[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopSimplifyCFG.cpp
blob6fa736426e45934ce5958c0cf8a7e0aed25f392c
1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/DependenceAnalysis.h"
22 #include "llvm/Analysis/DomTreeUpdater.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Transforms/Scalar.h"
37 #include "llvm/Transforms/Scalar/LoopPassManager.h"
38 #include "llvm/Transforms/Utils.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/LoopUtils.h"
42 using namespace llvm;
44 #define DEBUG_TYPE "loop-simplifycfg"
46 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
47 cl::init(true));
49 STATISTIC(NumTerminatorsFolded,
50 "Number of terminators folded to unconditional branches");
51 STATISTIC(NumLoopBlocksDeleted,
52 "Number of loop blocks deleted");
53 STATISTIC(NumLoopExitsDeleted,
54 "Number of loop exiting edges deleted");
56 /// If \p BB is a switch or a conditional branch, but only one of its successors
57 /// can be reached from this block in runtime, return this successor. Otherwise,
58 /// return nullptr.
59 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
60 Instruction *TI = BB->getTerminator();
61 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
62 if (BI->isUnconditional())
63 return nullptr;
64 if (BI->getSuccessor(0) == BI->getSuccessor(1))
65 return BI->getSuccessor(0);
66 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
67 if (!Cond)
68 return nullptr;
69 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
72 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
73 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
74 if (!CI)
75 return nullptr;
76 for (auto Case : SI->cases())
77 if (Case.getCaseValue() == CI)
78 return Case.getCaseSuccessor();
79 return SI->getDefaultDest();
82 return nullptr;
85 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
86 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
87 Loop *LastLoop = nullptr) {
88 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
89 "First loop is supposed to be inside of last loop!");
90 assert(FirstLoop->contains(BB) && "Must be a loop block!");
91 for (Loop *Current = FirstLoop; Current != LastLoop;
92 Current = Current->getParentLoop())
93 Current->removeBlockFromLoop(BB);
96 /// Find innermost loop that contains at least one block from \p BBs and
97 /// contains the header of loop \p L.
98 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
99 Loop &L, LoopInfo &LI) {
100 Loop *Innermost = nullptr;
101 for (BasicBlock *BB : BBs) {
102 Loop *BBL = LI.getLoopFor(BB);
103 while (BBL && !BBL->contains(L.getHeader()))
104 BBL = BBL->getParentLoop();
105 if (BBL == &L)
106 BBL = BBL->getParentLoop();
107 if (!BBL)
108 continue;
109 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
110 Innermost = BBL;
112 return Innermost;
115 namespace {
116 /// Helper class that can turn branches and switches with constant conditions
117 /// into unconditional branches.
118 class ConstantTerminatorFoldingImpl {
119 private:
120 Loop &L;
121 LoopInfo &LI;
122 DominatorTree &DT;
123 ScalarEvolution &SE;
124 MemorySSAUpdater *MSSAU;
125 LoopBlocksDFS DFS;
126 DomTreeUpdater DTU;
127 SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
129 // Whether or not the current loop has irreducible CFG.
130 bool HasIrreducibleCFG = false;
131 // Whether or not the current loop will still exist after terminator constant
132 // folding will be done. In theory, there are two ways how it can happen:
133 // 1. Loop's latch(es) become unreachable from loop header;
134 // 2. Loop's header becomes unreachable from method entry.
135 // In practice, the second situation is impossible because we only modify the
136 // current loop and its preheader and do not affect preheader's reachibility
137 // from any other block. So this variable set to true means that loop's latch
138 // has become unreachable from loop header.
139 bool DeleteCurrentLoop = false;
141 // The blocks of the original loop that will still be reachable from entry
142 // after the constant folding.
143 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
144 // The blocks of the original loop that will become unreachable from entry
145 // after the constant folding.
146 SmallVector<BasicBlock *, 8> DeadLoopBlocks;
147 // The exits of the original loop that will still be reachable from entry
148 // after the constant folding.
149 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
150 // The exits of the original loop that will become unreachable from entry
151 // after the constant folding.
152 SmallVector<BasicBlock *, 8> DeadExitBlocks;
153 // The blocks that will still be a part of the current loop after folding.
154 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
155 // The blocks that have terminators with constant condition that can be
156 // folded. Note: fold candidates should be in L but not in any of its
157 // subloops to avoid complex LI updates.
158 SmallVector<BasicBlock *, 8> FoldCandidates;
160 void dump() const {
161 dbgs() << "Constant terminator folding for loop " << L << "\n";
162 dbgs() << "After terminator constant-folding, the loop will";
163 if (!DeleteCurrentLoop)
164 dbgs() << " not";
165 dbgs() << " be destroyed\n";
166 auto PrintOutVector = [&](const char *Message,
167 const SmallVectorImpl<BasicBlock *> &S) {
168 dbgs() << Message << "\n";
169 for (const BasicBlock *BB : S)
170 dbgs() << "\t" << BB->getName() << "\n";
172 auto PrintOutSet = [&](const char *Message,
173 const SmallPtrSetImpl<BasicBlock *> &S) {
174 dbgs() << Message << "\n";
175 for (const BasicBlock *BB : S)
176 dbgs() << "\t" << BB->getName() << "\n";
178 PrintOutVector("Blocks in which we can constant-fold terminator:",
179 FoldCandidates);
180 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
181 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
182 PrintOutSet("Live exit blocks:", LiveExitBlocks);
183 PrintOutVector("Dead exit blocks:", DeadExitBlocks);
184 if (!DeleteCurrentLoop)
185 PrintOutSet("The following blocks will still be part of the loop:",
186 BlocksInLoopAfterFolding);
189 /// Whether or not the current loop has irreducible CFG.
190 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
191 assert(DFS.isComplete() && "DFS is expected to be finished");
192 // Index of a basic block in RPO traversal.
193 DenseMap<const BasicBlock *, unsigned> RPO;
194 unsigned Current = 0;
195 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
196 RPO[*I] = Current++;
198 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
199 BasicBlock *BB = *I;
200 for (auto *Succ : successors(BB))
201 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
202 // If an edge goes from a block with greater order number into a block
203 // with lesses number, and it is not a loop backedge, then it can only
204 // be a part of irreducible non-loop cycle.
205 return true;
207 return false;
210 /// Fill all information about status of blocks and exits of the current loop
211 /// if constant folding of all branches will be done.
212 void analyze() {
213 DFS.perform(&LI);
214 assert(DFS.isComplete() && "DFS is expected to be finished");
216 // TODO: The algorithm below relies on both RPO and Postorder traversals.
217 // When the loop has only reducible CFG inside, then the invariant "all
218 // predecessors of X are processed before X in RPO" is preserved. However
219 // an irreducible loop can break this invariant (e.g. latch does not have to
220 // be the last block in the traversal in this case, and the algorithm relies
221 // on this). We can later decide to support such cases by altering the
222 // algorithms, but so far we just give up analyzing them.
223 if (hasIrreducibleCFG(DFS)) {
224 HasIrreducibleCFG = true;
225 return;
228 // Collect live and dead loop blocks and exits.
229 LiveLoopBlocks.insert(L.getHeader());
230 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
231 BasicBlock *BB = *I;
233 // If a loop block wasn't marked as live so far, then it's dead.
234 if (!LiveLoopBlocks.count(BB)) {
235 DeadLoopBlocks.push_back(BB);
236 continue;
239 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
241 // If a block has only one live successor, it's a candidate on constant
242 // folding. Only handle blocks from current loop: branches in child loops
243 // are skipped because if they can be folded, they should be folded during
244 // the processing of child loops.
245 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
246 if (TakeFoldCandidate)
247 FoldCandidates.push_back(BB);
249 // Handle successors.
250 for (BasicBlock *Succ : successors(BB))
251 if (!TakeFoldCandidate || TheOnlySucc == Succ) {
252 if (L.contains(Succ))
253 LiveLoopBlocks.insert(Succ);
254 else
255 LiveExitBlocks.insert(Succ);
259 // Sanity check: amount of dead and live loop blocks should match the total
260 // number of blocks in loop.
261 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
262 "Malformed block sets?");
264 // Now, all exit blocks that are not marked as live are dead.
265 SmallVector<BasicBlock *, 8> ExitBlocks;
266 L.getExitBlocks(ExitBlocks);
267 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
268 for (auto *ExitBlock : ExitBlocks)
269 if (!LiveExitBlocks.count(ExitBlock) &&
270 UniqueDeadExits.insert(ExitBlock).second)
271 DeadExitBlocks.push_back(ExitBlock);
273 // Whether or not the edge From->To will still be present in graph after the
274 // folding.
275 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
276 if (!LiveLoopBlocks.count(From))
277 return false;
278 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
279 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
282 // The loop will not be destroyed if its latch is live.
283 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
285 // If we are going to delete the current loop completely, no extra analysis
286 // is needed.
287 if (DeleteCurrentLoop)
288 return;
290 // Otherwise, we should check which blocks will still be a part of the
291 // current loop after the transform.
292 BlocksInLoopAfterFolding.insert(L.getLoopLatch());
293 // If the loop is live, then we should compute what blocks are still in
294 // loop after all branch folding has been done. A block is in loop if
295 // it has a live edge to another block that is in the loop; by definition,
296 // latch is in the loop.
297 auto BlockIsInLoop = [&](BasicBlock *BB) {
298 return any_of(successors(BB), [&](BasicBlock *Succ) {
299 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
302 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
303 BasicBlock *BB = *I;
304 if (BlockIsInLoop(BB))
305 BlocksInLoopAfterFolding.insert(BB);
308 // Sanity check: header must be in loop.
309 assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
310 "Header not in loop?");
311 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
312 "All blocks that stay in loop should be live!");
315 /// We need to preserve static reachibility of all loop exit blocks (this is)
316 /// required by loop pass manager. In order to do it, we make the following
317 /// trick:
319 /// preheader:
320 /// <preheader code>
321 /// br label %loop_header
323 /// loop_header:
324 /// ...
325 /// br i1 false, label %dead_exit, label %loop_block
326 /// ...
328 /// We cannot simply remove edge from the loop to dead exit because in this
329 /// case dead_exit (and its successors) may become unreachable. To avoid that,
330 /// we insert the following fictive preheader:
332 /// preheader:
333 /// <preheader code>
334 /// switch i32 0, label %preheader-split,
335 /// [i32 1, label %dead_exit_1],
336 /// [i32 2, label %dead_exit_2],
337 /// ...
338 /// [i32 N, label %dead_exit_N],
340 /// preheader-split:
341 /// br label %loop_header
343 /// loop_header:
344 /// ...
345 /// br i1 false, label %dead_exit_N, label %loop_block
346 /// ...
348 /// Doing so, we preserve static reachibility of all dead exits and can later
349 /// remove edges from the loop to these blocks.
350 void handleDeadExits() {
351 // If no dead exits, nothing to do.
352 if (DeadExitBlocks.empty())
353 return;
355 // Construct split preheader and the dummy switch to thread edges from it to
356 // dead exits.
357 BasicBlock *Preheader = L.getLoopPreheader();
358 BasicBlock *NewPreheader = llvm::SplitBlock(
359 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
361 IRBuilder<> Builder(Preheader->getTerminator());
362 SwitchInst *DummySwitch =
363 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
364 Preheader->getTerminator()->eraseFromParent();
366 unsigned DummyIdx = 1;
367 for (BasicBlock *BB : DeadExitBlocks) {
368 // Eliminate all Phis and LandingPads from dead exits.
369 // TODO: Consider removing all instructions in this dead block.
370 SmallVector<Instruction *, 4> DeadInstructions;
371 for (auto &PN : BB->phis())
372 DeadInstructions.push_back(&PN);
374 if (auto *LandingPad = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
375 DeadInstructions.emplace_back(LandingPad);
377 for (Instruction *I : DeadInstructions) {
378 I->replaceAllUsesWith(UndefValue::get(I->getType()));
379 I->eraseFromParent();
382 assert(DummyIdx != 0 && "Too many dead exits!");
383 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
384 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
385 ++NumLoopExitsDeleted;
388 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
389 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
390 // When we break dead edges, the outer loop may become unreachable from
391 // the current loop. We need to fix loop info accordingly. For this, we
392 // find the most nested loop that still contains L and remove L from all
393 // loops that are inside of it.
394 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
396 // Okay, our loop is no longer in the outer loop (and maybe not in some of
397 // its parents as well). Make the fixup.
398 if (StillReachable != OuterLoop) {
399 LI.changeLoopFor(NewPreheader, StillReachable);
400 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
401 for (auto *BB : L.blocks())
402 removeBlockFromLoops(BB, OuterLoop, StillReachable);
403 OuterLoop->removeChildLoop(&L);
404 if (StillReachable)
405 StillReachable->addChildLoop(&L);
406 else
407 LI.addTopLevelLoop(&L);
409 // Some values from loops in [OuterLoop, StillReachable) could be used
410 // in the current loop. Now it is not their child anymore, so such uses
411 // require LCSSA Phis.
412 Loop *FixLCSSALoop = OuterLoop;
413 while (FixLCSSALoop->getParentLoop() != StillReachable)
414 FixLCSSALoop = FixLCSSALoop->getParentLoop();
415 assert(FixLCSSALoop && "Should be a loop!");
416 // We need all DT updates to be done before forming LCSSA.
417 if (MSSAU)
418 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
419 else
420 DTU.applyUpdates(DTUpdates);
421 DTUpdates.clear();
422 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
426 if (MSSAU) {
427 // Clear all updates now. Facilitates deletes that follow.
428 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
429 DTUpdates.clear();
430 if (VerifyMemorySSA)
431 MSSAU->getMemorySSA()->verifyMemorySSA();
435 /// Delete loop blocks that have become unreachable after folding. Make all
436 /// relevant updates to DT and LI.
437 void deleteDeadLoopBlocks() {
438 if (MSSAU) {
439 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
440 DeadLoopBlocks.end());
441 MSSAU->removeBlocks(DeadLoopBlocksSet);
444 // The function LI.erase has some invariants that need to be preserved when
445 // it tries to remove a loop which is not the top-level loop. In particular,
446 // it requires loop's preheader to be strictly in loop's parent. We cannot
447 // just remove blocks one by one, because after removal of preheader we may
448 // break this invariant for the dead loop. So we detatch and erase all dead
449 // loops beforehand.
450 for (auto *BB : DeadLoopBlocks)
451 if (LI.isLoopHeader(BB)) {
452 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
453 Loop *DL = LI.getLoopFor(BB);
454 if (!DL->isOutermost()) {
455 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
456 for (auto *BB : DL->getBlocks())
457 PL->removeBlockFromLoop(BB);
458 DL->getParentLoop()->removeChildLoop(DL);
459 LI.addTopLevelLoop(DL);
461 LI.erase(DL);
464 for (auto *BB : DeadLoopBlocks) {
465 assert(BB != L.getHeader() &&
466 "Header of the current loop cannot be dead!");
467 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
468 << "\n");
469 LI.removeBlock(BB);
472 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
473 DTU.applyUpdates(DTUpdates);
474 DTUpdates.clear();
475 for (auto *BB : DeadLoopBlocks)
476 DTU.deleteBB(BB);
478 NumLoopBlocksDeleted += DeadLoopBlocks.size();
481 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
482 /// unconditional branches.
483 void foldTerminators() {
484 for (BasicBlock *BB : FoldCandidates) {
485 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
486 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
487 assert(TheOnlySucc && "Should have one live successor!");
489 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
490 << " with an unconditional branch to the block "
491 << TheOnlySucc->getName() << "\n");
493 SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
494 // Remove all BB's successors except for the live one.
495 unsigned TheOnlySuccDuplicates = 0;
496 for (auto *Succ : successors(BB))
497 if (Succ != TheOnlySucc) {
498 DeadSuccessors.insert(Succ);
499 // If our successor lies in a different loop, we don't want to remove
500 // the one-input Phi because it is a LCSSA Phi.
501 bool PreserveLCSSAPhi = !L.contains(Succ);
502 Succ->removePredecessor(BB, PreserveLCSSAPhi);
503 if (MSSAU)
504 MSSAU->removeEdge(BB, Succ);
505 } else
506 ++TheOnlySuccDuplicates;
508 assert(TheOnlySuccDuplicates > 0 && "Should be!");
509 // If TheOnlySucc was BB's successor more than once, after transform it
510 // will be its successor only once. Remove redundant inputs from
511 // TheOnlySucc's Phis.
512 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
513 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
514 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
515 if (MSSAU && TheOnlySuccDuplicates > 1)
516 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
518 IRBuilder<> Builder(BB->getContext());
519 Instruction *Term = BB->getTerminator();
520 Builder.SetInsertPoint(Term);
521 Builder.CreateBr(TheOnlySucc);
522 Term->eraseFromParent();
524 for (auto *DeadSucc : DeadSuccessors)
525 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
527 ++NumTerminatorsFolded;
531 public:
532 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
533 ScalarEvolution &SE,
534 MemorySSAUpdater *MSSAU)
535 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
536 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
537 bool run() {
538 assert(L.getLoopLatch() && "Should be single latch!");
540 // Collect all available information about status of blocks after constant
541 // folding.
542 analyze();
543 BasicBlock *Header = L.getHeader();
544 (void)Header;
546 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
547 << ": ");
549 if (HasIrreducibleCFG) {
550 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
551 return false;
554 // Nothing to constant-fold.
555 if (FoldCandidates.empty()) {
556 LLVM_DEBUG(
557 dbgs() << "No constant terminator folding candidates found in loop "
558 << Header->getName() << "\n");
559 return false;
562 // TODO: Support deletion of the current loop.
563 if (DeleteCurrentLoop) {
564 LLVM_DEBUG(
565 dbgs()
566 << "Give up constant terminator folding in loop " << Header->getName()
567 << ": we don't currently support deletion of the current loop.\n");
568 return false;
571 // TODO: Support blocks that are not dead, but also not in loop after the
572 // folding.
573 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
574 L.getNumBlocks()) {
575 LLVM_DEBUG(
576 dbgs() << "Give up constant terminator folding in loop "
577 << Header->getName() << ": we don't currently"
578 " support blocks that are not dead, but will stop "
579 "being a part of the loop after constant-folding.\n");
580 return false;
583 SE.forgetTopmostLoop(&L);
584 // Dump analysis results.
585 LLVM_DEBUG(dump());
587 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
588 << " terminators in loop " << Header->getName() << "\n");
590 // Make the actual transforms.
591 handleDeadExits();
592 foldTerminators();
594 if (!DeadLoopBlocks.empty()) {
595 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
596 << " dead blocks in loop " << Header->getName() << "\n");
597 deleteDeadLoopBlocks();
598 } else {
599 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
600 DTU.applyUpdates(DTUpdates);
601 DTUpdates.clear();
604 if (MSSAU && VerifyMemorySSA)
605 MSSAU->getMemorySSA()->verifyMemorySSA();
607 #ifndef NDEBUG
608 // Make sure that we have preserved all data structures after the transform.
609 #if defined(EXPENSIVE_CHECKS)
610 assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
611 "DT broken after transform!");
612 #else
613 assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
614 "DT broken after transform!");
615 #endif
616 assert(DT.isReachableFromEntry(Header));
617 LI.verify(DT);
618 #endif
620 return true;
623 bool foldingBreaksCurrentLoop() const {
624 return DeleteCurrentLoop;
627 } // namespace
629 /// Turn branches and switches with known constant conditions into unconditional
630 /// branches.
631 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
632 ScalarEvolution &SE,
633 MemorySSAUpdater *MSSAU,
634 bool &IsLoopDeleted) {
635 if (!EnableTermFolding)
636 return false;
638 // To keep things simple, only process loops with single latch. We
639 // canonicalize most loops to this form. We can support multi-latch if needed.
640 if (!L.getLoopLatch())
641 return false;
643 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
644 bool Changed = BranchFolder.run();
645 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
646 return Changed;
649 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
650 LoopInfo &LI, MemorySSAUpdater *MSSAU) {
651 bool Changed = false;
652 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
653 // Copy blocks into a temporary array to avoid iterator invalidation issues
654 // as we remove them.
655 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
657 for (auto &Block : Blocks) {
658 // Attempt to merge blocks in the trivial case. Don't modify blocks which
659 // belong to other loops.
660 BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
661 if (!Succ)
662 continue;
664 BasicBlock *Pred = Succ->getSinglePredecessor();
665 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
666 continue;
668 // Merge Succ into Pred and delete it.
669 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
671 if (MSSAU && VerifyMemorySSA)
672 MSSAU->getMemorySSA()->verifyMemorySSA();
674 Changed = true;
677 return Changed;
680 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
681 ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
682 bool &IsLoopDeleted) {
683 bool Changed = false;
685 // Constant-fold terminators with known constant conditions.
686 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted);
688 if (IsLoopDeleted)
689 return true;
691 // Eliminate unconditional branches by merging blocks into their predecessors.
692 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
694 if (Changed)
695 SE.forgetTopmostLoop(&L);
697 return Changed;
700 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
701 LoopStandardAnalysisResults &AR,
702 LPMUpdater &LPMU) {
703 Optional<MemorySSAUpdater> MSSAU;
704 if (AR.MSSA)
705 MSSAU = MemorySSAUpdater(AR.MSSA);
706 bool DeleteCurrentLoop = false;
707 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
708 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
709 DeleteCurrentLoop))
710 return PreservedAnalyses::all();
712 if (DeleteCurrentLoop)
713 LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
715 auto PA = getLoopPassPreservedAnalyses();
716 if (AR.MSSA)
717 PA.preserve<MemorySSAAnalysis>();
718 return PA;
721 namespace {
722 class LoopSimplifyCFGLegacyPass : public LoopPass {
723 public:
724 static char ID; // Pass ID, replacement for typeid
725 LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
726 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
729 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
730 if (skipLoop(L))
731 return false;
733 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
734 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
735 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
736 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
737 MemorySSAUpdater MSSAU(MSSA);
738 if (VerifyMemorySSA)
739 MSSA->verifyMemorySSA();
740 bool DeleteCurrentLoop = false;
741 bool Changed = simplifyLoopCFG(*L, DT, LI, SE, &MSSAU, DeleteCurrentLoop);
742 if (DeleteCurrentLoop)
743 LPM.markLoopAsDeleted(*L);
744 return Changed;
747 void getAnalysisUsage(AnalysisUsage &AU) const override {
748 AU.addRequired<MemorySSAWrapperPass>();
749 AU.addPreserved<MemorySSAWrapperPass>();
750 AU.addPreserved<DependenceAnalysisWrapperPass>();
751 getLoopAnalysisUsage(AU);
754 } // end namespace
756 char LoopSimplifyCFGLegacyPass::ID = 0;
757 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
758 "Simplify loop CFG", false, false)
759 INITIALIZE_PASS_DEPENDENCY(LoopPass)
760 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
761 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
762 "Simplify loop CFG", false, false)
764 Pass *llvm::createLoopSimplifyCFGPass() {
765 return new LoopSimplifyCFGLegacyPass();