1 //===-- LoopSink.cpp - Loop Sink Pass -------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass does the inverse transformation of what LICM does.
10 // It traverses all of the instructions in the loop's preheader and sinks
11 // them to the loop body where frequency is lower than the loop's preheader.
12 // This pass is a reverse-transformation of LICM. It differs from the Sink
13 // pass in the following ways:
15 // * It only handles sinking of instructions from the loop's preheader to the
17 // * It uses alias set tracker to get more accurate alias info
18 // * It uses block frequency info to find the optimal sinking locations
22 // For I in Preheader:
23 // InsertBBs = BBs that uses I
24 // For BB in sorted(LoopBBs):
25 // DomBBs = BBs in InsertBBs that are dominated by BB
26 // if freq(DomBBs) > freq(BB)
27 // InsertBBs = UseBBs - DomBBs + BB
28 // For BB in InsertBBs:
29 // Insert I at BB's beginning
31 //===----------------------------------------------------------------------===//
33 #include "llvm/Transforms/Scalar/LoopSink.h"
34 #include "llvm/ADT/SetOperations.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/AliasSetTracker.h"
38 #include "llvm/Analysis/BasicAliasAnalysis.h"
39 #include "llvm/Analysis/BlockFrequencyInfo.h"
40 #include "llvm/Analysis/Loads.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/LoopPass.h"
43 #include "llvm/Analysis/MemorySSA.h"
44 #include "llvm/Analysis/MemorySSAUpdater.h"
45 #include "llvm/Analysis/ScalarEvolution.h"
46 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
47 #include "llvm/IR/Dominators.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Transforms/Scalar.h"
54 #include "llvm/Transforms/Scalar/LoopPassManager.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
59 #define DEBUG_TYPE "loopsink"
61 STATISTIC(NumLoopSunk
, "Number of instructions sunk into loop");
62 STATISTIC(NumLoopSunkCloned
, "Number of cloned instructions sunk into loop");
64 static cl::opt
<unsigned> SinkFrequencyPercentThreshold(
65 "sink-freq-percent-threshold", cl::Hidden
, cl::init(90),
66 cl::desc("Do not sink instructions that require cloning unless they "
67 "execute less than this percent of the time."));
69 static cl::opt
<unsigned> MaxNumberOfUseBBsForSinking(
70 "max-uses-for-sinking", cl::Hidden
, cl::init(30),
71 cl::desc("Do not sink instructions that have too many uses."));
73 static cl::opt
<bool> EnableMSSAInLoopSink(
74 "enable-mssa-in-loop-sink", cl::Hidden
, cl::init(true),
75 cl::desc("Enable MemorySSA for LoopSink in new pass manager"));
77 static cl::opt
<bool> EnableMSSAInLegacyLoopSink(
78 "enable-mssa-in-legacy-loop-sink", cl::Hidden
, cl::init(false),
79 cl::desc("Enable MemorySSA for LoopSink in legacy pass manager"));
81 /// Return adjusted total frequency of \p BBs.
83 /// * If there is only one BB, sinking instruction will not introduce code
84 /// size increase. Thus there is no need to adjust the frequency.
85 /// * If there are more than one BB, sinking would lead to code size increase.
86 /// In this case, we add some "tax" to the total frequency to make it harder
88 /// Freq(Preheader) = 100
89 /// Freq(BBs) = sum(50, 49) = 99
90 /// Even if Freq(BBs) < Freq(Preheader), we will not sink from Preheade to
91 /// BBs as the difference is too small to justify the code size increase.
92 /// To model this, The adjusted Freq(BBs) will be:
93 /// AdjustedFreq(BBs) = 99 / SinkFrequencyPercentThreshold%
94 static BlockFrequency
adjustedSumFreq(SmallPtrSetImpl
<BasicBlock
*> &BBs
,
95 BlockFrequencyInfo
&BFI
) {
97 for (BasicBlock
*B
: BBs
)
98 T
+= BFI
.getBlockFreq(B
);
100 T
/= BranchProbability(SinkFrequencyPercentThreshold
, 100);
104 /// Return a set of basic blocks to insert sinked instructions.
106 /// The returned set of basic blocks (BBsToSinkInto) should satisfy:
108 /// * Inside the loop \p L
109 /// * For each UseBB in \p UseBBs, there is at least one BB in BBsToSinkInto
110 /// that domintates the UseBB
111 /// * Has minimum total frequency that is no greater than preheader frequency
113 /// The purpose of the function is to find the optimal sinking points to
114 /// minimize execution cost, which is defined as "sum of frequency of
116 /// As a result, the returned BBsToSinkInto needs to have minimum total
118 /// Additionally, if the total frequency of BBsToSinkInto exceeds preheader
119 /// frequency, the optimal solution is not sinking (return empty set).
121 /// \p ColdLoopBBs is used to help find the optimal sinking locations.
122 /// It stores a list of BBs that is:
124 /// * Inside the loop \p L
125 /// * Has a frequency no larger than the loop's preheader
126 /// * Sorted by BB frequency
128 /// The complexity of the function is O(UseBBs.size() * ColdLoopBBs.size()).
129 /// To avoid expensive computation, we cap the maximum UseBBs.size() in its
131 static SmallPtrSet
<BasicBlock
*, 2>
132 findBBsToSinkInto(const Loop
&L
, const SmallPtrSetImpl
<BasicBlock
*> &UseBBs
,
133 const SmallVectorImpl
<BasicBlock
*> &ColdLoopBBs
,
134 DominatorTree
&DT
, BlockFrequencyInfo
&BFI
) {
135 SmallPtrSet
<BasicBlock
*, 2> BBsToSinkInto
;
136 if (UseBBs
.size() == 0)
137 return BBsToSinkInto
;
139 BBsToSinkInto
.insert(UseBBs
.begin(), UseBBs
.end());
140 SmallPtrSet
<BasicBlock
*, 2> BBsDominatedByColdestBB
;
142 // For every iteration:
143 // * Pick the ColdestBB from ColdLoopBBs
144 // * Find the set BBsDominatedByColdestBB that satisfy:
145 // - BBsDominatedByColdestBB is a subset of BBsToSinkInto
146 // - Every BB in BBsDominatedByColdestBB is dominated by ColdestBB
147 // * If Freq(ColdestBB) < Freq(BBsDominatedByColdestBB), remove
148 // BBsDominatedByColdestBB from BBsToSinkInto, add ColdestBB to
150 for (BasicBlock
*ColdestBB
: ColdLoopBBs
) {
151 BBsDominatedByColdestBB
.clear();
152 for (BasicBlock
*SinkedBB
: BBsToSinkInto
)
153 if (DT
.dominates(ColdestBB
, SinkedBB
))
154 BBsDominatedByColdestBB
.insert(SinkedBB
);
155 if (BBsDominatedByColdestBB
.size() == 0)
157 if (adjustedSumFreq(BBsDominatedByColdestBB
, BFI
) >
158 BFI
.getBlockFreq(ColdestBB
)) {
159 for (BasicBlock
*DominatedBB
: BBsDominatedByColdestBB
) {
160 BBsToSinkInto
.erase(DominatedBB
);
162 BBsToSinkInto
.insert(ColdestBB
);
166 // Can't sink into blocks that have no valid insertion point.
167 for (BasicBlock
*BB
: BBsToSinkInto
) {
168 if (BB
->getFirstInsertionPt() == BB
->end()) {
169 BBsToSinkInto
.clear();
174 // If the total frequency of BBsToSinkInto is larger than preheader frequency,
176 if (adjustedSumFreq(BBsToSinkInto
, BFI
) >
177 BFI
.getBlockFreq(L
.getLoopPreheader()))
178 BBsToSinkInto
.clear();
179 return BBsToSinkInto
;
182 // Sinks \p I from the loop \p L's preheader to its uses. Returns true if
183 // sinking is successful.
184 // \p LoopBlockNumber is used to sort the insertion blocks to ensure
186 static bool sinkInstruction(
187 Loop
&L
, Instruction
&I
, const SmallVectorImpl
<BasicBlock
*> &ColdLoopBBs
,
188 const SmallDenseMap
<BasicBlock
*, int, 16> &LoopBlockNumber
, LoopInfo
&LI
,
189 DominatorTree
&DT
, BlockFrequencyInfo
&BFI
, MemorySSAUpdater
*MSSAU
) {
190 // Compute the set of blocks in loop L which contain a use of I.
191 SmallPtrSet
<BasicBlock
*, 2> BBs
;
192 for (auto &U
: I
.uses()) {
193 Instruction
*UI
= cast
<Instruction
>(U
.getUser());
194 // We cannot sink I to PHI-uses.
195 if (isa
<PHINode
>(UI
))
197 // We cannot sink I if it has uses outside of the loop.
198 if (!L
.contains(LI
.getLoopFor(UI
->getParent())))
200 BBs
.insert(UI
->getParent());
203 // findBBsToSinkInto is O(BBs.size() * ColdLoopBBs.size()). We cap the max
204 // BBs.size() to avoid expensive computation.
205 // FIXME: Handle code size growth for min_size and opt_size.
206 if (BBs
.size() > MaxNumberOfUseBBsForSinking
)
209 // Find the set of BBs that we should insert a copy of I.
210 SmallPtrSet
<BasicBlock
*, 2> BBsToSinkInto
=
211 findBBsToSinkInto(L
, BBs
, ColdLoopBBs
, DT
, BFI
);
212 if (BBsToSinkInto
.empty())
215 // Return if any of the candidate blocks to sink into is non-cold.
216 if (BBsToSinkInto
.size() > 1 &&
217 !llvm::set_is_subset(BBsToSinkInto
, LoopBlockNumber
))
220 // Copy the final BBs into a vector and sort them using the total ordering
221 // of the loop block numbers as iterating the set doesn't give a useful
222 // order. No need to stable sort as the block numbers are a total ordering.
223 SmallVector
<BasicBlock
*, 2> SortedBBsToSinkInto
;
224 llvm::append_range(SortedBBsToSinkInto
, BBsToSinkInto
);
225 llvm::sort(SortedBBsToSinkInto
, [&](BasicBlock
*A
, BasicBlock
*B
) {
226 return LoopBlockNumber
.find(A
)->second
< LoopBlockNumber
.find(B
)->second
;
229 BasicBlock
*MoveBB
= *SortedBBsToSinkInto
.begin();
230 // FIXME: Optimize the efficiency for cloned value replacement. The current
231 // implementation is O(SortedBBsToSinkInto.size() * I.num_uses()).
232 for (BasicBlock
*N
: makeArrayRef(SortedBBsToSinkInto
).drop_front(1)) {
233 assert(LoopBlockNumber
.find(N
)->second
>
234 LoopBlockNumber
.find(MoveBB
)->second
&&
236 // Clone I and replace its uses.
237 Instruction
*IC
= I
.clone();
238 IC
->setName(I
.getName());
239 IC
->insertBefore(&*N
->getFirstInsertionPt());
241 if (MSSAU
&& MSSAU
->getMemorySSA()->getMemoryAccess(&I
)) {
242 // Create a new MemoryAccess and let MemorySSA set its defining access.
243 MemoryAccess
*NewMemAcc
=
244 MSSAU
->createMemoryAccessInBB(IC
, nullptr, N
, MemorySSA::Beginning
);
246 if (auto *MemDef
= dyn_cast
<MemoryDef
>(NewMemAcc
))
247 MSSAU
->insertDef(MemDef
, /*RenameUses=*/true);
249 auto *MemUse
= cast
<MemoryUse
>(NewMemAcc
);
250 MSSAU
->insertUse(MemUse
, /*RenameUses=*/true);
255 // Replaces uses of I with IC in N
256 I
.replaceUsesWithIf(IC
, [N
](Use
&U
) {
257 return cast
<Instruction
>(U
.getUser())->getParent() == N
;
259 // Replaces uses of I with IC in blocks dominated by N
260 replaceDominatedUsesWith(&I
, IC
, DT
, N
);
261 LLVM_DEBUG(dbgs() << "Sinking a clone of " << I
<< " To: " << N
->getName()
265 LLVM_DEBUG(dbgs() << "Sinking " << I
<< " To: " << MoveBB
->getName() << '\n');
267 I
.moveBefore(&*MoveBB
->getFirstInsertionPt());
270 if (MemoryUseOrDef
*OldMemAcc
= cast_or_null
<MemoryUseOrDef
>(
271 MSSAU
->getMemorySSA()->getMemoryAccess(&I
)))
272 MSSAU
->moveToPlace(OldMemAcc
, MoveBB
, MemorySSA::Beginning
);
277 /// Sinks instructions from loop's preheader to the loop body if the
278 /// sum frequency of inserted copy is smaller than preheader's frequency.
279 static bool sinkLoopInvariantInstructions(Loop
&L
, AAResults
&AA
, LoopInfo
&LI
,
281 BlockFrequencyInfo
&BFI
,
283 AliasSetTracker
*CurAST
,
285 BasicBlock
*Preheader
= L
.getLoopPreheader();
286 assert(Preheader
&& "Expected loop to have preheader");
288 assert(Preheader
->getParent()->hasProfileData() &&
289 "Unexpected call when profile data unavailable.");
291 const BlockFrequency PreheaderFreq
= BFI
.getBlockFreq(Preheader
);
292 // If there are no basic blocks with lower frequency than the preheader then
293 // we can avoid the detailed analysis as we will never find profitable sinking
295 if (all_of(L
.blocks(), [&](const BasicBlock
*BB
) {
296 return BFI
.getBlockFreq(BB
) > PreheaderFreq
;
300 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
301 std::unique_ptr
<SinkAndHoistLICMFlags
> LICMFlags
;
303 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
305 std::make_unique
<SinkAndHoistLICMFlags
>(/*IsSink=*/true, &L
, MSSA
);
308 bool Changed
= false;
310 // Sort loop's basic blocks by frequency
311 SmallVector
<BasicBlock
*, 10> ColdLoopBBs
;
312 SmallDenseMap
<BasicBlock
*, int, 16> LoopBlockNumber
;
314 for (BasicBlock
*B
: L
.blocks())
315 if (BFI
.getBlockFreq(B
) < BFI
.getBlockFreq(L
.getLoopPreheader())) {
316 ColdLoopBBs
.push_back(B
);
317 LoopBlockNumber
[B
] = ++i
;
319 llvm::stable_sort(ColdLoopBBs
, [&](BasicBlock
*A
, BasicBlock
*B
) {
320 return BFI
.getBlockFreq(A
) < BFI
.getBlockFreq(B
);
323 // Traverse preheader's instructions in reverse order becaue if A depends
324 // on B (A appears after B), A needs to be sinked first before B can be
326 for (auto II
= Preheader
->rbegin(), E
= Preheader
->rend(); II
!= E
;) {
327 Instruction
*I
= &*II
++;
328 // No need to check for instruction's operands are loop invariant.
329 assert(L
.hasLoopInvariantOperands(I
) &&
330 "Insts in a loop's preheader should have loop invariant operands!");
331 if (!canSinkOrHoistInst(*I
, &AA
, &DT
, &L
, CurAST
, MSSAU
.get(), false,
334 if (sinkInstruction(L
, *I
, ColdLoopBBs
, LoopBlockNumber
, LI
, DT
, BFI
,
340 SE
->forgetLoopDispositions(&L
);
344 static void computeAliasSet(Loop
&L
, BasicBlock
&Preheader
,
345 AliasSetTracker
&CurAST
) {
346 for (BasicBlock
*BB
: L
.blocks())
348 CurAST
.add(Preheader
);
351 PreservedAnalyses
LoopSinkPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
352 LoopInfo
&LI
= FAM
.getResult
<LoopAnalysis
>(F
);
353 // Nothing to do if there are no loops.
355 return PreservedAnalyses::all();
357 AAResults
&AA
= FAM
.getResult
<AAManager
>(F
);
358 DominatorTree
&DT
= FAM
.getResult
<DominatorTreeAnalysis
>(F
);
359 BlockFrequencyInfo
&BFI
= FAM
.getResult
<BlockFrequencyAnalysis
>(F
);
361 MemorySSA
*MSSA
= EnableMSSAInLoopSink
362 ? &FAM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA()
365 // We want to do a postorder walk over the loops. Since loops are a tree this
366 // is equivalent to a reversed preorder walk and preorder is easy to compute
367 // without recursion. Since we reverse the preorder, we will visit siblings
368 // in reverse program order. This isn't expected to matter at all but is more
369 // consistent with sinking algorithms which generally work bottom-up.
370 SmallVector
<Loop
*, 4> PreorderLoops
= LI
.getLoopsInPreorder();
372 bool Changed
= false;
374 Loop
&L
= *PreorderLoops
.pop_back_val();
376 BasicBlock
*Preheader
= L
.getLoopPreheader();
380 // Enable LoopSink only when runtime profile is available.
381 // With static profile, the sinking decision may be sub-optimal.
382 if (!Preheader
->getParent()->hasProfileData())
385 std::unique_ptr
<AliasSetTracker
> CurAST
;
386 if (!EnableMSSAInLoopSink
) {
387 CurAST
= std::make_unique
<AliasSetTracker
>(AA
);
388 computeAliasSet(L
, *Preheader
, *CurAST
.get());
391 // Note that we don't pass SCEV here because it is only used to invalidate
392 // loops in SCEV and we don't preserve (or request) SCEV at all making that
394 Changed
|= sinkLoopInvariantInstructions(L
, AA
, LI
, DT
, BFI
,
395 /*ScalarEvolution*/ nullptr,
397 } while (!PreorderLoops
.empty());
400 return PreservedAnalyses::all();
402 PreservedAnalyses PA
;
403 PA
.preserveSet
<CFGAnalyses
>();
406 PA
.preserve
<MemorySSAAnalysis
>();
409 MSSA
->verifyMemorySSA();
416 struct LegacyLoopSinkPass
: public LoopPass
{
418 LegacyLoopSinkPass() : LoopPass(ID
) {
419 initializeLegacyLoopSinkPassPass(*PassRegistry::getPassRegistry());
422 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
426 BasicBlock
*Preheader
= L
->getLoopPreheader();
430 // Enable LoopSink only when runtime profile is available.
431 // With static profile, the sinking decision may be sub-optimal.
432 if (!Preheader
->getParent()->hasProfileData())
435 AAResults
&AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
436 auto *SE
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
437 std::unique_ptr
<AliasSetTracker
> CurAST
;
438 MemorySSA
*MSSA
= nullptr;
439 if (EnableMSSAInLegacyLoopSink
)
440 MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
442 CurAST
= std::make_unique
<AliasSetTracker
>(AA
);
443 computeAliasSet(*L
, *Preheader
, *CurAST
.get());
446 bool Changed
= sinkLoopInvariantInstructions(
447 *L
, AA
, getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo(),
448 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
449 getAnalysis
<BlockFrequencyInfoWrapperPass
>().getBFI(),
450 SE
? &SE
->getSE() : nullptr, CurAST
.get(), MSSA
);
452 if (MSSA
&& VerifyMemorySSA
)
453 MSSA
->verifyMemorySSA();
458 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
459 AU
.setPreservesCFG();
460 AU
.addRequired
<BlockFrequencyInfoWrapperPass
>();
461 getLoopAnalysisUsage(AU
);
462 if (EnableMSSAInLegacyLoopSink
) {
463 AU
.addRequired
<MemorySSAWrapperPass
>();
464 AU
.addPreserved
<MemorySSAWrapperPass
>();
470 char LegacyLoopSinkPass::ID
= 0;
471 INITIALIZE_PASS_BEGIN(LegacyLoopSinkPass
, "loop-sink", "Loop Sink", false,
473 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
474 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass
)
475 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
476 INITIALIZE_PASS_END(LegacyLoopSinkPass
, "loop-sink", "Loop Sink", false, false)
478 Pass
*llvm::createLoopSinkPass() { return new LegacyLoopSinkPass(); }