[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopSink.cpp
bloba01287f587d7a1f40b0fdbad6e4867675bf52b84
1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
15 // * It only handles sinking of instructions from the loop's preheader to the
16 // loop's body
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
20 // Overall algorithm:
22 // For I in Preheader:
23 // InsertBBs = BBs that uses I
24 // For BB in sorted(LoopBBs):
25 // DomBBs = BBs in InsertBBs that are dominated by BB
26 // if freq(DomBBs) > freq(BB)
27 // InsertBBs = UseBBs - DomBBs + BB
28 // For BB in InsertBBs:
29 // Insert I at BB's beginning
31 //===----------------------------------------------------------------------===//
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AliasSetTracker.h"
38 #include "llvm/Analysis/BasicAliasAnalysis.h"
39 #include "llvm/Analysis/BlockFrequencyInfo.h"
40 #include "llvm/Analysis/Loads.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/LoopPass.h"
43 #include "llvm/Analysis/MemorySSA.h"
44 #include "llvm/Analysis/MemorySSAUpdater.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 using namespace llvm;
59 #define DEBUG_TYPE "loopsink"
61 STATISTIC(NumLoopSunk, "Number of instructions sunk into loop");
62 STATISTIC(NumLoopSunkCloned, "Number of cloned instructions sunk into loop");
64 static cl::opt<unsigned> SinkFrequencyPercentThreshold(
65 "sink-freq-percent-threshold", cl::Hidden, cl::init(90),
66 cl::desc("Do not sink instructions that require cloning unless they "
67 "execute less than this percent of the time."));
69 static cl::opt<unsigned> MaxNumberOfUseBBsForSinking(
70 "max-uses-for-sinking", cl::Hidden, cl::init(30),
71 cl::desc("Do not sink instructions that have too many uses."));
73 static cl::opt<bool> EnableMSSAInLoopSink(
74 "enable-mssa-in-loop-sink", cl::Hidden, cl::init(true),
75 cl::desc("Enable MemorySSA for LoopSink in new pass manager"));
77 static cl::opt<bool> EnableMSSAInLegacyLoopSink(
78 "enable-mssa-in-legacy-loop-sink", cl::Hidden, cl::init(false),
79 cl::desc("Enable MemorySSA for LoopSink in legacy pass manager"));
81 /// Return adjusted total frequency of \p BBs.
82 ///
83 /// * If there is only one BB, sinking instruction will not introduce code
84 /// size increase. Thus there is no need to adjust the frequency.
85 /// * If there are more than one BB, sinking would lead to code size increase.
86 /// In this case, we add some "tax" to the total frequency to make it harder
87 /// to sink. E.g.
88 /// Freq(Preheader) = 100
89 /// Freq(BBs) = sum(50, 49) = 99
90 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
91 /// BBs as the difference is too small to justify the code size increase.
92 /// To model this, The adjusted Freq(BBs) will be:
93 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
94 static BlockFrequency adjustedSumFreq(SmallPtrSetImpl<BasicBlock *> &BBs,
95 BlockFrequencyInfo &BFI) {
96 BlockFrequency T = 0;
97 for (BasicBlock *B : BBs)
98 T += BFI.getBlockFreq(B);
99 if (BBs.size() > 1)
100 T /= BranchProbability(SinkFrequencyPercentThreshold, 100);
101 return T;
104 /// Return a set of basic blocks to insert sinked instructions.
106 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
108 /// * Inside the loop \p L
109 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
110 /// that domintates the UseBB
111 /// * Has minimum total frequency that is no greater than preheader frequency
113 /// The purpose of the function is to find the optimal sinking points to
114 /// minimize execution cost, which is defined as "sum of frequency of
115 /// BBsToSinkInto".
116 /// As a result, the returned BBsToSinkInto needs to have minimum total
117 /// frequency.
118 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
119 /// frequency, the optimal solution is not sinking (return empty set).
121 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
122 /// It stores a list of BBs that is:
124 /// * Inside the loop \p L
125 /// * Has a frequency no larger than the loop's preheader
126 /// * Sorted by BB frequency
128 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
129 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
130 /// caller.
131 static SmallPtrSet<BasicBlock *, 2>
132 findBBsToSinkInto(const Loop &L, const SmallPtrSetImpl<BasicBlock *> &UseBBs,
133 const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
134 DominatorTree &DT, BlockFrequencyInfo &BFI) {
135 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto;
136 if (UseBBs.size() == 0)
137 return BBsToSinkInto;
139 BBsToSinkInto.insert(UseBBs.begin(), UseBBs.end());
140 SmallPtrSet<BasicBlock *, 2> BBsDominatedByColdestBB;
142 // For every iteration:
143 // * Pick the ColdestBB from ColdLoopBBs
144 // * Find the set BBsDominatedByColdestBB that satisfy:
145 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
146 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
147 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
148 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
149 // BBsToSinkInto
150 for (BasicBlock *ColdestBB : ColdLoopBBs) {
151 BBsDominatedByColdestBB.clear();
152 for (BasicBlock *SinkedBB : BBsToSinkInto)
153 if (DT.dominates(ColdestBB, SinkedBB))
154 BBsDominatedByColdestBB.insert(SinkedBB);
155 if (BBsDominatedByColdestBB.size() == 0)
156 continue;
157 if (adjustedSumFreq(BBsDominatedByColdestBB, BFI) >
158 BFI.getBlockFreq(ColdestBB)) {
159 for (BasicBlock *DominatedBB : BBsDominatedByColdestBB) {
160 BBsToSinkInto.erase(DominatedBB);
162 BBsToSinkInto.insert(ColdestBB);
166 // Can't sink into blocks that have no valid insertion point.
167 for (BasicBlock *BB : BBsToSinkInto) {
168 if (BB->getFirstInsertionPt() == BB->end()) {
169 BBsToSinkInto.clear();
170 break;
174 // If the total frequency of BBsToSinkInto is larger than preheader frequency,
175 // do not sink.
176 if (adjustedSumFreq(BBsToSinkInto, BFI) >
177 BFI.getBlockFreq(L.getLoopPreheader()))
178 BBsToSinkInto.clear();
179 return BBsToSinkInto;
182 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
183 // sinking is successful.
184 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
185 // determinism.
186 static bool sinkInstruction(
187 Loop &L, Instruction &I, const SmallVectorImpl<BasicBlock *> &ColdLoopBBs,
188 const SmallDenseMap<BasicBlock *, int, 16> &LoopBlockNumber, LoopInfo &LI,
189 DominatorTree &DT, BlockFrequencyInfo &BFI, MemorySSAUpdater *MSSAU) {
190 // Compute the set of blocks in loop L which contain a use of I.
191 SmallPtrSet<BasicBlock *, 2> BBs;
192 for (auto &U : I.uses()) {
193 Instruction *UI = cast<Instruction>(U.getUser());
194 // We cannot sink I to PHI-uses.
195 if (isa<PHINode>(UI))
196 return false;
197 // We cannot sink I if it has uses outside of the loop.
198 if (!L.contains(LI.getLoopFor(UI->getParent())))
199 return false;
200 BBs.insert(UI->getParent());
203 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
204 // BBs.size() to avoid expensive computation.
205 // FIXME: Handle code size growth for min_size and opt_size.
206 if (BBs.size() > MaxNumberOfUseBBsForSinking)
207 return false;
209 // Find the set of BBs that we should insert a copy of I.
210 SmallPtrSet<BasicBlock *, 2> BBsToSinkInto =
211 findBBsToSinkInto(L, BBs, ColdLoopBBs, DT, BFI);
212 if (BBsToSinkInto.empty())
213 return false;
215 // Return if any of the candidate blocks to sink into is non-cold.
216 if (BBsToSinkInto.size() > 1 &&
217 !llvm::set_is_subset(BBsToSinkInto, LoopBlockNumber))
218 return false;
220 // Copy the final BBs into a vector and sort them using the total ordering
221 // of the loop block numbers as iterating the set doesn't give a useful
222 // order. No need to stable sort as the block numbers are a total ordering.
223 SmallVector<BasicBlock *, 2> SortedBBsToSinkInto;
224 llvm::append_range(SortedBBsToSinkInto, BBsToSinkInto);
225 llvm::sort(SortedBBsToSinkInto, [&](BasicBlock *A, BasicBlock *B) {
226 return LoopBlockNumber.find(A)->second < LoopBlockNumber.find(B)->second;
229 BasicBlock *MoveBB = *SortedBBsToSinkInto.begin();
230 // FIXME: Optimize the efficiency for cloned value replacement. The current
231 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
232 for (BasicBlock *N : makeArrayRef(SortedBBsToSinkInto).drop_front(1)) {
233 assert(LoopBlockNumber.find(N)->second >
234 LoopBlockNumber.find(MoveBB)->second &&
235 "BBs not sorted!");
236 // Clone I and replace its uses.
237 Instruction *IC = I.clone();
238 IC->setName(I.getName());
239 IC->insertBefore(&*N->getFirstInsertionPt());
241 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
242 // Create a new MemoryAccess and let MemorySSA set its defining access.
243 MemoryAccess *NewMemAcc =
244 MSSAU->createMemoryAccessInBB(IC, nullptr, N, MemorySSA::Beginning);
245 if (NewMemAcc) {
246 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
247 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
248 else {
249 auto *MemUse = cast<MemoryUse>(NewMemAcc);
250 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
255 // Replaces uses of I with IC in N
256 I.replaceUsesWithIf(IC, [N](Use &U) {
257 return cast<Instruction>(U.getUser())->getParent() == N;
259 // Replaces uses of I with IC in blocks dominated by N
260 replaceDominatedUsesWith(&I, IC, DT, N);
261 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I << " To: " << N->getName()
262 << '\n');
263 NumLoopSunkCloned++;
265 LLVM_DEBUG(dbgs() << "Sinking " << I << " To: " << MoveBB->getName() << '\n');
266 NumLoopSunk++;
267 I.moveBefore(&*MoveBB->getFirstInsertionPt());
269 if (MSSAU)
270 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
271 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
272 MSSAU->moveToPlace(OldMemAcc, MoveBB, MemorySSA::Beginning);
274 return true;
277 /// Sinks instructions from loop's preheader to the loop body if the
278 /// sum frequency of inserted copy is smaller than preheader's frequency.
279 static bool sinkLoopInvariantInstructions(Loop &L, AAResults &AA, LoopInfo &LI,
280 DominatorTree &DT,
281 BlockFrequencyInfo &BFI,
282 ScalarEvolution *SE,
283 AliasSetTracker *CurAST,
284 MemorySSA *MSSA) {
285 BasicBlock *Preheader = L.getLoopPreheader();
286 assert(Preheader && "Expected loop to have preheader");
288 assert(Preheader->getParent()->hasProfileData() &&
289 "Unexpected call when profile data unavailable.");
291 const BlockFrequency PreheaderFreq = BFI.getBlockFreq(Preheader);
292 // If there are no basic blocks with lower frequency than the preheader then
293 // we can avoid the detailed analysis as we will never find profitable sinking
294 // opportunities.
295 if (all_of(L.blocks(), [&](const BasicBlock *BB) {
296 return BFI.getBlockFreq(BB) > PreheaderFreq;
298 return false;
300 std::unique_ptr<MemorySSAUpdater> MSSAU;
301 std::unique_ptr<SinkAndHoistLICMFlags> LICMFlags;
302 if (MSSA) {
303 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
304 LICMFlags =
305 std::make_unique<SinkAndHoistLICMFlags>(/*IsSink=*/true, &L, MSSA);
308 bool Changed = false;
310 // Sort loop's basic blocks by frequency
311 SmallVector<BasicBlock *, 10> ColdLoopBBs;
312 SmallDenseMap<BasicBlock *, int, 16> LoopBlockNumber;
313 int i = 0;
314 for (BasicBlock *B : L.blocks())
315 if (BFI.getBlockFreq(B) < BFI.getBlockFreq(L.getLoopPreheader())) {
316 ColdLoopBBs.push_back(B);
317 LoopBlockNumber[B] = ++i;
319 llvm::stable_sort(ColdLoopBBs, [&](BasicBlock *A, BasicBlock *B) {
320 return BFI.getBlockFreq(A) < BFI.getBlockFreq(B);
323 // Traverse preheader's instructions in reverse order becaue if A depends
324 // on B (A appears after B), A needs to be sinked first before B can be
325 // sinked.
326 for (auto II = Preheader->rbegin(), E = Preheader->rend(); II != E;) {
327 Instruction *I = &*II++;
328 // No need to check for instruction's operands are loop invariant.
329 assert(L.hasLoopInvariantOperands(I) &&
330 "Insts in a loop's preheader should have loop invariant operands!");
331 if (!canSinkOrHoistInst(*I, &AA, &DT, &L, CurAST, MSSAU.get(), false,
332 LICMFlags.get()))
333 continue;
334 if (sinkInstruction(L, *I, ColdLoopBBs, LoopBlockNumber, LI, DT, BFI,
335 MSSAU.get()))
336 Changed = true;
339 if (Changed && SE)
340 SE->forgetLoopDispositions(&L);
341 return Changed;
344 static void computeAliasSet(Loop &L, BasicBlock &Preheader,
345 AliasSetTracker &CurAST) {
346 for (BasicBlock *BB : L.blocks())
347 CurAST.add(*BB);
348 CurAST.add(Preheader);
351 PreservedAnalyses LoopSinkPass::run(Function &F, FunctionAnalysisManager &FAM) {
352 LoopInfo &LI = FAM.getResult<LoopAnalysis>(F);
353 // Nothing to do if there are no loops.
354 if (LI.empty())
355 return PreservedAnalyses::all();
357 AAResults &AA = FAM.getResult<AAManager>(F);
358 DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
359 BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
361 MemorySSA *MSSA = EnableMSSAInLoopSink
362 ? &FAM.getResult<MemorySSAAnalysis>(F).getMSSA()
363 : nullptr;
365 // We want to do a postorder walk over the loops. Since loops are a tree this
366 // is equivalent to a reversed preorder walk and preorder is easy to compute
367 // without recursion. Since we reverse the preorder, we will visit siblings
368 // in reverse program order. This isn't expected to matter at all but is more
369 // consistent with sinking algorithms which generally work bottom-up.
370 SmallVector<Loop *, 4> PreorderLoops = LI.getLoopsInPreorder();
372 bool Changed = false;
373 do {
374 Loop &L = *PreorderLoops.pop_back_val();
376 BasicBlock *Preheader = L.getLoopPreheader();
377 if (!Preheader)
378 continue;
380 // Enable LoopSink only when runtime profile is available.
381 // With static profile, the sinking decision may be sub-optimal.
382 if (!Preheader->getParent()->hasProfileData())
383 continue;
385 std::unique_ptr<AliasSetTracker> CurAST;
386 if (!EnableMSSAInLoopSink) {
387 CurAST = std::make_unique<AliasSetTracker>(AA);
388 computeAliasSet(L, *Preheader, *CurAST.get());
391 // Note that we don't pass SCEV here because it is only used to invalidate
392 // loops in SCEV and we don't preserve (or request) SCEV at all making that
393 // unnecessary.
394 Changed |= sinkLoopInvariantInstructions(L, AA, LI, DT, BFI,
395 /*ScalarEvolution*/ nullptr,
396 CurAST.get(), MSSA);
397 } while (!PreorderLoops.empty());
399 if (!Changed)
400 return PreservedAnalyses::all();
402 PreservedAnalyses PA;
403 PA.preserveSet<CFGAnalyses>();
405 if (MSSA) {
406 PA.preserve<MemorySSAAnalysis>();
408 if (VerifyMemorySSA)
409 MSSA->verifyMemorySSA();
412 return PA;
415 namespace {
416 struct LegacyLoopSinkPass : public LoopPass {
417 static char ID;
418 LegacyLoopSinkPass() : LoopPass(ID) {
419 initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
422 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
423 if (skipLoop(L))
424 return false;
426 BasicBlock *Preheader = L->getLoopPreheader();
427 if (!Preheader)
428 return false;
430 // Enable LoopSink only when runtime profile is available.
431 // With static profile, the sinking decision may be sub-optimal.
432 if (!Preheader->getParent()->hasProfileData())
433 return false;
435 AAResults &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
436 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
437 std::unique_ptr<AliasSetTracker> CurAST;
438 MemorySSA *MSSA = nullptr;
439 if (EnableMSSAInLegacyLoopSink)
440 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
441 else {
442 CurAST = std::make_unique<AliasSetTracker>(AA);
443 computeAliasSet(*L, *Preheader, *CurAST.get());
446 bool Changed = sinkLoopInvariantInstructions(
447 *L, AA, getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
448 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
449 getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(),
450 SE ? &SE->getSE() : nullptr, CurAST.get(), MSSA);
452 if (MSSA && VerifyMemorySSA)
453 MSSA->verifyMemorySSA();
455 return Changed;
458 void getAnalysisUsage(AnalysisUsage &AU) const override {
459 AU.setPreservesCFG();
460 AU.addRequired<BlockFrequencyInfoWrapperPass>();
461 getLoopAnalysisUsage(AU);
462 if (EnableMSSAInLegacyLoopSink) {
463 AU.addRequired<MemorySSAWrapperPass>();
464 AU.addPreserved<MemorySSAWrapperPass>();
470 char LegacyLoopSinkPass::ID = 0;
471 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false,
472 false)
473 INITIALIZE_PASS_DEPENDENCY(LoopPass)
474 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
475 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
476 INITIALIZE_PASS_END(LegacyLoopSinkPass, "loop-sink", "Loop Sink", false, false)
478 Pass *llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }