[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopInterchange.cpp
blob34545f35b3c33fef29acdd3943d35186d4796999
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Scalar/LoopInterchange.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/DependenceAnalysis.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/LoopNestAnalysis.h"
23 #include "llvm/Analysis/LoopPass.h"
24 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DiagnosticInfo.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/LoopUtils.h"
50 #include <cassert>
51 #include <utility>
52 #include <vector>
54 using namespace llvm;
56 #define DEBUG_TYPE "loop-interchange"
58 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
60 static cl::opt<int> LoopInterchangeCostThreshold(
61 "loop-interchange-threshold", cl::init(0), cl::Hidden,
62 cl::desc("Interchange if you gain more than this number"));
64 namespace {
66 using LoopVector = SmallVector<Loop *, 8>;
68 // TODO: Check if we can use a sparse matrix here.
69 using CharMatrix = std::vector<std::vector<char>>;
71 } // end anonymous namespace
73 // Maximum number of dependencies that can be handled in the dependency matrix.
74 static const unsigned MaxMemInstrCount = 100;
76 // Maximum loop depth supported.
77 static const unsigned MaxLoopNestDepth = 10;
79 #ifdef DUMP_DEP_MATRICIES
80 static void printDepMatrix(CharMatrix &DepMatrix) {
81 for (auto &Row : DepMatrix) {
82 for (auto D : Row)
83 LLVM_DEBUG(dbgs() << D << " ");
84 LLVM_DEBUG(dbgs() << "\n");
87 #endif
89 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
90 Loop *L, DependenceInfo *DI) {
91 using ValueVector = SmallVector<Value *, 16>;
93 ValueVector MemInstr;
95 // For each block.
96 for (BasicBlock *BB : L->blocks()) {
97 // Scan the BB and collect legal loads and stores.
98 for (Instruction &I : *BB) {
99 if (!isa<Instruction>(I))
100 return false;
101 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
102 if (!Ld->isSimple())
103 return false;
104 MemInstr.push_back(&I);
105 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
106 if (!St->isSimple())
107 return false;
108 MemInstr.push_back(&I);
113 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
114 << " Loads and Stores to analyze\n");
116 ValueVector::iterator I, IE, J, JE;
118 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
119 for (J = I, JE = MemInstr.end(); J != JE; ++J) {
120 std::vector<char> Dep;
121 Instruction *Src = cast<Instruction>(*I);
122 Instruction *Dst = cast<Instruction>(*J);
123 if (Src == Dst)
124 continue;
125 // Ignore Input dependencies.
126 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
127 continue;
128 // Track Output, Flow, and Anti dependencies.
129 if (auto D = DI->depends(Src, Dst, true)) {
130 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
131 LLVM_DEBUG(StringRef DepType =
132 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
133 dbgs() << "Found " << DepType
134 << " dependency between Src and Dst\n"
135 << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
136 unsigned Levels = D->getLevels();
137 char Direction;
138 for (unsigned II = 1; II <= Levels; ++II) {
139 const SCEV *Distance = D->getDistance(II);
140 const SCEVConstant *SCEVConst =
141 dyn_cast_or_null<SCEVConstant>(Distance);
142 if (SCEVConst) {
143 const ConstantInt *CI = SCEVConst->getValue();
144 if (CI->isNegative())
145 Direction = '<';
146 else if (CI->isZero())
147 Direction = '=';
148 else
149 Direction = '>';
150 Dep.push_back(Direction);
151 } else if (D->isScalar(II)) {
152 Direction = 'S';
153 Dep.push_back(Direction);
154 } else {
155 unsigned Dir = D->getDirection(II);
156 if (Dir == Dependence::DVEntry::LT ||
157 Dir == Dependence::DVEntry::LE)
158 Direction = '<';
159 else if (Dir == Dependence::DVEntry::GT ||
160 Dir == Dependence::DVEntry::GE)
161 Direction = '>';
162 else if (Dir == Dependence::DVEntry::EQ)
163 Direction = '=';
164 else
165 Direction = '*';
166 Dep.push_back(Direction);
169 while (Dep.size() != Level) {
170 Dep.push_back('I');
173 DepMatrix.push_back(Dep);
174 if (DepMatrix.size() > MaxMemInstrCount) {
175 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
176 << " dependencies inside loop\n");
177 return false;
183 return true;
186 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
187 // matrix by exchanging the two columns.
188 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
189 unsigned ToIndx) {
190 for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
191 std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197 unsigned Column) {
198 for (unsigned i = 0; i <= Column; ++i) {
199 if (DepMatrix[Row][i] == '<')
200 return false;
201 if (DepMatrix[Row][i] == '>')
202 return true;
204 // All dependencies were '=','S' or 'I'
205 return false;
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210 unsigned Column) {
211 for (unsigned i = 0; i < Column; ++i) {
212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213 DepMatrix[Row][i] != 'I')
214 return false;
216 return true;
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220 unsigned OuterLoopId, char InnerDep,
221 char OuterDep) {
222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223 return false;
225 if (InnerDep == OuterDep)
226 return true;
228 // It is legal to interchange if and only if after interchange no row has a
229 // '>' direction as the leftmost non-'='.
231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232 return true;
234 if (InnerDep == '<')
235 return true;
237 if (InnerDep == '>') {
238 // If OuterLoopId represents outermost loop then interchanging will make the
239 // 1st dependency as '>'
240 if (OuterLoopId == 0)
241 return false;
243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244 // interchanging will result in this row having an outermost non '='
245 // dependency of '>'
246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247 return true;
250 return false;
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258 unsigned InnerLoopId,
259 unsigned OuterLoopId) {
260 unsigned NumRows = DepMatrix.size();
261 // For each row check if it is valid to interchange.
262 for (unsigned Row = 0; Row < NumRows; ++Row) {
263 char InnerDep = DepMatrix[Row][InnerLoopId];
264 char OuterDep = DepMatrix[Row][OuterLoopId];
265 if (InnerDep == '*' || OuterDep == '*')
266 return false;
267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268 return false;
270 return true;
273 static LoopVector populateWorklist(Loop &L) {
274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275 << L.getHeader()->getParent()->getName() << " Loop: %"
276 << L.getHeader()->getName() << '\n');
277 LoopVector LoopList;
278 Loop *CurrentLoop = &L;
279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280 while (!Vec->empty()) {
281 // The current loop has multiple subloops in it hence it is not tightly
282 // nested.
283 // Discard all loops above it added into Worklist.
284 if (Vec->size() != 1)
285 return {};
287 LoopList.push_back(CurrentLoop);
288 CurrentLoop = Vec->front();
289 Vec = &CurrentLoop->getSubLoops();
291 LoopList.push_back(CurrentLoop);
292 return LoopList;
295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297 if (InnerIndexVar)
298 return InnerIndexVar;
299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300 return nullptr;
301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302 PHINode *PhiVar = cast<PHINode>(I);
303 Type *PhiTy = PhiVar->getType();
304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305 !PhiTy->isPointerTy())
306 return nullptr;
307 const SCEVAddRecExpr *AddRec =
308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309 if (!AddRec || !AddRec->isAffine())
310 continue;
311 const SCEV *Step = AddRec->getStepRecurrence(*SE);
312 if (!isa<SCEVConstant>(Step))
313 continue;
314 // Found the induction variable.
315 // FIXME: Handle loops with more than one induction variable. Note that,
316 // currently, legality makes sure we have only one induction variable.
317 return PhiVar;
319 return nullptr;
322 namespace {
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328 OptimizationRemarkEmitter *ORE)
329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
331 /// Check if the loops can be interchanged.
332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333 CharMatrix &DepMatrix);
335 /// Check if the loop structure is understood. We do not handle triangular
336 /// loops for now.
337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
339 bool currentLimitations();
341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342 return OuterInnerReductions;
345 private:
346 bool tightlyNested(Loop *Outer, Loop *Inner);
347 bool containsUnsafeInstructions(BasicBlock *BB);
349 /// Discover induction and reduction PHIs in the header of \p L. Induction
350 /// PHIs are added to \p Inductions, reductions are added to
351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352 /// to be passed as \p InnerLoop.
353 bool findInductionAndReductions(Loop *L,
354 SmallVector<PHINode *, 8> &Inductions,
355 Loop *InnerLoop);
357 Loop *OuterLoop;
358 Loop *InnerLoop;
360 ScalarEvolution *SE;
362 /// Interface to emit optimization remarks.
363 OptimizationRemarkEmitter *ORE;
365 /// Set of reduction PHIs taking part of a reduction across the inner and
366 /// outer loop.
367 SmallPtrSet<PHINode *, 4> OuterInnerReductions;
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375 OptimizationRemarkEmitter *ORE)
376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
378 /// Check if the loop interchange is profitable.
379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380 CharMatrix &DepMatrix);
382 private:
383 int getInstrOrderCost();
385 Loop *OuterLoop;
386 Loop *InnerLoop;
388 /// Scev analysis.
389 ScalarEvolution *SE;
391 /// Interface to emit optimization remarks.
392 OptimizationRemarkEmitter *ORE;
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399 LoopInfo *LI, DominatorTree *DT,
400 const LoopInterchangeLegality &LIL)
401 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
403 /// Interchange OuterLoop and InnerLoop.
404 bool transform();
405 void restructureLoops(Loop *NewInner, Loop *NewOuter,
406 BasicBlock *OrigInnerPreHeader,
407 BasicBlock *OrigOuterPreHeader);
408 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
410 private:
411 bool adjustLoopLinks();
412 bool adjustLoopBranches();
414 Loop *OuterLoop;
415 Loop *InnerLoop;
417 /// Scev analysis.
418 ScalarEvolution *SE;
420 LoopInfo *LI;
421 DominatorTree *DT;
423 const LoopInterchangeLegality &LIL;
426 struct LoopInterchange {
427 ScalarEvolution *SE = nullptr;
428 LoopInfo *LI = nullptr;
429 DependenceInfo *DI = nullptr;
430 DominatorTree *DT = nullptr;
432 /// Interface to emit optimization remarks.
433 OptimizationRemarkEmitter *ORE;
435 LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
436 DominatorTree *DT, OptimizationRemarkEmitter *ORE)
437 : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
439 bool run(Loop *L) {
440 if (L->getParentLoop())
441 return false;
443 return processLoopList(populateWorklist(*L));
446 bool run(LoopNest &LN) {
447 const auto &LoopList = LN.getLoops();
448 for (unsigned I = 1; I < LoopList.size(); ++I)
449 if (LoopList[I]->getParentLoop() != LoopList[I - 1])
450 return false;
451 return processLoopList(LoopList);
454 bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
455 for (Loop *L : LoopList) {
456 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
457 if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
458 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
459 return false;
461 if (L->getNumBackEdges() != 1) {
462 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
463 return false;
465 if (!L->getExitingBlock()) {
466 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
467 return false;
470 return true;
473 unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
474 // TODO: Add a better heuristic to select the loop to be interchanged based
475 // on the dependence matrix. Currently we select the innermost loop.
476 return LoopList.size() - 1;
479 bool processLoopList(ArrayRef<Loop *> LoopList) {
480 bool Changed = false;
481 unsigned LoopNestDepth = LoopList.size();
482 if (LoopNestDepth < 2) {
483 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
484 return false;
486 if (LoopNestDepth > MaxLoopNestDepth) {
487 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
488 << MaxLoopNestDepth << "\n");
489 return false;
491 if (!isComputableLoopNest(LoopList)) {
492 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
493 return false;
496 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
497 << "\n");
499 CharMatrix DependencyMatrix;
500 Loop *OuterMostLoop = *(LoopList.begin());
501 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
502 OuterMostLoop, DI)) {
503 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
504 return false;
506 #ifdef DUMP_DEP_MATRICIES
507 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
508 printDepMatrix(DependencyMatrix);
509 #endif
511 // Get the Outermost loop exit.
512 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
513 if (!LoopNestExit) {
514 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
515 return false;
518 unsigned SelecLoopId = selectLoopForInterchange(LoopList);
519 // Move the selected loop outwards to the best possible position.
520 Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
521 for (unsigned i = SelecLoopId; i > 0; i--) {
522 bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
523 i - 1, DependencyMatrix);
524 if (!Interchanged)
525 return Changed;
526 // Update the DependencyMatrix
527 interChangeDependencies(DependencyMatrix, i, i - 1);
528 #ifdef DUMP_DEP_MATRICIES
529 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
530 printDepMatrix(DependencyMatrix);
531 #endif
532 Changed |= Interchanged;
534 return Changed;
537 bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
538 unsigned OuterLoopId,
539 std::vector<std::vector<char>> &DependencyMatrix) {
540 LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
541 << " and OuterLoopId = " << OuterLoopId << "\n");
542 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
543 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
544 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
545 return false;
547 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
548 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
549 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
550 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
551 return false;
554 ORE->emit([&]() {
555 return OptimizationRemark(DEBUG_TYPE, "Interchanged",
556 InnerLoop->getStartLoc(),
557 InnerLoop->getHeader())
558 << "Loop interchanged with enclosing loop.";
561 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
562 LIT.transform();
563 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
564 LoopsInterchanged++;
566 assert(InnerLoop->isLCSSAForm(*DT) &&
567 "Inner loop not left in LCSSA form after loop interchange!");
568 assert(OuterLoop->isLCSSAForm(*DT) &&
569 "Outer loop not left in LCSSA form after loop interchange!");
571 return true;
575 } // end anonymous namespace
577 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
578 return any_of(*BB, [](const Instruction &I) {
579 return I.mayHaveSideEffects() || I.mayReadFromMemory();
583 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
584 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
585 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
586 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
588 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
590 // A perfectly nested loop will not have any branch in between the outer and
591 // inner block i.e. outer header will branch to either inner preheader and
592 // outerloop latch.
593 BranchInst *OuterLoopHeaderBI =
594 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
595 if (!OuterLoopHeaderBI)
596 return false;
598 for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
599 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
600 Succ != OuterLoopLatch)
601 return false;
603 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
604 // We do not have any basic block in between now make sure the outer header
605 // and outer loop latch doesn't contain any unsafe instructions.
606 if (containsUnsafeInstructions(OuterLoopHeader) ||
607 containsUnsafeInstructions(OuterLoopLatch))
608 return false;
610 // Also make sure the inner loop preheader does not contain any unsafe
611 // instructions. Note that all instructions in the preheader will be moved to
612 // the outer loop header when interchanging.
613 if (InnerLoopPreHeader != OuterLoopHeader &&
614 containsUnsafeInstructions(InnerLoopPreHeader))
615 return false;
617 BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
618 // Ensure the inner loop exit block flows to the outer loop latch possibly
619 // through empty blocks.
620 const BasicBlock &SuccInner =
621 LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
622 if (&SuccInner != OuterLoopLatch) {
623 LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
624 << " does not lead to the outer loop latch.\n";);
625 return false;
627 // The inner loop exit block does flow to the outer loop latch and not some
628 // other BBs, now make sure it contains safe instructions, since it will be
629 // moved into the (new) inner loop after interchange.
630 if (containsUnsafeInstructions(InnerLoopExit))
631 return false;
633 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
634 // We have a perfect loop nest.
635 return true;
638 bool LoopInterchangeLegality::isLoopStructureUnderstood(
639 PHINode *InnerInduction) {
640 unsigned Num = InnerInduction->getNumOperands();
641 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
642 for (unsigned i = 0; i < Num; ++i) {
643 Value *Val = InnerInduction->getOperand(i);
644 if (isa<Constant>(Val))
645 continue;
646 Instruction *I = dyn_cast<Instruction>(Val);
647 if (!I)
648 return false;
649 // TODO: Handle triangular loops.
650 // e.g. for(int i=0;i<N;i++)
651 // for(int j=i;j<N;j++)
652 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
653 if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
654 InnerLoopPreheader &&
655 !OuterLoop->isLoopInvariant(I)) {
656 return false;
660 // TODO: Handle triangular loops of another form.
661 // e.g. for(int i=0;i<N;i++)
662 // for(int j=0;j<i;j++)
663 // or,
664 // for(int i=0;i<N;i++)
665 // for(int j=0;j*i<N;j++)
666 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
667 BranchInst *InnerLoopLatchBI =
668 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
669 if (!InnerLoopLatchBI->isConditional())
670 return false;
671 if (CmpInst *InnerLoopCmp =
672 dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
673 Value *Op0 = InnerLoopCmp->getOperand(0);
674 Value *Op1 = InnerLoopCmp->getOperand(1);
676 // LHS and RHS of the inner loop exit condition, e.g.,
677 // in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
678 Value *Left = nullptr;
679 Value *Right = nullptr;
681 // Check if V only involves inner loop induction variable.
682 // Return true if V is InnerInduction, or a cast from
683 // InnerInduction, or a binary operator that involves
684 // InnerInduction and a constant.
685 std::function<bool(Value *)> IsPathToIndVar;
686 IsPathToIndVar = [&InnerInduction, &IsPathToIndVar](Value *V) -> bool {
687 if (V == InnerInduction)
688 return true;
689 if (isa<Constant>(V))
690 return true;
691 Instruction *I = dyn_cast<Instruction>(V);
692 if (!I)
693 return false;
694 if (isa<CastInst>(I))
695 return IsPathToIndVar(I->getOperand(0));
696 if (isa<BinaryOperator>(I))
697 return IsPathToIndVar(I->getOperand(0)) &&
698 IsPathToIndVar(I->getOperand(1));
699 return false;
702 if (IsPathToIndVar(Op0) && !isa<Constant>(Op0)) {
703 Left = Op0;
704 Right = Op1;
705 } else if (IsPathToIndVar(Op1) && !isa<Constant>(Op1)) {
706 Left = Op1;
707 Right = Op0;
710 if (Left == nullptr)
711 return false;
713 const SCEV *S = SE->getSCEV(Right);
714 if (!SE->isLoopInvariant(S, OuterLoop))
715 return false;
718 return true;
721 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
722 // value.
723 static Value *followLCSSA(Value *SV) {
724 PHINode *PHI = dyn_cast<PHINode>(SV);
725 if (!PHI)
726 return SV;
728 if (PHI->getNumIncomingValues() != 1)
729 return SV;
730 return followLCSSA(PHI->getIncomingValue(0));
733 // Check V's users to see if it is involved in a reduction in L.
734 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
735 // Reduction variables cannot be constants.
736 if (isa<Constant>(V))
737 return nullptr;
739 for (Value *User : V->users()) {
740 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
741 if (PHI->getNumIncomingValues() == 1)
742 continue;
743 RecurrenceDescriptor RD;
744 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
745 return PHI;
746 return nullptr;
750 return nullptr;
753 bool LoopInterchangeLegality::findInductionAndReductions(
754 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
755 if (!L->getLoopLatch() || !L->getLoopPredecessor())
756 return false;
757 for (PHINode &PHI : L->getHeader()->phis()) {
758 RecurrenceDescriptor RD;
759 InductionDescriptor ID;
760 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
761 Inductions.push_back(&PHI);
762 else {
763 // PHIs in inner loops need to be part of a reduction in the outer loop,
764 // discovered when checking the PHIs of the outer loop earlier.
765 if (!InnerLoop) {
766 if (!OuterInnerReductions.count(&PHI)) {
767 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
768 "across the outer loop.\n");
769 return false;
771 } else {
772 assert(PHI.getNumIncomingValues() == 2 &&
773 "Phis in loop header should have exactly 2 incoming values");
774 // Check if we have a PHI node in the outer loop that has a reduction
775 // result from the inner loop as an incoming value.
776 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
777 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
778 if (!InnerRedPhi ||
779 !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
780 LLVM_DEBUG(
781 dbgs()
782 << "Failed to recognize PHI as an induction or reduction.\n");
783 return false;
785 OuterInnerReductions.insert(&PHI);
786 OuterInnerReductions.insert(InnerRedPhi);
790 return true;
793 // This function indicates the current limitations in the transform as a result
794 // of which we do not proceed.
795 bool LoopInterchangeLegality::currentLimitations() {
796 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
797 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
799 // transform currently expects the loop latches to also be the exiting
800 // blocks.
801 if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
802 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
803 !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
804 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
805 LLVM_DEBUG(
806 dbgs() << "Loops where the latch is not the exiting block are not"
807 << " supported currently.\n");
808 ORE->emit([&]() {
809 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
810 OuterLoop->getStartLoc(),
811 OuterLoop->getHeader())
812 << "Loops where the latch is not the exiting block cannot be"
813 " interchange currently.";
815 return true;
818 PHINode *InnerInductionVar;
819 SmallVector<PHINode *, 8> Inductions;
820 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
821 LLVM_DEBUG(
822 dbgs() << "Only outer loops with induction or reduction PHI nodes "
823 << "are supported currently.\n");
824 ORE->emit([&]() {
825 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
826 OuterLoop->getStartLoc(),
827 OuterLoop->getHeader())
828 << "Only outer loops with induction or reduction PHI nodes can be"
829 " interchanged currently.";
831 return true;
834 // TODO: Currently we handle only loops with 1 induction variable.
835 if (Inductions.size() != 1) {
836 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
837 << "supported currently.\n");
838 ORE->emit([&]() {
839 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
840 OuterLoop->getStartLoc(),
841 OuterLoop->getHeader())
842 << "Only outer loops with 1 induction variable can be "
843 "interchanged currently.";
845 return true;
848 Inductions.clear();
849 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
850 LLVM_DEBUG(
851 dbgs() << "Only inner loops with induction or reduction PHI nodes "
852 << "are supported currently.\n");
853 ORE->emit([&]() {
854 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
855 InnerLoop->getStartLoc(),
856 InnerLoop->getHeader())
857 << "Only inner loops with induction or reduction PHI nodes can be"
858 " interchange currently.";
860 return true;
863 // TODO: Currently we handle only loops with 1 induction variable.
864 if (Inductions.size() != 1) {
865 LLVM_DEBUG(
866 dbgs() << "We currently only support loops with 1 induction variable."
867 << "Failed to interchange due to current limitation\n");
868 ORE->emit([&]() {
869 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
870 InnerLoop->getStartLoc(),
871 InnerLoop->getHeader())
872 << "Only inner loops with 1 induction variable can be "
873 "interchanged currently.";
875 return true;
877 InnerInductionVar = Inductions.pop_back_val();
879 // TODO: Triangular loops are not handled for now.
880 if (!isLoopStructureUnderstood(InnerInductionVar)) {
881 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
882 ORE->emit([&]() {
883 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
884 InnerLoop->getStartLoc(),
885 InnerLoop->getHeader())
886 << "Inner loop structure not understood currently.";
888 return true;
891 // TODO: Current limitation: Since we split the inner loop latch at the point
892 // were induction variable is incremented (induction.next); We cannot have
893 // more than 1 user of induction.next since it would result in broken code
894 // after split.
895 // e.g.
896 // for(i=0;i<N;i++) {
897 // for(j = 0;j<M;j++) {
898 // A[j+1][i+2] = A[j][i]+k;
899 // }
900 // }
901 Instruction *InnerIndexVarInc = nullptr;
902 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
903 InnerIndexVarInc =
904 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
905 else
906 InnerIndexVarInc =
907 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
909 if (!InnerIndexVarInc) {
910 LLVM_DEBUG(
911 dbgs() << "Did not find an instruction to increment the induction "
912 << "variable.\n");
913 ORE->emit([&]() {
914 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
915 InnerLoop->getStartLoc(),
916 InnerLoop->getHeader())
917 << "The inner loop does not increment the induction variable.";
919 return true;
922 // Since we split the inner loop latch on this induction variable. Make sure
923 // we do not have any instruction between the induction variable and branch
924 // instruction.
926 bool FoundInduction = false;
927 for (const Instruction &I :
928 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
929 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
930 isa<ZExtInst>(I))
931 continue;
933 // We found an instruction. If this is not induction variable then it is not
934 // safe to split this loop latch.
935 if (!I.isIdenticalTo(InnerIndexVarInc)) {
936 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
937 << "variable increment and branch.\n");
938 ORE->emit([&]() {
939 return OptimizationRemarkMissed(
940 DEBUG_TYPE, "UnsupportedInsBetweenInduction",
941 InnerLoop->getStartLoc(), InnerLoop->getHeader())
942 << "Found unsupported instruction between induction variable "
943 "increment and branch.";
945 return true;
948 FoundInduction = true;
949 break;
951 // The loop latch ended and we didn't find the induction variable return as
952 // current limitation.
953 if (!FoundInduction) {
954 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
955 ORE->emit([&]() {
956 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
957 InnerLoop->getStartLoc(),
958 InnerLoop->getHeader())
959 << "Did not find the induction variable.";
961 return true;
963 return false;
966 // We currently only support LCSSA PHI nodes in the inner loop exit, if their
967 // users are either reduction PHIs or PHIs outside the outer loop (which means
968 // the we are only interested in the final value after the loop).
969 static bool
970 areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
971 SmallPtrSetImpl<PHINode *> &Reductions) {
972 BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
973 for (PHINode &PHI : InnerExit->phis()) {
974 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
975 if (PHI.getNumIncomingValues() > 1)
976 return false;
977 if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
978 PHINode *PN = dyn_cast<PHINode>(U);
979 return !PN ||
980 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
981 })) {
982 return false;
985 return true;
988 // We currently support LCSSA PHI nodes in the outer loop exit, if their
989 // incoming values do not come from the outer loop latch or if the
990 // outer loop latch has a single predecessor. In that case, the value will
991 // be available if both the inner and outer loop conditions are true, which
992 // will still be true after interchanging. If we have multiple predecessor,
993 // that may not be the case, e.g. because the outer loop latch may be executed
994 // if the inner loop is not executed.
995 static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
996 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
997 for (PHINode &PHI : LoopNestExit->phis()) {
998 // FIXME: We currently are not able to detect floating point reductions
999 // and have to use floating point PHIs as a proxy to prevent
1000 // interchanging in the presence of floating point reductions.
1001 if (PHI.getType()->isFloatingPointTy())
1002 return false;
1003 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
1004 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
1005 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
1006 continue;
1008 // The incoming value is defined in the outer loop latch. Currently we
1009 // only support that in case the outer loop latch has a single predecessor.
1010 // This guarantees that the outer loop latch is executed if and only if
1011 // the inner loop is executed (because tightlyNested() guarantees that the
1012 // outer loop header only branches to the inner loop or the outer loop
1013 // latch).
1014 // FIXME: We could weaken this logic and allow multiple predecessors,
1015 // if the values are produced outside the loop latch. We would need
1016 // additional logic to update the PHI nodes in the exit block as
1017 // well.
1018 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
1019 return false;
1022 return true;
1025 // In case of multi-level nested loops, it may occur that lcssa phis exist in
1026 // the latch of InnerLoop, i.e., when defs of the incoming values are further
1027 // inside the loopnest. Sometimes those incoming values are not available
1028 // after interchange, since the original inner latch will become the new outer
1029 // latch which may have predecessor paths that do not include those incoming
1030 // values.
1031 // TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
1032 // multi-level loop nests.
1033 static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
1034 if (InnerLoop->getSubLoops().empty())
1035 return true;
1036 // If the original outer latch has only one predecessor, then values defined
1037 // further inside the looploop, e.g., in the innermost loop, will be available
1038 // at the new outer latch after interchange.
1039 if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
1040 return true;
1042 // The outer latch has more than one predecessors, i.e., the inner
1043 // exit and the inner header.
1044 // PHI nodes in the inner latch are lcssa phis where the incoming values
1045 // are defined further inside the loopnest. Check if those phis are used
1046 // in the original inner latch. If that is the case then bail out since
1047 // those incoming values may not be available at the new outer latch.
1048 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1049 for (PHINode &PHI : InnerLoopLatch->phis()) {
1050 for (auto *U : PHI.users()) {
1051 Instruction *UI = cast<Instruction>(U);
1052 if (InnerLoopLatch == UI->getParent())
1053 return false;
1056 return true;
1059 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
1060 unsigned OuterLoopId,
1061 CharMatrix &DepMatrix) {
1062 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
1063 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
1064 << " and OuterLoopId = " << OuterLoopId
1065 << " due to dependence\n");
1066 ORE->emit([&]() {
1067 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
1068 InnerLoop->getStartLoc(),
1069 InnerLoop->getHeader())
1070 << "Cannot interchange loops due to dependences.";
1072 return false;
1074 // Check if outer and inner loop contain legal instructions only.
1075 for (auto *BB : OuterLoop->blocks())
1076 for (Instruction &I : BB->instructionsWithoutDebug())
1077 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1078 // readnone functions do not prevent interchanging.
1079 if (CI->doesNotReadMemory())
1080 continue;
1081 LLVM_DEBUG(
1082 dbgs() << "Loops with call instructions cannot be interchanged "
1083 << "safely.");
1084 ORE->emit([&]() {
1085 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
1086 CI->getDebugLoc(),
1087 CI->getParent())
1088 << "Cannot interchange loops due to call instruction.";
1091 return false;
1094 if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
1095 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
1096 ORE->emit([&]() {
1097 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
1098 InnerLoop->getStartLoc(),
1099 InnerLoop->getHeader())
1100 << "Cannot interchange loops because unsupported PHI nodes found "
1101 "in inner loop latch.";
1103 return false;
1106 // TODO: The loops could not be interchanged due to current limitations in the
1107 // transform module.
1108 if (currentLimitations()) {
1109 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1110 return false;
1113 // Check if the loops are tightly nested.
1114 if (!tightlyNested(OuterLoop, InnerLoop)) {
1115 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1116 ORE->emit([&]() {
1117 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1118 InnerLoop->getStartLoc(),
1119 InnerLoop->getHeader())
1120 << "Cannot interchange loops because they are not tightly "
1121 "nested.";
1123 return false;
1126 if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
1127 OuterInnerReductions)) {
1128 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
1129 ORE->emit([&]() {
1130 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1131 InnerLoop->getStartLoc(),
1132 InnerLoop->getHeader())
1133 << "Found unsupported PHI node in loop exit.";
1135 return false;
1138 if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1139 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1140 ORE->emit([&]() {
1141 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1142 OuterLoop->getStartLoc(),
1143 OuterLoop->getHeader())
1144 << "Found unsupported PHI node in loop exit.";
1146 return false;
1149 return true;
1152 int LoopInterchangeProfitability::getInstrOrderCost() {
1153 unsigned GoodOrder, BadOrder;
1154 BadOrder = GoodOrder = 0;
1155 for (BasicBlock *BB : InnerLoop->blocks()) {
1156 for (Instruction &Ins : *BB) {
1157 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1158 unsigned NumOp = GEP->getNumOperands();
1159 bool FoundInnerInduction = false;
1160 bool FoundOuterInduction = false;
1161 for (unsigned i = 0; i < NumOp; ++i) {
1162 // Skip operands that are not SCEV-able.
1163 if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
1164 continue;
1166 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1167 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1168 if (!AR)
1169 continue;
1171 // If we find the inner induction after an outer induction e.g.
1172 // for(int i=0;i<N;i++)
1173 // for(int j=0;j<N;j++)
1174 // A[i][j] = A[i-1][j-1]+k;
1175 // then it is a good order.
1176 if (AR->getLoop() == InnerLoop) {
1177 // We found an InnerLoop induction after OuterLoop induction. It is
1178 // a good order.
1179 FoundInnerInduction = true;
1180 if (FoundOuterInduction) {
1181 GoodOrder++;
1182 break;
1185 // If we find the outer induction after an inner induction e.g.
1186 // for(int i=0;i<N;i++)
1187 // for(int j=0;j<N;j++)
1188 // A[j][i] = A[j-1][i-1]+k;
1189 // then it is a bad order.
1190 if (AR->getLoop() == OuterLoop) {
1191 // We found an OuterLoop induction after InnerLoop induction. It is
1192 // a bad order.
1193 FoundOuterInduction = true;
1194 if (FoundInnerInduction) {
1195 BadOrder++;
1196 break;
1203 return GoodOrder - BadOrder;
1206 static bool isProfitableForVectorization(unsigned InnerLoopId,
1207 unsigned OuterLoopId,
1208 CharMatrix &DepMatrix) {
1209 // TODO: Improve this heuristic to catch more cases.
1210 // If the inner loop is loop independent or doesn't carry any dependency it is
1211 // profitable to move this to outer position.
1212 for (auto &Row : DepMatrix) {
1213 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1214 return false;
1215 // TODO: We need to improve this heuristic.
1216 if (Row[OuterLoopId] != '=')
1217 return false;
1219 // If outer loop has dependence and inner loop is loop independent then it is
1220 // profitable to interchange to enable parallelism.
1221 // If there are no dependences, interchanging will not improve anything.
1222 return !DepMatrix.empty();
1225 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1226 unsigned OuterLoopId,
1227 CharMatrix &DepMatrix) {
1228 // TODO: Add better profitability checks.
1229 // e.g
1230 // 1) Construct dependency matrix and move the one with no loop carried dep
1231 // inside to enable vectorization.
1233 // This is rough cost estimation algorithm. It counts the good and bad order
1234 // of induction variables in the instruction and allows reordering if number
1235 // of bad orders is more than good.
1236 int Cost = getInstrOrderCost();
1237 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1238 if (Cost < -LoopInterchangeCostThreshold)
1239 return true;
1241 // It is not profitable as per current cache profitability model. But check if
1242 // we can move this loop outside to improve parallelism.
1243 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1244 return true;
1246 ORE->emit([&]() {
1247 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1248 InnerLoop->getStartLoc(),
1249 InnerLoop->getHeader())
1250 << "Interchanging loops is too costly (cost="
1251 << ore::NV("Cost", Cost) << ", threshold="
1252 << ore::NV("Threshold", LoopInterchangeCostThreshold)
1253 << ") and it does not improve parallelism.";
1255 return false;
1258 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1259 Loop *InnerLoop) {
1260 for (Loop *L : *OuterLoop)
1261 if (L == InnerLoop) {
1262 OuterLoop->removeChildLoop(L);
1263 return;
1265 llvm_unreachable("Couldn't find loop");
1268 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1269 /// new inner and outer loop after interchanging: NewInner is the original
1270 /// outer loop and NewOuter is the original inner loop.
1272 /// Before interchanging, we have the following structure
1273 /// Outer preheader
1274 // Outer header
1275 // Inner preheader
1276 // Inner header
1277 // Inner body
1278 // Inner latch
1279 // outer bbs
1280 // Outer latch
1282 // After interchanging:
1283 // Inner preheader
1284 // Inner header
1285 // Outer preheader
1286 // Outer header
1287 // Inner body
1288 // outer bbs
1289 // Outer latch
1290 // Inner latch
1291 void LoopInterchangeTransform::restructureLoops(
1292 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1293 BasicBlock *OrigOuterPreHeader) {
1294 Loop *OuterLoopParent = OuterLoop->getParentLoop();
1295 // The original inner loop preheader moves from the new inner loop to
1296 // the parent loop, if there is one.
1297 NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1298 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1300 // Switch the loop levels.
1301 if (OuterLoopParent) {
1302 // Remove the loop from its parent loop.
1303 removeChildLoop(OuterLoopParent, NewInner);
1304 removeChildLoop(NewInner, NewOuter);
1305 OuterLoopParent->addChildLoop(NewOuter);
1306 } else {
1307 removeChildLoop(NewInner, NewOuter);
1308 LI->changeTopLevelLoop(NewInner, NewOuter);
1310 while (!NewOuter->isInnermost())
1311 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1312 NewOuter->addChildLoop(NewInner);
1314 // BBs from the original inner loop.
1315 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1317 // Add BBs from the original outer loop to the original inner loop (excluding
1318 // BBs already in inner loop)
1319 for (BasicBlock *BB : NewInner->blocks())
1320 if (LI->getLoopFor(BB) == NewInner)
1321 NewOuter->addBlockEntry(BB);
1323 // Now remove inner loop header and latch from the new inner loop and move
1324 // other BBs (the loop body) to the new inner loop.
1325 BasicBlock *OuterHeader = NewOuter->getHeader();
1326 BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1327 for (BasicBlock *BB : OrigInnerBBs) {
1328 // Nothing will change for BBs in child loops.
1329 if (LI->getLoopFor(BB) != NewOuter)
1330 continue;
1331 // Remove the new outer loop header and latch from the new inner loop.
1332 if (BB == OuterHeader || BB == OuterLatch)
1333 NewInner->removeBlockFromLoop(BB);
1334 else
1335 LI->changeLoopFor(BB, NewInner);
1338 // The preheader of the original outer loop becomes part of the new
1339 // outer loop.
1340 NewOuter->addBlockEntry(OrigOuterPreHeader);
1341 LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1343 // Tell SE that we move the loops around.
1344 SE->forgetLoop(NewOuter);
1345 SE->forgetLoop(NewInner);
1348 bool LoopInterchangeTransform::transform() {
1349 bool Transformed = false;
1350 Instruction *InnerIndexVar;
1352 if (InnerLoop->getSubLoops().empty()) {
1353 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1354 LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1355 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1356 if (!InductionPHI) {
1357 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1358 return false;
1361 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1362 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1363 else
1364 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1366 // Ensure that InductionPHI is the first Phi node.
1367 if (&InductionPHI->getParent()->front() != InductionPHI)
1368 InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1370 // Create a new latch block for the inner loop. We split at the
1371 // current latch's terminator and then move the condition and all
1372 // operands that are not either loop-invariant or the induction PHI into the
1373 // new latch block.
1374 BasicBlock *NewLatch =
1375 SplitBlock(InnerLoop->getLoopLatch(),
1376 InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1378 SmallSetVector<Instruction *, 4> WorkList;
1379 unsigned i = 0;
1380 auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1381 for (; i < WorkList.size(); i++) {
1382 // Duplicate instruction and move it the new latch. Update uses that
1383 // have been moved.
1384 Instruction *NewI = WorkList[i]->clone();
1385 NewI->insertBefore(NewLatch->getFirstNonPHI());
1386 assert(!NewI->mayHaveSideEffects() &&
1387 "Moving instructions with side-effects may change behavior of "
1388 "the loop nest!");
1389 for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
1390 Instruction *UserI = cast<Instruction>(U.getUser());
1391 if (!InnerLoop->contains(UserI->getParent()) ||
1392 UserI->getParent() == NewLatch || UserI == InductionPHI)
1393 U.set(NewI);
1395 // Add operands of moved instruction to the worklist, except if they are
1396 // outside the inner loop or are the induction PHI.
1397 for (Value *Op : WorkList[i]->operands()) {
1398 Instruction *OpI = dyn_cast<Instruction>(Op);
1399 if (!OpI ||
1400 this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1401 OpI == InductionPHI)
1402 continue;
1403 WorkList.insert(OpI);
1408 // FIXME: Should we interchange when we have a constant condition?
1409 Instruction *CondI = dyn_cast<Instruction>(
1410 cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1411 ->getCondition());
1412 if (CondI)
1413 WorkList.insert(CondI);
1414 MoveInstructions();
1415 WorkList.insert(cast<Instruction>(InnerIndexVar));
1416 MoveInstructions();
1418 // Splits the inner loops phi nodes out into a separate basic block.
1419 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1420 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1421 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1424 // Instructions in the original inner loop preheader may depend on values
1425 // defined in the outer loop header. Move them there, because the original
1426 // inner loop preheader will become the entry into the interchanged loop nest.
1427 // Currently we move all instructions and rely on LICM to move invariant
1428 // instructions outside the loop nest.
1429 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1430 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1431 if (InnerLoopPreHeader != OuterLoopHeader) {
1432 SmallPtrSet<Instruction *, 4> NeedsMoving;
1433 for (Instruction &I :
1434 make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
1435 std::prev(InnerLoopPreHeader->end()))))
1436 I.moveBefore(OuterLoopHeader->getTerminator());
1439 Transformed |= adjustLoopLinks();
1440 if (!Transformed) {
1441 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1442 return false;
1445 return true;
1448 /// \brief Move all instructions except the terminator from FromBB right before
1449 /// InsertBefore
1450 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1451 auto &ToList = InsertBefore->getParent()->getInstList();
1452 auto &FromList = FromBB->getInstList();
1454 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1455 FromBB->getTerminator()->getIterator());
1458 /// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
1459 static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
1460 // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
1461 // from BB1 afterwards.
1462 auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
1463 SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
1464 for (Instruction *I : TempInstrs)
1465 I->removeFromParent();
1467 // Move instructions from BB2 to BB1.
1468 moveBBContents(BB2, BB1->getTerminator());
1470 // Move instructions from TempInstrs to BB2.
1471 for (Instruction *I : TempInstrs)
1472 I->insertBefore(BB2->getTerminator());
1475 // Update BI to jump to NewBB instead of OldBB. Records updates to the
1476 // dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
1477 // \p OldBB is exactly once in BI's successor list.
1478 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1479 BasicBlock *NewBB,
1480 std::vector<DominatorTree::UpdateType> &DTUpdates,
1481 bool MustUpdateOnce = true) {
1482 assert((!MustUpdateOnce ||
1483 llvm::count_if(successors(BI),
1484 [OldBB](BasicBlock *BB) {
1485 return BB == OldBB;
1486 }) == 1) && "BI must jump to OldBB exactly once.");
1487 bool Changed = false;
1488 for (Use &Op : BI->operands())
1489 if (Op == OldBB) {
1490 Op.set(NewBB);
1491 Changed = true;
1494 if (Changed) {
1495 DTUpdates.push_back(
1496 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1497 DTUpdates.push_back(
1498 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1500 assert(Changed && "Expected a successor to be updated");
1503 // Move Lcssa PHIs to the right place.
1504 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1505 BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1506 BasicBlock *OuterLatch, BasicBlock *OuterExit,
1507 Loop *InnerLoop, LoopInfo *LI) {
1509 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1510 // defined either in the header or latch. Those blocks will become header and
1511 // latch of the new outer loop, and the only possible users can PHI nodes
1512 // in the exit block of the loop nest or the outer loop header (reduction
1513 // PHIs, in that case, the incoming value must be defined in the inner loop
1514 // header). We can just substitute the user with the incoming value and remove
1515 // the PHI.
1516 for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1517 assert(P.getNumIncomingValues() == 1 &&
1518 "Only loops with a single exit are supported!");
1520 // Incoming values are guaranteed be instructions currently.
1521 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1522 // Skip phis with incoming values from the inner loop body, excluding the
1523 // header and latch.
1524 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1525 continue;
1527 assert(all_of(P.users(),
1528 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1529 return (cast<PHINode>(U)->getParent() == OuterHeader &&
1530 IncI->getParent() == InnerHeader) ||
1531 cast<PHINode>(U)->getParent() == OuterExit;
1532 }) &&
1533 "Can only replace phis iff the uses are in the loop nest exit or "
1534 "the incoming value is defined in the inner header (it will "
1535 "dominate all loop blocks after interchanging)");
1536 P.replaceAllUsesWith(IncI);
1537 P.eraseFromParent();
1540 SmallVector<PHINode *, 8> LcssaInnerExit;
1541 for (PHINode &P : InnerExit->phis())
1542 LcssaInnerExit.push_back(&P);
1544 SmallVector<PHINode *, 8> LcssaInnerLatch;
1545 for (PHINode &P : InnerLatch->phis())
1546 LcssaInnerLatch.push_back(&P);
1548 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1549 // If a PHI node has users outside of InnerExit, it has a use outside the
1550 // interchanged loop and we have to preserve it. We move these to
1551 // InnerLatch, which will become the new exit block for the innermost
1552 // loop after interchanging.
1553 for (PHINode *P : LcssaInnerExit)
1554 P->moveBefore(InnerLatch->getFirstNonPHI());
1556 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1557 // and we have to move them to the new inner latch.
1558 for (PHINode *P : LcssaInnerLatch)
1559 P->moveBefore(InnerExit->getFirstNonPHI());
1561 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1562 // incoming values defined in the outer loop, we have to add a new PHI
1563 // in the inner loop latch, which became the exit block of the outer loop,
1564 // after interchanging.
1565 if (OuterExit) {
1566 for (PHINode &P : OuterExit->phis()) {
1567 if (P.getNumIncomingValues() != 1)
1568 continue;
1569 // Skip Phis with incoming values defined in the inner loop. Those should
1570 // already have been updated.
1571 auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1572 if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
1573 continue;
1575 PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1576 NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1577 NewPhi->setIncomingBlock(0, OuterLatch);
1578 // We might have incoming edges from other BBs, i.e., the original outer
1579 // header.
1580 for (auto *Pred : predecessors(InnerLatch)) {
1581 if (Pred == OuterLatch)
1582 continue;
1583 NewPhi->addIncoming(P.getIncomingValue(0), Pred);
1585 NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1586 P.setIncomingValue(0, NewPhi);
1590 // Now adjust the incoming blocks for the LCSSA PHIs.
1591 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1592 // with the new latch.
1593 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1596 bool LoopInterchangeTransform::adjustLoopBranches() {
1597 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1598 std::vector<DominatorTree::UpdateType> DTUpdates;
1600 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1601 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1603 assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1604 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1605 InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1606 // Ensure that both preheaders do not contain PHI nodes and have single
1607 // predecessors. This allows us to move them easily. We use
1608 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1609 // preheaders do not satisfy those conditions.
1610 if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1611 !OuterLoopPreHeader->getUniquePredecessor())
1612 OuterLoopPreHeader =
1613 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1614 if (InnerLoopPreHeader == OuterLoop->getHeader())
1615 InnerLoopPreHeader =
1616 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1618 // Adjust the loop preheader
1619 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1620 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1621 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1622 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1623 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1624 BasicBlock *InnerLoopLatchPredecessor =
1625 InnerLoopLatch->getUniquePredecessor();
1626 BasicBlock *InnerLoopLatchSuccessor;
1627 BasicBlock *OuterLoopLatchSuccessor;
1629 BranchInst *OuterLoopLatchBI =
1630 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1631 BranchInst *InnerLoopLatchBI =
1632 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1633 BranchInst *OuterLoopHeaderBI =
1634 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1635 BranchInst *InnerLoopHeaderBI =
1636 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1638 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1639 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1640 !InnerLoopHeaderBI)
1641 return false;
1643 BranchInst *InnerLoopLatchPredecessorBI =
1644 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1645 BranchInst *OuterLoopPredecessorBI =
1646 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1648 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1649 return false;
1650 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1651 if (!InnerLoopHeaderSuccessor)
1652 return false;
1654 // Adjust Loop Preheader and headers.
1655 // The branches in the outer loop predecessor and the outer loop header can
1656 // be unconditional branches or conditional branches with duplicates. Consider
1657 // this when updating the successors.
1658 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1659 InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
1660 // The outer loop header might or might not branch to the outer latch.
1661 // We are guaranteed to branch to the inner loop preheader.
1662 if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
1663 // In this case the outerLoopHeader should branch to the InnerLoopLatch.
1664 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
1665 DTUpdates,
1666 /*MustUpdateOnce=*/false);
1668 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1669 InnerLoopHeaderSuccessor, DTUpdates,
1670 /*MustUpdateOnce=*/false);
1672 // Adjust reduction PHI's now that the incoming block has changed.
1673 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1674 OuterLoopHeader);
1676 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1677 OuterLoopPreHeader, DTUpdates);
1679 // -------------Adjust loop latches-----------
1680 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1681 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1682 else
1683 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1685 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1686 InnerLoopLatchSuccessor, DTUpdates);
1689 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1690 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1691 else
1692 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1694 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1695 OuterLoopLatchSuccessor, DTUpdates);
1696 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1697 DTUpdates);
1699 DT->applyUpdates(DTUpdates);
1700 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1701 OuterLoopPreHeader);
1703 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1704 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
1705 InnerLoop, LI);
1706 // For PHIs in the exit block of the outer loop, outer's latch has been
1707 // replaced by Inners'.
1708 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1710 auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1711 // Now update the reduction PHIs in the inner and outer loop headers.
1712 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1713 for (PHINode &PHI : InnerLoopHeader->phis()) {
1714 if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end())
1715 continue;
1716 InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1718 for (PHINode &PHI : OuterLoopHeader->phis()) {
1719 if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end())
1720 continue;
1721 OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1724 // Now move the remaining reduction PHIs from outer to inner loop header and
1725 // vice versa. The PHI nodes must be part of a reduction across the inner and
1726 // outer loop and all the remains to do is and updating the incoming blocks.
1727 for (PHINode *PHI : OuterLoopPHIs) {
1728 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1729 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1731 for (PHINode *PHI : InnerLoopPHIs) {
1732 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1733 assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
1736 // Update the incoming blocks for moved PHI nodes.
1737 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1738 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1739 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1740 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1742 // Values defined in the outer loop header could be used in the inner loop
1743 // latch. In that case, we need to create LCSSA phis for them, because after
1744 // interchanging they will be defined in the new inner loop and used in the
1745 // new outer loop.
1746 IRBuilder<> Builder(OuterLoopHeader->getContext());
1747 SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
1748 for (Instruction &I :
1749 make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
1750 MayNeedLCSSAPhis.push_back(&I);
1751 formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
1753 return true;
1756 bool LoopInterchangeTransform::adjustLoopLinks() {
1757 // Adjust all branches in the inner and outer loop.
1758 bool Changed = adjustLoopBranches();
1759 if (Changed) {
1760 // We have interchanged the preheaders so we need to interchange the data in
1761 // the preheaders as well. This is because the content of the inner
1762 // preheader was previously executed inside the outer loop.
1763 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1764 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1765 swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
1767 return Changed;
1770 /// Main LoopInterchange Pass.
1771 struct LoopInterchangeLegacyPass : public LoopPass {
1772 static char ID;
1774 LoopInterchangeLegacyPass() : LoopPass(ID) {
1775 initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
1778 void getAnalysisUsage(AnalysisUsage &AU) const override {
1779 AU.addRequired<DependenceAnalysisWrapperPass>();
1780 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1782 getLoopAnalysisUsage(AU);
1785 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1786 if (skipLoop(L))
1787 return false;
1789 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1790 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1791 auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1792 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1793 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1795 return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
1799 char LoopInterchangeLegacyPass::ID = 0;
1801 INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
1802 "Interchanges loops for cache reuse", false, false)
1803 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1804 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1805 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1807 INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
1808 "Interchanges loops for cache reuse", false, false)
1810 Pass *llvm::createLoopInterchangePass() {
1811 return new LoopInterchangeLegacyPass();
1814 PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
1815 LoopAnalysisManager &AM,
1816 LoopStandardAnalysisResults &AR,
1817 LPMUpdater &U) {
1818 Function &F = *LN.getParent();
1820 DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
1821 OptimizationRemarkEmitter ORE(&F);
1822 if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
1823 return PreservedAnalyses::all();
1824 return getLoopPassPreservedAnalyses();