[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / MergeICmps.cpp
blobf13f24ad2027ba01711c8efad1f8de566c923265
1 //===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass turns chains of integer comparisons into memcmp (the memcmp is
10 // later typically inlined as a chain of efficient hardware comparisons). This
11 // typically benefits c++ member or nonmember operator==().
13 // The basic idea is to replace a longer chain of integer comparisons loaded
14 // from contiguous memory locations into a shorter chain of larger integer
15 // comparisons. Benefits are double:
16 // - There are less jumps, and therefore less opportunities for mispredictions
17 // and I-cache misses.
18 // - Code size is smaller, both because jumps are removed and because the
19 // encoding of a 2*n byte compare is smaller than that of two n-byte
20 // compares.
22 // Example:
24 // struct S {
25 // int a;
26 // char b;
27 // char c;
28 // uint16_t d;
29 // bool operator==(const S& o) const {
30 // return a == o.a && b == o.b && c == o.c && d == o.d;
31 // }
32 // };
34 // Is optimized as :
36 // bool S::operator==(const S& o) const {
37 // return memcmp(this, &o, 8) == 0;
38 // }
40 // Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
42 //===----------------------------------------------------------------------===//
44 #include "llvm/Transforms/Scalar/MergeICmps.h"
45 #include "llvm/Analysis/DomTreeUpdater.h"
46 #include "llvm/Analysis/GlobalsModRef.h"
47 #include "llvm/Analysis/Loads.h"
48 #include "llvm/Analysis/TargetLibraryInfo.h"
49 #include "llvm/Analysis/TargetTransformInfo.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
57 #include "llvm/Transforms/Utils/BuildLibCalls.h"
58 #include <algorithm>
59 #include <numeric>
60 #include <utility>
61 #include <vector>
63 using namespace llvm;
65 namespace {
67 #define DEBUG_TYPE "mergeicmps"
69 // Returns true if the instruction is a simple load or a simple store
70 static bool isSimpleLoadOrStore(const Instruction *I) {
71 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
72 return LI->isSimple();
73 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
74 return SI->isSimple();
75 return false;
78 // A BCE atom "Binary Compare Expression Atom" represents an integer load
79 // that is a constant offset from a base value, e.g. `a` or `o.c` in the example
80 // at the top.
81 struct BCEAtom {
82 BCEAtom() = default;
83 BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
84 : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
86 BCEAtom(const BCEAtom &) = delete;
87 BCEAtom &operator=(const BCEAtom &) = delete;
89 BCEAtom(BCEAtom &&that) = default;
90 BCEAtom &operator=(BCEAtom &&that) {
91 if (this == &that)
92 return *this;
93 GEP = that.GEP;
94 LoadI = that.LoadI;
95 BaseId = that.BaseId;
96 Offset = std::move(that.Offset);
97 return *this;
100 // We want to order BCEAtoms by (Base, Offset). However we cannot use
101 // the pointer values for Base because these are non-deterministic.
102 // To make sure that the sort order is stable, we first assign to each atom
103 // base value an index based on its order of appearance in the chain of
104 // comparisons. We call this index `BaseOrdering`. For example, for:
105 // b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
106 // | block 1 | | block 2 | | block 3 |
107 // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
108 // which is before block 2.
109 // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
110 bool operator<(const BCEAtom &O) const {
111 return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
114 GetElementPtrInst *GEP = nullptr;
115 LoadInst *LoadI = nullptr;
116 unsigned BaseId = 0;
117 APInt Offset;
120 // A class that assigns increasing ids to values in the order in which they are
121 // seen. See comment in `BCEAtom::operator<()``.
122 class BaseIdentifier {
123 public:
124 // Returns the id for value `Base`, after assigning one if `Base` has not been
125 // seen before.
126 int getBaseId(const Value *Base) {
127 assert(Base && "invalid base");
128 const auto Insertion = BaseToIndex.try_emplace(Base, Order);
129 if (Insertion.second)
130 ++Order;
131 return Insertion.first->second;
134 private:
135 unsigned Order = 1;
136 DenseMap<const Value*, int> BaseToIndex;
139 // If this value is a load from a constant offset w.r.t. a base address, and
140 // there are no other users of the load or address, returns the base address and
141 // the offset.
142 BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
143 auto *const LoadI = dyn_cast<LoadInst>(Val);
144 if (!LoadI)
145 return {};
146 LLVM_DEBUG(dbgs() << "load\n");
147 if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
148 LLVM_DEBUG(dbgs() << "used outside of block\n");
149 return {};
151 // Do not optimize atomic loads to non-atomic memcmp
152 if (!LoadI->isSimple()) {
153 LLVM_DEBUG(dbgs() << "volatile or atomic\n");
154 return {};
156 Value *const Addr = LoadI->getOperand(0);
157 auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
158 if (!GEP)
159 return {};
160 LLVM_DEBUG(dbgs() << "GEP\n");
161 if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
162 LLVM_DEBUG(dbgs() << "used outside of block\n");
163 return {};
165 const auto &DL = GEP->getModule()->getDataLayout();
166 if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
167 LLVM_DEBUG(dbgs() << "not dereferenceable\n");
168 // We need to make sure that we can do comparison in any order, so we
169 // require memory to be unconditionnally dereferencable.
170 return {};
172 APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
173 if (!GEP->accumulateConstantOffset(DL, Offset))
174 return {};
175 return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
176 Offset);
179 // A comparison between two BCE atoms, e.g. `a == o.a` in the example at the
180 // top.
181 // Note: the terminology is misleading: the comparison is symmetric, so there
182 // is no real {l/r}hs. What we want though is to have the same base on the
183 // left (resp. right), so that we can detect consecutive loads. To ensure this
184 // we put the smallest atom on the left.
185 struct BCECmp {
186 BCEAtom Lhs;
187 BCEAtom Rhs;
188 int SizeBits;
189 const ICmpInst *CmpI;
191 BCECmp(BCEAtom L, BCEAtom R, int SizeBits, const ICmpInst *CmpI)
192 : Lhs(std::move(L)), Rhs(std::move(R)), SizeBits(SizeBits), CmpI(CmpI) {
193 if (Rhs < Lhs) std::swap(Rhs, Lhs);
197 // A basic block with a comparison between two BCE atoms.
198 // The block might do extra work besides the atom comparison, in which case
199 // doesOtherWork() returns true. Under some conditions, the block can be
200 // split into the atom comparison part and the "other work" part
201 // (see canSplit()).
202 class BCECmpBlock {
203 public:
204 typedef SmallDenseSet<const Instruction *, 8> InstructionSet;
206 BCECmpBlock(BCECmp Cmp, BasicBlock *BB, InstructionSet BlockInsts)
207 : BB(BB), BlockInsts(std::move(BlockInsts)), Cmp(std::move(Cmp)) {}
209 const BCEAtom &Lhs() const { return Cmp.Lhs; }
210 const BCEAtom &Rhs() const { return Cmp.Rhs; }
211 int SizeBits() const { return Cmp.SizeBits; }
213 // Returns true if the block does other works besides comparison.
214 bool doesOtherWork() const;
216 // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
217 // instructions in the block.
218 bool canSplit(AliasAnalysis &AA) const;
220 // Return true if this all the relevant instructions in the BCE-cmp-block can
221 // be sunk below this instruction. By doing this, we know we can separate the
222 // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
223 // block.
224 bool canSinkBCECmpInst(const Instruction *, AliasAnalysis &AA) const;
226 // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
227 // instructions. Split the old block and move all non-BCE-cmp-insts into the
228 // new parent block.
229 void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
231 // The basic block where this comparison happens.
232 BasicBlock *BB;
233 // Instructions relating to the BCECmp and branch.
234 InstructionSet BlockInsts;
235 // The block requires splitting.
236 bool RequireSplit = false;
238 private:
239 BCECmp Cmp;
242 bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
243 AliasAnalysis &AA) const {
244 // If this instruction may clobber the loads and is in middle of the BCE cmp
245 // block instructions, then bail for now.
246 if (Inst->mayWriteToMemory()) {
247 // Bail if this is not a simple load or store
248 if (!isSimpleLoadOrStore(Inst))
249 return false;
250 // Disallow stores that might alias the BCE operands
251 MemoryLocation LLoc = MemoryLocation::get(Cmp.Lhs.LoadI);
252 MemoryLocation RLoc = MemoryLocation::get(Cmp.Rhs.LoadI);
253 if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
254 isModSet(AA.getModRefInfo(Inst, RLoc)))
255 return false;
257 // Make sure this instruction does not use any of the BCE cmp block
258 // instructions as operand.
259 return llvm::none_of(Inst->operands(), [&](const Value *Op) {
260 const Instruction *OpI = dyn_cast<Instruction>(Op);
261 return OpI && BlockInsts.contains(OpI);
265 void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
266 llvm::SmallVector<Instruction *, 4> OtherInsts;
267 for (Instruction &Inst : *BB) {
268 if (BlockInsts.count(&Inst))
269 continue;
270 assert(canSinkBCECmpInst(&Inst, AA) && "Split unsplittable block");
271 // This is a non-BCE-cmp-block instruction. And it can be separated
272 // from the BCE-cmp-block instruction.
273 OtherInsts.push_back(&Inst);
276 // Do the actual spliting.
277 for (Instruction *Inst : reverse(OtherInsts)) {
278 Inst->moveBefore(&*NewParent->begin());
282 bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
283 for (Instruction &Inst : *BB) {
284 if (!BlockInsts.count(&Inst)) {
285 if (!canSinkBCECmpInst(&Inst, AA))
286 return false;
289 return true;
292 bool BCECmpBlock::doesOtherWork() const {
293 // TODO(courbet): Can we allow some other things ? This is very conservative.
294 // We might be able to get away with anything does not have any side
295 // effects outside of the basic block.
296 // Note: The GEPs and/or loads are not necessarily in the same block.
297 for (const Instruction &Inst : *BB) {
298 if (!BlockInsts.count(&Inst))
299 return true;
301 return false;
304 // Visit the given comparison. If this is a comparison between two valid
305 // BCE atoms, returns the comparison.
306 Optional<BCECmp> visitICmp(const ICmpInst *const CmpI,
307 const ICmpInst::Predicate ExpectedPredicate,
308 BaseIdentifier &BaseId) {
309 // The comparison can only be used once:
310 // - For intermediate blocks, as a branch condition.
311 // - For the final block, as an incoming value for the Phi.
312 // If there are any other uses of the comparison, we cannot merge it with
313 // other comparisons as we would create an orphan use of the value.
314 if (!CmpI->hasOneUse()) {
315 LLVM_DEBUG(dbgs() << "cmp has several uses\n");
316 return None;
318 if (CmpI->getPredicate() != ExpectedPredicate)
319 return None;
320 LLVM_DEBUG(dbgs() << "cmp "
321 << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
322 << "\n");
323 auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
324 if (!Lhs.BaseId)
325 return None;
326 auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
327 if (!Rhs.BaseId)
328 return None;
329 const auto &DL = CmpI->getModule()->getDataLayout();
330 return BCECmp(std::move(Lhs), std::move(Rhs),
331 DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()), CmpI);
334 // Visit the given comparison block. If this is a comparison between two valid
335 // BCE atoms, returns the comparison.
336 Optional<BCECmpBlock> visitCmpBlock(Value *const Val, BasicBlock *const Block,
337 const BasicBlock *const PhiBlock,
338 BaseIdentifier &BaseId) {
339 if (Block->empty()) return None;
340 auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
341 if (!BranchI) return None;
342 LLVM_DEBUG(dbgs() << "branch\n");
343 Value *Cond;
344 ICmpInst::Predicate ExpectedPredicate;
345 if (BranchI->isUnconditional()) {
346 // In this case, we expect an incoming value which is the result of the
347 // comparison. This is the last link in the chain of comparisons (note
348 // that this does not mean that this is the last incoming value, blocks
349 // can be reordered).
350 Cond = Val;
351 ExpectedPredicate = ICmpInst::ICMP_EQ;
352 } else {
353 // In this case, we expect a constant incoming value (the comparison is
354 // chained).
355 const auto *const Const = cast<ConstantInt>(Val);
356 LLVM_DEBUG(dbgs() << "const\n");
357 if (!Const->isZero()) return None;
358 LLVM_DEBUG(dbgs() << "false\n");
359 assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
360 BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
361 Cond = BranchI->getCondition();
362 ExpectedPredicate =
363 FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
366 auto *CmpI = dyn_cast<ICmpInst>(Cond);
367 if (!CmpI) return None;
368 LLVM_DEBUG(dbgs() << "icmp\n");
370 Optional<BCECmp> Result = visitICmp(CmpI, ExpectedPredicate, BaseId);
371 if (!Result)
372 return None;
374 BCECmpBlock::InstructionSet BlockInsts(
375 {Result->Lhs.GEP, Result->Rhs.GEP, Result->Lhs.LoadI, Result->Rhs.LoadI,
376 Result->CmpI, BranchI});
377 return BCECmpBlock(std::move(*Result), Block, BlockInsts);
380 static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
381 BCECmpBlock &&Comparison) {
382 LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
383 << "': Found cmp of " << Comparison.SizeBits()
384 << " bits between " << Comparison.Lhs().BaseId << " + "
385 << Comparison.Lhs().Offset << " and "
386 << Comparison.Rhs().BaseId << " + "
387 << Comparison.Rhs().Offset << "\n");
388 LLVM_DEBUG(dbgs() << "\n");
389 Comparisons.push_back(std::move(Comparison));
392 // A chain of comparisons.
393 class BCECmpChain {
394 public:
395 BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
396 AliasAnalysis &AA);
398 int size() const { return Comparisons_.size(); }
400 #ifdef MERGEICMPS_DOT_ON
401 void dump() const;
402 #endif // MERGEICMPS_DOT_ON
404 bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
405 DomTreeUpdater &DTU);
407 private:
408 static bool IsContiguous(const BCECmpBlock &First,
409 const BCECmpBlock &Second) {
410 return First.Lhs().BaseId == Second.Lhs().BaseId &&
411 First.Rhs().BaseId == Second.Rhs().BaseId &&
412 First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
413 First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
416 PHINode &Phi_;
417 std::vector<BCECmpBlock> Comparisons_;
418 // The original entry block (before sorting);
419 BasicBlock *EntryBlock_;
422 BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
423 AliasAnalysis &AA)
424 : Phi_(Phi) {
425 assert(!Blocks.empty() && "a chain should have at least one block");
426 // Now look inside blocks to check for BCE comparisons.
427 std::vector<BCECmpBlock> Comparisons;
428 BaseIdentifier BaseId;
429 for (BasicBlock *const Block : Blocks) {
430 assert(Block && "invalid block");
431 Optional<BCECmpBlock> Comparison = visitCmpBlock(
432 Phi.getIncomingValueForBlock(Block), Block, Phi.getParent(), BaseId);
433 if (!Comparison) {
434 LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
435 return;
437 if (Comparison->doesOtherWork()) {
438 LLVM_DEBUG(dbgs() << "block '" << Comparison->BB->getName()
439 << "' does extra work besides compare\n");
440 if (Comparisons.empty()) {
441 // This is the initial block in the chain, in case this block does other
442 // work, we can try to split the block and move the irrelevant
443 // instructions to the predecessor.
445 // If this is not the initial block in the chain, splitting it wont
446 // work.
448 // As once split, there will still be instructions before the BCE cmp
449 // instructions that do other work in program order, i.e. within the
450 // chain before sorting. Unless we can abort the chain at this point
451 // and start anew.
453 // NOTE: we only handle blocks a with single predecessor for now.
454 if (Comparison->canSplit(AA)) {
455 LLVM_DEBUG(dbgs()
456 << "Split initial block '" << Comparison->BB->getName()
457 << "' that does extra work besides compare\n");
458 Comparison->RequireSplit = true;
459 enqueueBlock(Comparisons, std::move(*Comparison));
460 } else {
461 LLVM_DEBUG(dbgs()
462 << "ignoring initial block '" << Comparison->BB->getName()
463 << "' that does extra work besides compare\n");
465 continue;
467 // TODO(courbet): Right now we abort the whole chain. We could be
468 // merging only the blocks that don't do other work and resume the
469 // chain from there. For example:
470 // if (a[0] == b[0]) { // bb1
471 // if (a[1] == b[1]) { // bb2
472 // some_value = 3; //bb3
473 // if (a[2] == b[2]) { //bb3
474 // do a ton of stuff //bb4
475 // }
476 // }
477 // }
479 // This is:
481 // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
482 // \ \ \ \
483 // ne ne ne \
484 // \ \ \ v
485 // +------------+-----------+----------> bb_phi
487 // We can only merge the first two comparisons, because bb3* does
488 // "other work" (setting some_value to 3).
489 // We could still merge bb1 and bb2 though.
490 return;
492 enqueueBlock(Comparisons, std::move(*Comparison));
495 // It is possible we have no suitable comparison to merge.
496 if (Comparisons.empty()) {
497 LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
498 return;
500 EntryBlock_ = Comparisons[0].BB;
501 Comparisons_ = std::move(Comparisons);
502 #ifdef MERGEICMPS_DOT_ON
503 errs() << "BEFORE REORDERING:\n\n";
504 dump();
505 #endif // MERGEICMPS_DOT_ON
506 // Reorder blocks by LHS. We can do that without changing the
507 // semantics because we are only accessing dereferencable memory.
508 llvm::sort(Comparisons_,
509 [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
510 return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
511 std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
513 #ifdef MERGEICMPS_DOT_ON
514 errs() << "AFTER REORDERING:\n\n";
515 dump();
516 #endif // MERGEICMPS_DOT_ON
519 #ifdef MERGEICMPS_DOT_ON
520 void BCECmpChain::dump() const {
521 errs() << "digraph dag {\n";
522 errs() << " graph [bgcolor=transparent];\n";
523 errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
524 errs() << " edge [color=black];\n";
525 for (size_t I = 0; I < Comparisons_.size(); ++I) {
526 const auto &Comparison = Comparisons_[I];
527 errs() << " \"" << I << "\" [label=\"%"
528 << Comparison.Lhs().Base()->getName() << " + "
529 << Comparison.Lhs().Offset << " == %"
530 << Comparison.Rhs().Base()->getName() << " + "
531 << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
532 << " bytes)\"];\n";
533 const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
534 if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
535 errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
537 errs() << " \"Phi\" [label=\"Phi\"];\n";
538 errs() << "}\n\n";
540 #endif // MERGEICMPS_DOT_ON
542 namespace {
544 // A class to compute the name of a set of merged basic blocks.
545 // This is optimized for the common case of no block names.
546 class MergedBlockName {
547 // Storage for the uncommon case of several named blocks.
548 SmallString<16> Scratch;
550 public:
551 explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
552 : Name(makeName(Comparisons)) {}
553 const StringRef Name;
555 private:
556 StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
557 assert(!Comparisons.empty() && "no basic block");
558 // Fast path: only one block, or no names at all.
559 if (Comparisons.size() == 1)
560 return Comparisons[0].BB->getName();
561 const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
562 [](int i, const BCECmpBlock &Cmp) {
563 return i + Cmp.BB->getName().size();
565 if (size == 0)
566 return StringRef("", 0);
568 // Slow path: at least two blocks, at least one block with a name.
569 Scratch.clear();
570 // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
571 // separators.
572 Scratch.reserve(size + Comparisons.size() - 1);
573 const auto append = [this](StringRef str) {
574 Scratch.append(str.begin(), str.end());
576 append(Comparisons[0].BB->getName());
577 for (int I = 1, E = Comparisons.size(); I < E; ++I) {
578 const BasicBlock *const BB = Comparisons[I].BB;
579 if (!BB->getName().empty()) {
580 append("+");
581 append(BB->getName());
584 return Scratch.str();
587 } // namespace
589 // Merges the given contiguous comparison blocks into one memcmp block.
590 static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
591 BasicBlock *const InsertBefore,
592 BasicBlock *const NextCmpBlock,
593 PHINode &Phi, const TargetLibraryInfo &TLI,
594 AliasAnalysis &AA, DomTreeUpdater &DTU) {
595 assert(!Comparisons.empty() && "merging zero comparisons");
596 LLVMContext &Context = NextCmpBlock->getContext();
597 const BCECmpBlock &FirstCmp = Comparisons[0];
599 // Create a new cmp block before next cmp block.
600 BasicBlock *const BB =
601 BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
602 NextCmpBlock->getParent(), InsertBefore);
603 IRBuilder<> Builder(BB);
604 // Add the GEPs from the first BCECmpBlock.
605 Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
606 Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
608 Value *IsEqual = nullptr;
609 LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
610 << BB->getName() << "\n");
612 // If there is one block that requires splitting, we do it now, i.e.
613 // just before we know we will collapse the chain. The instructions
614 // can be executed before any of the instructions in the chain.
615 const auto ToSplit = llvm::find_if(
616 Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
617 if (ToSplit != Comparisons.end()) {
618 LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
619 ToSplit->split(BB, AA);
622 if (Comparisons.size() == 1) {
623 LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
624 Value *const LhsLoad =
625 Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
626 Value *const RhsLoad =
627 Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
628 // There are no blocks to merge, just do the comparison.
629 IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
630 } else {
631 const unsigned TotalSizeBits = std::accumulate(
632 Comparisons.begin(), Comparisons.end(), 0u,
633 [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
635 // Create memcmp() == 0.
636 const auto &DL = Phi.getModule()->getDataLayout();
637 Value *const MemCmpCall = emitMemCmp(
638 Lhs, Rhs,
639 ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
640 DL, &TLI);
641 IsEqual = Builder.CreateICmpEQ(
642 MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
645 BasicBlock *const PhiBB = Phi.getParent();
646 // Add a branch to the next basic block in the chain.
647 if (NextCmpBlock == PhiBB) {
648 // Continue to phi, passing it the comparison result.
649 Builder.CreateBr(PhiBB);
650 Phi.addIncoming(IsEqual, BB);
651 DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
652 } else {
653 // Continue to next block if equal, exit to phi else.
654 Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
655 Phi.addIncoming(ConstantInt::getFalse(Context), BB);
656 DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
657 {DominatorTree::Insert, BB, PhiBB}});
659 return BB;
662 bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
663 DomTreeUpdater &DTU) {
664 assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
665 // First pass to check if there is at least one merge. If not, we don't do
666 // anything and we keep analysis passes intact.
667 const auto AtLeastOneMerged = [this]() {
668 for (size_t I = 1; I < Comparisons_.size(); ++I) {
669 if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
670 return true;
672 return false;
674 if (!AtLeastOneMerged())
675 return false;
677 LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
678 << EntryBlock_->getName() << "\n");
680 // Effectively merge blocks. We go in the reverse direction from the phi block
681 // so that the next block is always available to branch to.
682 const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
683 BasicBlock *InsertBefore,
684 BasicBlock *Next) {
685 return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
686 InsertBefore, Next, Phi_, TLI, AA, DTU);
688 int NumMerged = 1;
689 BasicBlock *NextCmpBlock = Phi_.getParent();
690 for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
691 if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
692 LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
693 << " into " << Comparisons_[I + 1].BB->getName()
694 << "\n");
695 ++NumMerged;
696 } else {
697 NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
698 NumMerged = 1;
701 // Insert the entry block for the new chain before the old entry block.
702 // If the old entry block was the function entry, this ensures that the new
703 // entry can become the function entry.
704 NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
706 // Replace the original cmp chain with the new cmp chain by pointing all
707 // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
708 // blocks in the old chain unreachable.
709 while (!pred_empty(EntryBlock_)) {
710 BasicBlock* const Pred = *pred_begin(EntryBlock_);
711 LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
712 << "\n");
713 Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
714 DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
715 {DominatorTree::Insert, Pred, NextCmpBlock}});
718 // If the old cmp chain was the function entry, we need to update the function
719 // entry.
720 const bool ChainEntryIsFnEntry = EntryBlock_->isEntryBlock();
721 if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
722 LLVM_DEBUG(dbgs() << "Changing function entry from "
723 << EntryBlock_->getName() << " to "
724 << NextCmpBlock->getName() << "\n");
725 DTU.getDomTree().setNewRoot(NextCmpBlock);
726 DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
728 EntryBlock_ = nullptr;
730 // Delete merged blocks. This also removes incoming values in phi.
731 SmallVector<BasicBlock *, 16> DeadBlocks;
732 for (auto &Cmp : Comparisons_) {
733 LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
734 DeadBlocks.push_back(Cmp.BB);
736 DeleteDeadBlocks(DeadBlocks, &DTU);
738 Comparisons_.clear();
739 return true;
742 std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
743 BasicBlock *const LastBlock,
744 int NumBlocks) {
745 // Walk up from the last block to find other blocks.
746 std::vector<BasicBlock *> Blocks(NumBlocks);
747 assert(LastBlock && "invalid last block");
748 BasicBlock *CurBlock = LastBlock;
749 for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
750 if (CurBlock->hasAddressTaken()) {
751 // Somebody is jumping to the block through an address, all bets are
752 // off.
753 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
754 << " has its address taken\n");
755 return {};
757 Blocks[BlockIndex] = CurBlock;
758 auto *SinglePredecessor = CurBlock->getSinglePredecessor();
759 if (!SinglePredecessor) {
760 // The block has two or more predecessors.
761 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
762 << " has two or more predecessors\n");
763 return {};
765 if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
766 // The block does not link back to the phi.
767 LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
768 << " does not link back to the phi\n");
769 return {};
771 CurBlock = SinglePredecessor;
773 Blocks[0] = CurBlock;
774 return Blocks;
777 bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
778 DomTreeUpdater &DTU) {
779 LLVM_DEBUG(dbgs() << "processPhi()\n");
780 if (Phi.getNumIncomingValues() <= 1) {
781 LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
782 return false;
784 // We are looking for something that has the following structure:
785 // bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
786 // \ \ \ \
787 // ne ne ne \
788 // \ \ \ v
789 // +------------+-----------+----------> bb_phi
791 // - The last basic block (bb4 here) must branch unconditionally to bb_phi.
792 // It's the only block that contributes a non-constant value to the Phi.
793 // - All other blocks (b1, b2, b3) must have exactly two successors, one of
794 // them being the phi block.
795 // - All intermediate blocks (bb2, bb3) must have only one predecessor.
796 // - Blocks cannot do other work besides the comparison, see doesOtherWork()
798 // The blocks are not necessarily ordered in the phi, so we start from the
799 // last block and reconstruct the order.
800 BasicBlock *LastBlock = nullptr;
801 for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
802 if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
803 if (LastBlock) {
804 // There are several non-constant values.
805 LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
806 return false;
808 if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
809 cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
810 Phi.getIncomingBlock(I)) {
811 // Non-constant incoming value is not from a cmp instruction or not
812 // produced by the last block. We could end up processing the value
813 // producing block more than once.
815 // This is an uncommon case, so we bail.
816 LLVM_DEBUG(
817 dbgs()
818 << "skip: non-constant value not from cmp or not from last block.\n");
819 return false;
821 LastBlock = Phi.getIncomingBlock(I);
823 if (!LastBlock) {
824 // There is no non-constant block.
825 LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
826 return false;
828 if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
829 LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
830 return false;
833 const auto Blocks =
834 getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
835 if (Blocks.empty()) return false;
836 BCECmpChain CmpChain(Blocks, Phi, AA);
838 if (CmpChain.size() < 2) {
839 LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
840 return false;
843 return CmpChain.simplify(TLI, AA, DTU);
846 static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
847 const TargetTransformInfo &TTI, AliasAnalysis &AA,
848 DominatorTree *DT) {
849 LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
851 // We only try merging comparisons if the target wants to expand memcmp later.
852 // The rationale is to avoid turning small chains into memcmp calls.
853 if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
854 return false;
856 // If we don't have memcmp avaiable we can't emit calls to it.
857 if (!TLI.has(LibFunc_memcmp))
858 return false;
860 DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
861 DomTreeUpdater::UpdateStrategy::Eager);
863 bool MadeChange = false;
865 for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
866 // A Phi operation is always first in a basic block.
867 if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
868 MadeChange |= processPhi(*Phi, TLI, AA, DTU);
871 return MadeChange;
874 class MergeICmpsLegacyPass : public FunctionPass {
875 public:
876 static char ID;
878 MergeICmpsLegacyPass() : FunctionPass(ID) {
879 initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
882 bool runOnFunction(Function &F) override {
883 if (skipFunction(F)) return false;
884 const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
885 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
886 // MergeICmps does not need the DominatorTree, but we update it if it's
887 // already available.
888 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
889 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
890 return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
893 private:
894 void getAnalysisUsage(AnalysisUsage &AU) const override {
895 AU.addRequired<TargetLibraryInfoWrapperPass>();
896 AU.addRequired<TargetTransformInfoWrapperPass>();
897 AU.addRequired<AAResultsWrapperPass>();
898 AU.addPreserved<GlobalsAAWrapperPass>();
899 AU.addPreserved<DominatorTreeWrapperPass>();
903 } // namespace
905 char MergeICmpsLegacyPass::ID = 0;
906 INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
907 "Merge contiguous icmps into a memcmp", false, false)
908 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
909 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
910 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
911 INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
912 "Merge contiguous icmps into a memcmp", false, false)
914 Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
916 PreservedAnalyses MergeICmpsPass::run(Function &F,
917 FunctionAnalysisManager &AM) {
918 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
919 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
920 auto &AA = AM.getResult<AAManager>(F);
921 auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
922 const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
923 if (!MadeChanges)
924 return PreservedAnalyses::all();
925 PreservedAnalyses PA;
926 PA.preserve<DominatorTreeAnalysis>();
927 return PA;