1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 // - There are less jumps, and therefore less opportunities for mispredictions
17 // and I-cache misses.
18 // - Code size is smaller, both because jumps are removed and because the
19 // encoding of a 2*n byte compare is smaller than that of two n-byte
29 // bool operator==(const S& o) const {
30 // return a == o.a && b == o.b && c == o.c && d == o.d;
36 // bool S::operator==(const S& o) const {
37 // return memcmp(this, &o, 8) == 0;
40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
42 //===----------------------------------------------------------------------===//
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/BuildLibCalls.h"
67 #define DEBUG_TYPE "mergeicmps"
69 // Returns true if the instruction is a simple load or a simple store
70 static bool isSimpleLoadOrStore(const Instruction
*I
) {
71 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
72 return LI
->isSimple();
73 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
74 return SI
->isSimple();
78 // A BCE atom "Binary Compare Expression Atom" represents an integer load
79 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
83 BCEAtom(GetElementPtrInst
*GEP
, LoadInst
*LoadI
, int BaseId
, APInt Offset
)
84 : GEP(GEP
), LoadI(LoadI
), BaseId(BaseId
), Offset(Offset
) {}
86 BCEAtom(const BCEAtom
&) = delete;
87 BCEAtom
&operator=(const BCEAtom
&) = delete;
89 BCEAtom(BCEAtom
&&that
) = default;
90 BCEAtom
&operator=(BCEAtom
&&that
) {
96 Offset
= std::move(that
.Offset
);
100 // We want to order BCEAtoms by (Base, Offset). However we cannot use
101 // the pointer values for Base because these are non-deterministic.
102 // To make sure that the sort order is stable, we first assign to each atom
103 // base value an index based on its order of appearance in the chain of
104 // comparisons. We call this index `BaseOrdering`. For example, for:
105 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
106 // | block 1 | | block 2 | | block 3 |
107 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
108 // which is before block 2.
109 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
110 bool operator<(const BCEAtom
&O
) const {
111 return BaseId
!= O
.BaseId
? BaseId
< O
.BaseId
: Offset
.slt(O
.Offset
);
114 GetElementPtrInst
*GEP
= nullptr;
115 LoadInst
*LoadI
= nullptr;
120 // A class that assigns increasing ids to values in the order in which they are
121 // seen. See comment in `BCEAtom::operator<()``.
122 class BaseIdentifier
{
124 // Returns the id for value `Base`, after assigning one if `Base` has not been
126 int getBaseId(const Value
*Base
) {
127 assert(Base
&& "invalid base");
128 const auto Insertion
= BaseToIndex
.try_emplace(Base
, Order
);
129 if (Insertion
.second
)
131 return Insertion
.first
->second
;
136 DenseMap
<const Value
*, int> BaseToIndex
;
139 // If this value is a load from a constant offset w.r.t. a base address, and
140 // there are no other users of the load or address, returns the base address and
142 BCEAtom
visitICmpLoadOperand(Value
*const Val
, BaseIdentifier
&BaseId
) {
143 auto *const LoadI
= dyn_cast
<LoadInst
>(Val
);
146 LLVM_DEBUG(dbgs() << "load\n");
147 if (LoadI
->isUsedOutsideOfBlock(LoadI
->getParent())) {
148 LLVM_DEBUG(dbgs() << "used outside of block\n");
151 // Do not optimize atomic loads to non-atomic memcmp
152 if (!LoadI
->isSimple()) {
153 LLVM_DEBUG(dbgs() << "volatile or atomic\n");
156 Value
*const Addr
= LoadI
->getOperand(0);
157 auto *const GEP
= dyn_cast
<GetElementPtrInst
>(Addr
);
160 LLVM_DEBUG(dbgs() << "GEP\n");
161 if (GEP
->isUsedOutsideOfBlock(LoadI
->getParent())) {
162 LLVM_DEBUG(dbgs() << "used outside of block\n");
165 const auto &DL
= GEP
->getModule()->getDataLayout();
166 if (!isDereferenceablePointer(GEP
, LoadI
->getType(), DL
)) {
167 LLVM_DEBUG(dbgs() << "not dereferenceable\n");
168 // We need to make sure that we can do comparison in any order, so we
169 // require memory to be unconditionnally dereferencable.
172 APInt Offset
= APInt(DL
.getPointerTypeSizeInBits(GEP
->getType()), 0);
173 if (!GEP
->accumulateConstantOffset(DL
, Offset
))
175 return BCEAtom(GEP
, LoadI
, BaseId
.getBaseId(GEP
->getPointerOperand()),
179 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
181 // Note: the terminology is misleading: the comparison is symmetric, so there
182 // is no real {l/r}hs. What we want though is to have the same base on the
183 // left (resp. right), so that we can detect consecutive loads. To ensure this
184 // we put the smallest atom on the left.
189 const ICmpInst
*CmpI
;
191 BCECmp(BCEAtom L
, BCEAtom R
, int SizeBits
, const ICmpInst
*CmpI
)
192 : Lhs(std::move(L
)), Rhs(std::move(R
)), SizeBits(SizeBits
), CmpI(CmpI
) {
193 if (Rhs
< Lhs
) std::swap(Rhs
, Lhs
);
197 // A basic block with a comparison between two BCE atoms.
198 // The block might do extra work besides the atom comparison, in which case
199 // doesOtherWork() returns true. Under some conditions, the block can be
200 // split into the atom comparison part and the "other work" part
204 typedef SmallDenseSet
<const Instruction
*, 8> InstructionSet
;
206 BCECmpBlock(BCECmp Cmp
, BasicBlock
*BB
, InstructionSet BlockInsts
)
207 : BB(BB
), BlockInsts(std::move(BlockInsts
)), Cmp(std::move(Cmp
)) {}
209 const BCEAtom
&Lhs() const { return Cmp
.Lhs
; }
210 const BCEAtom
&Rhs() const { return Cmp
.Rhs
; }
211 int SizeBits() const { return Cmp
.SizeBits
; }
213 // Returns true if the block does other works besides comparison.
214 bool doesOtherWork() const;
216 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
217 // instructions in the block.
218 bool canSplit(AliasAnalysis
&AA
) const;
220 // Return true if this all the relevant instructions in the BCE-cmp-block can
221 // be sunk below this instruction. By doing this, we know we can separate the
222 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
224 bool canSinkBCECmpInst(const Instruction
*, AliasAnalysis
&AA
) const;
226 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
227 // instructions. Split the old block and move all non-BCE-cmp-insts into the
229 void split(BasicBlock
*NewParent
, AliasAnalysis
&AA
) const;
231 // The basic block where this comparison happens.
233 // Instructions relating to the BCECmp and branch.
234 InstructionSet BlockInsts
;
235 // The block requires splitting.
236 bool RequireSplit
= false;
242 bool BCECmpBlock::canSinkBCECmpInst(const Instruction
*Inst
,
243 AliasAnalysis
&AA
) const {
244 // If this instruction may clobber the loads and is in middle of the BCE cmp
245 // block instructions, then bail for now.
246 if (Inst
->mayWriteToMemory()) {
247 // Bail if this is not a simple load or store
248 if (!isSimpleLoadOrStore(Inst
))
250 // Disallow stores that might alias the BCE operands
251 MemoryLocation LLoc
= MemoryLocation::get(Cmp
.Lhs
.LoadI
);
252 MemoryLocation RLoc
= MemoryLocation::get(Cmp
.Rhs
.LoadI
);
253 if (isModSet(AA
.getModRefInfo(Inst
, LLoc
)) ||
254 isModSet(AA
.getModRefInfo(Inst
, RLoc
)))
257 // Make sure this instruction does not use any of the BCE cmp block
258 // instructions as operand.
259 return llvm::none_of(Inst
->operands(), [&](const Value
*Op
) {
260 const Instruction
*OpI
= dyn_cast
<Instruction
>(Op
);
261 return OpI
&& BlockInsts
.contains(OpI
);
265 void BCECmpBlock::split(BasicBlock
*NewParent
, AliasAnalysis
&AA
) const {
266 llvm::SmallVector
<Instruction
*, 4> OtherInsts
;
267 for (Instruction
&Inst
: *BB
) {
268 if (BlockInsts
.count(&Inst
))
270 assert(canSinkBCECmpInst(&Inst
, AA
) && "Split unsplittable block");
271 // This is a non-BCE-cmp-block instruction. And it can be separated
272 // from the BCE-cmp-block instruction.
273 OtherInsts
.push_back(&Inst
);
276 // Do the actual spliting.
277 for (Instruction
*Inst
: reverse(OtherInsts
)) {
278 Inst
->moveBefore(&*NewParent
->begin());
282 bool BCECmpBlock::canSplit(AliasAnalysis
&AA
) const {
283 for (Instruction
&Inst
: *BB
) {
284 if (!BlockInsts
.count(&Inst
)) {
285 if (!canSinkBCECmpInst(&Inst
, AA
))
292 bool BCECmpBlock::doesOtherWork() const {
293 // TODO(courbet): Can we allow some other things ? This is very conservative.
294 // We might be able to get away with anything does not have any side
295 // effects outside of the basic block.
296 // Note: The GEPs and/or loads are not necessarily in the same block.
297 for (const Instruction
&Inst
: *BB
) {
298 if (!BlockInsts
.count(&Inst
))
304 // Visit the given comparison. If this is a comparison between two valid
305 // BCE atoms, returns the comparison.
306 Optional
<BCECmp
> visitICmp(const ICmpInst
*const CmpI
,
307 const ICmpInst::Predicate ExpectedPredicate
,
308 BaseIdentifier
&BaseId
) {
309 // The comparison can only be used once:
310 // - For intermediate blocks, as a branch condition.
311 // - For the final block, as an incoming value for the Phi.
312 // If there are any other uses of the comparison, we cannot merge it with
313 // other comparisons as we would create an orphan use of the value.
314 if (!CmpI
->hasOneUse()) {
315 LLVM_DEBUG(dbgs() << "cmp has several uses\n");
318 if (CmpI
->getPredicate() != ExpectedPredicate
)
320 LLVM_DEBUG(dbgs() << "cmp "
321 << (ExpectedPredicate
== ICmpInst::ICMP_EQ
? "eq" : "ne")
323 auto Lhs
= visitICmpLoadOperand(CmpI
->getOperand(0), BaseId
);
326 auto Rhs
= visitICmpLoadOperand(CmpI
->getOperand(1), BaseId
);
329 const auto &DL
= CmpI
->getModule()->getDataLayout();
330 return BCECmp(std::move(Lhs
), std::move(Rhs
),
331 DL
.getTypeSizeInBits(CmpI
->getOperand(0)->getType()), CmpI
);
334 // Visit the given comparison block. If this is a comparison between two valid
335 // BCE atoms, returns the comparison.
336 Optional
<BCECmpBlock
> visitCmpBlock(Value
*const Val
, BasicBlock
*const Block
,
337 const BasicBlock
*const PhiBlock
,
338 BaseIdentifier
&BaseId
) {
339 if (Block
->empty()) return None
;
340 auto *const BranchI
= dyn_cast
<BranchInst
>(Block
->getTerminator());
341 if (!BranchI
) return None
;
342 LLVM_DEBUG(dbgs() << "branch\n");
344 ICmpInst::Predicate ExpectedPredicate
;
345 if (BranchI
->isUnconditional()) {
346 // In this case, we expect an incoming value which is the result of the
347 // comparison. This is the last link in the chain of comparisons (note
348 // that this does not mean that this is the last incoming value, blocks
349 // can be reordered).
351 ExpectedPredicate
= ICmpInst::ICMP_EQ
;
353 // In this case, we expect a constant incoming value (the comparison is
355 const auto *const Const
= cast
<ConstantInt
>(Val
);
356 LLVM_DEBUG(dbgs() << "const\n");
357 if (!Const
->isZero()) return None
;
358 LLVM_DEBUG(dbgs() << "false\n");
359 assert(BranchI
->getNumSuccessors() == 2 && "expecting a cond branch");
360 BasicBlock
*const FalseBlock
= BranchI
->getSuccessor(1);
361 Cond
= BranchI
->getCondition();
363 FalseBlock
== PhiBlock
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
366 auto *CmpI
= dyn_cast
<ICmpInst
>(Cond
);
367 if (!CmpI
) return None
;
368 LLVM_DEBUG(dbgs() << "icmp\n");
370 Optional
<BCECmp
> Result
= visitICmp(CmpI
, ExpectedPredicate
, BaseId
);
374 BCECmpBlock::InstructionSet
BlockInsts(
375 {Result
->Lhs
.GEP
, Result
->Rhs
.GEP
, Result
->Lhs
.LoadI
, Result
->Rhs
.LoadI
,
376 Result
->CmpI
, BranchI
});
377 return BCECmpBlock(std::move(*Result
), Block
, BlockInsts
);
380 static inline void enqueueBlock(std::vector
<BCECmpBlock
> &Comparisons
,
381 BCECmpBlock
&&Comparison
) {
382 LLVM_DEBUG(dbgs() << "Block '" << Comparison
.BB
->getName()
383 << "': Found cmp of " << Comparison
.SizeBits()
384 << " bits between " << Comparison
.Lhs().BaseId
<< " + "
385 << Comparison
.Lhs().Offset
<< " and "
386 << Comparison
.Rhs().BaseId
<< " + "
387 << Comparison
.Rhs().Offset
<< "\n");
388 LLVM_DEBUG(dbgs() << "\n");
389 Comparisons
.push_back(std::move(Comparison
));
392 // A chain of comparisons.
395 BCECmpChain(const std::vector
<BasicBlock
*> &Blocks
, PHINode
&Phi
,
398 int size() const { return Comparisons_
.size(); }
400 #ifdef MERGEICMPS_DOT_ON
402 #endif // MERGEICMPS_DOT_ON
404 bool simplify(const TargetLibraryInfo
&TLI
, AliasAnalysis
&AA
,
405 DomTreeUpdater
&DTU
);
408 static bool IsContiguous(const BCECmpBlock
&First
,
409 const BCECmpBlock
&Second
) {
410 return First
.Lhs().BaseId
== Second
.Lhs().BaseId
&&
411 First
.Rhs().BaseId
== Second
.Rhs().BaseId
&&
412 First
.Lhs().Offset
+ First
.SizeBits() / 8 == Second
.Lhs().Offset
&&
413 First
.Rhs().Offset
+ First
.SizeBits() / 8 == Second
.Rhs().Offset
;
417 std::vector
<BCECmpBlock
> Comparisons_
;
418 // The original entry block (before sorting);
419 BasicBlock
*EntryBlock_
;
422 BCECmpChain::BCECmpChain(const std::vector
<BasicBlock
*> &Blocks
, PHINode
&Phi
,
425 assert(!Blocks
.empty() && "a chain should have at least one block");
426 // Now look inside blocks to check for BCE comparisons.
427 std::vector
<BCECmpBlock
> Comparisons
;
428 BaseIdentifier BaseId
;
429 for (BasicBlock
*const Block
: Blocks
) {
430 assert(Block
&& "invalid block");
431 Optional
<BCECmpBlock
> Comparison
= visitCmpBlock(
432 Phi
.getIncomingValueForBlock(Block
), Block
, Phi
.getParent(), BaseId
);
434 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
437 if (Comparison
->doesOtherWork()) {
438 LLVM_DEBUG(dbgs() << "block '" << Comparison
->BB
->getName()
439 << "' does extra work besides compare\n");
440 if (Comparisons
.empty()) {
441 // This is the initial block in the chain, in case this block does other
442 // work, we can try to split the block and move the irrelevant
443 // instructions to the predecessor.
445 // If this is not the initial block in the chain, splitting it wont
448 // As once split, there will still be instructions before the BCE cmp
449 // instructions that do other work in program order, i.e. within the
450 // chain before sorting. Unless we can abort the chain at this point
453 // NOTE: we only handle blocks a with single predecessor for now.
454 if (Comparison
->canSplit(AA
)) {
456 << "Split initial block '" << Comparison
->BB
->getName()
457 << "' that does extra work besides compare\n");
458 Comparison
->RequireSplit
= true;
459 enqueueBlock(Comparisons
, std::move(*Comparison
));
462 << "ignoring initial block '" << Comparison
->BB
->getName()
463 << "' that does extra work besides compare\n");
467 // TODO(courbet): Right now we abort the whole chain. We could be
468 // merging only the blocks that don't do other work and resume the
469 // chain from there. For example:
470 // if (a[0] == b[0]) { // bb1
471 // if (a[1] == b[1]) { // bb2
472 // some_value = 3; //bb3
473 // if (a[2] == b[2]) { //bb3
474 // do a ton of stuff //bb4
481 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
485 // +------------+-----------+----------> bb_phi
487 // We can only merge the first two comparisons, because bb3* does
488 // "other work" (setting some_value to 3).
489 // We could still merge bb1 and bb2 though.
492 enqueueBlock(Comparisons
, std::move(*Comparison
));
495 // It is possible we have no suitable comparison to merge.
496 if (Comparisons
.empty()) {
497 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
500 EntryBlock_
= Comparisons
[0].BB
;
501 Comparisons_
= std::move(Comparisons
);
502 #ifdef MERGEICMPS_DOT_ON
503 errs() << "BEFORE REORDERING:\n\n";
505 #endif // MERGEICMPS_DOT_ON
506 // Reorder blocks by LHS. We can do that without changing the
507 // semantics because we are only accessing dereferencable memory.
508 llvm::sort(Comparisons_
,
509 [](const BCECmpBlock
&LhsBlock
, const BCECmpBlock
&RhsBlock
) {
510 return std::tie(LhsBlock
.Lhs(), LhsBlock
.Rhs()) <
511 std::tie(RhsBlock
.Lhs(), RhsBlock
.Rhs());
513 #ifdef MERGEICMPS_DOT_ON
514 errs() << "AFTER REORDERING:\n\n";
516 #endif // MERGEICMPS_DOT_ON
519 #ifdef MERGEICMPS_DOT_ON
520 void BCECmpChain::dump() const {
521 errs() << "digraph dag {\n";
522 errs() << " graph [bgcolor=transparent];\n";
523 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
524 errs() << " edge [color=black];\n";
525 for (size_t I
= 0; I
< Comparisons_
.size(); ++I
) {
526 const auto &Comparison
= Comparisons_
[I
];
527 errs() << " \"" << I
<< "\" [label=\"%"
528 << Comparison
.Lhs().Base()->getName() << " + "
529 << Comparison
.Lhs().Offset
<< " == %"
530 << Comparison
.Rhs().Base()->getName() << " + "
531 << Comparison
.Rhs().Offset
<< " (" << (Comparison
.SizeBits() / 8)
533 const Value
*const Val
= Phi_
.getIncomingValueForBlock(Comparison
.BB
);
534 if (I
> 0) errs() << " \"" << (I
- 1) << "\" -> \"" << I
<< "\";\n";
535 errs() << " \"" << I
<< "\" -> \"Phi\" [label=\"" << *Val
<< "\"];\n";
537 errs() << " \"Phi\" [label=\"Phi\"];\n";
540 #endif // MERGEICMPS_DOT_ON
544 // A class to compute the name of a set of merged basic blocks.
545 // This is optimized for the common case of no block names.
546 class MergedBlockName
{
547 // Storage for the uncommon case of several named blocks.
548 SmallString
<16> Scratch
;
551 explicit MergedBlockName(ArrayRef
<BCECmpBlock
> Comparisons
)
552 : Name(makeName(Comparisons
)) {}
553 const StringRef Name
;
556 StringRef
makeName(ArrayRef
<BCECmpBlock
> Comparisons
) {
557 assert(!Comparisons
.empty() && "no basic block");
558 // Fast path: only one block, or no names at all.
559 if (Comparisons
.size() == 1)
560 return Comparisons
[0].BB
->getName();
561 const int size
= std::accumulate(Comparisons
.begin(), Comparisons
.end(), 0,
562 [](int i
, const BCECmpBlock
&Cmp
) {
563 return i
+ Cmp
.BB
->getName().size();
566 return StringRef("", 0);
568 // Slow path: at least two blocks, at least one block with a name.
570 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
572 Scratch
.reserve(size
+ Comparisons
.size() - 1);
573 const auto append
= [this](StringRef str
) {
574 Scratch
.append(str
.begin(), str
.end());
576 append(Comparisons
[0].BB
->getName());
577 for (int I
= 1, E
= Comparisons
.size(); I
< E
; ++I
) {
578 const BasicBlock
*const BB
= Comparisons
[I
].BB
;
579 if (!BB
->getName().empty()) {
581 append(BB
->getName());
584 return Scratch
.str();
589 // Merges the given contiguous comparison blocks into one memcmp block.
590 static BasicBlock
*mergeComparisons(ArrayRef
<BCECmpBlock
> Comparisons
,
591 BasicBlock
*const InsertBefore
,
592 BasicBlock
*const NextCmpBlock
,
593 PHINode
&Phi
, const TargetLibraryInfo
&TLI
,
594 AliasAnalysis
&AA
, DomTreeUpdater
&DTU
) {
595 assert(!Comparisons
.empty() && "merging zero comparisons");
596 LLVMContext
&Context
= NextCmpBlock
->getContext();
597 const BCECmpBlock
&FirstCmp
= Comparisons
[0];
599 // Create a new cmp block before next cmp block.
600 BasicBlock
*const BB
=
601 BasicBlock::Create(Context
, MergedBlockName(Comparisons
).Name
,
602 NextCmpBlock
->getParent(), InsertBefore
);
603 IRBuilder
<> Builder(BB
);
604 // Add the GEPs from the first BCECmpBlock.
605 Value
*const Lhs
= Builder
.Insert(FirstCmp
.Lhs().GEP
->clone());
606 Value
*const Rhs
= Builder
.Insert(FirstCmp
.Rhs().GEP
->clone());
608 Value
*IsEqual
= nullptr;
609 LLVM_DEBUG(dbgs() << "Merging " << Comparisons
.size() << " comparisons -> "
610 << BB
->getName() << "\n");
612 // If there is one block that requires splitting, we do it now, i.e.
613 // just before we know we will collapse the chain. The instructions
614 // can be executed before any of the instructions in the chain.
615 const auto ToSplit
= llvm::find_if(
616 Comparisons
, [](const BCECmpBlock
&B
) { return B
.RequireSplit
; });
617 if (ToSplit
!= Comparisons
.end()) {
618 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
619 ToSplit
->split(BB
, AA
);
622 if (Comparisons
.size() == 1) {
623 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
624 Value
*const LhsLoad
=
625 Builder
.CreateLoad(FirstCmp
.Lhs().LoadI
->getType(), Lhs
);
626 Value
*const RhsLoad
=
627 Builder
.CreateLoad(FirstCmp
.Rhs().LoadI
->getType(), Rhs
);
628 // There are no blocks to merge, just do the comparison.
629 IsEqual
= Builder
.CreateICmpEQ(LhsLoad
, RhsLoad
);
631 const unsigned TotalSizeBits
= std::accumulate(
632 Comparisons
.begin(), Comparisons
.end(), 0u,
633 [](int Size
, const BCECmpBlock
&C
) { return Size
+ C
.SizeBits(); });
635 // Create memcmp() == 0.
636 const auto &DL
= Phi
.getModule()->getDataLayout();
637 Value
*const MemCmpCall
= emitMemCmp(
639 ConstantInt::get(DL
.getIntPtrType(Context
), TotalSizeBits
/ 8), Builder
,
641 IsEqual
= Builder
.CreateICmpEQ(
642 MemCmpCall
, ConstantInt::get(Type::getInt32Ty(Context
), 0));
645 BasicBlock
*const PhiBB
= Phi
.getParent();
646 // Add a branch to the next basic block in the chain.
647 if (NextCmpBlock
== PhiBB
) {
648 // Continue to phi, passing it the comparison result.
649 Builder
.CreateBr(PhiBB
);
650 Phi
.addIncoming(IsEqual
, BB
);
651 DTU
.applyUpdates({{DominatorTree::Insert
, BB
, PhiBB
}});
653 // Continue to next block if equal, exit to phi else.
654 Builder
.CreateCondBr(IsEqual
, NextCmpBlock
, PhiBB
);
655 Phi
.addIncoming(ConstantInt::getFalse(Context
), BB
);
656 DTU
.applyUpdates({{DominatorTree::Insert
, BB
, NextCmpBlock
},
657 {DominatorTree::Insert
, BB
, PhiBB
}});
662 bool BCECmpChain::simplify(const TargetLibraryInfo
&TLI
, AliasAnalysis
&AA
,
663 DomTreeUpdater
&DTU
) {
664 assert(Comparisons_
.size() >= 2 && "simplifying trivial BCECmpChain");
665 // First pass to check if there is at least one merge. If not, we don't do
666 // anything and we keep analysis passes intact.
667 const auto AtLeastOneMerged
= [this]() {
668 for (size_t I
= 1; I
< Comparisons_
.size(); ++I
) {
669 if (IsContiguous(Comparisons_
[I
- 1], Comparisons_
[I
]))
674 if (!AtLeastOneMerged())
677 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
678 << EntryBlock_
->getName() << "\n");
680 // Effectively merge blocks. We go in the reverse direction from the phi block
681 // so that the next block is always available to branch to.
682 const auto mergeRange
= [this, &TLI
, &AA
, &DTU
](int I
, int Num
,
683 BasicBlock
*InsertBefore
,
685 return mergeComparisons(makeArrayRef(Comparisons_
).slice(I
, Num
),
686 InsertBefore
, Next
, Phi_
, TLI
, AA
, DTU
);
689 BasicBlock
*NextCmpBlock
= Phi_
.getParent();
690 for (int I
= static_cast<int>(Comparisons_
.size()) - 2; I
>= 0; --I
) {
691 if (IsContiguous(Comparisons_
[I
], Comparisons_
[I
+ 1])) {
692 LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_
[I
].BB
->getName()
693 << " into " << Comparisons_
[I
+ 1].BB
->getName()
697 NextCmpBlock
= mergeRange(I
+ 1, NumMerged
, NextCmpBlock
, NextCmpBlock
);
701 // Insert the entry block for the new chain before the old entry block.
702 // If the old entry block was the function entry, this ensures that the new
703 // entry can become the function entry.
704 NextCmpBlock
= mergeRange(0, NumMerged
, EntryBlock_
, NextCmpBlock
);
706 // Replace the original cmp chain with the new cmp chain by pointing all
707 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
708 // blocks in the old chain unreachable.
709 while (!pred_empty(EntryBlock_
)) {
710 BasicBlock
* const Pred
= *pred_begin(EntryBlock_
);
711 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred
->getName()
713 Pred
->getTerminator()->replaceUsesOfWith(EntryBlock_
, NextCmpBlock
);
714 DTU
.applyUpdates({{DominatorTree::Delete
, Pred
, EntryBlock_
},
715 {DominatorTree::Insert
, Pred
, NextCmpBlock
}});
718 // If the old cmp chain was the function entry, we need to update the function
720 const bool ChainEntryIsFnEntry
= EntryBlock_
->isEntryBlock();
721 if (ChainEntryIsFnEntry
&& DTU
.hasDomTree()) {
722 LLVM_DEBUG(dbgs() << "Changing function entry from "
723 << EntryBlock_
->getName() << " to "
724 << NextCmpBlock
->getName() << "\n");
725 DTU
.getDomTree().setNewRoot(NextCmpBlock
);
726 DTU
.applyUpdates({{DominatorTree::Delete
, NextCmpBlock
, EntryBlock_
}});
728 EntryBlock_
= nullptr;
730 // Delete merged blocks. This also removes incoming values in phi.
731 SmallVector
<BasicBlock
*, 16> DeadBlocks
;
732 for (auto &Cmp
: Comparisons_
) {
733 LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp
.BB
->getName() << "\n");
734 DeadBlocks
.push_back(Cmp
.BB
);
736 DeleteDeadBlocks(DeadBlocks
, &DTU
);
738 Comparisons_
.clear();
742 std::vector
<BasicBlock
*> getOrderedBlocks(PHINode
&Phi
,
743 BasicBlock
*const LastBlock
,
745 // Walk up from the last block to find other blocks.
746 std::vector
<BasicBlock
*> Blocks(NumBlocks
);
747 assert(LastBlock
&& "invalid last block");
748 BasicBlock
*CurBlock
= LastBlock
;
749 for (int BlockIndex
= NumBlocks
- 1; BlockIndex
> 0; --BlockIndex
) {
750 if (CurBlock
->hasAddressTaken()) {
751 // Somebody is jumping to the block through an address, all bets are
753 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
754 << " has its address taken\n");
757 Blocks
[BlockIndex
] = CurBlock
;
758 auto *SinglePredecessor
= CurBlock
->getSinglePredecessor();
759 if (!SinglePredecessor
) {
760 // The block has two or more predecessors.
761 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
762 << " has two or more predecessors\n");
765 if (Phi
.getBasicBlockIndex(SinglePredecessor
) < 0) {
766 // The block does not link back to the phi.
767 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
768 << " does not link back to the phi\n");
771 CurBlock
= SinglePredecessor
;
773 Blocks
[0] = CurBlock
;
777 bool processPhi(PHINode
&Phi
, const TargetLibraryInfo
&TLI
, AliasAnalysis
&AA
,
778 DomTreeUpdater
&DTU
) {
779 LLVM_DEBUG(dbgs() << "processPhi()\n");
780 if (Phi
.getNumIncomingValues() <= 1) {
781 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
784 // We are looking for something that has the following structure:
785 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
789 // +------------+-----------+----------> bb_phi
791 // - The last basic block (bb4 here) must branch unconditionally to bb_phi.
792 // It's the only block that contributes a non-constant value to the Phi.
793 // - All other blocks (b1, b2, b3) must have exactly two successors, one of
794 // them being the phi block.
795 // - All intermediate blocks (bb2, bb3) must have only one predecessor.
796 // - Blocks cannot do other work besides the comparison, see doesOtherWork()
798 // The blocks are not necessarily ordered in the phi, so we start from the
799 // last block and reconstruct the order.
800 BasicBlock
*LastBlock
= nullptr;
801 for (unsigned I
= 0; I
< Phi
.getNumIncomingValues(); ++I
) {
802 if (isa
<ConstantInt
>(Phi
.getIncomingValue(I
))) continue;
804 // There are several non-constant values.
805 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
808 if (!isa
<ICmpInst
>(Phi
.getIncomingValue(I
)) ||
809 cast
<ICmpInst
>(Phi
.getIncomingValue(I
))->getParent() !=
810 Phi
.getIncomingBlock(I
)) {
811 // Non-constant incoming value is not from a cmp instruction or not
812 // produced by the last block. We could end up processing the value
813 // producing block more than once.
815 // This is an uncommon case, so we bail.
818 << "skip: non-constant value not from cmp or not from last block.\n");
821 LastBlock
= Phi
.getIncomingBlock(I
);
824 // There is no non-constant block.
825 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
828 if (LastBlock
->getSingleSuccessor() != Phi
.getParent()) {
829 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
834 getOrderedBlocks(Phi
, LastBlock
, Phi
.getNumIncomingValues());
835 if (Blocks
.empty()) return false;
836 BCECmpChain
CmpChain(Blocks
, Phi
, AA
);
838 if (CmpChain
.size() < 2) {
839 LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
843 return CmpChain
.simplify(TLI
, AA
, DTU
);
846 static bool runImpl(Function
&F
, const TargetLibraryInfo
&TLI
,
847 const TargetTransformInfo
&TTI
, AliasAnalysis
&AA
,
849 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F
.getName() << "\n");
851 // We only try merging comparisons if the target wants to expand memcmp later.
852 // The rationale is to avoid turning small chains into memcmp calls.
853 if (!TTI
.enableMemCmpExpansion(F
.hasOptSize(), true))
856 // If we don't have memcmp avaiable we can't emit calls to it.
857 if (!TLI
.has(LibFunc_memcmp
))
860 DomTreeUpdater
DTU(DT
, /*PostDominatorTree*/ nullptr,
861 DomTreeUpdater::UpdateStrategy::Eager
);
863 bool MadeChange
= false;
865 for (auto BBIt
= ++F
.begin(); BBIt
!= F
.end(); ++BBIt
) {
866 // A Phi operation is always first in a basic block.
867 if (auto *const Phi
= dyn_cast
<PHINode
>(&*BBIt
->begin()))
868 MadeChange
|= processPhi(*Phi
, TLI
, AA
, DTU
);
874 class MergeICmpsLegacyPass
: public FunctionPass
{
878 MergeICmpsLegacyPass() : FunctionPass(ID
) {
879 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
882 bool runOnFunction(Function
&F
) override
{
883 if (skipFunction(F
)) return false;
884 const auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
885 const auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
886 // MergeICmps does not need the DominatorTree, but we update it if it's
887 // already available.
888 auto *DTWP
= getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
889 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
890 return runImpl(F
, TLI
, TTI
, AA
, DTWP
? &DTWP
->getDomTree() : nullptr);
894 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
895 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
896 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
897 AU
.addRequired
<AAResultsWrapperPass
>();
898 AU
.addPreserved
<GlobalsAAWrapperPass
>();
899 AU
.addPreserved
<DominatorTreeWrapperPass
>();
905 char MergeICmpsLegacyPass::ID
= 0;
906 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass
, "mergeicmps",
907 "Merge contiguous icmps into a memcmp", false, false)
908 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
909 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
910 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
911 INITIALIZE_PASS_END(MergeICmpsLegacyPass
, "mergeicmps",
912 "Merge contiguous icmps into a memcmp", false, false)
914 Pass
*llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
916 PreservedAnalyses
MergeICmpsPass::run(Function
&F
,
917 FunctionAnalysisManager
&AM
) {
918 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
919 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
920 auto &AA
= AM
.getResult
<AAManager
>(F
);
921 auto *DT
= AM
.getCachedResult
<DominatorTreeAnalysis
>(F
);
922 const bool MadeChanges
= runImpl(F
, TLI
, TTI
, AA
, DT
);
924 return PreservedAnalyses::all();
925 PreservedAnalyses PA
;
926 PA
.preserve
<DominatorTreeAnalysis
>();