1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops that contain branches on loop-invariant conditions
10 // to multiple loops. For example, it turns the left into the right code:
19 // This can increase the size of the code exponentially (doubling it every time
20 // a loop is unswitched) so we only unswitch if the resultant code will be
21 // smaller than a threshold.
23 // This pass expects LICM to be run before it to hoist invariant conditions out
24 // of the loop, to make the unswitching opportunity obvious.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AssumptionCache.h"
34 #include "llvm/Analysis/CodeMetrics.h"
35 #include "llvm/Analysis/InstructionSimplify.h"
36 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
37 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopIterator.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/MustExecute.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueHandle.h"
64 #include "llvm/InitializePasses.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar.h"
71 #include "llvm/Transforms/Scalar/LoopPassManager.h"
72 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
73 #include "llvm/Transforms/Utils/Cloning.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/LoopUtils.h"
76 #include "llvm/Transforms/Utils/ValueMapper.h"
87 #define DEBUG_TYPE "loop-unswitch"
89 STATISTIC(NumBranches
, "Number of branches unswitched");
90 STATISTIC(NumSwitches
, "Number of switches unswitched");
91 STATISTIC(NumGuards
, "Number of guards unswitched");
92 STATISTIC(NumSelects
, "Number of selects unswitched");
93 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
94 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
95 STATISTIC(TotalInsts
, "Total number of instructions analyzed");
97 // The specific value of 100 here was chosen based only on intuition and a
98 // few specific examples.
99 static cl::opt
<unsigned>
100 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
101 cl::init(100), cl::Hidden
);
103 static cl::opt
<unsigned>
104 MSSAThreshold("loop-unswitch-memoryssa-threshold",
105 cl::desc("Max number of memory uses to explore during "
106 "partial unswitching analysis"),
107 cl::init(100), cl::Hidden
);
111 class LUAnalysisCache
{
112 using UnswitchedValsMap
=
113 DenseMap
<const SwitchInst
*, SmallPtrSet
<const Value
*, 8>>;
114 using UnswitchedValsIt
= UnswitchedValsMap::iterator
;
116 struct LoopProperties
{
117 unsigned CanBeUnswitchedCount
;
118 unsigned WasUnswitchedCount
;
119 unsigned SizeEstimation
;
120 UnswitchedValsMap UnswitchedVals
;
123 // Here we use std::map instead of DenseMap, since we need to keep valid
124 // LoopProperties pointer for current loop for better performance.
125 using LoopPropsMap
= std::map
<const Loop
*, LoopProperties
>;
126 using LoopPropsMapIt
= LoopPropsMap::iterator
;
128 LoopPropsMap LoopsProperties
;
129 UnswitchedValsMap
*CurLoopInstructions
= nullptr;
130 LoopProperties
*CurrentLoopProperties
= nullptr;
132 // A loop unswitching with an estimated cost above this threshold
133 // is not performed. MaxSize is turned into unswitching quota for
134 // the current loop, and reduced correspondingly, though note that
135 // the quota is returned by releaseMemory() when the loop has been
136 // processed, so that MaxSize will return to its previous
137 // value. So in most cases MaxSize will equal the Threshold flag
138 // when a new loop is processed. An exception to that is that
139 // MaxSize will have a smaller value while processing nested loops
140 // that were introduced due to loop unswitching of an outer loop.
142 // FIXME: The way that MaxSize works is subtle and depends on the
143 // pass manager processing loops and calling releaseMemory() in a
144 // specific order. It would be good to find a more straightforward
145 // way of doing what MaxSize does.
149 LUAnalysisCache() : MaxSize(Threshold
) {}
151 // Analyze loop. Check its size, calculate is it possible to unswitch
152 // it. Returns true if we can unswitch this loop.
153 bool countLoop(const Loop
*L
, const TargetTransformInfo
&TTI
,
154 AssumptionCache
*AC
);
156 // Clean all data related to given loop.
157 void forgetLoop(const Loop
*L
);
159 // Mark case value as unswitched.
160 // Since SI instruction can be partly unswitched, in order to avoid
161 // extra unswitching in cloned loops keep track all unswitched values.
162 void setUnswitched(const SwitchInst
*SI
, const Value
*V
);
164 // Check was this case value unswitched before or not.
165 bool isUnswitched(const SwitchInst
*SI
, const Value
*V
);
167 // Returns true if another unswitching could be done within the cost
169 bool costAllowsUnswitching();
171 // Clone all loop-unswitch related loop properties.
172 // Redistribute unswitching quotas.
173 // Note, that new loop data is stored inside the VMap.
174 void cloneData(const Loop
*NewLoop
, const Loop
*OldLoop
,
175 const ValueToValueMapTy
&VMap
);
178 class LoopUnswitch
: public LoopPass
{
179 LoopInfo
*LI
; // Loop information
183 // Used to check if second loop needs processing after
184 // rewriteLoopBodyWithConditionConstant rewrites first loop.
185 std::vector
<Loop
*> LoopProcessWorklist
;
187 LUAnalysisCache BranchesInfo
;
189 bool OptimizeForSize
;
190 bool RedoLoop
= false;
192 Loop
*CurrentLoop
= nullptr;
193 DominatorTree
*DT
= nullptr;
194 MemorySSA
*MSSA
= nullptr;
195 AAResults
*AA
= nullptr;
196 std::unique_ptr
<MemorySSAUpdater
> MSSAU
;
197 BasicBlock
*LoopHeader
= nullptr;
198 BasicBlock
*LoopPreheader
= nullptr;
201 SimpleLoopSafetyInfo SafetyInfo
;
203 // LoopBlocks contains all of the basic blocks of the loop, including the
204 // preheader of the loop, the body of the loop, and the exit blocks of the
205 // loop, in that order.
206 std::vector
<BasicBlock
*> LoopBlocks
;
207 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
208 std::vector
<BasicBlock
*> NewBlocks
;
210 bool HasBranchDivergence
;
213 static char ID
; // Pass ID, replacement for typeid
215 explicit LoopUnswitch(bool Os
= false, bool HasBranchDivergence
= false)
216 : LoopPass(ID
), OptimizeForSize(Os
),
217 HasBranchDivergence(HasBranchDivergence
) {
218 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
221 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
222 bool processCurrentLoop();
223 bool isUnreachableDueToPreviousUnswitching(BasicBlock
*);
225 /// This transformation requires natural loop information & requires that
226 /// loop preheaders be inserted into the CFG.
228 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
229 // Lazy BFI and BPI are marked as preserved here so Loop Unswitching
230 // can remain part of the same loop pass as LICM
231 AU
.addPreserved
<LazyBlockFrequencyInfoPass
>();
232 AU
.addPreserved
<LazyBranchProbabilityInfoPass
>();
233 AU
.addRequired
<AssumptionCacheTracker
>();
234 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
235 AU
.addRequired
<MemorySSAWrapperPass
>();
236 AU
.addPreserved
<MemorySSAWrapperPass
>();
237 if (HasBranchDivergence
)
238 AU
.addRequired
<LegacyDivergenceAnalysis
>();
239 getLoopAnalysisUsage(AU
);
243 void releaseMemory() override
{ BranchesInfo
.forgetLoop(CurrentLoop
); }
245 void initLoopData() {
246 LoopHeader
= CurrentLoop
->getHeader();
247 LoopPreheader
= CurrentLoop
->getLoopPreheader();
250 /// Split all of the edges from inside the loop to their exit blocks.
251 /// Update the appropriate Phi nodes as we do so.
252 void splitExitEdges(Loop
*L
,
253 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
);
255 bool tryTrivialLoopUnswitch(bool &Changed
);
257 bool unswitchIfProfitable(Value
*LoopCond
, Constant
*Val
,
258 Instruction
*TI
= nullptr,
259 ArrayRef
<Instruction
*> ToDuplicate
= {});
260 void unswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
261 BasicBlock
*ExitBlock
, Instruction
*TI
);
262 void unswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
,
264 ArrayRef
<Instruction
*> ToDuplicate
= {});
266 void rewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
267 Constant
*Val
, bool IsEqual
);
270 emitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
271 BasicBlock
*TrueDest
, BasicBlock
*FalseDest
,
272 BranchInst
*OldBranch
, Instruction
*TI
,
273 ArrayRef
<Instruction
*> ToDuplicate
= {});
275 void simplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
277 /// Given that the Invariant is not equal to Val. Simplify instructions
279 Value
*simplifyInstructionWithNotEqual(Instruction
*Inst
, Value
*Invariant
,
283 } // end anonymous namespace
285 // Analyze loop. Check its size, calculate is it possible to unswitch
286 // it. Returns true if we can unswitch this loop.
287 bool LUAnalysisCache::countLoop(const Loop
*L
, const TargetTransformInfo
&TTI
,
288 AssumptionCache
*AC
) {
289 LoopPropsMapIt PropsIt
;
291 std::tie(PropsIt
, Inserted
) =
292 LoopsProperties
.insert(std::make_pair(L
, LoopProperties()));
294 LoopProperties
&Props
= PropsIt
->second
;
299 // Limit the number of instructions to avoid causing significant code
300 // expansion, and the number of basic blocks, to avoid loops with
301 // large numbers of branches which cause loop unswitching to go crazy.
302 // This is a very ad-hoc heuristic.
304 SmallPtrSet
<const Value
*, 32> EphValues
;
305 CodeMetrics::collectEphemeralValues(L
, AC
, EphValues
);
307 // FIXME: This is overly conservative because it does not take into
308 // consideration code simplification opportunities and code that can
309 // be shared by the resultant unswitched loops.
311 for (BasicBlock
*BB
: L
->blocks())
312 Metrics
.analyzeBasicBlock(BB
, TTI
, EphValues
);
314 Props
.SizeEstimation
= Metrics
.NumInsts
;
315 Props
.CanBeUnswitchedCount
= MaxSize
/ (Props
.SizeEstimation
);
316 Props
.WasUnswitchedCount
= 0;
317 MaxSize
-= Props
.SizeEstimation
* Props
.CanBeUnswitchedCount
;
319 if (Metrics
.notDuplicatable
) {
320 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L
->getHeader()->getName()
321 << ", contents cannot be "
327 // Be careful. This links are good only before new loop addition.
328 CurrentLoopProperties
= &Props
;
329 CurLoopInstructions
= &Props
.UnswitchedVals
;
334 // Clean all data related to given loop.
335 void LUAnalysisCache::forgetLoop(const Loop
*L
) {
336 LoopPropsMapIt LIt
= LoopsProperties
.find(L
);
338 if (LIt
!= LoopsProperties
.end()) {
339 LoopProperties
&Props
= LIt
->second
;
340 MaxSize
+= (Props
.CanBeUnswitchedCount
+ Props
.WasUnswitchedCount
) *
341 Props
.SizeEstimation
;
342 LoopsProperties
.erase(LIt
);
345 CurrentLoopProperties
= nullptr;
346 CurLoopInstructions
= nullptr;
349 // Mark case value as unswitched.
350 // Since SI instruction can be partly unswitched, in order to avoid
351 // extra unswitching in cloned loops keep track all unswitched values.
352 void LUAnalysisCache::setUnswitched(const SwitchInst
*SI
, const Value
*V
) {
353 (*CurLoopInstructions
)[SI
].insert(V
);
356 // Check was this case value unswitched before or not.
357 bool LUAnalysisCache::isUnswitched(const SwitchInst
*SI
, const Value
*V
) {
358 return (*CurLoopInstructions
)[SI
].count(V
);
361 bool LUAnalysisCache::costAllowsUnswitching() {
362 return CurrentLoopProperties
->CanBeUnswitchedCount
> 0;
365 // Clone all loop-unswitch related loop properties.
366 // Redistribute unswitching quotas.
367 // Note, that new loop data is stored inside the VMap.
368 void LUAnalysisCache::cloneData(const Loop
*NewLoop
, const Loop
*OldLoop
,
369 const ValueToValueMapTy
&VMap
) {
370 LoopProperties
&NewLoopProps
= LoopsProperties
[NewLoop
];
371 LoopProperties
&OldLoopProps
= *CurrentLoopProperties
;
372 UnswitchedValsMap
&Insts
= OldLoopProps
.UnswitchedVals
;
374 // Reallocate "can-be-unswitched quota"
376 --OldLoopProps
.CanBeUnswitchedCount
;
377 ++OldLoopProps
.WasUnswitchedCount
;
378 NewLoopProps
.WasUnswitchedCount
= 0;
379 unsigned Quota
= OldLoopProps
.CanBeUnswitchedCount
;
380 NewLoopProps
.CanBeUnswitchedCount
= Quota
/ 2;
381 OldLoopProps
.CanBeUnswitchedCount
= Quota
- Quota
/ 2;
383 NewLoopProps
.SizeEstimation
= OldLoopProps
.SizeEstimation
;
385 // Clone unswitched values info:
386 // for new loop switches we clone info about values that was
387 // already unswitched and has redundant successors.
388 for (const auto &I
: Insts
) {
389 const SwitchInst
*OldInst
= I
.first
;
390 Value
*NewI
= VMap
.lookup(OldInst
);
391 const SwitchInst
*NewInst
= cast_or_null
<SwitchInst
>(NewI
);
392 assert(NewInst
&& "All instructions that are in SrcBB must be in VMap.");
394 NewLoopProps
.UnswitchedVals
[NewInst
] = OldLoopProps
.UnswitchedVals
[OldInst
];
398 char LoopUnswitch::ID
= 0;
400 INITIALIZE_PASS_BEGIN(LoopUnswitch
, "loop-unswitch", "Unswitch loops",
402 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
403 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
404 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
405 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis
)
406 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
407 INITIALIZE_PASS_END(LoopUnswitch
, "loop-unswitch", "Unswitch loops",
410 Pass
*llvm::createLoopUnswitchPass(bool Os
, bool HasBranchDivergence
) {
411 return new LoopUnswitch(Os
, HasBranchDivergence
);
414 /// Operator chain lattice.
416 OC_OpChainNone
, ///< There is no operator.
417 OC_OpChainOr
, ///< There are only ORs.
418 OC_OpChainAnd
, ///< There are only ANDs.
419 OC_OpChainMixed
///< There are ANDs and ORs.
422 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
423 /// an invariant piece, return the invariant. Otherwise, return null.
425 /// NOTE: findLIVLoopCondition will not return a partial LIV by walking up a
426 /// mixed operator chain, as we can not reliably find a value which will
427 /// simplify the operator chain. If the chain is AND-only or OR-only, we can use
428 /// 0 or ~0 to simplify the chain.
430 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
431 /// simplify the condition itself to a loop variant condition, but at the
432 /// cost of creating an entirely new loop.
433 static Value
*findLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
,
434 OperatorChain
&ParentChain
,
435 DenseMap
<Value
*, Value
*> &Cache
,
436 MemorySSAUpdater
*MSSAU
) {
437 auto CacheIt
= Cache
.find(Cond
);
438 if (CacheIt
!= Cache
.end())
439 return CacheIt
->second
;
441 // We started analyze new instruction, increment scanned instructions counter.
444 // We can never unswitch on vector conditions.
445 if (Cond
->getType()->isVectorTy())
448 // Constants should be folded, not unswitched on!
449 if (isa
<Constant
>(Cond
)) return nullptr;
451 // TODO: Handle: br (VARIANT|INVARIANT).
453 // Hoist simple values out.
454 if (L
->makeLoopInvariant(Cond
, Changed
, nullptr, MSSAU
)) {
459 // Walk up the operator chain to find partial invariant conditions.
460 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
461 if (BO
->getOpcode() == Instruction::And
||
462 BO
->getOpcode() == Instruction::Or
) {
463 // Given the previous operator, compute the current operator chain status.
464 OperatorChain NewChain
;
465 switch (ParentChain
) {
467 NewChain
= BO
->getOpcode() == Instruction::And
? OC_OpChainAnd
:
471 NewChain
= BO
->getOpcode() == Instruction::Or
? OC_OpChainOr
:
475 NewChain
= BO
->getOpcode() == Instruction::And
? OC_OpChainAnd
:
478 case OC_OpChainMixed
:
479 NewChain
= OC_OpChainMixed
;
483 // If we reach a Mixed state, we do not want to keep walking up as we can not
484 // reliably find a value that will simplify the chain. With this check, we
485 // will return null on the first sight of mixed chain and the caller will
486 // either backtrack to find partial LIV in other operand or return null.
487 if (NewChain
!= OC_OpChainMixed
) {
488 // Update the current operator chain type before we search up the chain.
489 ParentChain
= NewChain
;
490 // If either the left or right side is invariant, we can unswitch on this,
491 // which will cause the branch to go away in one loop and the condition to
492 // simplify in the other one.
493 if (Value
*LHS
= findLIVLoopCondition(BO
->getOperand(0), L
, Changed
,
494 ParentChain
, Cache
, MSSAU
)) {
498 // We did not manage to find a partial LIV in operand(0). Backtrack and try
500 ParentChain
= NewChain
;
501 if (Value
*RHS
= findLIVLoopCondition(BO
->getOperand(1), L
, Changed
,
502 ParentChain
, Cache
, MSSAU
)) {
509 Cache
[Cond
] = nullptr;
513 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
514 /// an invariant piece, return the invariant along with the operator chain type.
515 /// Otherwise, return null.
516 static std::pair
<Value
*, OperatorChain
>
517 findLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
,
518 MemorySSAUpdater
*MSSAU
) {
519 DenseMap
<Value
*, Value
*> Cache
;
520 OperatorChain OpChain
= OC_OpChainNone
;
521 Value
*FCond
= findLIVLoopCondition(Cond
, L
, Changed
, OpChain
, Cache
, MSSAU
);
523 // In case we do find a LIV, it can not be obtained by walking up a mixed
525 assert((!FCond
|| OpChain
!= OC_OpChainMixed
) &&
526 "Do not expect a partial LIV with mixed operator chain");
527 return {FCond
, OpChain
};
530 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPMRef
) {
534 AC
= &getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(
535 *L
->getHeader()->getParent());
536 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
538 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
539 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
540 MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
541 MSSAU
= std::make_unique
<MemorySSAUpdater
>(MSSA
);
543 Function
*F
= CurrentLoop
->getHeader()->getParent();
545 SanitizeMemory
= F
->hasFnAttribute(Attribute::SanitizeMemory
);
547 SafetyInfo
.computeLoopSafetyInfo(L
);
550 MSSA
->verifyMemorySSA();
552 bool Changed
= false;
554 assert(CurrentLoop
->isLCSSAForm(*DT
));
556 MSSA
->verifyMemorySSA();
558 Changed
|= processCurrentLoop();
562 MSSA
->verifyMemorySSA();
567 // Return true if the BasicBlock BB is unreachable from the loop header.
568 // Return false, otherwise.
569 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock
*BB
) {
570 auto *Node
= DT
->getNode(BB
)->getIDom();
571 BasicBlock
*DomBB
= Node
->getBlock();
572 while (CurrentLoop
->contains(DomBB
)) {
573 BranchInst
*BInst
= dyn_cast
<BranchInst
>(DomBB
->getTerminator());
575 Node
= DT
->getNode(DomBB
)->getIDom();
576 DomBB
= Node
->getBlock();
578 if (!BInst
|| !BInst
->isConditional())
581 Value
*Cond
= BInst
->getCondition();
582 if (!isa
<ConstantInt
>(Cond
))
585 BasicBlock
*UnreachableSucc
=
586 Cond
== ConstantInt::getTrue(Cond
->getContext())
587 ? BInst
->getSuccessor(1)
588 : BInst
->getSuccessor(0);
590 if (DT
->dominates(UnreachableSucc
, BB
))
596 /// FIXME: Remove this workaround when freeze related patches are done.
597 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
598 /// whether branch on undef/poison has undefine behavior. Here it is to
599 /// rule out some common cases that we found such discrepancy already
600 /// causing problems. Detail could be found in PR31652. Note if the
601 /// func returns true, it is unsafe. But if it is false, it doesn't mean
602 /// it is necessarily safe.
603 static bool equalityPropUnSafe(Value
&LoopCond
) {
604 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(&LoopCond
);
605 if (!CI
|| !CI
->isEquality())
608 Value
*LHS
= CI
->getOperand(0);
609 Value
*RHS
= CI
->getOperand(1);
610 if (isa
<UndefValue
>(LHS
) || isa
<UndefValue
>(RHS
))
613 auto HasUndefInPHI
= [](PHINode
&PN
) {
614 for (Value
*Opd
: PN
.incoming_values()) {
615 if (isa
<UndefValue
>(Opd
))
620 PHINode
*LPHI
= dyn_cast
<PHINode
>(LHS
);
621 PHINode
*RPHI
= dyn_cast
<PHINode
>(RHS
);
622 if ((LPHI
&& HasUndefInPHI(*LPHI
)) || (RPHI
&& HasUndefInPHI(*RPHI
)))
625 auto HasUndefInSelect
= [](SelectInst
&SI
) {
626 if (isa
<UndefValue
>(SI
.getTrueValue()) ||
627 isa
<UndefValue
>(SI
.getFalseValue()))
631 SelectInst
*LSI
= dyn_cast
<SelectInst
>(LHS
);
632 SelectInst
*RSI
= dyn_cast
<SelectInst
>(RHS
);
633 if ((LSI
&& HasUndefInSelect(*LSI
)) || (RSI
&& HasUndefInSelect(*RSI
)))
638 /// Do actual work and unswitch loop if possible and profitable.
639 bool LoopUnswitch::processCurrentLoop() {
640 bool Changed
= false;
644 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
648 // Loops with indirectbr cannot be cloned.
649 if (!CurrentLoop
->isSafeToClone())
652 // Without dedicated exits, splitting the exit edge may fail.
653 if (!CurrentLoop
->hasDedicatedExits())
656 LLVMContext
&Context
= LoopHeader
->getContext();
658 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
659 if (!BranchesInfo
.countLoop(
661 getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(
662 *CurrentLoop
->getHeader()->getParent()),
666 // Try trivial unswitch first before loop over other basic blocks in the loop.
667 if (tryTrivialLoopUnswitch(Changed
)) {
671 // Do not do non-trivial unswitch while optimizing for size.
672 // FIXME: Use Function::hasOptSize().
673 if (OptimizeForSize
||
674 LoopHeader
->getParent()->hasFnAttribute(Attribute::OptimizeForSize
))
677 // Run through the instructions in the loop, keeping track of three things:
679 // - That we do not unswitch loops containing convergent operations, as we
680 // might be making them control dependent on the unswitch value when they
682 // FIXME: This could be refined to only bail if the convergent operation is
683 // not already control-dependent on the unswitch value.
685 // - That basic blocks in the loop contain invokes whose predecessor edges we
688 // - The set of guard intrinsics encountered (these are non terminator
689 // instructions that are also profitable to be unswitched).
691 SmallVector
<IntrinsicInst
*, 4> Guards
;
693 for (const auto BB
: CurrentLoop
->blocks()) {
694 for (auto &I
: *BB
) {
695 auto *CB
= dyn_cast
<CallBase
>(&I
);
698 if (CB
->isConvergent())
700 if (auto *II
= dyn_cast
<InvokeInst
>(&I
))
701 if (!II
->getUnwindDest()->canSplitPredecessors())
703 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
))
704 if (II
->getIntrinsicID() == Intrinsic::experimental_guard
)
705 Guards
.push_back(II
);
709 for (IntrinsicInst
*Guard
: Guards
) {
710 Value
*LoopCond
= findLIVLoopCondition(Guard
->getOperand(0), CurrentLoop
,
711 Changed
, MSSAU
.get())
714 unswitchIfProfitable(LoopCond
, ConstantInt::getTrue(Context
))) {
715 // NB! Unswitching (if successful) could have erased some of the
716 // instructions in Guards leaving dangling pointers there. This is fine
717 // because we're returning now, and won't look at Guards again.
723 // Loop over all of the basic blocks in the loop. If we find an interior
724 // block that is branching on a loop-invariant condition, we can unswitch this
726 for (Loop::block_iterator I
= CurrentLoop
->block_begin(),
727 E
= CurrentLoop
->block_end();
729 Instruction
*TI
= (*I
)->getTerminator();
731 // Unswitching on a potentially uninitialized predicate is not
732 // MSan-friendly. Limit this to the cases when the original predicate is
733 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
734 // in the code that did not have one.
735 // This is a workaround for the discrepancy between LLVM IR and MSan
736 // semantics. See PR28054 for more details.
737 if (SanitizeMemory
&&
738 !SafetyInfo
.isGuaranteedToExecute(*TI
, DT
, CurrentLoop
))
741 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
742 // Some branches may be rendered unreachable because of previous
744 // Unswitch only those branches that are reachable.
745 if (isUnreachableDueToPreviousUnswitching(*I
))
748 // If this isn't branching on an invariant condition, we can't unswitch
750 if (BI
->isConditional()) {
751 // See if this, or some part of it, is loop invariant. If so, we can
752 // unswitch on it if we desire.
753 Value
*LoopCond
= findLIVLoopCondition(BI
->getCondition(), CurrentLoop
,
754 Changed
, MSSAU
.get())
756 if (LoopCond
&& !equalityPropUnSafe(*LoopCond
) &&
757 unswitchIfProfitable(LoopCond
, ConstantInt::getTrue(Context
), TI
)) {
762 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
763 Value
*SC
= SI
->getCondition();
765 OperatorChain OpChain
;
766 std::tie(LoopCond
, OpChain
) =
767 findLIVLoopCondition(SC
, CurrentLoop
, Changed
, MSSAU
.get());
769 unsigned NumCases
= SI
->getNumCases();
770 if (LoopCond
&& NumCases
) {
771 // Find a value to unswitch on:
772 // FIXME: this should chose the most expensive case!
773 // FIXME: scan for a case with a non-critical edge?
774 Constant
*UnswitchVal
= nullptr;
775 // Find a case value such that at least one case value is unswitched
777 if (OpChain
== OC_OpChainAnd
) {
778 // If the chain only has ANDs and the switch has a case value of 0.
779 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
780 auto *AllZero
= cast
<ConstantInt
>(Constant::getNullValue(SC
->getType()));
781 if (BranchesInfo
.isUnswitched(SI
, AllZero
))
783 // We are unswitching 0 out.
784 UnswitchVal
= AllZero
;
785 } else if (OpChain
== OC_OpChainOr
) {
786 // If the chain only has ORs and the switch has a case value of ~0.
787 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
788 auto *AllOne
= cast
<ConstantInt
>(Constant::getAllOnesValue(SC
->getType()));
789 if (BranchesInfo
.isUnswitched(SI
, AllOne
))
791 // We are unswitching ~0 out.
792 UnswitchVal
= AllOne
;
794 assert(OpChain
== OC_OpChainNone
&&
795 "Expect to unswitch on trivial chain");
796 // Do not process same value again and again.
797 // At this point we have some cases already unswitched and
798 // some not yet unswitched. Let's find the first not yet unswitched one.
799 for (auto Case
: SI
->cases()) {
800 Constant
*UnswitchValCandidate
= Case
.getCaseValue();
801 if (!BranchesInfo
.isUnswitched(SI
, UnswitchValCandidate
)) {
802 UnswitchVal
= UnswitchValCandidate
;
811 if (unswitchIfProfitable(LoopCond
, UnswitchVal
)) {
813 // In case of a full LIV, UnswitchVal is the value we unswitched out.
814 // In case of a partial LIV, we only unswitch when its an AND-chain
815 // or OR-chain. In both cases switch input value simplifies to
817 BranchesInfo
.setUnswitched(SI
, UnswitchVal
);
823 // Scan the instructions to check for unswitchable values.
824 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
826 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
827 Value
*LoopCond
= findLIVLoopCondition(SI
->getCondition(), CurrentLoop
,
828 Changed
, MSSAU
.get())
831 unswitchIfProfitable(LoopCond
, ConstantInt::getTrue(Context
))) {
838 // Check if there is a header condition that is invariant along the patch from
839 // either the true or false successors to the header. This allows unswitching
840 // conditions depending on memory accesses, if there's a path not clobbering
841 // the memory locations. Check if this transform has been disabled using
842 // metadata, to avoid unswitching the same loop multiple times.
844 !findOptionMDForLoop(CurrentLoop
, "llvm.loop.unswitch.partial.disable")) {
846 hasPartialIVCondition(*CurrentLoop
, MSSAThreshold
, *MSSA
, *AA
)) {
847 assert(!Info
->InstToDuplicate
.empty() &&
848 "need at least a partially invariant condition");
849 LLVM_DEBUG(dbgs() << "loop-unswitch: Found partially invariant condition "
850 << *Info
->InstToDuplicate
[0] << "\n");
852 Instruction
*TI
= CurrentLoop
->getHeader()->getTerminator();
853 Value
*LoopCond
= Info
->InstToDuplicate
[0];
855 // If the partially unswitched path is a no-op and has a single exit
856 // block, we do not need to do full unswitching. Instead, we can directly
857 // branch to the exit.
858 // TODO: Instead of duplicating the checks, we could also just directly
859 // branch to the exit from the conditional branch in the loop.
860 if (Info
->PathIsNoop
) {
861 if (HasBranchDivergence
&&
862 getAnalysis
<LegacyDivergenceAnalysis
>().isDivergent(LoopCond
)) {
863 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
864 << CurrentLoop
->getHeader()->getName()
865 << " at non-trivial condition '"
866 << *Info
->KnownValue
<< "' == " << *LoopCond
<< "\n"
867 << ". Condition is divergent.\n");
873 BasicBlock
*TrueDest
= LoopHeader
;
874 BasicBlock
*FalseDest
= Info
->ExitForPath
;
875 if (Info
->KnownValue
->isOneValue())
876 std::swap(TrueDest
, FalseDest
);
879 cast
<BranchInst
>(CurrentLoop
->getLoopPreheader()->getTerminator());
880 emitPreheaderBranchOnCondition(LoopCond
, Info
->KnownValue
, TrueDest
,
881 FalseDest
, OldBr
, TI
,
882 Info
->InstToDuplicate
);
888 // Otherwise, the path is not a no-op. Run regular unswitching.
889 if (unswitchIfProfitable(LoopCond
, Info
->KnownValue
,
890 CurrentLoop
->getHeader()->getTerminator(),
891 Info
->InstToDuplicate
)) {
902 /// Check to see if all paths from BB exit the loop with no side effects
903 /// (including infinite loops).
905 /// If true, we return true and set ExitBB to the block we
908 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
910 std::set
<BasicBlock
*> &Visited
) {
911 if (!Visited
.insert(BB
).second
) {
912 // Already visited. Without more analysis, this could indicate an infinite
916 if (!L
->contains(BB
)) {
917 // Otherwise, this is a loop exit, this is fine so long as this is the
919 if (ExitBB
) return false;
924 // Otherwise, this is an unvisited intra-loop node. Check all successors.
925 for (BasicBlock
*Succ
: successors(BB
)) {
926 // Check to see if the successor is a trivial loop exit.
927 if (!isTrivialLoopExitBlockHelper(L
, Succ
, ExitBB
, Visited
))
931 // Okay, everything after this looks good, check to make sure that this block
932 // doesn't include any side effects.
933 for (Instruction
&I
: *BB
)
934 if (I
.mayHaveSideEffects())
940 /// Return true if the specified block unconditionally leads to an exit from
941 /// the specified loop, and has no side-effects in the process. If so, return
942 /// the block that is exited to, otherwise return null.
943 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
944 std::set
<BasicBlock
*> Visited
;
945 Visited
.insert(L
->getHeader()); // Branches to header make infinite loops.
946 BasicBlock
*ExitBB
= nullptr;
947 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
952 /// We have found that we can unswitch CurrentLoop when LoopCond == Val to
953 /// simplify the loop. If we decide that this is profitable,
954 /// unswitch the loop, reprocess the pieces, then return true.
955 bool LoopUnswitch::unswitchIfProfitable(Value
*LoopCond
, Constant
*Val
,
957 ArrayRef
<Instruction
*> ToDuplicate
) {
958 // Check to see if it would be profitable to unswitch current loop.
959 if (!BranchesInfo
.costAllowsUnswitching()) {
960 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
961 << CurrentLoop
->getHeader()->getName()
962 << " at non-trivial condition '" << *Val
963 << "' == " << *LoopCond
<< "\n"
964 << ". Cost too high.\n");
967 if (HasBranchDivergence
&&
968 getAnalysis
<LegacyDivergenceAnalysis
>().isDivergent(LoopCond
)) {
969 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
970 << CurrentLoop
->getHeader()->getName()
971 << " at non-trivial condition '" << *Val
972 << "' == " << *LoopCond
<< "\n"
973 << ". Condition is divergent.\n");
977 unswitchNontrivialCondition(LoopCond
, Val
, CurrentLoop
, TI
, ToDuplicate
);
981 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
982 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
983 /// and remove (but not erase!) it from the function.
984 void LoopUnswitch::emitPreheaderBranchOnCondition(
985 Value
*LIC
, Constant
*Val
, BasicBlock
*TrueDest
, BasicBlock
*FalseDest
,
986 BranchInst
*OldBranch
, Instruction
*TI
,
987 ArrayRef
<Instruction
*> ToDuplicate
) {
988 assert(OldBranch
->isUnconditional() && "Preheader is not split correctly");
989 assert(TrueDest
!= FalseDest
&& "Branch targets should be different");
991 // Insert a conditional branch on LIC to the two preheaders. The original
992 // code is the true version and the new code is the false version.
993 Value
*BranchVal
= LIC
;
994 bool Swapped
= false;
996 if (!ToDuplicate
.empty()) {
997 ValueToValueMapTy Old2New
;
998 for (Instruction
*I
: reverse(ToDuplicate
)) {
999 auto *New
= I
->clone();
1000 New
->insertBefore(OldBranch
);
1001 RemapInstruction(New
, Old2New
,
1002 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1006 MemorySSA
*MSSA
= MSSAU
->getMemorySSA();
1007 auto *MemA
= dyn_cast_or_null
<MemoryUse
>(MSSA
->getMemoryAccess(I
));
1011 Loop
*L
= LI
->getLoopFor(I
->getParent());
1012 auto *DefiningAccess
= MemA
->getDefiningAccess();
1013 // Get the first defining access before the loop.
1014 while (L
->contains(DefiningAccess
->getBlock())) {
1015 // If the defining access is a MemoryPhi, get the incoming
1016 // value for the pre-header as defining access.
1017 if (auto *MemPhi
= dyn_cast
<MemoryPhi
>(DefiningAccess
)) {
1019 MemPhi
->getIncomingValueForBlock(L
->getLoopPreheader());
1022 cast
<MemoryDef
>(DefiningAccess
)->getDefiningAccess();
1025 MSSAU
->createMemoryAccessInBB(New
, DefiningAccess
, New
->getParent(),
1026 MemorySSA::BeforeTerminator
);
1029 BranchVal
= Old2New
[ToDuplicate
[0]];
1032 if (!isa
<ConstantInt
>(Val
) ||
1033 Val
->getType() != Type::getInt1Ty(LIC
->getContext()))
1034 BranchVal
= new ICmpInst(OldBranch
, ICmpInst::ICMP_EQ
, LIC
, Val
);
1035 else if (Val
!= ConstantInt::getTrue(Val
->getContext())) {
1036 // We want to enter the new loop when the condition is true.
1037 std::swap(TrueDest
, FalseDest
);
1042 // Old branch will be removed, so save its parent and successor to update the
1044 auto *OldBranchSucc
= OldBranch
->getSuccessor(0);
1045 auto *OldBranchParent
= OldBranch
->getParent();
1047 // Insert the new branch.
1049 IRBuilder
<>(OldBranch
).CreateCondBr(BranchVal
, TrueDest
, FalseDest
, TI
);
1051 BI
->swapProfMetadata();
1053 // Remove the old branch so there is only one branch at the end. This is
1054 // needed to perform DomTree's internal DFS walk on the function's CFG.
1055 OldBranch
->removeFromParent();
1057 // Inform the DT about the new branch.
1059 // First, add both successors.
1060 SmallVector
<DominatorTree::UpdateType
, 3> Updates
;
1061 if (TrueDest
!= OldBranchSucc
)
1062 Updates
.push_back({DominatorTree::Insert
, OldBranchParent
, TrueDest
});
1063 if (FalseDest
!= OldBranchSucc
)
1064 Updates
.push_back({DominatorTree::Insert
, OldBranchParent
, FalseDest
});
1065 // If both of the new successors are different from the old one, inform the
1066 // DT that the edge was deleted.
1067 if (OldBranchSucc
!= TrueDest
&& OldBranchSucc
!= FalseDest
) {
1068 Updates
.push_back({DominatorTree::Delete
, OldBranchParent
, OldBranchSucc
});
1072 MSSAU
->applyUpdates(Updates
, *DT
, /*UpdateDT=*/true);
1074 DT
->applyUpdates(Updates
);
1077 // If either edge is critical, split it. This helps preserve LoopSimplify
1078 // form for enclosing loops.
1080 CriticalEdgeSplittingOptions(DT
, LI
, MSSAU
.get()).setPreserveLCSSA();
1081 SplitCriticalEdge(BI
, 0, Options
);
1082 SplitCriticalEdge(BI
, 1, Options
);
1085 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
1086 /// from its header block to its latch block, where the path through the loop
1087 /// that doesn't execute its body has no side-effects), unswitch it. This
1088 /// doesn't involve any code duplication, just moving the conditional branch
1089 /// outside of the loop and updating loop info.
1090 void LoopUnswitch::unswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
1091 BasicBlock
*ExitBlock
,
1093 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
1094 << LoopHeader
->getName() << " [" << L
->getBlocks().size()
1095 << " blocks] in Function "
1096 << L
->getHeader()->getParent()->getName()
1097 << " on cond: " << *Val
<< " == " << *Cond
<< "\n");
1098 // We are going to make essential changes to CFG. This may invalidate cached
1099 // information for L or one of its parent loops in SCEV.
1100 if (auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>())
1101 SEWP
->getSE().forgetTopmostLoop(L
);
1103 // First step, split the preheader, so that we know that there is a safe place
1104 // to insert the conditional branch. We will change LoopPreheader to have a
1105 // conditional branch on Cond.
1106 BasicBlock
*NewPH
= SplitEdge(LoopPreheader
, LoopHeader
, DT
, LI
, MSSAU
.get());
1108 // Now that we have a place to insert the conditional branch, create a place
1109 // to branch to: this is the exit block out of the loop that we should
1110 // short-circuit to.
1112 // Split this block now, so that the loop maintains its exit block, and so
1113 // that the jump from the preheader can execute the contents of the exit block
1114 // without actually branching to it (the exit block should be dominated by the
1115 // loop header, not the preheader).
1116 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
1117 BasicBlock
*NewExit
=
1118 SplitBlock(ExitBlock
, &ExitBlock
->front(), DT
, LI
, MSSAU
.get());
1120 // Okay, now we have a position to branch from and a position to branch to,
1121 // insert the new conditional branch.
1122 auto *OldBranch
= dyn_cast
<BranchInst
>(LoopPreheader
->getTerminator());
1123 assert(OldBranch
&& "Failed to split the preheader");
1124 emitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
, OldBranch
, TI
);
1126 // emitPreheaderBranchOnCondition removed the OldBranch from the function.
1127 // Delete it, as it is no longer needed.
1130 // We need to reprocess this loop, it could be unswitched again.
1133 // Now that we know that the loop is never entered when this condition is a
1134 // particular value, rewrite the loop with this info. We know that this will
1135 // at least eliminate the old branch.
1136 rewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, /*IsEqual=*/false);
1141 /// Check if the first non-constant condition starting from the loop header is
1142 /// a trivial unswitch condition: that is, a condition controls whether or not
1143 /// the loop does anything at all. If it is a trivial condition, unswitching
1144 /// produces no code duplications (equivalently, it produces a simpler loop and
1145 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1147 bool LoopUnswitch::tryTrivialLoopUnswitch(bool &Changed
) {
1148 BasicBlock
*CurrentBB
= CurrentLoop
->getHeader();
1149 Instruction
*CurrentTerm
= CurrentBB
->getTerminator();
1150 LLVMContext
&Context
= CurrentBB
->getContext();
1152 // If loop header has only one reachable successor (currently via an
1153 // unconditional branch or constant foldable conditional branch, but
1154 // should also consider adding constant foldable switch instruction in
1155 // future), we should keep looking for trivial condition candidates in
1156 // the successor as well. An alternative is to constant fold conditions
1157 // and merge successors into loop header (then we only need to check header's
1158 // terminator). The reason for not doing this in LoopUnswitch pass is that
1159 // it could potentially break LoopPassManager's invariants. Folding dead
1160 // branches could either eliminate the current loop or make other loops
1161 // unreachable. LCSSA form might also not be preserved after deleting
1162 // branches. The following code keeps traversing loop header's successors
1163 // until it finds the trivial condition candidate (condition that is not a
1164 // constant). Since unswitching generates branches with constant conditions,
1165 // this scenario could be very common in practice.
1166 SmallPtrSet
<BasicBlock
*, 8> Visited
;
1169 // If we exit loop or reach a previous visited block, then
1170 // we can not reach any trivial condition candidates (unfoldable
1171 // branch instructions or switch instructions) and no unswitch
1172 // can happen. Exit and return false.
1173 if (!CurrentLoop
->contains(CurrentBB
) || !Visited
.insert(CurrentBB
).second
)
1176 // Check if this loop will execute any side-effecting instructions (e.g.
1177 // stores, calls, volatile loads) in the part of the loop that the code
1178 // *would* execute. Check the header first.
1179 for (Instruction
&I
: *CurrentBB
)
1180 if (I
.mayHaveSideEffects())
1183 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurrentTerm
)) {
1184 if (BI
->isUnconditional()) {
1185 CurrentBB
= BI
->getSuccessor(0);
1186 } else if (BI
->getCondition() == ConstantInt::getTrue(Context
)) {
1187 CurrentBB
= BI
->getSuccessor(0);
1188 } else if (BI
->getCondition() == ConstantInt::getFalse(Context
)) {
1189 CurrentBB
= BI
->getSuccessor(1);
1191 // Found a trivial condition candidate: non-foldable conditional branch.
1194 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
1195 // At this point, any constant-foldable instructions should have probably
1197 ConstantInt
*Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition());
1200 // Find the target block we are definitely going to.
1201 CurrentBB
= SI
->findCaseValue(Cond
)->getCaseSuccessor();
1203 // We do not understand these terminator instructions.
1207 CurrentTerm
= CurrentBB
->getTerminator();
1210 // CondVal is the condition that controls the trivial condition.
1211 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1212 Constant
*CondVal
= nullptr;
1213 BasicBlock
*LoopExitBB
= nullptr;
1215 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(CurrentTerm
)) {
1216 // If this isn't branching on an invariant condition, we can't unswitch it.
1217 if (!BI
->isConditional())
1220 Value
*LoopCond
= findLIVLoopCondition(BI
->getCondition(), CurrentLoop
,
1221 Changed
, MSSAU
.get())
1224 // Unswitch only if the trivial condition itself is an LIV (not
1225 // partial LIV which could occur in and/or)
1226 if (!LoopCond
|| LoopCond
!= BI
->getCondition())
1229 // Check to see if a successor of the branch is guaranteed to
1230 // exit through a unique exit block without having any
1231 // side-effects. If so, determine the value of Cond that causes
1234 isTrivialLoopExitBlock(CurrentLoop
, BI
->getSuccessor(0)))) {
1235 CondVal
= ConstantInt::getTrue(Context
);
1236 } else if ((LoopExitBB
=
1237 isTrivialLoopExitBlock(CurrentLoop
, BI
->getSuccessor(1)))) {
1238 CondVal
= ConstantInt::getFalse(Context
);
1241 // If we didn't find a single unique LoopExit block, or if the loop exit
1242 // block contains phi nodes, this isn't trivial.
1243 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
1244 return false; // Can't handle this.
1246 if (equalityPropUnSafe(*LoopCond
))
1249 unswitchTrivialCondition(CurrentLoop
, LoopCond
, CondVal
, LoopExitBB
,
1253 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
1254 // If this isn't switching on an invariant condition, we can't unswitch it.
1255 Value
*LoopCond
= findLIVLoopCondition(SI
->getCondition(), CurrentLoop
,
1256 Changed
, MSSAU
.get())
1259 // Unswitch only if the trivial condition itself is an LIV (not
1260 // partial LIV which could occur in and/or)
1261 if (!LoopCond
|| LoopCond
!= SI
->getCondition())
1264 // Check to see if a successor of the switch is guaranteed to go to the
1265 // latch block or exit through a one exit block without having any
1266 // side-effects. If so, determine the value of Cond that causes it to do
1268 // Note that we can't trivially unswitch on the default case or
1269 // on already unswitched cases.
1270 for (auto Case
: SI
->cases()) {
1271 BasicBlock
*LoopExitCandidate
;
1272 if ((LoopExitCandidate
=
1273 isTrivialLoopExitBlock(CurrentLoop
, Case
.getCaseSuccessor()))) {
1274 // Okay, we found a trivial case, remember the value that is trivial.
1275 ConstantInt
*CaseVal
= Case
.getCaseValue();
1277 // Check that it was not unswitched before, since already unswitched
1278 // trivial vals are looks trivial too.
1279 if (BranchesInfo
.isUnswitched(SI
, CaseVal
))
1281 LoopExitBB
= LoopExitCandidate
;
1287 // If we didn't find a single unique LoopExit block, or if the loop exit
1288 // block contains phi nodes, this isn't trivial.
1289 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
1290 return false; // Can't handle this.
1292 unswitchTrivialCondition(CurrentLoop
, LoopCond
, CondVal
, LoopExitBB
,
1295 // We are only unswitching full LIV.
1296 BranchesInfo
.setUnswitched(SI
, CondVal
);
1303 /// Split all of the edges from inside the loop to their exit blocks.
1304 /// Update the appropriate Phi nodes as we do so.
1305 void LoopUnswitch::splitExitEdges(
1306 Loop
*L
, const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
1308 for (unsigned I
= 0, E
= ExitBlocks
.size(); I
!= E
; ++I
) {
1309 BasicBlock
*ExitBlock
= ExitBlocks
[I
];
1310 SmallVector
<BasicBlock
*, 4> Preds(pred_begin(ExitBlock
),
1311 pred_end(ExitBlock
));
1313 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1314 // general, if we call it on all predecessors of all exits then it does.
1315 SplitBlockPredecessors(ExitBlock
, Preds
, ".us-lcssa", DT
, LI
, MSSAU
.get(),
1316 /*PreserveLCSSA*/ true);
1320 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1321 /// Split it into loop versions and test the condition outside of either loop.
1322 /// Return the loops created as Out1/Out2.
1323 void LoopUnswitch::unswitchNontrivialCondition(
1324 Value
*LIC
, Constant
*Val
, Loop
*L
, Instruction
*TI
,
1325 ArrayRef
<Instruction
*> ToDuplicate
) {
1326 Function
*F
= LoopHeader
->getParent();
1327 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1328 << LoopHeader
->getName() << " [" << L
->getBlocks().size()
1329 << " blocks] in Function " << F
->getName() << " when '"
1330 << *Val
<< "' == " << *LIC
<< "\n");
1332 // We are going to make essential changes to CFG. This may invalidate cached
1333 // information for L or one of its parent loops in SCEV.
1334 if (auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>())
1335 SEWP
->getSE().forgetTopmostLoop(L
);
1340 if (MSSAU
&& VerifyMemorySSA
)
1341 MSSA
->verifyMemorySSA();
1343 // First step, split the preheader and exit blocks, and add these blocks to
1344 // the LoopBlocks list.
1345 BasicBlock
*NewPreheader
=
1346 SplitEdge(LoopPreheader
, LoopHeader
, DT
, LI
, MSSAU
.get());
1347 LoopBlocks
.push_back(NewPreheader
);
1349 // We want the loop to come after the preheader, but before the exit blocks.
1350 llvm::append_range(LoopBlocks
, L
->blocks());
1352 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1353 L
->getUniqueExitBlocks(ExitBlocks
);
1355 // Split all of the edges from inside the loop to their exit blocks. Update
1356 // the appropriate Phi nodes as we do so.
1357 splitExitEdges(L
, ExitBlocks
);
1359 // The exit blocks may have been changed due to edge splitting, recompute.
1361 L
->getUniqueExitBlocks(ExitBlocks
);
1363 // Add exit blocks to the loop blocks.
1364 llvm::append_range(LoopBlocks
, ExitBlocks
);
1366 // Next step, clone all of the basic blocks that make up the loop (including
1367 // the loop preheader and exit blocks), keeping track of the mapping between
1368 // the instructions and blocks.
1369 NewBlocks
.reserve(LoopBlocks
.size());
1370 ValueToValueMapTy VMap
;
1371 for (unsigned I
= 0, E
= LoopBlocks
.size(); I
!= E
; ++I
) {
1372 BasicBlock
*NewBB
= CloneBasicBlock(LoopBlocks
[I
], VMap
, ".us", F
);
1374 NewBlocks
.push_back(NewBB
);
1375 VMap
[LoopBlocks
[I
]] = NewBB
; // Keep the BB mapping.
1378 // Splice the newly inserted blocks into the function right before the
1379 // original preheader.
1380 F
->getBasicBlockList().splice(NewPreheader
->getIterator(),
1381 F
->getBasicBlockList(),
1382 NewBlocks
[0]->getIterator(), F
->end());
1384 // Now we create the new Loop object for the versioned loop.
1385 Loop
*NewLoop
= cloneLoop(L
, L
->getParentLoop(), VMap
, LI
, LPM
);
1387 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1388 // Probably clone more loop-unswitch related loop properties.
1389 BranchesInfo
.cloneData(NewLoop
, L
, VMap
);
1391 Loop
*ParentLoop
= L
->getParentLoop();
1393 // Make sure to add the cloned preheader and exit blocks to the parent loop
1395 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], *LI
);
1398 for (unsigned EBI
= 0, EBE
= ExitBlocks
.size(); EBI
!= EBE
; ++EBI
) {
1399 BasicBlock
*NewExit
= cast
<BasicBlock
>(VMap
[ExitBlocks
[EBI
]]);
1400 // The new exit block should be in the same loop as the old one.
1401 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[EBI
]))
1402 ExitBBLoop
->addBasicBlockToLoop(NewExit
, *LI
);
1404 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
1405 "Exit block should have been split to have one successor!");
1406 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
1408 // If the successor of the exit block had PHI nodes, add an entry for
1410 for (PHINode
&PN
: ExitSucc
->phis()) {
1411 Value
*V
= PN
.getIncomingValueForBlock(ExitBlocks
[EBI
]);
1412 ValueToValueMapTy::iterator It
= VMap
.find(V
);
1413 if (It
!= VMap
.end()) V
= It
->second
;
1414 PN
.addIncoming(V
, NewExit
);
1417 if (LandingPadInst
*LPad
= NewExit
->getLandingPadInst()) {
1418 PHINode
*PN
= PHINode::Create(LPad
->getType(), 0, "",
1419 &*ExitSucc
->getFirstInsertionPt());
1421 for (BasicBlock
*BB
: predecessors(ExitSucc
)) {
1422 LandingPadInst
*LPI
= BB
->getLandingPadInst();
1423 LPI
->replaceAllUsesWith(PN
);
1424 PN
->addIncoming(LPI
, BB
);
1429 // Rewrite the code to refer to itself.
1430 for (unsigned NBI
= 0, NBE
= NewBlocks
.size(); NBI
!= NBE
; ++NBI
) {
1431 for (Instruction
&I
: *NewBlocks
[NBI
]) {
1432 RemapInstruction(&I
, VMap
,
1433 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1434 if (auto *II
= dyn_cast
<AssumeInst
>(&I
))
1435 AC
->registerAssumption(II
);
1439 // Rewrite the original preheader to select between versions of the loop.
1440 BranchInst
*OldBR
= cast
<BranchInst
>(LoopPreheader
->getTerminator());
1441 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
1442 "Preheader splitting did not work correctly!");
1445 // Update MemorySSA after cloning, and before splitting to unreachables,
1446 // since that invalidates the 1:1 mapping of clones in VMap.
1447 LoopBlocksRPO
LBRPO(L
);
1449 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, VMap
);
1452 // Emit the new branch that selects between the two versions of this loop.
1453 emitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
,
1456 // Update MemoryPhis in Exit blocks.
1457 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMap
, *DT
);
1458 if (VerifyMemorySSA
)
1459 MSSA
->verifyMemorySSA();
1462 // The OldBr was replaced by a new one and removed (but not erased) by
1463 // emitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1466 LoopProcessWorklist
.push_back(NewLoop
);
1469 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1471 // deletes the instruction (for example by simplifying a PHI that feeds into
1472 // the condition that we're unswitching on), we don't rewrite the second
1474 WeakTrackingVH
LICHandle(LIC
);
1476 if (ToDuplicate
.empty()) {
1477 // Now we rewrite the original code to know that the condition is true and
1478 // the new code to know that the condition is false.
1479 rewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, /*IsEqual=*/false);
1481 // It's possible that simplifying one loop could cause the other to be
1482 // changed to another value or a constant. If its a constant, don't
1484 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
&&
1485 LICHandle
&& !isa
<Constant
>(LICHandle
))
1486 rewriteLoopBodyWithConditionConstant(NewLoop
, LICHandle
, Val
,
1489 // Partial unswitching. Update the condition in the right loop with the
1491 auto *CC
= cast
<ConstantInt
>(Val
);
1492 if (CC
->isOneValue()) {
1493 rewriteLoopBodyWithConditionConstant(NewLoop
, VMap
[LIC
], Val
,
1496 rewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, /*IsEqual=*/true);
1498 // Mark the new loop as partially unswitched, to avoid unswitching on the
1499 // same condition again.
1500 auto &Context
= NewLoop
->getHeader()->getContext();
1501 MDNode
*DisableUnswitchMD
= MDNode::get(
1502 Context
, MDString::get(Context
, "llvm.loop.unswitch.partial.disable"));
1503 MDNode
*NewLoopID
= makePostTransformationMetadata(
1504 Context
, L
->getLoopID(), {"llvm.loop.unswitch.partial"},
1505 {DisableUnswitchMD
});
1506 NewLoop
->setLoopID(NewLoopID
);
1509 if (MSSA
&& VerifyMemorySSA
)
1510 MSSA
->verifyMemorySSA();
1513 /// Remove all instances of I from the worklist vector specified.
1514 static void removeFromWorklist(Instruction
*I
,
1515 std::vector
<Instruction
*> &Worklist
) {
1516 llvm::erase_value(Worklist
, I
);
1519 /// When we find that I really equals V, remove I from the
1520 /// program, replacing all uses with V and update the worklist.
1521 static void replaceUsesOfWith(Instruction
*I
, Value
*V
,
1522 std::vector
<Instruction
*> &Worklist
, Loop
*L
,
1523 LPPassManager
*LPM
, MemorySSAUpdater
*MSSAU
) {
1524 LLVM_DEBUG(dbgs() << "Replace with '" << *V
<< "': " << *I
<< "\n");
1526 // Add uses to the worklist, which may be dead now.
1527 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1528 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
1529 Worklist
.push_back(Use
);
1531 // Add users to the worklist which may be simplified now.
1532 for (User
*U
: I
->users())
1533 Worklist
.push_back(cast
<Instruction
>(U
));
1534 removeFromWorklist(I
, Worklist
);
1535 I
->replaceAllUsesWith(V
);
1536 if (!I
->mayHaveSideEffects()) {
1538 MSSAU
->removeMemoryAccess(I
);
1539 I
->eraseFromParent();
1544 /// We know either that the value LIC has the value specified by Val in the
1545 /// specified loop, or we know it does NOT have that value.
1546 /// Rewrite any uses of LIC or of properties correlated to it.
1547 void LoopUnswitch::rewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
1550 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
1552 // FIXME: Support correlated properties, like:
1559 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1560 // selects, switches.
1561 std::vector
<Instruction
*> Worklist
;
1562 LLVMContext
&Context
= Val
->getContext();
1564 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1565 // in the loop with the appropriate one directly.
1566 if (IsEqual
|| (isa
<ConstantInt
>(Val
) &&
1567 Val
->getType()->isIntegerTy(1))) {
1572 Replacement
= ConstantInt::get(Type::getInt1Ty(Val
->getContext()),
1573 !cast
<ConstantInt
>(Val
)->getZExtValue());
1575 for (User
*U
: LIC
->users()) {
1576 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
1577 if (!UI
|| !L
->contains(UI
))
1579 Worklist
.push_back(UI
);
1582 for (Instruction
*UI
: Worklist
)
1583 UI
->replaceUsesOfWith(LIC
, Replacement
);
1585 simplifyCode(Worklist
, L
);
1589 // Otherwise, we don't know the precise value of LIC, but we do know that it
1590 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1591 // can. This case occurs when we unswitch switch statements.
1592 for (User
*U
: LIC
->users()) {
1593 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
1594 if (!UI
|| !L
->contains(UI
))
1597 // At this point, we know LIC is definitely not Val. Try to use some simple
1598 // logic to simplify the user w.r.t. to the context.
1599 if (Value
*Replacement
= simplifyInstructionWithNotEqual(UI
, LIC
, Val
)) {
1600 if (LI
->replacementPreservesLCSSAForm(UI
, Replacement
)) {
1601 // This in-loop instruction has been simplified w.r.t. its context,
1602 // i.e. LIC != Val, make sure we propagate its replacement value to
1605 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1606 // the LIC->users() iterator !. However, we can make this instruction
1607 // dead by replacing all its users and push it onto the worklist so that
1608 // it can be properly deleted and its operands simplified.
1609 UI
->replaceAllUsesWith(Replacement
);
1613 // This is a LIC user, push it into the worklist so that simplifyCode can
1614 // attempt to simplify it.
1615 Worklist
.push_back(UI
);
1617 // If we know that LIC is not Val, use this info to simplify code.
1618 SwitchInst
*SI
= dyn_cast
<SwitchInst
>(UI
);
1619 if (!SI
|| !isa
<ConstantInt
>(Val
)) continue;
1621 // NOTE: if a case value for the switch is unswitched out, we record it
1622 // after the unswitch finishes. We can not record it here as the switch
1623 // is not a direct user of the partial LIV.
1624 SwitchInst::CaseHandle DeadCase
=
1625 *SI
->findCaseValue(cast
<ConstantInt
>(Val
));
1626 // Default case is live for multiple values.
1627 if (DeadCase
== *SI
->case_default())
1630 // Found a dead case value. Don't remove PHI nodes in the
1631 // successor if they become single-entry, those PHI nodes may
1632 // be in the Users list.
1634 BasicBlock
*Switch
= SI
->getParent();
1635 BasicBlock
*SISucc
= DeadCase
.getCaseSuccessor();
1636 BasicBlock
*Latch
= L
->getLoopLatch();
1638 if (!SI
->findCaseDest(SISucc
)) continue; // Edge is critical.
1639 // If the DeadCase successor dominates the loop latch, then the
1640 // transformation isn't safe since it will delete the sole predecessor edge
1642 if (Latch
&& DT
->dominates(SISucc
, Latch
))
1645 // FIXME: This is a hack. We need to keep the successor around
1646 // and hooked up so as to preserve the loop structure, because
1647 // trying to update it is complicated. So instead we preserve the
1648 // loop structure and put the block on a dead code path.
1649 SplitEdge(Switch
, SISucc
, DT
, LI
, MSSAU
.get());
1650 // Compute the successors instead of relying on the return value
1651 // of SplitEdge, since it may have split the switch successor
1653 BasicBlock
*NewSISucc
= DeadCase
.getCaseSuccessor();
1654 BasicBlock
*OldSISucc
= *succ_begin(NewSISucc
);
1655 // Create an "unreachable" destination.
1656 BasicBlock
*Abort
= BasicBlock::Create(Context
, "us-unreachable",
1657 Switch
->getParent(),
1659 new UnreachableInst(Context
, Abort
);
1660 // Force the new case destination to branch to the "unreachable"
1661 // block while maintaining a (dead) CFG edge to the old block.
1662 NewSISucc
->getTerminator()->eraseFromParent();
1663 BranchInst::Create(Abort
, OldSISucc
,
1664 ConstantInt::getTrue(Context
), NewSISucc
);
1665 // Release the PHI operands for this edge.
1666 for (PHINode
&PN
: NewSISucc
->phis())
1667 PN
.setIncomingValueForBlock(Switch
, UndefValue::get(PN
.getType()));
1668 // Tell the domtree about the new block. We don't fully update the
1669 // domtree here -- instead we force it to do a full recomputation
1670 // after the pass is complete -- but we do need to inform it of
1672 DT
->addNewBlock(Abort
, NewSISucc
);
1675 simplifyCode(Worklist
, L
);
1678 /// Now that we have simplified some instructions in the loop, walk over it and
1679 /// constant prop, dce, and fold control flow where possible. Note that this is
1680 /// effectively a very simple loop-structure-aware optimizer. During processing
1681 /// of this loop, L could very well be deleted, so it must not be used.
1683 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1686 void LoopUnswitch::simplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
1687 const DataLayout
&DL
= L
->getHeader()->getModule()->getDataLayout();
1688 while (!Worklist
.empty()) {
1689 Instruction
*I
= Worklist
.back();
1690 Worklist
.pop_back();
1693 if (isInstructionTriviallyDead(I
)) {
1694 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I
<< "\n");
1696 // Add uses to the worklist, which may be dead now.
1697 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1698 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
1699 Worklist
.push_back(Use
);
1700 removeFromWorklist(I
, Worklist
);
1702 MSSAU
->removeMemoryAccess(I
);
1703 I
->eraseFromParent();
1708 // See if instruction simplification can hack this up. This is common for
1709 // things like "select false, X, Y" after unswitching made the condition be
1710 // 'false'. TODO: update the domtree properly so we can pass it here.
1711 if (Value
*V
= SimplifyInstruction(I
, DL
))
1712 if (LI
->replacementPreservesLCSSAForm(I
, V
)) {
1713 replaceUsesOfWith(I
, V
, Worklist
, L
, LPM
, MSSAU
.get());
1717 // Special case hacks that appear commonly in unswitched code.
1718 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(I
)) {
1719 if (BI
->isUnconditional()) {
1720 // If BI's parent is the only pred of the successor, fold the two blocks
1722 BasicBlock
*Pred
= BI
->getParent();
1724 BasicBlock
*Succ
= BI
->getSuccessor(0);
1725 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1726 if (!SinglePred
) continue; // Nothing to do.
1727 assert(SinglePred
== Pred
&& "CFG broken");
1729 // Make the LPM and Worklist updates specific to LoopUnswitch.
1730 removeFromWorklist(BI
, Worklist
);
1731 auto SuccIt
= Succ
->begin();
1732 while (PHINode
*PN
= dyn_cast
<PHINode
>(SuccIt
++)) {
1733 for (unsigned It
= 0, E
= PN
->getNumOperands(); It
!= E
; ++It
)
1734 if (Instruction
*Use
= dyn_cast
<Instruction
>(PN
->getOperand(It
)))
1735 Worklist
.push_back(Use
);
1736 for (User
*U
: PN
->users())
1737 Worklist
.push_back(cast
<Instruction
>(U
));
1738 removeFromWorklist(PN
, Worklist
);
1741 // Merge the block and make the remaining analyses updates.
1742 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
1743 MergeBlockIntoPredecessor(Succ
, &DTU
, LI
, MSSAU
.get());
1753 /// Simple simplifications we can do given the information that Cond is
1754 /// definitely not equal to Val.
1755 Value
*LoopUnswitch::simplifyInstructionWithNotEqual(Instruction
*Inst
,
1758 // icmp eq cond, val -> false
1759 ICmpInst
*CI
= dyn_cast
<ICmpInst
>(Inst
);
1760 if (CI
&& CI
->isEquality()) {
1761 Value
*Op0
= CI
->getOperand(0);
1762 Value
*Op1
= CI
->getOperand(1);
1763 if ((Op0
== Invariant
&& Op1
== Val
) || (Op0
== Val
&& Op1
== Invariant
)) {
1764 LLVMContext
&Ctx
= Inst
->getContext();
1765 if (CI
->getPredicate() == CmpInst::ICMP_EQ
)
1766 return ConstantInt::getFalse(Ctx
);
1768 return ConstantInt::getTrue(Ctx
);
1772 // FIXME: there may be other opportunities, e.g. comparison with floating
1773 // point, or Invariant - Val != 0, etc.