Step
))
314 // Found the induction variable.
315 // FIXME: Handle loops with more than one induction variable. Note that,
316 // currently, legality makes sure we have only one induction variable.
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality
{
327 LoopInterchangeLegality(Loop
*Outer
, Loop
*Inner
, ScalarEvolution
*SE
,
328 OptimizationRemarkEmitter
*ORE
)
329 : OuterLoop(Outer
), InnerLoop(Inner
), SE(SE
), ORE(ORE
) {}
331 /// Check if the loops can be interchanged.
332 bool canInterchangeLoops(unsigned InnerLoopId
, unsigned OuterLoopId
,
333 CharMatrix
&DepMatrix
);
335 /// Check if the loop structure is understood. We do not handle triangular
337 bool isLoopStructureUnderstood(PHINode
*InnerInductionVar
);
339 bool currentLimitations();
341 const SmallPtrSetImpl
<PHINode
*> &getOuterInnerReductions() const {
342 return OuterInnerReductions
;
346 bool tightlyNested(Loop
*Outer
, Loop
*Inner
);
347 bool containsUnsafeInstructions(BasicBlock
*BB
);
349 /// Discover induction and reduction PHIs in the header of \p L. Induction
350 /// PHIs are added to \p Inductions, reductions are added to
351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352 /// to be passed as \p InnerLoop.
353 bool findInductionAndReductions(Loop
*L
,
354 SmallVector
<PHINode
*, 8> &Inductions
,
362 /// Interface to emit optimization remarks.
363 OptimizationRemarkEmitter
*ORE
;
365 /// Set of reduction PHIs taking part of a reduction across the inner and
367 SmallPtrSet
<PHINode
*, 4> OuterInnerReductions
;
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
372 class LoopInterchangeProfitability
{
374 LoopInterchangeProfitability(Loop
*Outer
, Loop
*Inner
, ScalarEvolution
*SE
,
375 OptimizationRemarkEmitter
*ORE
)
376 : OuterLoop(Outer
), InnerLoop(Inner
), SE(SE
), ORE(ORE
) {}
378 /// Check if the loop interchange is profitable.
379 bool isProfitable(unsigned InnerLoopId
, unsigned OuterLoopId
,
380 CharMatrix
&DepMatrix
);
383 int getInstrOrderCost();
391 /// Interface to emit optimization remarks.
392 OptimizationRemarkEmitter
*ORE
;
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform
{
398 LoopInterchangeTransform(Loop
*Outer
, Loop
*Inner
, ScalarEvolution
*SE
,
399 LoopInfo
*LI
, DominatorTree
*DT
,
400 const LoopInterchangeLegality
&LIL
)
401 : OuterLoop(Outer
), InnerLoop(Inner
), SE(SE
), LI(LI
), DT(DT
), LIL(LIL
) {}
403 /// Interchange OuterLoop and InnerLoop.
405 void restructureLoops(Loop
*NewInner
, Loop
*NewOuter
,
406 BasicBlock
*OrigInnerPreHeader
,
407 BasicBlock
*OrigOuterPreHeader
);
408 void removeChildLoop(Loop
*OuterLoop
, Loop
*InnerLoop
);
411 bool adjustLoopLinks();
412 bool adjustLoopBranches();
423 const LoopInterchangeLegality
&LIL
;
426 struct LoopInterchange
{
427 ScalarEvolution
*SE
= nullptr;
428 LoopInfo
*LI
= nullptr;
429 DependenceInfo
*DI
= nullptr;
430 DominatorTree
*DT
= nullptr;
432 /// Interface to emit optimization remarks.
433 OptimizationRemarkEmitter
*ORE
;
435 LoopInterchange(ScalarEvolution
*SE
, LoopInfo
*LI
, DependenceInfo
*DI
,
436 DominatorTree
*DT
, OptimizationRemarkEmitter
*ORE
)
437 : SE(SE
), LI(LI
), DI(DI
), DT(DT
), ORE(ORE
) {}
440 if (L
->getParentLoop())
443 return processLoopList(populateWorklist(*L
));
446 bool run(LoopNest
&LN
) {
447 const auto &LoopList
= LN
.getLoops();
448 for (unsigned I
= 1; I
< LoopList
.size(); ++I
)
449 if (LoopList
[I
]->getParentLoop() != LoopList
[I
- 1])
451 return processLoopList(LoopList
);
454 bool isComputableLoopNest(ArrayRef
<Loop
*> LoopList
) {
455 for (Loop
*L
: LoopList
) {
456 const SCEV
*ExitCountOuter
= SE
->getBackedgeTakenCount(L
);
457 if (isa
<SCEVCouldNotCompute
>(ExitCountOuter
)) {
458 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
461 if (L
->getNumBackEdges() != 1) {
462 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
465 if (!L
->getExitingBlock()) {
466 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
473 unsigned selectLoopForInterchange(ArrayRef
<Loop
*> LoopList
) {
474 // TODO: Add a better heuristic to select the loop to be interchanged based
475 // on the dependence matrix. Currently we select the innermost loop.
476 return LoopList
.size() - 1;
479 bool processLoopList(ArrayRef
<Loop
*> LoopList
) {
480 bool Changed
= false;
481 unsigned LoopNestDepth
= LoopList
.size();
482 if (LoopNestDepth
< 2) {
483 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
486 if (LoopNestDepth
> MaxLoopNestDepth
) {
487 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
488 << MaxLoopNestDepth
<< "\n");
491 if (!isComputableLoopNest(LoopList
)) {
492 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
496 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
499 CharMatrix DependencyMatrix
;
500 Loop
*OuterMostLoop
= *(LoopList
.begin());
501 if (!populateDependencyMatrix(DependencyMatrix
, LoopNestDepth
,
502 OuterMostLoop
, DI
)) {
503 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
506 #ifdef DUMP_DEP_MATRICIES
507 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
508 printDepMatrix(DependencyMatrix
);
511 // Get the Outermost loop exit.
512 BasicBlock
*LoopNestExit
= OuterMostLoop
->getExitBlock();
514 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
518 unsigned SelecLoopId
= selectLoopForInterchange(LoopList
);
519 // Move the selected loop outwards to the best possible position.
520 Loop
*LoopToBeInterchanged
= LoopList
[SelecLoopId
];
521 for (unsigned i
= SelecLoopId
; i
> 0; i
--) {
522 bool Interchanged
= processLoop(LoopToBeInterchanged
, LoopList
[i
- 1], i
,
523 i
- 1, DependencyMatrix
);
526 // Update the DependencyMatrix
527 interChangeDependencies(DependencyMatrix
, i
, i
- 1);
528 #ifdef DUMP_DEP_MATRICIES
529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
530 printDepMatrix(DependencyMatrix
);
532 Changed
|= Interchanged
;
537 bool processLoop(Loop
*InnerLoop
, Loop
*OuterLoop
, unsigned InnerLoopId
,
538 unsigned OuterLoopId
,
539 std::vector
<std::vector
<char>> &DependencyMatrix
) {
540 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
541 << " and OuterLoopId = " << OuterLoopId
<< "\n");
542 LoopInterchangeLegality
LIL(OuterLoop
, InnerLoop
, SE
, ORE
);
543 if (!LIL
.canInterchangeLoops(InnerLoopId
, OuterLoopId
, DependencyMatrix
)) {
544 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
547 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
548 LoopInterchangeProfitability
LIP(OuterLoop
, InnerLoop
, SE
, ORE
);
549 if (!LIP
.isProfitable(InnerLoopId
, OuterLoopId
, DependencyMatrix
)) {
550 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
555 return OptimizationRemark(DEBUG_TYPE
, "Interchanged",
556 InnerLoop
->getStartLoc(),
557 InnerLoop
->getHeader())
558 << "Loop interchanged with enclosing loop.";
561 LoopInterchangeTransform
LIT(OuterLoop
, InnerLoop
, SE
, LI
, DT
, LIL
);
563 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
566 assert(InnerLoop
->isLCSSAForm(*DT
) &&
567 "Inner loop not left in LCSSA form after loop interchange!");
568 assert(OuterLoop
->isLCSSAForm(*DT
) &&
569 "Outer loop not left in LCSSA form after loop interchange!");
575 } // end anonymous namespace
577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock
*BB
) {
578 return any_of(*BB
, [](const Instruction
&I
) {
579 return I
.mayHaveSideEffects() || I
.mayReadFromMemory();
583 bool LoopInterchangeLegality::tightlyNested(Loop
*OuterLoop
, Loop
*InnerLoop
) {
584 BasicBlock
*OuterLoopHeader
= OuterLoop
->getHeader();
585 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
586 BasicBlock
*OuterLoopLatch
= OuterLoop
->getLoopLatch();
588 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
590 // A perfectly nested loop will not have any branch in between the outer and
591 // inner block i.e. outer header will branch to either inner preheader and
593 BranchInst
*OuterLoopHeaderBI
=
594 dyn_cast
<BranchInst
>(OuterLoopHeader
->getTerminator());
595 if (!OuterLoopHeaderBI
)
598 for (BasicBlock
*Succ
: successors(OuterLoopHeaderBI
))
599 if (Succ
!= InnerLoopPreHeader
&& Succ
!= InnerLoop
->getHeader() &&
600 Succ
!= OuterLoopLatch
)
603 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
604 // We do not have any basic block in between now make sure the outer header
605 // and outer loop latch doesn't contain any unsafe instructions.
606 if (containsUnsafeInstructions(OuterLoopHeader
) ||
607 containsUnsafeInstructions(OuterLoopLatch
))
610 // Also make sure the inner loop preheader does not contain any unsafe
611 // instructions. Note that all instructions in the preheader will be moved to
612 // the outer loop header when interchanging.
613 if (InnerLoopPreHeader
!= OuterLoopHeader
&&
614 containsUnsafeInstructions(InnerLoopPreHeader
))
617 BasicBlock
*InnerLoopExit
= InnerLoop
->getExitBlock();
618 // Ensure the inner loop exit block flows to the outer loop latch possibly
619 // through empty blocks.
620 const BasicBlock
&SuccInner
=
621 LoopNest::skipEmptyBlockUntil(InnerLoopExit
, OuterLoopLatch
);
622 if (&SuccInner
!= OuterLoopLatch
) {
623 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
624 << " does not lead to the outer loop latch.\n";);
627 // The inner loop exit block does flow to the outer loop latch and not some
628 // other BBs, now make sure it contains safe instructions, since it will be
629 // moved into the (new) inner loop after interchange.
630 if (containsUnsafeInstructions(InnerLoopExit
))
633 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
634 // We have a perfect loop nest.
638 bool LoopInterchangeLegality::isLoopStructureUnderstood(
639 PHINode
*InnerInduction
) {
640 unsigned Num
= InnerInduction
->getNumOperands();
641 BasicBlock
*InnerLoopPreheader
= InnerLoop
->getLoopPreheader();
642 for (unsigned i
= 0; i
< Num
; ++i
) {
643 Value
*Val
= InnerInduction
->getOperand(i
);
644 if (isa
<Constant
>(Val
))
646 Instruction
*I
= dyn_cast
<Instruction
>(Val
);
649 // TODO: Handle triangular loops.
650 // e.g. for(int i=0;i<N;i++)
651 // for(int j=i;j<N;j++)
652 unsigned IncomBlockIndx
= PHINode::getIncomingValueNumForOperand(i
);
653 if (InnerInduction
->getIncomingBlock(IncomBlockIndx
) ==
654 InnerLoopPreheader
&&
655 !OuterLoop
->isLoopInvariant(I
)) {
660 // TODO: Handle triangular loops of another form.
661 // e.g. for(int i=0;i<N;i++)
662 // for(int j=0;j<i;j++)
664 // for(int i=0;i<N;i++)
665 // for(int j=0;j*i<N;j++)
666 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
667 BranchInst
*InnerLoopLatchBI
=
668 dyn_cast
<BranchInst
>(InnerLoopLatch
->getTerminator());
669 if (!InnerLoopLatchBI
->isConditional())
671 if (CmpInst
*InnerLoopCmp
=
672 dyn_cast
<CmpInst
>(InnerLoopLatchBI
->getCondition())) {
673 Value
*Op0
= InnerLoopCmp
->getOperand(0);
674 Value
*Op1
= InnerLoopCmp
->getOperand(1);
676 // LHS and RHS of the inner loop exit condition, e.g.,
677 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
678 Value
*Left
= nullptr;
679 Value
*Right
= nullptr;
681 // Check if V only involves inner loop induction variable.
682 // Return true if V is InnerInduction, or a cast from
683 // InnerInduction, or a binary operator that involves
684 // InnerInduction and a constant.
685 std::function
<bool(Value
*)> IsPathToIndVar
;
686 IsPathToIndVar
= [&InnerInduction
, &IsPathToIndVar
](Value
*V
) -> bool {
687 if (V
== InnerInduction
)
689 if (isa
<Constant
>(V
))
691 Instruction
*I
= dyn_cast
<Instruction
>(V
);
694 if (isa
<CastInst
>(I
))
695 return IsPathToIndVar(I
->getOperand(0));
696 if (isa
<BinaryOperator
>(I
))
697 return IsPathToIndVar(I
->getOperand(0)) &&
698 IsPathToIndVar(I
->getOperand(1));
702 if (IsPathToIndVar(Op0
) && !isa
<Constant
>(Op0
)) {
705 } else if (IsPathToIndVar(Op1
) && !isa
<Constant
>(Op1
)) {
713 const SCEV
*S
= SE
->getSCEV(Right
);
714 if (!SE
->isLoopInvariant(S
, OuterLoop
))
721 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
723 static Value
*followLCSSA(Value
*SV
) {
724 PHINode
*PHI
= dyn_cast
<PHINode
>(SV
);
728 if (PHI
->getNumIncomingValues() != 1)
730 return followLCSSA(PHI
->getIncomingValue(0));
733 // Check V's users to see if it is involved in a reduction in L.
734 static PHINode
*findInnerReductionPhi(Loop
*L
, Value
*V
) {
735 // Reduction variables cannot be constants.
736 if (isa
<Constant
>(V
))
739 for (Value
*User
: V
->users()) {
740 if (PHINode
*PHI
= dyn_cast
<PHINode
>(User
)) {
741 if (PHI
->getNumIncomingValues() == 1)
743 RecurrenceDescriptor RD
;
744 if (RecurrenceDescriptor::isReductionPHI(PHI
, L
, RD
))
753 bool LoopInterchangeLegality::findInductionAndReductions(
754 Loop
*L
, SmallVector
<PHINode
*, 8> &Inductions
, Loop
*InnerLoop
) {
755 if (!L
->getLoopLatch() || !L
->getLoopPredecessor())
757 for (PHINode
&PHI
: L
->getHeader()->phis()) {
758 RecurrenceDescriptor RD
;
759 InductionDescriptor ID
;
760 if (InductionDescriptor::isInductionPHI(&PHI
, L
, SE
, ID
))
761 Inductions
.push_back(&PHI
);
763 // PHIs in inner loops need to be part of a reduction in the outer loop,
764 // discovered when checking the PHIs of the outer loop earlier.
766 if (!OuterInnerReductions
.count(&PHI
)) {
767 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
768 "across the outer loop.\n");
772 assert(PHI
.getNumIncomingValues() == 2 &&
773 "Phis in loop header should have exactly 2 incoming values");
774 // Check if we have a PHI node in the outer loop that has a reduction
775 // result from the inner loop as an incoming value.
776 Value
*V
= followLCSSA(PHI
.getIncomingValueForBlock(L
->getLoopLatch()));
777 PHINode
*InnerRedPhi
= findInnerReductionPhi(InnerLoop
, V
);
779 !llvm::is_contained(InnerRedPhi
->incoming_values(), &PHI
)) {
782 << "Failed to recognize PHI as an induction or reduction.\n");
785 OuterInnerReductions
.insert(&PHI
);
786 OuterInnerReductions
.insert(InnerRedPhi
);
793 // This function indicates the current limitations in the transform as a result
794 // of which we do not proceed.
795 bool LoopInterchangeLegality::currentLimitations() {
796 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
797 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
799 // transform currently expects the loop latches to also be the exiting
801 if (InnerLoop
->getExitingBlock() != InnerLoopLatch
||
802 OuterLoop
->getExitingBlock() != OuterLoop
->getLoopLatch() ||
803 !isa
<BranchInst
>(InnerLoopLatch
->getTerminator()) ||
804 !isa
<BranchInst
>(OuterLoop
->getLoopLatch()->getTerminator())) {
806 dbgs() << "Loops where the latch is not the exiting block are not"
807 << " supported currently.\n");
809 return OptimizationRemarkMissed(DEBUG_TYPE
, "ExitingNotLatch",
810 OuterLoop
->getStartLoc(),
811 OuterLoop
->getHeader())
812 << "Loops where the latch is not the exiting block cannot be"
813 " interchange currently.";
818 PHINode
*InnerInductionVar
;
819 SmallVector
<PHINode
*, 8> Inductions
;
820 if (!findInductionAndReductions(OuterLoop
, Inductions
, InnerLoop
)) {
822 dbgs() << "Only outer loops with induction or reduction PHI nodes "
823 << "are supported currently.\n");
825 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedPHIOuter",
826 OuterLoop
->getStartLoc(),
827 OuterLoop
->getHeader())
828 << "Only outer loops with induction or reduction PHI nodes can be"
829 " interchanged currently.";
834 // TODO: Currently we handle only loops with 1 induction variable.
835 if (Inductions
.size() != 1) {
836 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
837 << "supported currently.\n");
839 return OptimizationRemarkMissed(DEBUG_TYPE
, "MultiIndutionOuter",
840 OuterLoop
->getStartLoc(),
841 OuterLoop
->getHeader())
842 << "Only outer loops with 1 induction variable can be "
843 "interchanged currently.";
849 if (!findInductionAndReductions(InnerLoop
, Inductions
, nullptr)) {
851 dbgs() << "Only inner loops with induction or reduction PHI nodes "
852 << "are supported currently.\n");
854 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedPHIInner",
855 InnerLoop
->getStartLoc(),
856 InnerLoop
->getHeader())
857 << "Only inner loops with induction or reduction PHI nodes can be"
858 " interchange currently.";
863 // TODO: Currently we handle only loops with 1 induction variable.
864 if (Inductions
.size() != 1) {
866 dbgs() << "We currently only support loops with 1 induction variable."
867 << "Failed to interchange due to current limitation\n");
869 return OptimizationRemarkMissed(DEBUG_TYPE
, "MultiInductionInner",
870 InnerLoop
->getStartLoc(),
871 InnerLoop
->getHeader())
872 << "Only inner loops with 1 induction variable can be "
873 "interchanged currently.";
877 InnerInductionVar
= Inductions
.pop_back_val();
879 // TODO: Triangular loops are not handled for now.
880 if (!isLoopStructureUnderstood(InnerInductionVar
)) {
881 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
883 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedStructureInner",
884 InnerLoop
->getStartLoc(),
885 InnerLoop
->getHeader())
886 << "Inner loop structure not understood currently.";
891 // TODO: Current limitation: Since we split the inner loop latch at the point
892 // were induction variable is incremented (induction.next); We cannot have
893 // more than 1 user of induction.next since it would result in broken code
896 // for(i=0;i<N;i++) {
897 // for(j = 0;j<M;j++) {
898 // A[j+1][i+2] = A[j][i]+k;
901 Instruction
*InnerIndexVarInc
= nullptr;
902 if (InnerInductionVar
->getIncomingBlock(0) == InnerLoopPreHeader
)
904 dyn_cast
<Instruction
>(InnerInductionVar
->getIncomingValue(1));
907 dyn_cast
<Instruction
>(InnerInductionVar
->getIncomingValue(0));
909 if (!InnerIndexVarInc
) {
911 dbgs() << "Did not find an instruction to increment the induction "
914 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoIncrementInInner",
915 InnerLoop
->getStartLoc(),
916 InnerLoop
->getHeader())
917 << "The inner loop does not increment the induction variable.";
922 // Since we split the inner loop latch on this induction variable. Make sure
923 // we do not have any instruction between the induction variable and branch
926 bool FoundInduction
= false;
927 for (const Instruction
&I
:
928 llvm::reverse(InnerLoopLatch
->instructionsWithoutDebug())) {
929 if (isa
<BranchInst
>(I
) || isa
<CmpInst
>(I
) || isa
<TruncInst
>(I
) ||
933 // We found an instruction. If this is not induction variable then it is not
934 // safe to split this loop latch.
935 if (!I
.isIdenticalTo(InnerIndexVarInc
)) {
936 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
937 << "variable increment and branch.\n");
939 return OptimizationRemarkMissed(
940 DEBUG_TYPE
, "UnsupportedInsBetweenInduction",
941 InnerLoop
->getStartLoc(), InnerLoop
->getHeader())
942 << "Found unsupported instruction between induction variable "
943 "increment and branch.";
948 FoundInduction
= true;
951 // The loop latch ended and we didn't find the induction variable return as
952 // current limitation.
953 if (!FoundInduction
) {
954 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
956 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoIndutionVariable",
957 InnerLoop
->getStartLoc(),
958 InnerLoop
->getHeader())
959 << "Did not find the induction variable.";
966 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
967 // users are either reduction PHIs or PHIs outside the outer loop (which means
968 // the we are only interested in the final value after the loop).
970 areInnerLoopExitPHIsSupported(Loop
*InnerL
, Loop
*OuterL
,
971 SmallPtrSetImpl
<PHINode
*> &Reductions
) {
972 BasicBlock
*InnerExit
= OuterL
->getUniqueExitBlock();
973 for (PHINode
&PHI
: InnerExit
->phis()) {
974 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
975 if (PHI
.getNumIncomingValues() > 1)
977 if (any_of(PHI
.users(), [&Reductions
, OuterL
](User
*U
) {
978 PHINode
*PN
= dyn_cast
<PHINode
>(U
);
980 (!Reductions
.count(PN
) && OuterL
->contains(PN
->getParent()));
988 // We currently support LCSSA PHI nodes in the outer loop exit, if their
989 // incoming values do not come from the outer loop latch or if the
990 // outer loop latch has a single predecessor. In that case, the value will
991 // be available if both the inner and outer loop conditions are true, which
992 // will still be true after interchanging. If we have multiple predecessor,
993 // that may not be the case, e.g. because the outer loop latch may be executed
994 // if the inner loop is not executed.
995 static bool areOuterLoopExitPHIsSupported(Loop
*OuterLoop
, Loop
*InnerLoop
) {
996 BasicBlock
*LoopNestExit
= OuterLoop
->getUniqueExitBlock();
997 for (PHINode
&PHI
: LoopNestExit
->phis()) {
998 // FIXME: We currently are not able to detect floating point reductions
999 // and have to use floating point PHIs as a proxy to prevent
1000 // interchanging in the presence of floating point reductions.
1001 if (PHI
.getType()->isFloatingPointTy())
1003 for (unsigned i
= 0; i
< PHI
.getNumIncomingValues(); i
++) {
1004 Instruction
*IncomingI
= dyn_cast
<Instruction
>(PHI
.getIncomingValue(i
));
1005 if (!IncomingI
|| IncomingI
->getParent() != OuterLoop
->getLoopLatch())
1008 // The incoming value is defined in the outer loop latch. Currently we
1009 // only support that in case the outer loop latch has a single predecessor.
1010 // This guarantees that the outer loop latch is executed if and only if
1011 // the inner loop is executed (because tightlyNested() guarantees that the
1012 // outer loop header only branches to the inner loop or the outer loop
1014 // FIXME: We could weaken this logic and allow multiple predecessors,
1015 // if the values are produced outside the loop latch. We would need
1016 // additional logic to update the PHI nodes in the exit block as
1018 if (OuterLoop
->getLoopLatch()->getUniquePredecessor() == nullptr)
1025 // In case of multi-level nested loops, it may occur that lcssa phis exist in
1026 // the latch of InnerLoop, i.e., when defs of the incoming values are further
1027 // inside the loopnest. Sometimes those incoming values are not available
1028 // after interchange, since the original inner latch will become the new outer
1029 // latch which may have predecessor paths that do not include those incoming
1031 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
1032 // multi-level loop nests.
1033 static bool areInnerLoopLatchPHIsSupported(Loop
*OuterLoop
, Loop
*InnerLoop
) {
1034 if (InnerLoop
->getSubLoops().empty())
1036 // If the original outer latch has only one predecessor, then values defined
1037 // further inside the looploop, e.g., in the innermost loop, will be available
1038 // at the new outer latch after interchange.
1039 if (OuterLoop
->getLoopLatch()->getUniquePredecessor() != nullptr)
1042 // The outer latch has more than one predecessors, i.e., the inner
1043 // exit and the inner header.
1044 // PHI nodes in the inner latch are lcssa phis where the incoming values
1045 // are defined further inside the loopnest. Check if those phis are used
1046 // in the original inner latch. If that is the case then bail out since
1047 // those incoming values may not be available at the new outer latch.
1048 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
1049 for (PHINode
&PHI
: InnerLoopLatch
->phis()) {
1050 for (auto *U
: PHI
.users()) {
1051 Instruction
*UI
= cast
<Instruction
>(U
);
1052 if (InnerLoopLatch
== UI
->getParent())
1059 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId
,
1060 unsigned OuterLoopId
,
1061 CharMatrix
&DepMatrix
) {
1062 if (!isLegalToInterChangeLoops(DepMatrix
, InnerLoopId
, OuterLoopId
)) {
1063 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
1064 << " and OuterLoopId = " << OuterLoopId
1065 << " due to dependence\n");
1067 return OptimizationRemarkMissed(DEBUG_TYPE
, "Dependence",
1068 InnerLoop
->getStartLoc(),
1069 InnerLoop
->getHeader())
1070 << "Cannot interchange loops due to dependences.";
1074 // Check if outer and inner loop contain legal instructions only.
1075 for (auto *BB
: OuterLoop
->blocks())
1076 for (Instruction
&I
: BB
->instructionsWithoutDebug())
1077 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
1078 // readnone functions do not prevent interchanging.
1079 if (CI
->doesNotReadMemory())
1082 dbgs() << "Loops with call instructions cannot be interchanged "
1085 return OptimizationRemarkMissed(DEBUG_TYPE
, "CallInst",
1088 << "Cannot interchange loops due to call instruction.";
1094 if (!areInnerLoopLatchPHIsSupported(OuterLoop
, InnerLoop
)) {
1095 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1097 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedInnerLatchPHI",
1098 InnerLoop
->getStartLoc(),
1099 InnerLoop
->getHeader())
1100 << "Cannot interchange loops because unsupported PHI nodes found "
1101 "in inner loop latch.";
1106 // TODO: The loops could not be interchanged due to current limitations in the
1107 // transform module.
1108 if (currentLimitations()) {
1109 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1113 // Check if the loops are tightly nested.
1114 if (!tightlyNested(OuterLoop
, InnerLoop
)) {
1115 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1117 return OptimizationRemarkMissed(DEBUG_TYPE
, "NotTightlyNested",
1118 InnerLoop
->getStartLoc(),
1119 InnerLoop
->getHeader())
1120 << "Cannot interchange loops because they are not tightly "
1126 if (!areInnerLoopExitPHIsSupported(OuterLoop
, InnerLoop
,
1127 OuterInnerReductions
)) {
1128 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1130 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedExitPHI",
1131 InnerLoop
->getStartLoc(),
1132 InnerLoop
->getHeader())
1133 << "Found unsupported PHI node in loop exit.";
1138 if (!areOuterLoopExitPHIsSupported(OuterLoop
, InnerLoop
)) {
1139 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1141 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedExitPHI",
1142 OuterLoop
->getStartLoc(),
1143 OuterLoop
->getHeader())
1144 << "Found unsupported PHI node in loop exit.";
1152 int LoopInterchangeProfitability::getInstrOrderCost() {
1153 unsigned GoodOrder
, BadOrder
;
1154 BadOrder
= GoodOrder
= 0;
1155 for (BasicBlock
*BB
: InnerLoop
->blocks()) {
1156 for (Instruction
&Ins
: *BB
) {
1157 if (const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&Ins
)) {
1158 unsigned NumOp
= GEP
->getNumOperands();
1159 bool FoundInnerInduction
= false;
1160 bool FoundOuterInduction
= false;
1161 for (unsigned i
= 0; i
< NumOp
; ++i
) {
1162 // Skip operands that are not SCEV-able.
1163 if (!SE
->isSCEVable(GEP
->getOperand(i
)->getType()))
1166 const SCEV
*OperandVal
= SE
->getSCEV(GEP
->getOperand(i
));
1167 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(OperandVal
);
1171 // If we find the inner induction after an outer induction e.g.
1172 // for(int i=0;i<N;i++)
1173 // for(int j=0;j<N;j++)
1174 // A[i][j] = A[i-1][j-1]+k;
1175 // then it is a good order.
1176 if (AR
->getLoop() == InnerLoop
) {
1177 // We found an InnerLoop induction after OuterLoop induction. It is
1179 FoundInnerInduction
= true;
1180 if (FoundOuterInduction
) {
1185 // If we find the outer induction after an inner induction e.g.
1186 // for(int i=0;i<N;i++)
1187 // for(int j=0;j<N;j++)
1188 // A[j][i] = A[j-1][i-1]+k;
1189 // then it is a bad order.
1190 if (AR
->getLoop() == OuterLoop
) {
1191 // We found an OuterLoop induction after InnerLoop induction. It is
1193 FoundOuterInduction
= true;
1194 if (FoundInnerInduction
) {
1203 return GoodOrder
- BadOrder
;
1206 static bool isProfitableForVectorization(unsigned InnerLoopId
,
1207 unsigned OuterLoopId
,
1208 CharMatrix
&DepMatrix
) {
1209 // TODO: Improve this heuristic to catch more cases.
1210 // If the inner loop is loop independent or doesn't carry any dependency it is
1211 // profitable to move this to outer position.
1212 for (auto &Row
: DepMatrix
) {
1213 if (Row
[InnerLoopId
] != 'S' && Row
[InnerLoopId
] != 'I')
1215 // TODO: We need to improve this heuristic.
1216 if (Row
[OuterLoopId
] != '=')
1219 // If outer loop has dependence and inner loop is loop independent then it is
1220 // profitable to interchange to enable parallelism.
1221 // If there are no dependences, interchanging will not improve anything.
1222 return !DepMatrix
.empty();
1225 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId
,
1226 unsigned OuterLoopId
,
1227 CharMatrix
&DepMatrix
) {
1228 // TODO: Add better profitability checks.
1230 // 1) Construct dependency matrix and move the one with no loop carried dep
1231 // inside to enable vectorization.
1233 // This is rough cost estimation algorithm. It counts the good and bad order
1234 // of induction variables in the instruction and allows reordering if number
1235 // of bad orders is more than good.
1236 int Cost
= getInstrOrderCost();
1237 LLVM_DEBUG(dbgs() << "Cost = " << Cost
<< "\n");
1238 if (Cost
< -LoopInterchangeCostThreshold
)
1241 // It is not profitable as per current cache profitability model. But check if
1242 // we can move this loop outside to improve parallelism.
1243 if (isProfitableForVectorization(InnerLoopId
, OuterLoopId
, DepMatrix
))
1247 return OptimizationRemarkMissed(DEBUG_TYPE
, "InterchangeNotProfitable",
1248 InnerLoop
->getStartLoc(),
1249 InnerLoop
->getHeader())
1250 << "Interchanging loops is too costly (cost="
1251 << ore::NV("Cost", Cost
) << ", threshold="
1252 << ore::NV("Threshold", LoopInterchangeCostThreshold
)
1253 << ") and it does not improve parallelism.";
1258 void LoopInterchangeTransform::removeChildLoop(Loop
*OuterLoop
,
1260 for (Loop
*L
: *OuterLoop
)
1261 if (L
== InnerLoop
) {
1262 OuterLoop
->removeChildLoop(L
);
1265 llvm_unreachable("Couldn't find loop");
1268 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1269 /// new inner and outer loop after interchanging: NewInner is the original
1270 /// outer loop and NewOuter is the original inner loop.
1272 /// Before interchanging, we have the following structure
1282 // After interchanging:
1291 void LoopInterchangeTransform::restructureLoops(
1292 Loop
*NewInner
, Loop
*NewOuter
, BasicBlock
*OrigInnerPreHeader
,
1293 BasicBlock
*OrigOuterPreHeader
) {
1294 Loop
*OuterLoopParent
= OuterLoop
->getParentLoop();
1295 // The original inner loop preheader moves from the new inner loop to
1296 // the parent loop, if there is one.
1297 NewInner
->removeBlockFromLoop(OrigInnerPreHeader
);
1298 LI
->changeLoopFor(OrigInnerPreHeader
, OuterLoopParent
);
1300 // Switch the loop levels.
1301 if (OuterLoopParent
) {
1302 // Remove the loop from its parent loop.
1303 removeChildLoop(OuterLoopParent
, NewInner
);
1304 removeChildLoop(NewInner
, NewOuter
);
1305 OuterLoopParent
->addChildLoop(NewOuter
);
1307 removeChildLoop(NewInner
, NewOuter
);
1308 LI
->changeTopLevelLoop(NewInner
, NewOuter
);
1310 while (!NewOuter
->isInnermost())
1311 NewInner
->addChildLoop(NewOuter
->removeChildLoop(NewOuter
->begin()));
1312 NewOuter
->addChildLoop(NewInner
);
1314 // BBs from the original inner loop.
1315 SmallVector
<BasicBlock
*, 8> OrigInnerBBs(NewOuter
->blocks());
1317 // Add BBs from the original outer loop to the original inner loop (excluding
1318 // BBs already in inner loop)
1319 for (BasicBlock
*BB
: NewInner
->blocks())
1320 if (LI
->getLoopFor(BB
) == NewInner
)
1321 NewOuter
->addBlockEntry(BB
);
1323 // Now remove inner loop header and latch from the new inner loop and move
1324 // other BBs (the loop body) to the new inner loop.
1325 BasicBlock
*OuterHeader
= NewOuter
->getHeader();
1326 BasicBlock
*OuterLatch
= NewOuter
->getLoopLatch();
1327 for (BasicBlock
*BB
: OrigInnerBBs
) {
1328 // Nothing will change for BBs in child loops.
1329 if (LI
->getLoopFor(BB
) != NewOuter
)
1331 // Remove the new outer loop header and latch from the new inner loop.
1332 if (BB
== OuterHeader
|| BB
== OuterLatch
)
1333 NewInner
->removeBlockFromLoop(BB
);
1335 LI
->changeLoopFor(BB
, NewInner
);
1338 // The preheader of the original outer loop becomes part of the new
1340 NewOuter
->addBlockEntry(OrigOuterPreHeader
);
1341 LI
->changeLoopFor(OrigOuterPreHeader
, NewOuter
);
1343 // Tell SE that we move the loops around.
1344 SE
->forgetLoop(NewOuter
);
1345 SE
->forgetLoop(NewInner
);
1348 bool LoopInterchangeTransform::transform() {
1349 bool Transformed
= false;
1350 Instruction
*InnerIndexVar
;
1352 if (InnerLoop
->getSubLoops().empty()) {
1353 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1354 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1355 PHINode
*InductionPHI
= getInductionVariable(InnerLoop
, SE
);
1356 if (!InductionPHI
) {
1357 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1361 if (InductionPHI
->getIncomingBlock(0) == InnerLoopPreHeader
)
1362 InnerIndexVar
= dyn_cast
<Instruction
>(InductionPHI
->getIncomingValue(1));
1364 InnerIndexVar
= dyn_cast
<Instruction
>(InductionPHI
->getIncomingValue(0));
1366 // Ensure that InductionPHI is the first Phi node.
1367 if (&InductionPHI
->getParent()->front() != InductionPHI
)
1368 InductionPHI
->moveBefore(&InductionPHI
->getParent()->front());
1370 // Create a new latch block for the inner loop. We split at the
1371 // current latch's terminator and then move the condition and all
1372 // operands that are not either loop-invariant or the induction PHI into the
1374 BasicBlock
*NewLatch
=
1375 SplitBlock(InnerLoop
->getLoopLatch(),
1376 InnerLoop
->getLoopLatch()->getTerminator(), DT
, LI
);
1378 SmallSetVector
<Instruction
*, 4> WorkList
;
1380 auto MoveInstructions
= [&i
, &WorkList
, this, InductionPHI
, NewLatch
]() {
1381 for (; i
< WorkList
.size(); i
++) {
1382 // Duplicate instruction and move it the new latch. Update uses that
1384 Instruction
*NewI
= WorkList
[i
]->clone();
1385 NewI
->insertBefore(NewLatch
->getFirstNonPHI());
1386 assert(!NewI
->mayHaveSideEffects() &&
1387 "Moving instructions with side-effects may change behavior of "
1389 for (Use
&U
: llvm::make_early_inc_range(WorkList
[i
]->uses())) {
1390 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
1391 if (!InnerLoop
->contains(UserI
->getParent()) ||
1392 UserI
->getParent() == NewLatch
|| UserI
== InductionPHI
)
1395 // Add operands of moved instruction to the worklist, except if they are
1396 // outside the inner loop or are the induction PHI.
1397 for (Value
*Op
: WorkList
[i
]->operands()) {
1398 Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
1400 this->LI
->getLoopFor(OpI
->getParent()) != this->InnerLoop
||
1401 OpI
== InductionPHI
)
1403 WorkList
.insert(OpI
);
1408 // FIXME: Should we interchange when we have a constant condition?
1409 Instruction
*CondI
= dyn_cast
<Instruction
>(
1410 cast
<BranchInst
>(InnerLoop
->getLoopLatch()->getTerminator())
1413 WorkList
.insert(CondI
);
1415 WorkList
.insert(cast
<Instruction
>(InnerIndexVar
));
1418 // Splits the inner loops phi nodes out into a separate basic block.
1419 BasicBlock
*InnerLoopHeader
= InnerLoop
->getHeader();
1420 SplitBlock(InnerLoopHeader
, InnerLoopHeader
->getFirstNonPHI(), DT
, LI
);
1421 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1424 // Instructions in the original inner loop preheader may depend on values
1425 // defined in the outer loop header. Move them there, because the original
1426 // inner loop preheader will become the entry into the interchanged loop nest.
1427 // Currently we move all instructions and rely on LICM to move invariant
1428 // instructions outside the loop nest.
1429 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1430 BasicBlock
*OuterLoopHeader
= OuterLoop
->getHeader();
1431 if (InnerLoopPreHeader
!= OuterLoopHeader
) {
1432 SmallPtrSet
<Instruction
*, 4> NeedsMoving
;
1433 for (Instruction
&I
:
1434 make_early_inc_range(make_range(InnerLoopPreHeader
->begin(),
1435 std::prev(InnerLoopPreHeader
->end()))))
1436 I
.moveBefore(OuterLoopHeader
->getTerminator());
1439 Transformed
|= adjustLoopLinks();
1441 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1448 /// \brief Move all instructions except the terminator from FromBB right before
1450 static void moveBBContents(BasicBlock
*FromBB
, Instruction
*InsertBefore
) {
1451 auto &ToList
= InsertBefore
->getParent()->getInstList();
1452 auto &FromList
= FromBB
->getInstList();
1454 ToList
.splice(InsertBefore
->getIterator(), FromList
, FromList
.begin(),
1455 FromBB
->getTerminator()->getIterator());
1458 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1459 static void swapBBContents(BasicBlock
*BB1
, BasicBlock
*BB2
) {
1460 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1461 // from BB1 afterwards.
1462 auto Iter
= map_range(*BB1
, [](Instruction
&I
) { return &I
; });
1463 SmallVector
<Instruction
*, 4> TempInstrs(Iter
.begin(), std::prev(Iter
.end()));
1464 for (Instruction
*I
: TempInstrs
)
1465 I
->removeFromParent();
1467 // Move instructions from BB2 to BB1.
1468 moveBBContents(BB2
, BB1
->getTerminator());
1470 // Move instructions from TempInstrs to BB2.
1471 for (Instruction
*I
: TempInstrs
)
1472 I
->insertBefore(BB2
->getTerminator());
1475 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1476 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1477 // \p OldBB is exactly once in BI's successor list.
1478 static void updateSuccessor(BranchInst
*BI
, BasicBlock
*OldBB
,
1480 std::vector
<DominatorTree::UpdateType
> &DTUpdates
,
1481 bool MustUpdateOnce
= true) {
1482 assert((!MustUpdateOnce
||
1483 llvm::count_if(successors(BI
),
1484 [OldBB
](BasicBlock
*BB
) {
1486 }) == 1) && "BI must jump to OldBB exactly once.");
1487 bool Changed
= false;
1488 for (Use
&Op
: BI
->operands())
1495 DTUpdates
.push_back(
1496 {DominatorTree::UpdateKind::Insert
, BI
->getParent(), NewBB
});
1497 DTUpdates
.push_back(
1498 {DominatorTree::UpdateKind::Delete
, BI
->getParent(), OldBB
});
1500 assert(Changed
&& "Expected a successor to be updated");
1503 // Move Lcssa PHIs to the right place.
1504 static void moveLCSSAPhis(BasicBlock
*InnerExit
, BasicBlock
*InnerHeader
,
1505 BasicBlock
*InnerLatch
, BasicBlock
*OuterHeader
,
1506 BasicBlock
*OuterLatch
, BasicBlock
*OuterExit
,
1507 Loop
*InnerLoop
, LoopInfo
*LI
) {
1509 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1510 // defined either in the header or latch. Those blocks will become header and
1511 // latch of the new outer loop, and the only possible users can PHI nodes
1512 // in the exit block of the loop nest or the outer loop header (reduction
1513 // PHIs, in that case, the incoming value must be defined in the inner loop
1514 // header). We can just substitute the user with the incoming value and remove
1516 for (PHINode
&P
: make_early_inc_range(InnerExit
->phis())) {
1517 assert(P
.getNumIncomingValues() == 1 &&
1518 "Only loops with a single exit are supported!");
1520 // Incoming values are guaranteed be instructions currently.
1521 auto IncI
= cast
<Instruction
>(P
.getIncomingValueForBlock(InnerLatch
));
1522 // Skip phis with incoming values from the inner loop body, excluding the
1523 // header and latch.
1524 if (IncI
->getParent() != InnerLatch
&& IncI
->getParent() != InnerHeader
)
1527 assert(all_of(P
.users(),
1528 [OuterHeader
, OuterExit
, IncI
, InnerHeader
](User
*U
) {
1529 return (cast
<PHINode
>(U
)->getParent() == OuterHeader
&&
1530 IncI
->getParent() == InnerHeader
) ||
1531 cast
<PHINode
>(U
)->getParent() == OuterExit
;
1533 "Can only replace phis iff the uses are in the loop nest exit or "
1534 "the incoming value is defined in the inner header (it will "
1535 "dominate all loop blocks after interchanging)");
1536 P
.replaceAllUsesWith(IncI
);
1537 P
.eraseFromParent();
1540 SmallVector
<PHINode
*, 8> LcssaInnerExit
;
1541 for (PHINode
&P
: InnerExit
->phis())
1542 LcssaInnerExit
.push_back(&P
);
1544 SmallVector
<PHINode
*, 8> LcssaInnerLatch
;
1545 for (PHINode
&P
: InnerLatch
->phis())
1546 LcssaInnerLatch
.push_back(&P
);
1548 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1549 // If a PHI node has users outside of InnerExit, it has a use outside the
1550 // interchanged loop and we have to preserve it. We move these to
1551 // InnerLatch, which will become the new exit block for the innermost
1552 // loop after interchanging.
1553 for (PHINode
*P
: LcssaInnerExit
)
1554 P
->moveBefore(InnerLatch
->getFirstNonPHI());
1556 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1557 // and we have to move them to the new inner latch.
1558 for (PHINode
*P
: LcssaInnerLatch
)
1559 P
->moveBefore(InnerExit
->getFirstNonPHI());
1561 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1562 // incoming values defined in the outer loop, we have to add a new PHI
1563 // in the inner loop latch, which became the exit block of the outer loop,
1564 // after interchanging.
1566 for (PHINode
&P
: OuterExit
->phis()) {
1567 if (P
.getNumIncomingValues() != 1)
1569 // Skip Phis with incoming values defined in the inner loop. Those should
1570 // already have been updated.
1571 auto I
= dyn_cast
<Instruction
>(P
.getIncomingValue(0));
1572 if (!I
|| LI
->getLoopFor(I
->getParent()) == InnerLoop
)
1575 PHINode
*NewPhi
= dyn_cast
<PHINode
>(P
.clone());
1576 NewPhi
->setIncomingValue(0, P
.getIncomingValue(0));
1577 NewPhi
->setIncomingBlock(0, OuterLatch
);
1578 // We might have incoming edges from other BBs, i.e., the original outer
1580 for (auto *Pred
: predecessors(InnerLatch
)) {
1581 if (Pred
== OuterLatch
)
1583 NewPhi
->addIncoming(P
.getIncomingValue(0), Pred
);
1585 NewPhi
->insertBefore(InnerLatch
->getFirstNonPHI());
1586 P
.setIncomingValue(0, NewPhi
);
1590 // Now adjust the incoming blocks for the LCSSA PHIs.
1591 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1592 // with the new latch.
1593 InnerLatch
->replacePhiUsesWith(InnerLatch
, OuterLatch
);
1596 bool LoopInterchangeTransform::adjustLoopBranches() {
1597 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1598 std::vector
<DominatorTree::UpdateType
> DTUpdates
;
1600 BasicBlock
*OuterLoopPreHeader
= OuterLoop
->getLoopPreheader();
1601 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1603 assert(OuterLoopPreHeader
!= OuterLoop
->getHeader() &&
1604 InnerLoopPreHeader
!= InnerLoop
->getHeader() && OuterLoopPreHeader
&&
1605 InnerLoopPreHeader
&& "Guaranteed by loop-simplify form");
1606 // Ensure that both preheaders do not contain PHI nodes and have single
1607 // predecessors. This allows us to move them easily. We use
1608 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1609 // preheaders do not satisfy those conditions.
1610 if (isa
<PHINode
>(OuterLoopPreHeader
->begin()) ||
1611 !OuterLoopPreHeader
->getUniquePredecessor())
1612 OuterLoopPreHeader
=
1613 InsertPreheaderForLoop(OuterLoop
, DT
, LI
, nullptr, true);
1614 if (InnerLoopPreHeader
== OuterLoop
->getHeader())
1615 InnerLoopPreHeader
=
1616 InsertPreheaderForLoop(InnerLoop
, DT
, LI
, nullptr, true);
1618 // Adjust the loop preheader
1619 BasicBlock
*InnerLoopHeader
= InnerLoop
->getHeader();
1620 BasicBlock
*OuterLoopHeader
= OuterLoop
->getHeader();
1621 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
1622 BasicBlock
*OuterLoopLatch
= OuterLoop
->getLoopLatch();
1623 BasicBlock
*OuterLoopPredecessor
= OuterLoopPreHeader
->getUniquePredecessor();
1624 BasicBlock
*InnerLoopLatchPredecessor
=
1625 InnerLoopLatch
->getUniquePredecessor();
1626 BasicBlock
*InnerLoopLatchSuccessor
;
1627 BasicBlock
*OuterLoopLatchSuccessor
;
1629 BranchInst
*OuterLoopLatchBI
=
1630 dyn_cast
<BranchInst
>(OuterLoopLatch
->getTerminator());
1631 BranchInst
*InnerLoopLatchBI
=
1632 dyn_cast
<BranchInst
>(InnerLoopLatch
->getTerminator());
1633 BranchInst
*OuterLoopHeaderBI
=
1634 dyn_cast
<BranchInst
>(OuterLoopHeader
->getTerminator());
1635 BranchInst
*InnerLoopHeaderBI
=
1636 dyn_cast
<BranchInst
>(InnerLoopHeader
->getTerminator());
1638 if (!OuterLoopPredecessor
|| !InnerLoopLatchPredecessor
||
1639 !OuterLoopLatchBI
|| !InnerLoopLatchBI
|| !OuterLoopHeaderBI
||
1643 BranchInst
*InnerLoopLatchPredecessorBI
=
1644 dyn_cast
<BranchInst
>(InnerLoopLatchPredecessor
->getTerminator());
1645 BranchInst
*OuterLoopPredecessorBI
=
1646 dyn_cast
<BranchInst
>(OuterLoopPredecessor
->getTerminator());
1648 if (!OuterLoopPredecessorBI
|| !InnerLoopLatchPredecessorBI
)
1650 BasicBlock
*InnerLoopHeaderSuccessor
= InnerLoopHeader
->getUniqueSuccessor();
1651 if (!InnerLoopHeaderSuccessor
)
1654 // Adjust Loop Preheader and headers.
1655 // The branches in the outer loop predecessor and the outer loop header can
1656 // be unconditional branches or conditional branches with duplicates. Consider
1657 // this when updating the successors.
1658 updateSuccessor(OuterLoopPredecessorBI
, OuterLoopPreHeader
,
1659 InnerLoopPreHeader
, DTUpdates
, /*MustUpdateOnce=*/false);
1660 // The outer loop header might or might not branch to the outer latch.
1661 // We are guaranteed to branch to the inner loop preheader.
1662 if (llvm::is_contained(OuterLoopHeaderBI
->successors(), OuterLoopLatch
)) {
1663 // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1664 updateSuccessor(OuterLoopHeaderBI
, OuterLoopLatch
, InnerLoopLatch
,
1666 /*MustUpdateOnce=*/false);
1668 updateSuccessor(OuterLoopHeaderBI
, InnerLoopPreHeader
,
1669 InnerLoopHeaderSuccessor
, DTUpdates
,
1670 /*MustUpdateOnce=*/false);
1672 // Adjust reduction PHI's now that the incoming block has changed.
1673 InnerLoopHeaderSuccessor
->replacePhiUsesWith(InnerLoopHeader
,
1676 updateSuccessor(InnerLoopHeaderBI
, InnerLoopHeaderSuccessor
,
1677 OuterLoopPreHeader
, DTUpdates
);
1679 // -------------Adjust loop latches-----------
1680 if (InnerLoopLatchBI
->getSuccessor(0) == InnerLoopHeader
)
1681 InnerLoopLatchSuccessor
= InnerLoopLatchBI
->getSuccessor(1);
1683 InnerLoopLatchSuccessor
= InnerLoopLatchBI
->getSuccessor(0);
1685 updateSuccessor(InnerLoopLatchPredecessorBI
, InnerLoopLatch
,
1686 InnerLoopLatchSuccessor
, DTUpdates
);
1689 if (OuterLoopLatchBI
->getSuccessor(0) == OuterLoopHeader
)
1690 OuterLoopLatchSuccessor
= OuterLoopLatchBI
->getSuccessor(1);
1692 OuterLoopLatchSuccessor
= OuterLoopLatchBI
->getSuccessor(0);
1694 updateSuccessor(InnerLoopLatchBI
, InnerLoopLatchSuccessor
,
1695 OuterLoopLatchSuccessor
, DTUpdates
);
1696 updateSuccessor(OuterLoopLatchBI
, OuterLoopLatchSuccessor
, InnerLoopLatch
,
1699 DT
->applyUpdates(DTUpdates
);
1700 restructureLoops(OuterLoop
, InnerLoop
, InnerLoopPreHeader
,
1701 OuterLoopPreHeader
);
1703 moveLCSSAPhis(InnerLoopLatchSuccessor
, InnerLoopHeader
, InnerLoopLatch
,
1704 OuterLoopHeader
, OuterLoopLatch
, InnerLoop
->getExitBlock(),
1706 // For PHIs in the exit block of the outer loop, outer's latch has been
1707 // replaced by Inners'.
1708 OuterLoopLatchSuccessor
->replacePhiUsesWith(OuterLoopLatch
, InnerLoopLatch
);
1710 auto &OuterInnerReductions
= LIL
.getOuterInnerReductions();
1711 // Now update the reduction PHIs in the inner and outer loop headers.
1712 SmallVector
<PHINode
*, 4> InnerLoopPHIs
, OuterLoopPHIs
;
1713 for (PHINode
&PHI
: InnerLoopHeader
->phis()) {
1714 if (OuterInnerReductions
.find(&PHI
) == OuterInnerReductions
.end())
1716 InnerLoopPHIs
.push_back(cast
<PHINode
>(&PHI
));
1718 for (PHINode
&PHI
: OuterLoopHeader
->phis()) {
1719 if (OuterInnerReductions
.find(&PHI
) == OuterInnerReductions
.end())
1721 OuterLoopPHIs
.push_back(cast
<PHINode
>(&PHI
));
1724 // Now move the remaining reduction PHIs from outer to inner loop header and
1725 // vice versa. The PHI nodes must be part of a reduction across the inner and
1726 // outer loop and all the remains to do is and updating the incoming blocks.
1727 for (PHINode
*PHI
: OuterLoopPHIs
) {
1728 PHI
->moveBefore(InnerLoopHeader
->getFirstNonPHI());
1729 assert(OuterInnerReductions
.count(PHI
) && "Expected a reduction PHI node");
1731 for (PHINode
*PHI
: InnerLoopPHIs
) {
1732 PHI
->moveBefore(OuterLoopHeader
->getFirstNonPHI());
1733 assert(OuterInnerReductions
.count(PHI
) && "Expected a reduction PHI node");
1736 // Update the incoming blocks for moved PHI nodes.
1737 OuterLoopHeader
->replacePhiUsesWith(InnerLoopPreHeader
, OuterLoopPreHeader
);
1738 OuterLoopHeader
->replacePhiUsesWith(InnerLoopLatch
, OuterLoopLatch
);
1739 InnerLoopHeader
->replacePhiUsesWith(OuterLoopPreHeader
, InnerLoopPreHeader
);
1740 InnerLoopHeader
->replacePhiUsesWith(OuterLoopLatch
, InnerLoopLatch
);
1742 // Values defined in the outer loop header could be used in the inner loop
1743 // latch. In that case, we need to create LCSSA phis for them, because after
1744 // interchanging they will be defined in the new inner loop and used in the
1746 IRBuilder
<> Builder(OuterLoopHeader
->getContext());
1747 SmallVector
<Instruction
*, 4> MayNeedLCSSAPhis
;
1748 for (Instruction
&I
:
1749 make_range(OuterLoopHeader
->begin(), std::prev(OuterLoopHeader
->end())))
1750 MayNeedLCSSAPhis
.push_back(&I
);
1751 formLCSSAForInstructions(MayNeedLCSSAPhis
, *DT
, *LI
, SE
, Builder
);
1756 bool LoopInterchangeTransform::adjustLoopLinks() {
1757 // Adjust all branches in the inner and outer loop.
1758 bool Changed
= adjustLoopBranches();
1760 // We have interchanged the preheaders so we need to interchange the data in
1761 // the preheaders as well. This is because the content of the inner
1762 // preheader was previously executed inside the outer loop.
1763 BasicBlock
*OuterLoopPreHeader
= OuterLoop
->getLoopPreheader();
1764 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1765 swapBBContents(OuterLoopPreHeader
, InnerLoopPreHeader
);
1770 /// Main LoopInterchange Pass.
1771 struct LoopInterchangeLegacyPass
: public LoopPass
{
1774 LoopInterchangeLegacyPass() : LoopPass(ID
) {
1775 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1778 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1779 AU
.addRequired
<DependenceAnalysisWrapperPass
>();
1780 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
1782 getLoopAnalysisUsage(AU
);
1785 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
1789 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1790 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1791 auto *DI
= &getAnalysis
<DependenceAnalysisWrapperPass
>().getDI();
1792 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1793 auto *ORE
= &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
1795 return LoopInterchange(SE
, LI
, DI
, DT
, ORE
).run(L
);
1799 char LoopInterchangeLegacyPass::ID
= 0;
1801 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass
, "loop-interchange",
1802 "Interchanges loops for cache reuse", false, false)
1803 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1804 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass
)
1805 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
1807 INITIALIZE_PASS_END(LoopInterchangeLegacyPass
, "loop-interchange",
1808 "Interchanges loops for cache reuse", false, false)
1810 Pass
*llvm::createLoopInterchangePass() {
1811 return new LoopInterchangeLegacyPass();
1814 PreservedAnalyses
LoopInterchangePass::run(LoopNest
&LN
,
1815 LoopAnalysisManager
&AM
,
1816 LoopStandardAnalysisResults
&AR
,
1818 Function
&F
= *LN
.getParent();
1820 DependenceInfo
DI(&F
, &AR
.AA
, &AR
.SE
, &AR
.LI
);
1821 OptimizationRemarkEmitter
ORE(&F
);
1822 if (!LoopInterchange(&AR
.SE
, &AR
.LI
, &DI
, &AR
.DT
, &ORE
).run(LN
))
1823 return PreservedAnalyses::all();
1824 return getLoopPassPreservedAnalyses();