1 //===- LoopReroll.cpp - Loop rerolling pass -------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass implements a simple loop reroller.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AliasSetTracker.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopPass.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include "llvm/Transforms/Scalar/LoopReroll.h"
54 #include "llvm/Transforms/Utils.h"
55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
56 #include "llvm/Transforms/Utils/Local.h"
57 #include "llvm/Transforms/Utils/LoopUtils.h"
58 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
69 #define DEBUG_TYPE "loop-reroll"
71 STATISTIC(NumRerolledLoops
, "Number of rerolled loops");
73 static cl::opt
<unsigned>
74 NumToleratedFailedMatches("reroll-num-tolerated-failed-matches", cl::init(400),
76 cl::desc("The maximum number of failures to tolerate"
77 " during fuzzy matching. (default: 400)"));
79 // This loop re-rolling transformation aims to transform loops like this:
83 // for (int i = 0; i < 500; i += 3) {
90 // into a loop like this:
93 // for (int i = 0; i < 500; ++i)
97 // It does this by looking for loops that, besides the latch code, are composed
98 // of isomorphic DAGs of instructions, with each DAG rooted at some increment
99 // to the induction variable, and where each DAG is isomorphic to the DAG
100 // rooted at the induction variable (excepting the sub-DAGs which root the
101 // other induction-variable increments). In other words, we're looking for loop
102 // bodies of the form:
104 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
106 // %iv.1 = add %iv, 1 <-- a root increment
108 // %iv.2 = add %iv, 2 <-- a root increment
110 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
113 // %iv.next = add %iv, scale
114 // %cmp = icmp(%iv, ...)
115 // br %cmp, header, exit
117 // where each f(i) is a set of instructions that, collectively, are a function
118 // only of i (and other loop-invariant values).
120 // As a special case, we can also reroll loops like this:
123 // void bar(int *x) {
124 // for (int i = 0; i < 500; ++i) {
126 // x[3*i+1] = foo(0);
127 // x[3*i+2] = foo(0);
133 // void bar(int *x) {
134 // for (int i = 0; i < 1500; ++i)
138 // in which case, we're looking for inputs like this:
140 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
141 // %scaled.iv = mul %iv, scale
143 // %scaled.iv.1 = add %scaled.iv, 1
145 // %scaled.iv.2 = add %scaled.iv, 2
147 // %scaled.iv.scale_m_1 = add %scaled.iv, scale-1
148 // f(%scaled.iv.scale_m_1)
150 // %iv.next = add %iv, 1
151 // %cmp = icmp(%iv, ...)
152 // br %cmp, header, exit
156 enum IterationLimits
{
157 /// The maximum number of iterations that we'll try and reroll.
158 IL_MaxRerollIterations
= 32,
159 /// The bitvector index used by loop induction variables and other
160 /// instructions that belong to all iterations.
165 class LoopRerollLegacyPass
: public LoopPass
{
167 static char ID
; // Pass ID, replacement for typeid
169 LoopRerollLegacyPass() : LoopPass(ID
) {
170 initializeLoopRerollLegacyPassPass(*PassRegistry::getPassRegistry());
173 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
175 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
176 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
177 getLoopAnalysisUsage(AU
);
183 LoopReroll(AliasAnalysis
*AA
, LoopInfo
*LI
, ScalarEvolution
*SE
,
184 TargetLibraryInfo
*TLI
, DominatorTree
*DT
, bool PreserveLCSSA
)
185 : AA(AA
), LI(LI
), SE(SE
), TLI(TLI
), DT(DT
),
186 PreserveLCSSA(PreserveLCSSA
) {}
187 bool runOnLoop(Loop
*L
);
193 TargetLibraryInfo
*TLI
;
197 using SmallInstructionVector
= SmallVector
<Instruction
*, 16>;
198 using SmallInstructionSet
= SmallPtrSet
<Instruction
*, 16>;
200 // Map between induction variable and its increment
201 DenseMap
<Instruction
*, int64_t> IVToIncMap
;
203 // For loop with multiple induction variable, remember the one used only to
205 Instruction
*LoopControlIV
;
207 // A chain of isomorphic instructions, identified by a single-use PHI
208 // representing a reduction. Only the last value may be used outside the
210 struct SimpleLoopReduction
{
211 SimpleLoopReduction(Instruction
*P
, Loop
*L
) : Instructions(1, P
) {
212 assert(isa
<PHINode
>(P
) && "First reduction instruction must be a PHI");
220 Instruction
*getPHI() const {
221 assert(Valid
&& "Using invalid reduction");
222 return Instructions
.front();
225 Instruction
*getReducedValue() const {
226 assert(Valid
&& "Using invalid reduction");
227 return Instructions
.back();
230 Instruction
*get(size_t i
) const {
231 assert(Valid
&& "Using invalid reduction");
232 return Instructions
[i
+1];
235 Instruction
*operator [] (size_t i
) const { return get(i
); }
237 // The size, ignoring the initial PHI.
238 size_t size() const {
239 assert(Valid
&& "Using invalid reduction");
240 return Instructions
.size()-1;
243 using iterator
= SmallInstructionVector::iterator
;
244 using const_iterator
= SmallInstructionVector::const_iterator
;
247 assert(Valid
&& "Using invalid reduction");
248 return std::next(Instructions
.begin());
251 const_iterator
begin() const {
252 assert(Valid
&& "Using invalid reduction");
253 return std::next(Instructions
.begin());
256 iterator
end() { return Instructions
.end(); }
257 const_iterator
end() const { return Instructions
.end(); }
261 SmallInstructionVector Instructions
;
266 // The set of all reductions, and state tracking of possible reductions
267 // during loop instruction processing.
268 struct ReductionTracker
{
269 using SmallReductionVector
= SmallVector
<SimpleLoopReduction
, 16>;
271 // Add a new possible reduction.
272 void addSLR(SimpleLoopReduction
&SLR
) { PossibleReds
.push_back(SLR
); }
274 // Setup to track possible reductions corresponding to the provided
275 // rerolling scale. Only reductions with a number of non-PHI instructions
276 // that is divisible by the scale are considered. Three instructions sets
278 // - A set of all possible instructions in eligible reductions.
279 // - A set of all PHIs in eligible reductions
280 // - A set of all reduced values (last instructions) in eligible
282 void restrictToScale(uint64_t Scale
,
283 SmallInstructionSet
&PossibleRedSet
,
284 SmallInstructionSet
&PossibleRedPHISet
,
285 SmallInstructionSet
&PossibleRedLastSet
) {
286 PossibleRedIdx
.clear();
287 PossibleRedIter
.clear();
290 for (unsigned i
= 0, e
= PossibleReds
.size(); i
!= e
; ++i
)
291 if (PossibleReds
[i
].size() % Scale
== 0) {
292 PossibleRedLastSet
.insert(PossibleReds
[i
].getReducedValue());
293 PossibleRedPHISet
.insert(PossibleReds
[i
].getPHI());
295 PossibleRedSet
.insert(PossibleReds
[i
].getPHI());
296 PossibleRedIdx
[PossibleReds
[i
].getPHI()] = i
;
297 for (Instruction
*J
: PossibleReds
[i
]) {
298 PossibleRedSet
.insert(J
);
299 PossibleRedIdx
[J
] = i
;
304 // The functions below are used while processing the loop instructions.
306 // Are the two instructions both from reductions, and furthermore, from
307 // the same reduction?
308 bool isPairInSame(Instruction
*J1
, Instruction
*J2
) {
309 DenseMap
<Instruction
*, int>::iterator J1I
= PossibleRedIdx
.find(J1
);
310 if (J1I
!= PossibleRedIdx
.end()) {
311 DenseMap
<Instruction
*, int>::iterator J2I
= PossibleRedIdx
.find(J2
);
312 if (J2I
!= PossibleRedIdx
.end() && J1I
->second
== J2I
->second
)
319 // The two provided instructions, the first from the base iteration, and
320 // the second from iteration i, form a matched pair. If these are part of
321 // a reduction, record that fact.
322 void recordPair(Instruction
*J1
, Instruction
*J2
, unsigned i
) {
323 if (PossibleRedIdx
.count(J1
)) {
324 assert(PossibleRedIdx
.count(J2
) &&
325 "Recording reduction vs. non-reduction instruction?");
327 PossibleRedIter
[J1
] = 0;
328 PossibleRedIter
[J2
] = i
;
330 int Idx
= PossibleRedIdx
[J1
];
331 assert(Idx
== PossibleRedIdx
[J2
] &&
332 "Recording pair from different reductions?");
337 // The functions below can be called after we've finished processing all
338 // instructions in the loop, and we know which reductions were selected.
340 bool validateSelected();
341 void replaceSelected();
344 // The vector of all possible reductions (for any scale).
345 SmallReductionVector PossibleReds
;
347 DenseMap
<Instruction
*, int> PossibleRedIdx
;
348 DenseMap
<Instruction
*, int> PossibleRedIter
;
352 // A DAGRootSet models an induction variable being used in a rerollable
353 // loop. For example,
359 // Base instruction -> i*3
362 // ST[y1] +1 +2 <-- Roots
366 // There may be multiple DAGRoots, for example:
368 // x[i*2+0] = ... (1)
369 // x[i*2+1] = ... (1)
370 // x[i*2+4] = ... (2)
371 // x[i*2+5] = ... (2)
372 // x[(i+1234)*2+5678] = ... (3)
373 // x[(i+1234)*2+5679] = ... (3)
375 // The loop will be rerolled by adding a new loop induction variable,
376 // one for the Base instruction in each DAGRootSet.
379 Instruction
*BaseInst
;
380 SmallInstructionVector Roots
;
382 // The instructions between IV and BaseInst (but not including BaseInst).
383 SmallInstructionSet SubsumedInsts
;
386 // The set of all DAG roots, and state tracking of all roots
387 // for a particular induction variable.
388 struct DAGRootTracker
{
389 DAGRootTracker(LoopReroll
*Parent
, Loop
*L
, Instruction
*IV
,
390 ScalarEvolution
*SE
, AliasAnalysis
*AA
,
391 TargetLibraryInfo
*TLI
, DominatorTree
*DT
, LoopInfo
*LI
,
393 DenseMap
<Instruction
*, int64_t> &IncrMap
,
394 Instruction
*LoopCtrlIV
)
395 : Parent(Parent
), L(L
), SE(SE
), AA(AA
), TLI(TLI
), DT(DT
), LI(LI
),
396 PreserveLCSSA(PreserveLCSSA
), IV(IV
), IVToIncMap(IncrMap
),
397 LoopControlIV(LoopCtrlIV
) {}
399 /// Stage 1: Find all the DAG roots for the induction variable.
402 /// Stage 2: Validate if the found roots are valid.
403 bool validate(ReductionTracker
&Reductions
);
405 /// Stage 3: Assuming validate() returned true, perform the
407 /// @param BackedgeTakenCount The backedge-taken count of L.
408 void replace(const SCEV
*BackedgeTakenCount
);
411 using UsesTy
= MapVector
<Instruction
*, BitVector
>;
413 void findRootsRecursive(Instruction
*IVU
,
414 SmallInstructionSet SubsumedInsts
);
415 bool findRootsBase(Instruction
*IVU
, SmallInstructionSet SubsumedInsts
);
416 bool collectPossibleRoots(Instruction
*Base
,
417 std::map
<int64_t,Instruction
*> &Roots
);
418 bool validateRootSet(DAGRootSet
&DRS
);
420 bool collectUsedInstructions(SmallInstructionSet
&PossibleRedSet
);
421 void collectInLoopUserSet(const SmallInstructionVector
&Roots
,
422 const SmallInstructionSet
&Exclude
,
423 const SmallInstructionSet
&Final
,
424 DenseSet
<Instruction
*> &Users
);
425 void collectInLoopUserSet(Instruction
*Root
,
426 const SmallInstructionSet
&Exclude
,
427 const SmallInstructionSet
&Final
,
428 DenseSet
<Instruction
*> &Users
);
430 UsesTy::iterator
nextInstr(int Val
, UsesTy
&In
,
431 const SmallInstructionSet
&Exclude
,
432 UsesTy::iterator
*StartI
=nullptr);
433 bool isBaseInst(Instruction
*I
);
434 bool isRootInst(Instruction
*I
);
435 bool instrDependsOn(Instruction
*I
,
436 UsesTy::iterator Start
,
437 UsesTy::iterator End
);
438 void replaceIV(DAGRootSet
&DRS
, const SCEV
*Start
, const SCEV
*IncrExpr
);
442 // Members of Parent, replicated here for brevity.
446 TargetLibraryInfo
*TLI
;
451 // The loop induction variable.
457 // Loop reroll count; if Inc == 1, this records the scaling applied
458 // to the indvar: a[i*2+0] = ...; a[i*2+1] = ... ;
459 // If Inc is not 1, Scale = Inc.
462 // The roots themselves.
463 SmallVector
<DAGRootSet
,16> RootSets
;
465 // All increment instructions for IV.
466 SmallInstructionVector LoopIncs
;
468 // Map of all instructions in the loop (in order) to the iterations
469 // they are used in (or specially, IL_All for instructions
470 // used in the loop increment mechanism).
473 // Map between induction variable and its increment
474 DenseMap
<Instruction
*, int64_t> &IVToIncMap
;
476 Instruction
*LoopControlIV
;
479 // Check if it is a compare-like instruction whose user is a branch
480 bool isCompareUsedByBranch(Instruction
*I
) {
481 auto *TI
= I
->getParent()->getTerminator();
482 if (!isa
<BranchInst
>(TI
) || !isa
<CmpInst
>(I
))
484 return I
->hasOneUse() && TI
->getOperand(0) == I
;
487 bool isLoopControlIV(Loop
*L
, Instruction
*IV
);
488 void collectPossibleIVs(Loop
*L
, SmallInstructionVector
&PossibleIVs
);
489 void collectPossibleReductions(Loop
*L
,
490 ReductionTracker
&Reductions
);
491 bool reroll(Instruction
*IV
, Loop
*L
, BasicBlock
*Header
,
492 const SCEV
*BackedgeTakenCount
, ReductionTracker
&Reductions
);
495 } // end anonymous namespace
497 char LoopRerollLegacyPass::ID
= 0;
499 INITIALIZE_PASS_BEGIN(LoopRerollLegacyPass
, "loop-reroll", "Reroll loops",
501 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
502 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
503 INITIALIZE_PASS_END(LoopRerollLegacyPass
, "loop-reroll", "Reroll loops", false,
506 Pass
*llvm::createLoopRerollPass() { return new LoopRerollLegacyPass
; }
508 // Returns true if the provided instruction is used outside the given loop.
509 // This operates like Instruction::isUsedOutsideOfBlock, but considers PHIs in
510 // non-loop blocks to be outside the loop.
511 static bool hasUsesOutsideLoop(Instruction
*I
, Loop
*L
) {
512 for (User
*U
: I
->users()) {
513 if (!L
->contains(cast
<Instruction
>(U
)))
519 // Check if an IV is only used to control the loop. There are two cases:
520 // 1. It only has one use which is loop increment, and the increment is only
521 // used by comparison and the PHI (could has sext with nsw in between), and the
522 // comparison is only used by branch.
523 // 2. It is used by loop increment and the comparison, the loop increment is
524 // only used by the PHI, and the comparison is used only by the branch.
525 bool LoopReroll::isLoopControlIV(Loop
*L
, Instruction
*IV
) {
526 unsigned IVUses
= IV
->getNumUses();
527 if (IVUses
!= 2 && IVUses
!= 1)
530 for (auto *User
: IV
->users()) {
531 int32_t IncOrCmpUses
= User
->getNumUses();
532 bool IsCompInst
= isCompareUsedByBranch(cast
<Instruction
>(User
));
534 // User can only have one or two uses.
535 if (IncOrCmpUses
!= 2 && IncOrCmpUses
!= 1)
540 // The only user must be the loop increment.
541 // The loop increment must have two uses.
542 if (IsCompInst
|| IncOrCmpUses
!= 2)
547 if (IVUses
== 2 && IncOrCmpUses
!= 1)
550 // The users of the IV must be a binary operation or a comparison
551 if (auto *BO
= dyn_cast
<BinaryOperator
>(User
)) {
552 if (BO
->getOpcode() == Instruction::Add
) {
554 // User of Loop Increment should be either PHI or CMP
555 for (auto *UU
: User
->users()) {
556 if (PHINode
*PN
= dyn_cast
<PHINode
>(UU
)) {
560 // Must be a CMP or an ext (of a value with nsw) then CMP
562 Instruction
*UUser
= dyn_cast
<Instruction
>(UU
);
563 // Skip SExt if we are extending an nsw value
564 // TODO: Allow ZExt too
565 if (BO
->hasNoSignedWrap() && UUser
&& UUser
->hasOneUse() &&
566 isa
<SExtInst
>(UUser
))
567 UUser
= dyn_cast
<Instruction
>(*(UUser
->user_begin()));
568 if (!isCompareUsedByBranch(UUser
))
574 // Compare : can only have one use, and must be branch
575 } else if (!IsCompInst
)
581 // Collect the list of loop induction variables with respect to which it might
582 // be possible to reroll the loop.
583 void LoopReroll::collectPossibleIVs(Loop
*L
,
584 SmallInstructionVector
&PossibleIVs
) {
585 BasicBlock
*Header
= L
->getHeader();
586 for (BasicBlock::iterator I
= Header
->begin(),
587 IE
= Header
->getFirstInsertionPt(); I
!= IE
; ++I
) {
588 if (!isa
<PHINode
>(I
))
590 if (!I
->getType()->isIntegerTy() && !I
->getType()->isPointerTy())
593 if (const SCEVAddRecExpr
*PHISCEV
=
594 dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(&*I
))) {
595 if (PHISCEV
->getLoop() != L
)
597 if (!PHISCEV
->isAffine())
599 auto IncSCEV
= dyn_cast
<SCEVConstant
>(PHISCEV
->getStepRecurrence(*SE
));
601 IVToIncMap
[&*I
] = IncSCEV
->getValue()->getSExtValue();
602 LLVM_DEBUG(dbgs() << "LRR: Possible IV: " << *I
<< " = " << *PHISCEV
605 if (isLoopControlIV(L
, &*I
)) {
606 assert(!LoopControlIV
&& "Found two loop control only IV");
607 LoopControlIV
= &(*I
);
608 LLVM_DEBUG(dbgs() << "LRR: Possible loop control only IV: " << *I
609 << " = " << *PHISCEV
<< "\n");
611 PossibleIVs
.push_back(&*I
);
617 // Add the remainder of the reduction-variable chain to the instruction vector
618 // (the initial PHINode has already been added). If successful, the object is
620 void LoopReroll::SimpleLoopReduction::add(Loop
*L
) {
621 assert(!Valid
&& "Cannot add to an already-valid chain");
623 // The reduction variable must be a chain of single-use instructions
624 // (including the PHI), except for the last value (which is used by the PHI
625 // and also outside the loop).
626 Instruction
*C
= Instructions
.front();
631 C
= cast
<Instruction
>(*C
->user_begin());
632 if (C
->hasOneUse()) {
633 if (!C
->isBinaryOp())
636 if (!(isa
<PHINode
>(Instructions
.back()) ||
637 C
->isSameOperationAs(Instructions
.back())))
640 Instructions
.push_back(C
);
642 } while (C
->hasOneUse());
644 if (Instructions
.size() < 2 ||
645 !C
->isSameOperationAs(Instructions
.back()) ||
649 // C is now the (potential) last instruction in the reduction chain.
650 for (User
*U
: C
->users()) {
651 // The only in-loop user can be the initial PHI.
652 if (L
->contains(cast
<Instruction
>(U
)))
653 if (cast
<Instruction
>(U
) != Instructions
.front())
657 Instructions
.push_back(C
);
661 // Collect the vector of possible reduction variables.
662 void LoopReroll::collectPossibleReductions(Loop
*L
,
663 ReductionTracker
&Reductions
) {
664 BasicBlock
*Header
= L
->getHeader();
665 for (BasicBlock::iterator I
= Header
->begin(),
666 IE
= Header
->getFirstInsertionPt(); I
!= IE
; ++I
) {
667 if (!isa
<PHINode
>(I
))
669 if (!I
->getType()->isSingleValueType())
672 SimpleLoopReduction
SLR(&*I
, L
);
676 LLVM_DEBUG(dbgs() << "LRR: Possible reduction: " << *I
<< " (with "
677 << SLR
.size() << " chained instructions)\n");
678 Reductions
.addSLR(SLR
);
682 // Collect the set of all users of the provided root instruction. This set of
683 // users contains not only the direct users of the root instruction, but also
684 // all users of those users, and so on. There are two exceptions:
686 // 1. Instructions in the set of excluded instructions are never added to the
687 // use set (even if they are users). This is used, for example, to exclude
688 // including root increments in the use set of the primary IV.
690 // 2. Instructions in the set of final instructions are added to the use set
691 // if they are users, but their users are not added. This is used, for
692 // example, to prevent a reduction update from forcing all later reduction
693 // updates into the use set.
694 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
695 Instruction
*Root
, const SmallInstructionSet
&Exclude
,
696 const SmallInstructionSet
&Final
,
697 DenseSet
<Instruction
*> &Users
) {
698 SmallInstructionVector
Queue(1, Root
);
699 while (!Queue
.empty()) {
700 Instruction
*I
= Queue
.pop_back_val();
701 if (!Users
.insert(I
).second
)
705 for (Use
&U
: I
->uses()) {
706 Instruction
*User
= cast
<Instruction
>(U
.getUser());
707 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
708 // Ignore "wrap-around" uses to PHIs of this loop's header.
709 if (PN
->getIncomingBlock(U
) == L
->getHeader())
713 if (L
->contains(User
) && !Exclude
.count(User
)) {
714 Queue
.push_back(User
);
718 // We also want to collect single-user "feeder" values.
719 for (Use
&U
: I
->operands()) {
720 if (Instruction
*Op
= dyn_cast
<Instruction
>(U
))
721 if (Op
->hasOneUse() && L
->contains(Op
) && !Exclude
.count(Op
) &&
728 // Collect all of the users of all of the provided root instructions (combined
729 // into a single set).
730 void LoopReroll::DAGRootTracker::collectInLoopUserSet(
731 const SmallInstructionVector
&Roots
,
732 const SmallInstructionSet
&Exclude
,
733 const SmallInstructionSet
&Final
,
734 DenseSet
<Instruction
*> &Users
) {
735 for (Instruction
*Root
: Roots
)
736 collectInLoopUserSet(Root
, Exclude
, Final
, Users
);
739 static bool isUnorderedLoadStore(Instruction
*I
) {
740 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
741 return LI
->isUnordered();
742 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
743 return SI
->isUnordered();
744 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(I
))
745 return !MI
->isVolatile();
749 /// Return true if IVU is a "simple" arithmetic operation.
750 /// This is used for narrowing the search space for DAGRoots; only arithmetic
751 /// and GEPs can be part of a DAGRoot.
752 static bool isSimpleArithmeticOp(User
*IVU
) {
753 if (Instruction
*I
= dyn_cast
<Instruction
>(IVU
)) {
754 switch (I
->getOpcode()) {
755 default: return false;
756 case Instruction::Add
:
757 case Instruction::Sub
:
758 case Instruction::Mul
:
759 case Instruction::Shl
:
760 case Instruction::AShr
:
761 case Instruction::LShr
:
762 case Instruction::GetElementPtr
:
763 case Instruction::Trunc
:
764 case Instruction::ZExt
:
765 case Instruction::SExt
:
772 static bool isLoopIncrement(User
*U
, Instruction
*IV
) {
773 BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(U
);
775 if ((BO
&& BO
->getOpcode() != Instruction::Add
) ||
776 (!BO
&& !isa
<GetElementPtrInst
>(U
)))
779 for (auto *UU
: U
->users()) {
780 PHINode
*PN
= dyn_cast
<PHINode
>(UU
);
787 bool LoopReroll::DAGRootTracker::
788 collectPossibleRoots(Instruction
*Base
, std::map
<int64_t,Instruction
*> &Roots
) {
789 SmallInstructionVector BaseUsers
;
791 for (auto *I
: Base
->users()) {
792 ConstantInt
*CI
= nullptr;
794 if (isLoopIncrement(I
, IV
)) {
795 LoopIncs
.push_back(cast
<Instruction
>(I
));
799 // The root nodes must be either GEPs, ORs or ADDs.
800 if (auto *BO
= dyn_cast
<BinaryOperator
>(I
)) {
801 if (BO
->getOpcode() == Instruction::Add
||
802 BO
->getOpcode() == Instruction::Or
)
803 CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1));
804 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
805 Value
*LastOperand
= GEP
->getOperand(GEP
->getNumOperands()-1);
806 CI
= dyn_cast
<ConstantInt
>(LastOperand
);
810 if (Instruction
*II
= dyn_cast
<Instruction
>(I
)) {
811 BaseUsers
.push_back(II
);
814 LLVM_DEBUG(dbgs() << "LRR: Aborting due to non-instruction: " << *I
820 int64_t V
= std::abs(CI
->getValue().getSExtValue());
821 if (Roots
.find(V
) != Roots
.end())
822 // No duplicates, please.
825 Roots
[V
] = cast
<Instruction
>(I
);
828 // Make sure we have at least two roots.
829 if (Roots
.empty() || (Roots
.size() == 1 && BaseUsers
.empty()))
832 // If we found non-loop-inc, non-root users of Base, assume they are
833 // for the zeroth root index. This is because "add %a, 0" gets optimized
835 if (BaseUsers
.size()) {
836 if (Roots
.find(0) != Roots
.end()) {
837 LLVM_DEBUG(dbgs() << "LRR: Multiple roots found for base - aborting!\n");
843 // Calculate the number of users of the base, or lowest indexed, iteration.
844 unsigned NumBaseUses
= BaseUsers
.size();
845 if (NumBaseUses
== 0)
846 NumBaseUses
= Roots
.begin()->second
->getNumUses();
848 // Check that every node has the same number of users.
849 for (auto &KV
: Roots
) {
852 if (!KV
.second
->hasNUses(NumBaseUses
)) {
853 LLVM_DEBUG(dbgs() << "LRR: Aborting - Root and Base #users not the same: "
854 << "#Base=" << NumBaseUses
855 << ", #Root=" << KV
.second
->getNumUses() << "\n");
863 void LoopReroll::DAGRootTracker::
864 findRootsRecursive(Instruction
*I
, SmallInstructionSet SubsumedInsts
) {
865 // Does the user look like it could be part of a root set?
866 // All its users must be simple arithmetic ops.
867 if (I
->hasNUsesOrMore(IL_MaxRerollIterations
+ 1))
870 if (I
!= IV
&& findRootsBase(I
, SubsumedInsts
))
873 SubsumedInsts
.insert(I
);
875 for (User
*V
: I
->users()) {
876 Instruction
*I
= cast
<Instruction
>(V
);
877 if (is_contained(LoopIncs
, I
))
880 if (!isSimpleArithmeticOp(I
))
883 // The recursive call makes a copy of SubsumedInsts.
884 findRootsRecursive(I
, SubsumedInsts
);
888 bool LoopReroll::DAGRootTracker::validateRootSet(DAGRootSet
&DRS
) {
889 if (DRS
.Roots
.empty())
892 // If the value of the base instruction is used outside the loop, we cannot
893 // reroll the loop. Check for other root instructions is unnecessary because
894 // they don't match any base instructions if their values are used outside.
895 if (hasUsesOutsideLoop(DRS
.BaseInst
, L
))
898 // Consider a DAGRootSet with N-1 roots (so N different values including
900 // Define d = Roots[0] - BaseInst, which should be the same as
901 // Roots[I] - Roots[I-1] for all I in [1..N).
902 // Define D = BaseInst@J - BaseInst@J-1, where "@J" means the value at the
905 // Now, For the loop iterations to be consecutive:
907 const auto *ADR
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(DRS
.BaseInst
));
911 // Check that the first root is evenly spaced.
912 unsigned N
= DRS
.Roots
.size() + 1;
913 const SCEV
*StepSCEV
= SE
->getMinusSCEV(SE
->getSCEV(DRS
.Roots
[0]), ADR
);
914 if (isa
<SCEVCouldNotCompute
>(StepSCEV
) || StepSCEV
->getType()->isPointerTy())
916 const SCEV
*ScaleSCEV
= SE
->getConstant(StepSCEV
->getType(), N
);
917 if (ADR
->getStepRecurrence(*SE
) != SE
->getMulExpr(StepSCEV
, ScaleSCEV
))
920 // Check that the remainling roots are evenly spaced.
921 for (unsigned i
= 1; i
< N
- 1; ++i
) {
922 const SCEV
*NewStepSCEV
= SE
->getMinusSCEV(SE
->getSCEV(DRS
.Roots
[i
]),
923 SE
->getSCEV(DRS
.Roots
[i
-1]));
924 if (NewStepSCEV
!= StepSCEV
)
931 bool LoopReroll::DAGRootTracker::
932 findRootsBase(Instruction
*IVU
, SmallInstructionSet SubsumedInsts
) {
933 // The base of a RootSet must be an AddRec, so it can be erased.
934 const auto *IVU_ADR
= dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(IVU
));
935 if (!IVU_ADR
|| IVU_ADR
->getLoop() != L
)
938 std::map
<int64_t, Instruction
*> V
;
939 if (!collectPossibleRoots(IVU
, V
))
942 // If we didn't get a root for index zero, then IVU must be
944 if (V
.find(0) == V
.end())
945 SubsumedInsts
.insert(IVU
);
947 // Partition the vector into monotonically increasing indexes.
949 DRS
.BaseInst
= nullptr;
951 SmallVector
<DAGRootSet
, 16> PotentialRootSets
;
955 DRS
.BaseInst
= KV
.second
;
956 DRS
.SubsumedInsts
= SubsumedInsts
;
957 } else if (DRS
.Roots
.empty()) {
958 DRS
.Roots
.push_back(KV
.second
);
959 } else if (V
.find(KV
.first
- 1) != V
.end()) {
960 DRS
.Roots
.push_back(KV
.second
);
962 // Linear sequence terminated.
963 if (!validateRootSet(DRS
))
966 // Construct a new DAGRootSet with the next sequence.
967 PotentialRootSets
.push_back(DRS
);
968 DRS
.BaseInst
= KV
.second
;
973 if (!validateRootSet(DRS
))
976 PotentialRootSets
.push_back(DRS
);
978 RootSets
.append(PotentialRootSets
.begin(), PotentialRootSets
.end());
983 bool LoopReroll::DAGRootTracker::findRoots() {
984 Inc
= IVToIncMap
[IV
];
986 assert(RootSets
.empty() && "Unclean state!");
987 if (std::abs(Inc
) == 1) {
988 for (auto *IVU
: IV
->users()) {
989 if (isLoopIncrement(IVU
, IV
))
990 LoopIncs
.push_back(cast
<Instruction
>(IVU
));
992 findRootsRecursive(IV
, SmallInstructionSet());
993 LoopIncs
.push_back(IV
);
995 if (!findRootsBase(IV
, SmallInstructionSet()))
999 // Ensure all sets have the same size.
1000 if (RootSets
.empty()) {
1001 LLVM_DEBUG(dbgs() << "LRR: Aborting because no root sets found!\n");
1004 for (auto &V
: RootSets
) {
1005 if (V
.Roots
.empty() || V
.Roots
.size() != RootSets
[0].Roots
.size()) {
1008 << "LRR: Aborting because not all root sets have the same size\n");
1013 Scale
= RootSets
[0].Roots
.size() + 1;
1015 if (Scale
> IL_MaxRerollIterations
) {
1016 LLVM_DEBUG(dbgs() << "LRR: Aborting - too many iterations found. "
1017 << "#Found=" << Scale
1018 << ", #Max=" << IL_MaxRerollIterations
<< "\n");
1022 LLVM_DEBUG(dbgs() << "LRR: Successfully found roots: Scale=" << Scale
1028 bool LoopReroll::DAGRootTracker::collectUsedInstructions(SmallInstructionSet
&PossibleRedSet
) {
1029 // Populate the MapVector with all instructions in the block, in order first,
1030 // so we can iterate over the contents later in perfect order.
1031 for (auto &I
: *L
->getHeader()) {
1032 Uses
[&I
].resize(IL_End
);
1035 SmallInstructionSet Exclude
;
1036 for (auto &DRS
: RootSets
) {
1037 Exclude
.insert(DRS
.Roots
.begin(), DRS
.Roots
.end());
1038 Exclude
.insert(DRS
.SubsumedInsts
.begin(), DRS
.SubsumedInsts
.end());
1039 Exclude
.insert(DRS
.BaseInst
);
1041 Exclude
.insert(LoopIncs
.begin(), LoopIncs
.end());
1043 for (auto &DRS
: RootSets
) {
1044 DenseSet
<Instruction
*> VBase
;
1045 collectInLoopUserSet(DRS
.BaseInst
, Exclude
, PossibleRedSet
, VBase
);
1046 for (auto *I
: VBase
) {
1051 for (auto *Root
: DRS
.Roots
) {
1052 DenseSet
<Instruction
*> V
;
1053 collectInLoopUserSet(Root
, Exclude
, PossibleRedSet
, V
);
1055 // While we're here, check the use sets are the same size.
1056 if (V
.size() != VBase
.size()) {
1057 LLVM_DEBUG(dbgs() << "LRR: Aborting - use sets are different sizes\n");
1067 // Make sure our subsumed instructions are remembered too.
1068 for (auto *I
: DRS
.SubsumedInsts
) {
1069 Uses
[I
].set(IL_All
);
1073 // Make sure the loop increments are also accounted for.
1076 for (auto &DRS
: RootSets
) {
1077 Exclude
.insert(DRS
.Roots
.begin(), DRS
.Roots
.end());
1078 Exclude
.insert(DRS
.SubsumedInsts
.begin(), DRS
.SubsumedInsts
.end());
1079 Exclude
.insert(DRS
.BaseInst
);
1082 DenseSet
<Instruction
*> V
;
1083 collectInLoopUserSet(LoopIncs
, Exclude
, PossibleRedSet
, V
);
1085 if (I
->mayHaveSideEffects()) {
1086 LLVM_DEBUG(dbgs() << "LRR: Aborting - "
1087 << "An instruction which does not belong to any root "
1088 << "sets must not have side effects: " << *I
);
1091 Uses
[I
].set(IL_All
);
1097 /// Get the next instruction in "In" that is a member of set Val.
1098 /// Start searching from StartI, and do not return anything in Exclude.
1099 /// If StartI is not given, start from In.begin().
1100 LoopReroll::DAGRootTracker::UsesTy::iterator
1101 LoopReroll::DAGRootTracker::nextInstr(int Val
, UsesTy
&In
,
1102 const SmallInstructionSet
&Exclude
,
1103 UsesTy::iterator
*StartI
) {
1104 UsesTy::iterator I
= StartI
? *StartI
: In
.begin();
1105 while (I
!= In
.end() && (I
->second
.test(Val
) == 0 ||
1106 Exclude
.contains(I
->first
)))
1111 bool LoopReroll::DAGRootTracker::isBaseInst(Instruction
*I
) {
1112 for (auto &DRS
: RootSets
) {
1113 if (DRS
.BaseInst
== I
)
1119 bool LoopReroll::DAGRootTracker::isRootInst(Instruction
*I
) {
1120 for (auto &DRS
: RootSets
) {
1121 if (is_contained(DRS
.Roots
, I
))
1127 /// Return true if instruction I depends on any instruction between
1129 bool LoopReroll::DAGRootTracker::instrDependsOn(Instruction
*I
,
1130 UsesTy::iterator Start
,
1131 UsesTy::iterator End
) {
1132 for (auto *U
: I
->users()) {
1133 for (auto It
= Start
; It
!= End
; ++It
)
1140 static bool isIgnorableInst(const Instruction
*I
) {
1141 if (isa
<DbgInfoIntrinsic
>(I
))
1143 const IntrinsicInst
* II
= dyn_cast
<IntrinsicInst
>(I
);
1146 switch (II
->getIntrinsicID()) {
1149 case Intrinsic::annotation
:
1150 case Intrinsic::ptr_annotation
:
1151 case Intrinsic::var_annotation
:
1152 // TODO: the following intrinsics may also be allowed:
1153 // lifetime_start, lifetime_end, invariant_start, invariant_end
1159 bool LoopReroll::DAGRootTracker::validate(ReductionTracker
&Reductions
) {
1160 // We now need to check for equivalence of the use graph of each root with
1161 // that of the primary induction variable (excluding the roots). Our goal
1162 // here is not to solve the full graph isomorphism problem, but rather to
1163 // catch common cases without a lot of work. As a result, we will assume
1164 // that the relative order of the instructions in each unrolled iteration
1165 // is the same (although we will not make an assumption about how the
1166 // different iterations are intermixed). Note that while the order must be
1167 // the same, the instructions may not be in the same basic block.
1169 // An array of just the possible reductions for this scale factor. When we
1170 // collect the set of all users of some root instructions, these reduction
1171 // instructions are treated as 'final' (their uses are not considered).
1172 // This is important because we don't want the root use set to search down
1173 // the reduction chain.
1174 SmallInstructionSet PossibleRedSet
;
1175 SmallInstructionSet PossibleRedLastSet
;
1176 SmallInstructionSet PossibleRedPHISet
;
1177 Reductions
.restrictToScale(Scale
, PossibleRedSet
,
1178 PossibleRedPHISet
, PossibleRedLastSet
);
1180 // Populate "Uses" with where each instruction is used.
1181 if (!collectUsedInstructions(PossibleRedSet
))
1184 // Make sure we mark the reduction PHIs as used in all iterations.
1185 for (auto *I
: PossibleRedPHISet
) {
1186 Uses
[I
].set(IL_All
);
1189 // Make sure we mark loop-control-only PHIs as used in all iterations. See
1190 // comment above LoopReroll::isLoopControlIV for more information.
1191 BasicBlock
*Header
= L
->getHeader();
1192 if (LoopControlIV
&& LoopControlIV
!= IV
) {
1193 for (auto *U
: LoopControlIV
->users()) {
1194 Instruction
*IVUser
= dyn_cast
<Instruction
>(U
);
1195 // IVUser could be loop increment or compare
1196 Uses
[IVUser
].set(IL_All
);
1197 for (auto *UU
: IVUser
->users()) {
1198 Instruction
*UUser
= dyn_cast
<Instruction
>(UU
);
1199 // UUser could be compare, PHI or branch
1200 Uses
[UUser
].set(IL_All
);
1202 if (isa
<SExtInst
>(UUser
)) {
1203 UUser
= dyn_cast
<Instruction
>(*(UUser
->user_begin()));
1204 Uses
[UUser
].set(IL_All
);
1206 // Is UUser a compare instruction?
1207 if (UU
->hasOneUse()) {
1208 Instruction
*BI
= dyn_cast
<BranchInst
>(*UUser
->user_begin());
1209 if (BI
== cast
<BranchInst
>(Header
->getTerminator()))
1210 Uses
[BI
].set(IL_All
);
1216 // Make sure all instructions in the loop are in one and only one
1218 for (auto &KV
: Uses
) {
1219 if (KV
.second
.count() != 1 && !isIgnorableInst(KV
.first
)) {
1221 dbgs() << "LRR: Aborting - instruction is not used in 1 iteration: "
1222 << *KV
.first
<< " (#uses=" << KV
.second
.count() << ")\n");
1227 LLVM_DEBUG(for (auto &KV
1229 dbgs() << "LRR: " << KV
.second
.find_first() << "\t" << *KV
.first
<< "\n";
1232 for (unsigned Iter
= 1; Iter
< Scale
; ++Iter
) {
1233 // In addition to regular aliasing information, we need to look for
1234 // instructions from later (future) iterations that have side effects
1235 // preventing us from reordering them past other instructions with side
1237 bool FutureSideEffects
= false;
1238 AliasSetTracker
AST(*AA
);
1239 // The map between instructions in f(%iv.(i+1)) and f(%iv).
1240 DenseMap
<Value
*, Value
*> BaseMap
;
1242 // Compare iteration Iter to the base.
1243 SmallInstructionSet Visited
;
1244 auto BaseIt
= nextInstr(0, Uses
, Visited
);
1245 auto RootIt
= nextInstr(Iter
, Uses
, Visited
);
1246 auto LastRootIt
= Uses
.begin();
1248 while (BaseIt
!= Uses
.end() && RootIt
!= Uses
.end()) {
1249 Instruction
*BaseInst
= BaseIt
->first
;
1250 Instruction
*RootInst
= RootIt
->first
;
1252 // Skip over the IV or root instructions; only match their users.
1253 bool Continue
= false;
1254 if (isBaseInst(BaseInst
)) {
1255 Visited
.insert(BaseInst
);
1256 BaseIt
= nextInstr(0, Uses
, Visited
);
1259 if (isRootInst(RootInst
)) {
1260 LastRootIt
= RootIt
;
1261 Visited
.insert(RootInst
);
1262 RootIt
= nextInstr(Iter
, Uses
, Visited
);
1265 if (Continue
) continue;
1267 if (!BaseInst
->isSameOperationAs(RootInst
)) {
1268 // Last chance saloon. We don't try and solve the full isomorphism
1269 // problem, but try and at least catch the case where two instructions
1270 // *of different types* are round the wrong way. We won't be able to
1271 // efficiently tell, given two ADD instructions, which way around we
1272 // should match them, but given an ADD and a SUB, we can at least infer
1273 // which one is which.
1275 // This should allow us to deal with a greater subset of the isomorphism
1276 // problem. It does however change a linear algorithm into a quadratic
1277 // one, so limit the number of probes we do.
1278 auto TryIt
= RootIt
;
1279 unsigned N
= NumToleratedFailedMatches
;
1280 while (TryIt
!= Uses
.end() &&
1281 !BaseInst
->isSameOperationAs(TryIt
->first
) &&
1284 TryIt
= nextInstr(Iter
, Uses
, Visited
, &TryIt
);
1287 if (TryIt
== Uses
.end() || TryIt
== RootIt
||
1288 instrDependsOn(TryIt
->first
, RootIt
, TryIt
)) {
1289 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1290 << *BaseInst
<< " vs. " << *RootInst
<< "\n");
1295 RootInst
= TryIt
->first
;
1298 // All instructions between the last root and this root
1299 // may belong to some other iteration. If they belong to a
1300 // future iteration, then they're dangerous to alias with.
1302 // Note that because we allow a limited amount of flexibility in the order
1303 // that we visit nodes, LastRootIt might be *before* RootIt, in which
1304 // case we've already checked this set of instructions so we shouldn't
1306 for (; LastRootIt
< RootIt
; ++LastRootIt
) {
1307 Instruction
*I
= LastRootIt
->first
;
1308 if (LastRootIt
->second
.find_first() < (int)Iter
)
1310 if (I
->mayWriteToMemory())
1312 // Note: This is specifically guarded by a check on isa<PHINode>,
1313 // which while a valid (somewhat arbitrary) micro-optimization, is
1314 // needed because otherwise isSafeToSpeculativelyExecute returns
1315 // false on PHI nodes.
1316 if (!isa
<PHINode
>(I
) && !isUnorderedLoadStore(I
) &&
1317 !isSafeToSpeculativelyExecute(I
))
1318 // Intervening instructions cause side effects.
1319 FutureSideEffects
= true;
1322 // Make sure that this instruction, which is in the use set of this
1323 // root instruction, does not also belong to the base set or the set of
1324 // some other root instruction.
1325 if (RootIt
->second
.count() > 1) {
1326 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1327 << " vs. " << *RootInst
<< " (prev. case overlap)\n");
1331 // Make sure that we don't alias with any instruction in the alias set
1332 // tracker. If we do, then we depend on a future iteration, and we
1334 if (RootInst
->mayReadFromMemory())
1335 for (auto &K
: AST
) {
1336 if (K
.aliasesUnknownInst(RootInst
, *AA
)) {
1337 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at "
1338 << *BaseInst
<< " vs. " << *RootInst
1339 << " (depends on future store)\n");
1344 // If we've past an instruction from a future iteration that may have
1345 // side effects, and this instruction might also, then we can't reorder
1346 // them, and this matching fails. As an exception, we allow the alias
1347 // set tracker to handle regular (unordered) load/store dependencies.
1348 if (FutureSideEffects
&& ((!isUnorderedLoadStore(BaseInst
) &&
1349 !isSafeToSpeculativelyExecute(BaseInst
)) ||
1350 (!isUnorderedLoadStore(RootInst
) &&
1351 !isSafeToSpeculativelyExecute(RootInst
)))) {
1352 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1353 << " vs. " << *RootInst
1354 << " (side effects prevent reordering)\n");
1358 // For instructions that are part of a reduction, if the operation is
1359 // associative, then don't bother matching the operands (because we
1360 // already know that the instructions are isomorphic, and the order
1361 // within the iteration does not matter). For non-associative reductions,
1362 // we do need to match the operands, because we need to reject
1363 // out-of-order instructions within an iteration!
1364 // For example (assume floating-point addition), we need to reject this:
1365 // x += a[i]; x += b[i];
1366 // x += a[i+1]; x += b[i+1];
1367 // x += b[i+2]; x += a[i+2];
1368 bool InReduction
= Reductions
.isPairInSame(BaseInst
, RootInst
);
1370 if (!(InReduction
&& BaseInst
->isAssociative())) {
1371 bool Swapped
= false, SomeOpMatched
= false;
1372 for (unsigned j
= 0; j
< BaseInst
->getNumOperands(); ++j
) {
1373 Value
*Op2
= RootInst
->getOperand(j
);
1375 // If this is part of a reduction (and the operation is not
1376 // associatve), then we match all operands, but not those that are
1377 // part of the reduction.
1379 if (Instruction
*Op2I
= dyn_cast
<Instruction
>(Op2
))
1380 if (Reductions
.isPairInSame(RootInst
, Op2I
))
1383 DenseMap
<Value
*, Value
*>::iterator BMI
= BaseMap
.find(Op2
);
1384 if (BMI
!= BaseMap
.end()) {
1387 for (auto &DRS
: RootSets
) {
1388 if (DRS
.Roots
[Iter
-1] == (Instruction
*) Op2
) {
1395 if (BaseInst
->getOperand(Swapped
? unsigned(!j
) : j
) != Op2
) {
1396 // If we've not already decided to swap the matched operands, and
1397 // we've not already matched our first operand (note that we could
1398 // have skipped matching the first operand because it is part of a
1399 // reduction above), and the instruction is commutative, then try
1400 // the swapped match.
1401 if (!Swapped
&& BaseInst
->isCommutative() && !SomeOpMatched
&&
1402 BaseInst
->getOperand(!j
) == Op2
) {
1406 << "LRR: iteration root match failed at " << *BaseInst
1407 << " vs. " << *RootInst
<< " (operand " << j
<< ")\n");
1412 SomeOpMatched
= true;
1416 if ((!PossibleRedLastSet
.count(BaseInst
) &&
1417 hasUsesOutsideLoop(BaseInst
, L
)) ||
1418 (!PossibleRedLastSet
.count(RootInst
) &&
1419 hasUsesOutsideLoop(RootInst
, L
))) {
1420 LLVM_DEBUG(dbgs() << "LRR: iteration root match failed at " << *BaseInst
1421 << " vs. " << *RootInst
<< " (uses outside loop)\n");
1425 Reductions
.recordPair(BaseInst
, RootInst
, Iter
);
1426 BaseMap
.insert(std::make_pair(RootInst
, BaseInst
));
1428 LastRootIt
= RootIt
;
1429 Visited
.insert(BaseInst
);
1430 Visited
.insert(RootInst
);
1431 BaseIt
= nextInstr(0, Uses
, Visited
);
1432 RootIt
= nextInstr(Iter
, Uses
, Visited
);
1434 assert(BaseIt
== Uses
.end() && RootIt
== Uses
.end() &&
1435 "Mismatched set sizes!");
1438 LLVM_DEBUG(dbgs() << "LRR: Matched all iteration increments for " << *IV
1444 void LoopReroll::DAGRootTracker::replace(const SCEV
*BackedgeTakenCount
) {
1445 BasicBlock
*Header
= L
->getHeader();
1447 // Compute the start and increment for each BaseInst before we start erasing
1449 SmallVector
<const SCEV
*, 8> StartExprs
;
1450 SmallVector
<const SCEV
*, 8> IncrExprs
;
1451 for (auto &DRS
: RootSets
) {
1452 const SCEVAddRecExpr
*IVSCEV
=
1453 cast
<SCEVAddRecExpr
>(SE
->getSCEV(DRS
.BaseInst
));
1454 StartExprs
.push_back(IVSCEV
->getStart());
1455 IncrExprs
.push_back(SE
->getMinusSCEV(SE
->getSCEV(DRS
.Roots
[0]), IVSCEV
));
1458 // Remove instructions associated with non-base iterations.
1459 for (BasicBlock::reverse_iterator J
= Header
->rbegin(), JE
= Header
->rend();
1461 unsigned I
= Uses
[&*J
].find_first();
1462 if (I
> 0 && I
< IL_All
) {
1463 LLVM_DEBUG(dbgs() << "LRR: removing: " << *J
<< "\n");
1464 J
++->eraseFromParent();
1471 // Rewrite each BaseInst using SCEV.
1472 for (size_t i
= 0, e
= RootSets
.size(); i
!= e
; ++i
)
1473 // Insert the new induction variable.
1474 replaceIV(RootSets
[i
], StartExprs
[i
], IncrExprs
[i
]);
1476 { // Limit the lifetime of SCEVExpander.
1477 BranchInst
*BI
= cast
<BranchInst
>(Header
->getTerminator());
1478 const DataLayout
&DL
= Header
->getModule()->getDataLayout();
1479 SCEVExpander
Expander(*SE
, DL
, "reroll");
1480 auto Zero
= SE
->getZero(BackedgeTakenCount
->getType());
1481 auto One
= SE
->getOne(BackedgeTakenCount
->getType());
1482 auto NewIVSCEV
= SE
->getAddRecExpr(Zero
, One
, L
, SCEV::FlagAnyWrap
);
1484 Expander
.expandCodeFor(NewIVSCEV
, BackedgeTakenCount
->getType(),
1485 Header
->getFirstNonPHIOrDbg());
1486 // FIXME: This arithmetic can overflow.
1487 auto TripCount
= SE
->getAddExpr(BackedgeTakenCount
, One
);
1488 auto ScaledTripCount
= SE
->getMulExpr(
1489 TripCount
, SE
->getConstant(BackedgeTakenCount
->getType(), Scale
));
1490 auto ScaledBECount
= SE
->getMinusSCEV(ScaledTripCount
, One
);
1492 Expander
.expandCodeFor(ScaledBECount
, BackedgeTakenCount
->getType(),
1493 Header
->getFirstNonPHIOrDbg());
1495 new ICmpInst(BI
, CmpInst::ICMP_EQ
, NewIV
, TakenCount
, "exitcond");
1496 BI
->setCondition(Cond
);
1498 if (BI
->getSuccessor(1) != Header
)
1499 BI
->swapSuccessors();
1502 SimplifyInstructionsInBlock(Header
, TLI
);
1503 DeleteDeadPHIs(Header
, TLI
);
1506 void LoopReroll::DAGRootTracker::replaceIV(DAGRootSet
&DRS
,
1508 const SCEV
*IncrExpr
) {
1509 BasicBlock
*Header
= L
->getHeader();
1510 Instruction
*Inst
= DRS
.BaseInst
;
1512 const SCEV
*NewIVSCEV
=
1513 SE
->getAddRecExpr(Start
, IncrExpr
, L
, SCEV::FlagAnyWrap
);
1515 { // Limit the lifetime of SCEVExpander.
1516 const DataLayout
&DL
= Header
->getModule()->getDataLayout();
1517 SCEVExpander
Expander(*SE
, DL
, "reroll");
1518 Value
*NewIV
= Expander
.expandCodeFor(NewIVSCEV
, Inst
->getType(),
1519 Header
->getFirstNonPHIOrDbg());
1521 for (auto &KV
: Uses
)
1522 if (KV
.second
.find_first() == 0)
1523 KV
.first
->replaceUsesOfWith(Inst
, NewIV
);
1527 // Validate the selected reductions. All iterations must have an isomorphic
1528 // part of the reduction chain and, for non-associative reductions, the chain
1529 // entries must appear in order.
1530 bool LoopReroll::ReductionTracker::validateSelected() {
1531 // For a non-associative reduction, the chain entries must appear in order.
1532 for (int i
: Reds
) {
1533 int PrevIter
= 0, BaseCount
= 0, Count
= 0;
1534 for (Instruction
*J
: PossibleReds
[i
]) {
1535 // Note that all instructions in the chain must have been found because
1536 // all instructions in the function must have been assigned to some
1538 int Iter
= PossibleRedIter
[J
];
1539 if (Iter
!= PrevIter
&& Iter
!= PrevIter
+ 1 &&
1540 !PossibleReds
[i
].getReducedValue()->isAssociative()) {
1541 LLVM_DEBUG(dbgs() << "LRR: Out-of-order non-associative reduction: "
1546 if (Iter
!= PrevIter
) {
1547 if (Count
!= BaseCount
) {
1549 << "LRR: Iteration " << PrevIter
<< " reduction use count "
1550 << Count
<< " is not equal to the base use count "
1551 << BaseCount
<< "\n");
1569 // For all selected reductions, remove all parts except those in the first
1570 // iteration (and the PHI). Replace outside uses of the reduced value with uses
1571 // of the first-iteration reduced value (in other words, reroll the selected
1573 void LoopReroll::ReductionTracker::replaceSelected() {
1574 // Fixup reductions to refer to the last instruction associated with the
1575 // first iteration (not the last).
1576 for (int i
: Reds
) {
1578 for (int e
= PossibleReds
[i
].size(); j
!= e
; ++j
)
1579 if (PossibleRedIter
[PossibleReds
[i
][j
]] != 0) {
1584 // Replace users with the new end-of-chain value.
1585 SmallInstructionVector Users
;
1586 for (User
*U
: PossibleReds
[i
].getReducedValue()->users()) {
1587 Users
.push_back(cast
<Instruction
>(U
));
1590 for (Instruction
*User
: Users
)
1591 User
->replaceUsesOfWith(PossibleReds
[i
].getReducedValue(),
1592 PossibleReds
[i
][j
]);
1596 // Reroll the provided loop with respect to the provided induction variable.
1597 // Generally, we're looking for a loop like this:
1599 // %iv = phi [ (preheader, ...), (body, %iv.next) ]
1601 // %iv.1 = add %iv, 1 <-- a root increment
1603 // %iv.2 = add %iv, 2 <-- a root increment
1605 // %iv.scale_m_1 = add %iv, scale-1 <-- a root increment
1608 // %iv.next = add %iv, scale
1609 // %cmp = icmp(%iv, ...)
1610 // br %cmp, header, exit
1612 // Notably, we do not require that f(%iv), f(%iv.1), etc. be isolated groups of
1613 // instructions. In other words, the instructions in f(%iv), f(%iv.1), etc. can
1614 // be intermixed with eachother. The restriction imposed by this algorithm is
1615 // that the relative order of the isomorphic instructions in f(%iv), f(%iv.1),
1616 // etc. be the same.
1618 // First, we collect the use set of %iv, excluding the other increment roots.
1619 // This gives us f(%iv). Then we iterate over the loop instructions (scale-1)
1620 // times, having collected the use set of f(%iv.(i+1)), during which we:
1621 // - Ensure that the next unmatched instruction in f(%iv) is isomorphic to
1622 // the next unmatched instruction in f(%iv.(i+1)).
1623 // - Ensure that both matched instructions don't have any external users
1624 // (with the exception of last-in-chain reduction instructions).
1625 // - Track the (aliasing) write set, and other side effects, of all
1626 // instructions that belong to future iterations that come before the matched
1627 // instructions. If the matched instructions read from that write set, then
1628 // f(%iv) or f(%iv.(i+1)) has some dependency on instructions in
1629 // f(%iv.(j+1)) for some j > i, and we cannot reroll the loop. Similarly,
1630 // if any of these future instructions had side effects (could not be
1631 // speculatively executed), and so do the matched instructions, when we
1632 // cannot reorder those side-effect-producing instructions, and rerolling
1635 // Finally, we make sure that all loop instructions are either loop increment
1636 // roots, belong to simple latch code, parts of validated reductions, part of
1637 // f(%iv) or part of some f(%iv.i). If all of that is true (and all reductions
1638 // have been validated), then we reroll the loop.
1639 bool LoopReroll::reroll(Instruction
*IV
, Loop
*L
, BasicBlock
*Header
,
1640 const SCEV
*BackedgeTakenCount
,
1641 ReductionTracker
&Reductions
) {
1642 DAGRootTracker
DAGRoots(this, L
, IV
, SE
, AA
, TLI
, DT
, LI
, PreserveLCSSA
,
1643 IVToIncMap
, LoopControlIV
);
1645 if (!DAGRoots
.findRoots())
1647 LLVM_DEBUG(dbgs() << "LRR: Found all root induction increments for: " << *IV
1650 if (!DAGRoots
.validate(Reductions
))
1652 if (!Reductions
.validateSelected())
1654 // At this point, we've validated the rerolling, and we're committed to
1657 Reductions
.replaceSelected();
1658 DAGRoots
.replace(BackedgeTakenCount
);
1664 bool LoopReroll::runOnLoop(Loop
*L
) {
1665 BasicBlock
*Header
= L
->getHeader();
1666 LLVM_DEBUG(dbgs() << "LRR: F[" << Header
->getParent()->getName() << "] Loop %"
1667 << Header
->getName() << " (" << L
->getNumBlocks()
1670 // For now, we'll handle only single BB loops.
1671 if (L
->getNumBlocks() > 1)
1674 if (!SE
->hasLoopInvariantBackedgeTakenCount(L
))
1677 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
1678 LLVM_DEBUG(dbgs() << "\n Before Reroll:\n" << *(L
->getHeader()) << "\n");
1679 LLVM_DEBUG(dbgs() << "LRR: backedge-taken count = " << *BackedgeTakenCount
1682 // First, we need to find the induction variable with respect to which we can
1683 // reroll (there may be several possible options).
1684 SmallInstructionVector PossibleIVs
;
1686 LoopControlIV
= nullptr;
1687 collectPossibleIVs(L
, PossibleIVs
);
1689 if (PossibleIVs
.empty()) {
1690 LLVM_DEBUG(dbgs() << "LRR: No possible IVs found\n");
1694 ReductionTracker Reductions
;
1695 collectPossibleReductions(L
, Reductions
);
1696 bool Changed
= false;
1698 // For each possible IV, collect the associated possible set of 'root' nodes
1699 // (i+1, i+2, etc.).
1700 for (Instruction
*PossibleIV
: PossibleIVs
)
1701 if (reroll(PossibleIV
, L
, Header
, BackedgeTakenCount
, Reductions
)) {
1705 LLVM_DEBUG(dbgs() << "\n After Reroll:\n" << *(L
->getHeader()) << "\n");
1707 // Trip count of L has changed so SE must be re-evaluated.
1714 bool LoopRerollLegacyPass::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
1718 auto *AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
1719 auto *LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1720 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
1721 auto *TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(
1722 *L
->getHeader()->getParent());
1723 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1724 bool PreserveLCSSA
= mustPreserveAnalysisID(LCSSAID
);
1726 return LoopReroll(AA
, LI
, SE
, TLI
, DT
, PreserveLCSSA
).runOnLoop(L
);
1729 PreservedAnalyses
LoopRerollPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
1730 LoopStandardAnalysisResults
&AR
,
1732 return LoopReroll(&AR
.AA
, &AR
.LI
, &AR
.SE
, &AR
.TLI
, &AR
.DT
, true).runOnLoop(&L
)
1733 ? getLoopPassPreservedAnalyses()
1734 : PreservedAnalyses::all();