1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopVersioning.h"
59 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include <forward_list>
70 #define LLE_OPTION "loop-load-elim"
71 #define DEBUG_TYPE LLE_OPTION
73 static cl::opt
<unsigned> CheckPerElim(
74 "runtime-check-per-loop-load-elim", cl::Hidden
,
75 cl::desc("Max number of memchecks allowed per eliminated load on average"),
78 static cl::opt
<unsigned> LoadElimSCEVCheckThreshold(
79 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden
,
80 cl::desc("The maximum number of SCEV checks allowed for Loop "
83 STATISTIC(NumLoopLoadEliminted
, "Number of loads eliminated by LLE");
87 /// Represent a store-to-forwarding candidate.
88 struct StoreToLoadForwardingCandidate
{
92 StoreToLoadForwardingCandidate(LoadInst
*Load
, StoreInst
*Store
)
93 : Load(Load
), Store(Store
) {}
95 /// Return true if the dependence from the store to the load has a
96 /// distance of one. E.g. A[i+1] = A[i]
97 bool isDependenceDistanceOfOne(PredicatedScalarEvolution
&PSE
,
99 Value
*LoadPtr
= Load
->getPointerOperand();
100 Value
*StorePtr
= Store
->getPointerOperand();
101 Type
*LoadType
= getLoadStoreType(Load
);
103 assert(LoadPtr
->getType()->getPointerAddressSpace() ==
104 StorePtr
->getType()->getPointerAddressSpace() &&
105 LoadType
== getLoadStoreType(Store
) &&
106 "Should be a known dependence");
108 // Currently we only support accesses with unit stride. FIXME: we should be
109 // able to handle non unit stirde as well as long as the stride is equal to
110 // the dependence distance.
111 if (getPtrStride(PSE
, LoadPtr
, L
) != 1 ||
112 getPtrStride(PSE
, StorePtr
, L
) != 1)
115 auto &DL
= Load
->getParent()->getModule()->getDataLayout();
116 unsigned TypeByteSize
= DL
.getTypeAllocSize(const_cast<Type
*>(LoadType
));
118 auto *LoadPtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(LoadPtr
));
119 auto *StorePtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(StorePtr
));
121 // We don't need to check non-wrapping here because forward/backward
122 // dependence wouldn't be valid if these weren't monotonic accesses.
123 auto *Dist
= cast
<SCEVConstant
>(
124 PSE
.getSE()->getMinusSCEV(StorePtrSCEV
, LoadPtrSCEV
));
125 const APInt
&Val
= Dist
->getAPInt();
126 return Val
== TypeByteSize
;
129 Value
*getLoadPtr() const { return Load
->getPointerOperand(); }
132 friend raw_ostream
&operator<<(raw_ostream
&OS
,
133 const StoreToLoadForwardingCandidate
&Cand
) {
134 OS
<< *Cand
.Store
<< " -->\n";
135 OS
.indent(2) << *Cand
.Load
<< "\n";
141 } // end anonymous namespace
143 /// Check if the store dominates all latches, so as long as there is no
144 /// intervening store this value will be loaded in the next iteration.
145 static bool doesStoreDominatesAllLatches(BasicBlock
*StoreBlock
, Loop
*L
,
147 SmallVector
<BasicBlock
*, 8> Latches
;
148 L
->getLoopLatches(Latches
);
149 return llvm::all_of(Latches
, [&](const BasicBlock
*Latch
) {
150 return DT
->dominates(StoreBlock
, Latch
);
154 /// Return true if the load is not executed on all paths in the loop.
155 static bool isLoadConditional(LoadInst
*Load
, Loop
*L
) {
156 return Load
->getParent() != L
->getHeader();
161 /// The per-loop class that does most of the work.
162 class LoadEliminationForLoop
{
164 LoadEliminationForLoop(Loop
*L
, LoopInfo
*LI
, const LoopAccessInfo
&LAI
,
165 DominatorTree
*DT
, BlockFrequencyInfo
*BFI
,
166 ProfileSummaryInfo
* PSI
)
167 : L(L
), LI(LI
), LAI(LAI
), DT(DT
), BFI(BFI
), PSI(PSI
), PSE(LAI
.getPSE()) {}
169 /// Look through the loop-carried and loop-independent dependences in
170 /// this loop and find store->load dependences.
172 /// Note that no candidate is returned if LAA has failed to analyze the loop
173 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
174 std::forward_list
<StoreToLoadForwardingCandidate
>
175 findStoreToLoadDependences(const LoopAccessInfo
&LAI
) {
176 std::forward_list
<StoreToLoadForwardingCandidate
> Candidates
;
178 const auto *Deps
= LAI
.getDepChecker().getDependences();
182 // Find store->load dependences (consequently true dep). Both lexically
183 // forward and backward dependences qualify. Disqualify loads that have
184 // other unknown dependences.
186 SmallPtrSet
<Instruction
*, 4> LoadsWithUnknownDepedence
;
188 for (const auto &Dep
: *Deps
) {
189 Instruction
*Source
= Dep
.getSource(LAI
);
190 Instruction
*Destination
= Dep
.getDestination(LAI
);
192 if (Dep
.Type
== MemoryDepChecker::Dependence::Unknown
) {
193 if (isa
<LoadInst
>(Source
))
194 LoadsWithUnknownDepedence
.insert(Source
);
195 if (isa
<LoadInst
>(Destination
))
196 LoadsWithUnknownDepedence
.insert(Destination
);
200 if (Dep
.isBackward())
201 // Note that the designations source and destination follow the program
202 // order, i.e. source is always first. (The direction is given by the
204 std::swap(Source
, Destination
);
206 assert(Dep
.isForward() && "Needs to be a forward dependence");
208 auto *Store
= dyn_cast
<StoreInst
>(Source
);
211 auto *Load
= dyn_cast
<LoadInst
>(Destination
);
215 // Only progagate the value if they are of the same type.
216 if (Store
->getPointerOperandType() != Load
->getPointerOperandType())
219 Candidates
.emplace_front(Load
, Store
);
222 if (!LoadsWithUnknownDepedence
.empty())
223 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&C
) {
224 return LoadsWithUnknownDepedence
.count(C
.Load
);
230 /// Return the index of the instruction according to program order.
231 unsigned getInstrIndex(Instruction
*Inst
) {
232 auto I
= InstOrder
.find(Inst
);
233 assert(I
!= InstOrder
.end() && "No index for instruction");
237 /// If a load has multiple candidates associated (i.e. different
238 /// stores), it means that it could be forwarding from multiple stores
239 /// depending on control flow. Remove these candidates.
241 /// Here, we rely on LAA to include the relevant loop-independent dependences.
242 /// LAA is known to omit these in the very simple case when the read and the
243 /// write within an alias set always takes place using the *same* pointer.
245 /// However, we know that this is not the case here, i.e. we can rely on LAA
246 /// to provide us with loop-independent dependences for the cases we're
247 /// interested. Consider the case for example where a loop-independent
248 /// dependece S1->S2 invalidates the forwarding S3->S2.
252 /// A[i+1] = ... (S3)
254 /// LAA will perform dependence analysis here because there are two
255 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
256 void removeDependencesFromMultipleStores(
257 std::forward_list
<StoreToLoadForwardingCandidate
> &Candidates
) {
258 // If Store is nullptr it means that we have multiple stores forwarding to
260 using LoadToSingleCandT
=
261 DenseMap
<LoadInst
*, const StoreToLoadForwardingCandidate
*>;
262 LoadToSingleCandT LoadToSingleCand
;
264 for (const auto &Cand
: Candidates
) {
266 LoadToSingleCandT::iterator Iter
;
268 std::tie(Iter
, NewElt
) =
269 LoadToSingleCand
.insert(std::make_pair(Cand
.Load
, &Cand
));
271 const StoreToLoadForwardingCandidate
*&OtherCand
= Iter
->second
;
272 // Already multiple stores forward to this load.
273 if (OtherCand
== nullptr)
276 // Handle the very basic case when the two stores are in the same block
277 // so deciding which one forwards is easy. The later one forwards as
278 // long as they both have a dependence distance of one to the load.
279 if (Cand
.Store
->getParent() == OtherCand
->Store
->getParent() &&
280 Cand
.isDependenceDistanceOfOne(PSE
, L
) &&
281 OtherCand
->isDependenceDistanceOfOne(PSE
, L
)) {
282 // They are in the same block, the later one will forward to the load.
283 if (getInstrIndex(OtherCand
->Store
) < getInstrIndex(Cand
.Store
))
290 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&Cand
) {
291 if (LoadToSingleCand
[Cand
.Load
] != &Cand
) {
293 dbgs() << "Removing from candidates: \n"
295 << " The load may have multiple stores forwarding to "
303 /// Given two pointers operations by their RuntimePointerChecking
304 /// indices, return true if they require an alias check.
306 /// We need a check if one is a pointer for a candidate load and the other is
307 /// a pointer for a possibly intervening store.
308 bool needsChecking(unsigned PtrIdx1
, unsigned PtrIdx2
,
309 const SmallPtrSetImpl
<Value
*> &PtrsWrittenOnFwdingPath
,
310 const SmallPtrSetImpl
<Value
*> &CandLoadPtrs
) {
312 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx1
).PointerValue
;
314 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx2
).PointerValue
;
315 return ((PtrsWrittenOnFwdingPath
.count(Ptr1
) && CandLoadPtrs
.count(Ptr2
)) ||
316 (PtrsWrittenOnFwdingPath
.count(Ptr2
) && CandLoadPtrs
.count(Ptr1
)));
319 /// Return pointers that are possibly written to on the path from a
320 /// forwarding store to a load.
322 /// These pointers need to be alias-checked against the forwarding candidates.
323 SmallPtrSet
<Value
*, 4> findPointersWrittenOnForwardingPath(
324 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
325 // From FirstStore to LastLoad neither of the elimination candidate loads
326 // should overlap with any of the stores.
331 // ld1 B[i] <-------,
332 // ld0 A[i] <----, | * LastLoad
335 // st3 B[i+1] -- | -' * FirstStore
339 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
343 std::max_element(Candidates
.begin(), Candidates
.end(),
344 [&](const StoreToLoadForwardingCandidate
&A
,
345 const StoreToLoadForwardingCandidate
&B
) {
346 return getInstrIndex(A
.Load
) < getInstrIndex(B
.Load
);
349 StoreInst
*FirstStore
=
350 std::min_element(Candidates
.begin(), Candidates
.end(),
351 [&](const StoreToLoadForwardingCandidate
&A
,
352 const StoreToLoadForwardingCandidate
&B
) {
353 return getInstrIndex(A
.Store
) <
354 getInstrIndex(B
.Store
);
358 // We're looking for stores after the first forwarding store until the end
359 // of the loop, then from the beginning of the loop until the last
360 // forwarded-to load. Collect the pointer for the stores.
361 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
;
363 auto InsertStorePtr
= [&](Instruction
*I
) {
364 if (auto *S
= dyn_cast
<StoreInst
>(I
))
365 PtrsWrittenOnFwdingPath
.insert(S
->getPointerOperand());
367 const auto &MemInstrs
= LAI
.getDepChecker().getMemoryInstructions();
368 std::for_each(MemInstrs
.begin() + getInstrIndex(FirstStore
) + 1,
369 MemInstrs
.end(), InsertStorePtr
);
370 std::for_each(MemInstrs
.begin(), &MemInstrs
[getInstrIndex(LastLoad
)],
373 return PtrsWrittenOnFwdingPath
;
376 /// Determine the pointer alias checks to prove that there are no
377 /// intervening stores.
378 SmallVector
<RuntimePointerCheck
, 4> collectMemchecks(
379 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
381 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
=
382 findPointersWrittenOnForwardingPath(Candidates
);
384 // Collect the pointers of the candidate loads.
385 SmallPtrSet
<Value
*, 4> CandLoadPtrs
;
386 for (const auto &Candidate
: Candidates
)
387 CandLoadPtrs
.insert(Candidate
.getLoadPtr());
389 const auto &AllChecks
= LAI
.getRuntimePointerChecking()->getChecks();
390 SmallVector
<RuntimePointerCheck
, 4> Checks
;
392 copy_if(AllChecks
, std::back_inserter(Checks
),
393 [&](const RuntimePointerCheck
&Check
) {
394 for (auto PtrIdx1
: Check
.first
->Members
)
395 for (auto PtrIdx2
: Check
.second
->Members
)
396 if (needsChecking(PtrIdx1
, PtrIdx2
, PtrsWrittenOnFwdingPath
,
402 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks
.size()
404 LLVM_DEBUG(LAI
.getRuntimePointerChecking()->printChecks(dbgs(), Checks
));
409 /// Perform the transformation for a candidate.
411 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate
&Cand
,
416 // store %y, %gep_i_plus_1
421 // %x.initial = load %gep_0
423 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
424 // %x = load %gep_i <---- now dead
425 // = ... %x.storeforward
426 // store %y, %gep_i_plus_1
428 Value
*Ptr
= Cand
.Load
->getPointerOperand();
429 auto *PtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Ptr
));
430 auto *PH
= L
->getLoopPreheader();
431 assert(PH
&& "Preheader should exist!");
432 Value
*InitialPtr
= SEE
.expandCodeFor(PtrSCEV
->getStart(), Ptr
->getType(),
433 PH
->getTerminator());
434 Value
*Initial
= new LoadInst(
435 Cand
.Load
->getType(), InitialPtr
, "load_initial",
436 /* isVolatile */ false, Cand
.Load
->getAlign(), PH
->getTerminator());
438 PHINode
*PHI
= PHINode::Create(Initial
->getType(), 2, "store_forwarded",
439 &L
->getHeader()->front());
440 PHI
->addIncoming(Initial
, PH
);
441 PHI
->addIncoming(Cand
.Store
->getOperand(0), L
->getLoopLatch());
443 Cand
.Load
->replaceAllUsesWith(PHI
);
446 /// Top-level driver for each loop: find store->load forwarding
447 /// candidates, add run-time checks and perform transformation.
449 LLVM_DEBUG(dbgs() << "\nIn \"" << L
->getHeader()->getParent()->getName()
450 << "\" checking " << *L
<< "\n");
452 // Look for store-to-load forwarding cases across the
458 // store %y, %gep_i_plus_1
463 // %x.initial = load %gep_0
465 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
466 // %x = load %gep_i <---- now dead
467 // = ... %x.storeforward
468 // store %y, %gep_i_plus_1
470 // First start with store->load dependences.
471 auto StoreToLoadDependences
= findStoreToLoadDependences(LAI
);
472 if (StoreToLoadDependences
.empty())
475 // Generate an index for each load and store according to the original
476 // program order. This will be used later.
477 InstOrder
= LAI
.getDepChecker().generateInstructionOrderMap();
479 // To keep things simple for now, remove those where the load is potentially
480 // fed by multiple stores.
481 removeDependencesFromMultipleStores(StoreToLoadDependences
);
482 if (StoreToLoadDependences
.empty())
485 // Filter the candidates further.
486 SmallVector
<StoreToLoadForwardingCandidate
, 4> Candidates
;
487 for (const StoreToLoadForwardingCandidate
&Cand
: StoreToLoadDependences
) {
488 LLVM_DEBUG(dbgs() << "Candidate " << Cand
);
490 // Make sure that the stored values is available everywhere in the loop in
491 // the next iteration.
492 if (!doesStoreDominatesAllLatches(Cand
.Store
->getParent(), L
, DT
))
495 // If the load is conditional we can't hoist its 0-iteration instance to
496 // the preheader because that would make it unconditional. Thus we would
497 // access a memory location that the original loop did not access.
498 if (isLoadConditional(Cand
.Load
, L
))
501 // Check whether the SCEV difference is the same as the induction step,
502 // thus we load the value in the next iteration.
503 if (!Cand
.isDependenceDistanceOfOne(PSE
, L
))
506 assert(isa
<SCEVAddRecExpr
>(PSE
.getSCEV(Cand
.Load
->getPointerOperand())) &&
507 "Loading from something other than indvar?");
509 isa
<SCEVAddRecExpr
>(PSE
.getSCEV(Cand
.Store
->getPointerOperand())) &&
510 "Storing to something other than indvar?");
512 Candidates
.push_back(Cand
);
516 << ". Valid store-to-load forwarding across the loop backedge\n");
518 if (Candidates
.empty())
521 // Check intervening may-alias stores. These need runtime checks for alias
523 SmallVector
<RuntimePointerCheck
, 4> Checks
= collectMemchecks(Candidates
);
525 // Too many checks are likely to outweigh the benefits of forwarding.
526 if (Checks
.size() > Candidates
.size() * CheckPerElim
) {
527 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
531 if (LAI
.getPSE().getUnionPredicate().getComplexity() >
532 LoadElimSCEVCheckThreshold
) {
533 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
537 if (!L
->isLoopSimplifyForm()) {
538 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
542 if (!Checks
.empty() || !LAI
.getPSE().getUnionPredicate().isAlwaysTrue()) {
543 if (LAI
.hasConvergentOp()) {
544 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
545 "convergent calls\n");
549 auto *HeaderBB
= L
->getHeader();
550 auto *F
= HeaderBB
->getParent();
551 bool OptForSize
= F
->hasOptSize() ||
552 llvm::shouldOptimizeForSize(HeaderBB
, PSI
, BFI
,
553 PGSOQueryType::IRPass
);
556 dbgs() << "Versioning is needed but not allowed when optimizing "
561 // Point of no-return, start the transformation. First, version the loop
564 LoopVersioning
LV(LAI
, Checks
, L
, LI
, DT
, PSE
.getSE());
567 // After versioning, some of the candidates' pointers could stop being
568 // SCEVAddRecs. We need to filter them out.
569 auto NoLongerGoodCandidate
= [this](
570 const StoreToLoadForwardingCandidate
&Cand
) {
571 return !isa
<SCEVAddRecExpr
>(
572 PSE
.getSCEV(Cand
.Load
->getPointerOperand())) ||
573 !isa
<SCEVAddRecExpr
>(
574 PSE
.getSCEV(Cand
.Store
->getPointerOperand()));
576 llvm::erase_if(Candidates
, NoLongerGoodCandidate
);
579 // Next, propagate the value stored by the store to the users of the load.
580 // Also for the first iteration, generate the initial value of the load.
581 SCEVExpander
SEE(*PSE
.getSE(), L
->getHeader()->getModule()->getDataLayout(),
583 for (const auto &Cand
: Candidates
)
584 propagateStoredValueToLoadUsers(Cand
, SEE
);
585 NumLoopLoadEliminted
+= Candidates
.size();
593 /// Maps the load/store instructions to their index according to
595 DenseMap
<Instruction
*, unsigned> InstOrder
;
599 const LoopAccessInfo
&LAI
;
601 BlockFrequencyInfo
*BFI
;
602 ProfileSummaryInfo
*PSI
;
603 PredicatedScalarEvolution PSE
;
606 } // end anonymous namespace
609 eliminateLoadsAcrossLoops(Function
&F
, LoopInfo
&LI
, DominatorTree
&DT
,
610 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
611 ScalarEvolution
*SE
, AssumptionCache
*AC
,
612 function_ref
<const LoopAccessInfo
&(Loop
&)> GetLAI
) {
613 // Build up a worklist of inner-loops to transform to avoid iterator
615 // FIXME: This logic comes from other passes that actually change the loop
616 // nest structure. It isn't clear this is necessary (or useful) for a pass
617 // which merely optimizes the use of loads in a loop.
618 SmallVector
<Loop
*, 8> Worklist
;
620 bool Changed
= false;
622 for (Loop
*TopLevelLoop
: LI
)
623 for (Loop
*L
: depth_first(TopLevelLoop
)) {
624 Changed
|= simplifyLoop(L
, &DT
, &LI
, SE
, AC
, /*MSSAU*/ nullptr, false);
625 // We only handle inner-most loops.
626 if (L
->isInnermost())
627 Worklist
.push_back(L
);
630 // Now walk the identified inner loops.
631 for (Loop
*L
: Worklist
) {
632 // Match historical behavior
633 if (!L
->isRotatedForm() || !L
->getExitingBlock())
635 // The actual work is performed by LoadEliminationForLoop.
636 LoadEliminationForLoop
LEL(L
, &LI
, GetLAI(*L
), &DT
, BFI
, PSI
);
637 Changed
|= LEL
.processLoop();
644 /// The pass. Most of the work is delegated to the per-loop
645 /// LoadEliminationForLoop class.
646 class LoopLoadElimination
: public FunctionPass
{
650 LoopLoadElimination() : FunctionPass(ID
) {
651 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
654 bool runOnFunction(Function
&F
) override
{
658 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
659 auto &LAA
= getAnalysis
<LoopAccessLegacyAnalysis
>();
660 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
661 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
662 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
663 &getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI() :
665 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
667 // Process each loop nest in the function.
668 return eliminateLoadsAcrossLoops(
669 F
, LI
, DT
, BFI
, PSI
, SE
, /*AC*/ nullptr,
670 [&LAA
](Loop
&L
) -> const LoopAccessInfo
& { return LAA
.getInfo(&L
); });
673 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
674 AU
.addRequiredID(LoopSimplifyID
);
675 AU
.addRequired
<LoopInfoWrapperPass
>();
676 AU
.addPreserved
<LoopInfoWrapperPass
>();
677 AU
.addRequired
<LoopAccessLegacyAnalysis
>();
678 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
679 AU
.addRequired
<DominatorTreeWrapperPass
>();
680 AU
.addPreserved
<DominatorTreeWrapperPass
>();
681 AU
.addPreserved
<GlobalsAAWrapperPass
>();
682 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
683 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
687 } // end anonymous namespace
689 char LoopLoadElimination::ID
;
691 static const char LLE_name
[] = "Loop Load Elimination";
693 INITIALIZE_PASS_BEGIN(LoopLoadElimination
, LLE_OPTION
, LLE_name
, false, false)
694 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
695 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis
)
696 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
697 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
698 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
699 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
700 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass
)
701 INITIALIZE_PASS_END(LoopLoadElimination
, LLE_OPTION
, LLE_name
, false, false)
703 FunctionPass
*llvm::createLoopLoadEliminationPass() {
704 return new LoopLoadElimination();
707 PreservedAnalyses
LoopLoadEliminationPass::run(Function
&F
,
708 FunctionAnalysisManager
&AM
) {
709 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
710 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
711 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
712 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
713 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
714 auto &AA
= AM
.getResult
<AAManager
>(F
);
715 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
716 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
717 auto *PSI
= MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
718 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
719 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
721 auto &LAM
= AM
.getResult
<LoopAnalysisManagerFunctionProxy
>(F
).getManager();
722 bool Changed
= eliminateLoadsAcrossLoops(
723 F
, LI
, DT
, BFI
, PSI
, &SE
, &AC
, [&](Loop
&L
) -> const LoopAccessInfo
& {
724 LoopStandardAnalysisResults AR
= {AA
, AC
, DT
, LI
, SE
,
725 TLI
, TTI
, nullptr, nullptr};
726 return LAM
.getResult
<LoopAccessAnalysis
>(L
, AR
);
730 return PreservedAnalyses::all();
732 PreservedAnalyses PA
;