[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopLoadElimination.cpp
blob9c4f18f8e2213435bc478f66434c164301041830
1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
18 // load.
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/BlockFrequencyInfo.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
34 #include "llvm/Analysis/LoopAccessAnalysis.h"
35 #include "llvm/Analysis/LoopAnalysisManager.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/ProfileSummaryInfo.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils.h"
57 #include "llvm/Transforms/Utils/LoopSimplify.h"
58 #include "llvm/Transforms/Utils/LoopVersioning.h"
59 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <forward_list>
64 #include <set>
65 #include <tuple>
66 #include <utility>
68 using namespace llvm;
70 #define LLE_OPTION "loop-load-elim"
71 #define DEBUG_TYPE LLE_OPTION
73 static cl::opt<unsigned> CheckPerElim(
74 "runtime-check-per-loop-load-elim", cl::Hidden,
75 cl::desc("Max number of memchecks allowed per eliminated load on average"),
76 cl::init(1));
78 static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
79 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
80 cl::desc("The maximum number of SCEV checks allowed for Loop "
81 "Load Elimination"));
83 STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
85 namespace {
87 /// Represent a store-to-forwarding candidate.
88 struct StoreToLoadForwardingCandidate {
89 LoadInst *Load;
90 StoreInst *Store;
92 StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
93 : Load(Load), Store(Store) {}
95 /// Return true if the dependence from the store to the load has a
96 /// distance of one. E.g. A[i+1] = A[i]
97 bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
98 Loop *L) const {
99 Value *LoadPtr = Load->getPointerOperand();
100 Value *StorePtr = Store->getPointerOperand();
101 Type *LoadType = getLoadStoreType(Load);
103 assert(LoadPtr->getType()->getPointerAddressSpace() ==
104 StorePtr->getType()->getPointerAddressSpace() &&
105 LoadType == getLoadStoreType(Store) &&
106 "Should be a known dependence");
108 // Currently we only support accesses with unit stride. FIXME: we should be
109 // able to handle non unit stirde as well as long as the stride is equal to
110 // the dependence distance.
111 if (getPtrStride(PSE, LoadPtr, L) != 1 ||
112 getPtrStride(PSE, StorePtr, L) != 1)
113 return false;
115 auto &DL = Load->getParent()->getModule()->getDataLayout();
116 unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
118 auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
119 auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
121 // We don't need to check non-wrapping here because forward/backward
122 // dependence wouldn't be valid if these weren't monotonic accesses.
123 auto *Dist = cast<SCEVConstant>(
124 PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
125 const APInt &Val = Dist->getAPInt();
126 return Val == TypeByteSize;
129 Value *getLoadPtr() const { return Load->getPointerOperand(); }
131 #ifndef NDEBUG
132 friend raw_ostream &operator<<(raw_ostream &OS,
133 const StoreToLoadForwardingCandidate &Cand) {
134 OS << *Cand.Store << " -->\n";
135 OS.indent(2) << *Cand.Load << "\n";
136 return OS;
138 #endif
141 } // end anonymous namespace
143 /// Check if the store dominates all latches, so as long as there is no
144 /// intervening store this value will be loaded in the next iteration.
145 static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
146 DominatorTree *DT) {
147 SmallVector<BasicBlock *, 8> Latches;
148 L->getLoopLatches(Latches);
149 return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
150 return DT->dominates(StoreBlock, Latch);
154 /// Return true if the load is not executed on all paths in the loop.
155 static bool isLoadConditional(LoadInst *Load, Loop *L) {
156 return Load->getParent() != L->getHeader();
159 namespace {
161 /// The per-loop class that does most of the work.
162 class LoadEliminationForLoop {
163 public:
164 LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
165 DominatorTree *DT, BlockFrequencyInfo *BFI,
166 ProfileSummaryInfo* PSI)
167 : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
169 /// Look through the loop-carried and loop-independent dependences in
170 /// this loop and find store->load dependences.
172 /// Note that no candidate is returned if LAA has failed to analyze the loop
173 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
174 std::forward_list<StoreToLoadForwardingCandidate>
175 findStoreToLoadDependences(const LoopAccessInfo &LAI) {
176 std::forward_list<StoreToLoadForwardingCandidate> Candidates;
178 const auto *Deps = LAI.getDepChecker().getDependences();
179 if (!Deps)
180 return Candidates;
182 // Find store->load dependences (consequently true dep). Both lexically
183 // forward and backward dependences qualify. Disqualify loads that have
184 // other unknown dependences.
186 SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
188 for (const auto &Dep : *Deps) {
189 Instruction *Source = Dep.getSource(LAI);
190 Instruction *Destination = Dep.getDestination(LAI);
192 if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
193 if (isa<LoadInst>(Source))
194 LoadsWithUnknownDepedence.insert(Source);
195 if (isa<LoadInst>(Destination))
196 LoadsWithUnknownDepedence.insert(Destination);
197 continue;
200 if (Dep.isBackward())
201 // Note that the designations source and destination follow the program
202 // order, i.e. source is always first. (The direction is given by the
203 // DepType.)
204 std::swap(Source, Destination);
205 else
206 assert(Dep.isForward() && "Needs to be a forward dependence");
208 auto *Store = dyn_cast<StoreInst>(Source);
209 if (!Store)
210 continue;
211 auto *Load = dyn_cast<LoadInst>(Destination);
212 if (!Load)
213 continue;
215 // Only progagate the value if they are of the same type.
216 if (Store->getPointerOperandType() != Load->getPointerOperandType())
217 continue;
219 Candidates.emplace_front(Load, Store);
222 if (!LoadsWithUnknownDepedence.empty())
223 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
224 return LoadsWithUnknownDepedence.count(C.Load);
227 return Candidates;
230 /// Return the index of the instruction according to program order.
231 unsigned getInstrIndex(Instruction *Inst) {
232 auto I = InstOrder.find(Inst);
233 assert(I != InstOrder.end() && "No index for instruction");
234 return I->second;
237 /// If a load has multiple candidates associated (i.e. different
238 /// stores), it means that it could be forwarding from multiple stores
239 /// depending on control flow. Remove these candidates.
241 /// Here, we rely on LAA to include the relevant loop-independent dependences.
242 /// LAA is known to omit these in the very simple case when the read and the
243 /// write within an alias set always takes place using the *same* pointer.
245 /// However, we know that this is not the case here, i.e. we can rely on LAA
246 /// to provide us with loop-independent dependences for the cases we're
247 /// interested. Consider the case for example where a loop-independent
248 /// dependece S1->S2 invalidates the forwarding S3->S2.
250 /// A[i] = ... (S1)
251 /// ... = A[i] (S2)
252 /// A[i+1] = ... (S3)
254 /// LAA will perform dependence analysis here because there are two
255 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
256 void removeDependencesFromMultipleStores(
257 std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
258 // If Store is nullptr it means that we have multiple stores forwarding to
259 // this store.
260 using LoadToSingleCandT =
261 DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
262 LoadToSingleCandT LoadToSingleCand;
264 for (const auto &Cand : Candidates) {
265 bool NewElt;
266 LoadToSingleCandT::iterator Iter;
268 std::tie(Iter, NewElt) =
269 LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
270 if (!NewElt) {
271 const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
272 // Already multiple stores forward to this load.
273 if (OtherCand == nullptr)
274 continue;
276 // Handle the very basic case when the two stores are in the same block
277 // so deciding which one forwards is easy. The later one forwards as
278 // long as they both have a dependence distance of one to the load.
279 if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
280 Cand.isDependenceDistanceOfOne(PSE, L) &&
281 OtherCand->isDependenceDistanceOfOne(PSE, L)) {
282 // They are in the same block, the later one will forward to the load.
283 if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
284 OtherCand = &Cand;
285 } else
286 OtherCand = nullptr;
290 Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
291 if (LoadToSingleCand[Cand.Load] != &Cand) {
292 LLVM_DEBUG(
293 dbgs() << "Removing from candidates: \n"
294 << Cand
295 << " The load may have multiple stores forwarding to "
296 << "it\n");
297 return true;
299 return false;
303 /// Given two pointers operations by their RuntimePointerChecking
304 /// indices, return true if they require an alias check.
306 /// We need a check if one is a pointer for a candidate load and the other is
307 /// a pointer for a possibly intervening store.
308 bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
309 const SmallPtrSetImpl<Value *> &PtrsWrittenOnFwdingPath,
310 const SmallPtrSetImpl<Value *> &CandLoadPtrs) {
311 Value *Ptr1 =
312 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
313 Value *Ptr2 =
314 LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
315 return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
316 (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
319 /// Return pointers that are possibly written to on the path from a
320 /// forwarding store to a load.
322 /// These pointers need to be alias-checked against the forwarding candidates.
323 SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
324 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
325 // From FirstStore to LastLoad neither of the elimination candidate loads
326 // should overlap with any of the stores.
328 // E.g.:
330 // st1 C[i]
331 // ld1 B[i] <-------,
332 // ld0 A[i] <----, | * LastLoad
333 // ... | |
334 // st2 E[i] | |
335 // st3 B[i+1] -- | -' * FirstStore
336 // st0 A[i+1] ---'
337 // st4 D[i]
339 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
340 // ld0.
342 LoadInst *LastLoad =
343 std::max_element(Candidates.begin(), Candidates.end(),
344 [&](const StoreToLoadForwardingCandidate &A,
345 const StoreToLoadForwardingCandidate &B) {
346 return getInstrIndex(A.Load) < getInstrIndex(B.Load);
348 ->Load;
349 StoreInst *FirstStore =
350 std::min_element(Candidates.begin(), Candidates.end(),
351 [&](const StoreToLoadForwardingCandidate &A,
352 const StoreToLoadForwardingCandidate &B) {
353 return getInstrIndex(A.Store) <
354 getInstrIndex(B.Store);
356 ->Store;
358 // We're looking for stores after the first forwarding store until the end
359 // of the loop, then from the beginning of the loop until the last
360 // forwarded-to load. Collect the pointer for the stores.
361 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
363 auto InsertStorePtr = [&](Instruction *I) {
364 if (auto *S = dyn_cast<StoreInst>(I))
365 PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
367 const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
368 std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
369 MemInstrs.end(), InsertStorePtr);
370 std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
371 InsertStorePtr);
373 return PtrsWrittenOnFwdingPath;
376 /// Determine the pointer alias checks to prove that there are no
377 /// intervening stores.
378 SmallVector<RuntimePointerCheck, 4> collectMemchecks(
379 const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
381 SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
382 findPointersWrittenOnForwardingPath(Candidates);
384 // Collect the pointers of the candidate loads.
385 SmallPtrSet<Value *, 4> CandLoadPtrs;
386 for (const auto &Candidate : Candidates)
387 CandLoadPtrs.insert(Candidate.getLoadPtr());
389 const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
390 SmallVector<RuntimePointerCheck, 4> Checks;
392 copy_if(AllChecks, std::back_inserter(Checks),
393 [&](const RuntimePointerCheck &Check) {
394 for (auto PtrIdx1 : Check.first->Members)
395 for (auto PtrIdx2 : Check.second->Members)
396 if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
397 CandLoadPtrs))
398 return true;
399 return false;
402 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
403 << "):\n");
404 LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
406 return Checks;
409 /// Perform the transformation for a candidate.
410 void
411 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
412 SCEVExpander &SEE) {
413 // loop:
414 // %x = load %gep_i
415 // = ... %x
416 // store %y, %gep_i_plus_1
418 // =>
420 // ph:
421 // %x.initial = load %gep_0
422 // loop:
423 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
424 // %x = load %gep_i <---- now dead
425 // = ... %x.storeforward
426 // store %y, %gep_i_plus_1
428 Value *Ptr = Cand.Load->getPointerOperand();
429 auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
430 auto *PH = L->getLoopPreheader();
431 assert(PH && "Preheader should exist!");
432 Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
433 PH->getTerminator());
434 Value *Initial = new LoadInst(
435 Cand.Load->getType(), InitialPtr, "load_initial",
436 /* isVolatile */ false, Cand.Load->getAlign(), PH->getTerminator());
438 PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
439 &L->getHeader()->front());
440 PHI->addIncoming(Initial, PH);
441 PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
443 Cand.Load->replaceAllUsesWith(PHI);
446 /// Top-level driver for each loop: find store->load forwarding
447 /// candidates, add run-time checks and perform transformation.
448 bool processLoop() {
449 LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
450 << "\" checking " << *L << "\n");
452 // Look for store-to-load forwarding cases across the
453 // backedge. E.g.:
455 // loop:
456 // %x = load %gep_i
457 // = ... %x
458 // store %y, %gep_i_plus_1
460 // =>
462 // ph:
463 // %x.initial = load %gep_0
464 // loop:
465 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
466 // %x = load %gep_i <---- now dead
467 // = ... %x.storeforward
468 // store %y, %gep_i_plus_1
470 // First start with store->load dependences.
471 auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
472 if (StoreToLoadDependences.empty())
473 return false;
475 // Generate an index for each load and store according to the original
476 // program order. This will be used later.
477 InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
479 // To keep things simple for now, remove those where the load is potentially
480 // fed by multiple stores.
481 removeDependencesFromMultipleStores(StoreToLoadDependences);
482 if (StoreToLoadDependences.empty())
483 return false;
485 // Filter the candidates further.
486 SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
487 for (const StoreToLoadForwardingCandidate &Cand : StoreToLoadDependences) {
488 LLVM_DEBUG(dbgs() << "Candidate " << Cand);
490 // Make sure that the stored values is available everywhere in the loop in
491 // the next iteration.
492 if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
493 continue;
495 // If the load is conditional we can't hoist its 0-iteration instance to
496 // the preheader because that would make it unconditional. Thus we would
497 // access a memory location that the original loop did not access.
498 if (isLoadConditional(Cand.Load, L))
499 continue;
501 // Check whether the SCEV difference is the same as the induction step,
502 // thus we load the value in the next iteration.
503 if (!Cand.isDependenceDistanceOfOne(PSE, L))
504 continue;
506 assert(isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Load->getPointerOperand())) &&
507 "Loading from something other than indvar?");
508 assert(
509 isa<SCEVAddRecExpr>(PSE.getSCEV(Cand.Store->getPointerOperand())) &&
510 "Storing to something other than indvar?");
512 Candidates.push_back(Cand);
513 LLVM_DEBUG(
514 dbgs()
515 << Candidates.size()
516 << ". Valid store-to-load forwarding across the loop backedge\n");
518 if (Candidates.empty())
519 return false;
521 // Check intervening may-alias stores. These need runtime checks for alias
522 // disambiguation.
523 SmallVector<RuntimePointerCheck, 4> Checks = collectMemchecks(Candidates);
525 // Too many checks are likely to outweigh the benefits of forwarding.
526 if (Checks.size() > Candidates.size() * CheckPerElim) {
527 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
528 return false;
531 if (LAI.getPSE().getUnionPredicate().getComplexity() >
532 LoadElimSCEVCheckThreshold) {
533 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
534 return false;
537 if (!L->isLoopSimplifyForm()) {
538 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
539 return false;
542 if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
543 if (LAI.hasConvergentOp()) {
544 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
545 "convergent calls\n");
546 return false;
549 auto *HeaderBB = L->getHeader();
550 auto *F = HeaderBB->getParent();
551 bool OptForSize = F->hasOptSize() ||
552 llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI,
553 PGSOQueryType::IRPass);
554 if (OptForSize) {
555 LLVM_DEBUG(
556 dbgs() << "Versioning is needed but not allowed when optimizing "
557 "for size.\n");
558 return false;
561 // Point of no-return, start the transformation. First, version the loop
562 // if necessary.
564 LoopVersioning LV(LAI, Checks, L, LI, DT, PSE.getSE());
565 LV.versionLoop();
567 // After versioning, some of the candidates' pointers could stop being
568 // SCEVAddRecs. We need to filter them out.
569 auto NoLongerGoodCandidate = [this](
570 const StoreToLoadForwardingCandidate &Cand) {
571 return !isa<SCEVAddRecExpr>(
572 PSE.getSCEV(Cand.Load->getPointerOperand())) ||
573 !isa<SCEVAddRecExpr>(
574 PSE.getSCEV(Cand.Store->getPointerOperand()));
576 llvm::erase_if(Candidates, NoLongerGoodCandidate);
579 // Next, propagate the value stored by the store to the users of the load.
580 // Also for the first iteration, generate the initial value of the load.
581 SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
582 "storeforward");
583 for (const auto &Cand : Candidates)
584 propagateStoredValueToLoadUsers(Cand, SEE);
585 NumLoopLoadEliminted += Candidates.size();
587 return true;
590 private:
591 Loop *L;
593 /// Maps the load/store instructions to their index according to
594 /// program order.
595 DenseMap<Instruction *, unsigned> InstOrder;
597 // Analyses used.
598 LoopInfo *LI;
599 const LoopAccessInfo &LAI;
600 DominatorTree *DT;
601 BlockFrequencyInfo *BFI;
602 ProfileSummaryInfo *PSI;
603 PredicatedScalarEvolution PSE;
606 } // end anonymous namespace
608 static bool
609 eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
610 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
611 ScalarEvolution *SE, AssumptionCache *AC,
612 function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
613 // Build up a worklist of inner-loops to transform to avoid iterator
614 // invalidation.
615 // FIXME: This logic comes from other passes that actually change the loop
616 // nest structure. It isn't clear this is necessary (or useful) for a pass
617 // which merely optimizes the use of loads in a loop.
618 SmallVector<Loop *, 8> Worklist;
620 bool Changed = false;
622 for (Loop *TopLevelLoop : LI)
623 for (Loop *L : depth_first(TopLevelLoop)) {
624 Changed |= simplifyLoop(L, &DT, &LI, SE, AC, /*MSSAU*/ nullptr, false);
625 // We only handle inner-most loops.
626 if (L->isInnermost())
627 Worklist.push_back(L);
630 // Now walk the identified inner loops.
631 for (Loop *L : Worklist) {
632 // Match historical behavior
633 if (!L->isRotatedForm() || !L->getExitingBlock())
634 continue;
635 // The actual work is performed by LoadEliminationForLoop.
636 LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
637 Changed |= LEL.processLoop();
639 return Changed;
642 namespace {
644 /// The pass. Most of the work is delegated to the per-loop
645 /// LoadEliminationForLoop class.
646 class LoopLoadElimination : public FunctionPass {
647 public:
648 static char ID;
650 LoopLoadElimination() : FunctionPass(ID) {
651 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
654 bool runOnFunction(Function &F) override {
655 if (skipFunction(F))
656 return false;
658 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
659 auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
660 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
661 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
662 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
663 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
664 nullptr;
665 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
667 // Process each loop nest in the function.
668 return eliminateLoadsAcrossLoops(
669 F, LI, DT, BFI, PSI, SE, /*AC*/ nullptr,
670 [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
673 void getAnalysisUsage(AnalysisUsage &AU) const override {
674 AU.addRequiredID(LoopSimplifyID);
675 AU.addRequired<LoopInfoWrapperPass>();
676 AU.addPreserved<LoopInfoWrapperPass>();
677 AU.addRequired<LoopAccessLegacyAnalysis>();
678 AU.addRequired<ScalarEvolutionWrapperPass>();
679 AU.addRequired<DominatorTreeWrapperPass>();
680 AU.addPreserved<DominatorTreeWrapperPass>();
681 AU.addPreserved<GlobalsAAWrapperPass>();
682 AU.addRequired<ProfileSummaryInfoWrapperPass>();
683 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
687 } // end anonymous namespace
689 char LoopLoadElimination::ID;
691 static const char LLE_name[] = "Loop Load Elimination";
693 INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
694 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
695 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
696 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
697 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
698 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
699 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
700 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
701 INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
703 FunctionPass *llvm::createLoopLoadEliminationPass() {
704 return new LoopLoadElimination();
707 PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
708 FunctionAnalysisManager &AM) {
709 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
710 auto &LI = AM.getResult<LoopAnalysis>(F);
711 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
712 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
713 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
714 auto &AA = AM.getResult<AAManager>(F);
715 auto &AC = AM.getResult<AssumptionAnalysis>(F);
716 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
717 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
718 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
719 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
721 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
722 bool Changed = eliminateLoadsAcrossLoops(
723 F, LI, DT, BFI, PSI, &SE, &AC, [&](Loop &L) -> const LoopAccessInfo & {
724 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE,
725 TLI, TTI, nullptr, nullptr};
726 return LAM.getResult<LoopAccessAnalysis>(L, AR);
729 if (!Changed)
730 return PreservedAnalyses::all();
732 PreservedAnalyses PA;
733 return PA;