[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / NaryReassociate.cpp
blobded5caf53b5a92944e04229a67f01e73c105d855
1 //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass reassociates n-ary add expressions and eliminates the redundancy
10 // exposed by the reassociation.
12 // A motivating example:
14 // void foo(int a, int b) {
15 // bar(a + b);
16 // bar((a + 2) + b);
17 // }
19 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
20 // the above code to
22 // int t = a + b;
23 // bar(t);
24 // bar(t + 2);
26 // However, the Reassociate pass is unable to do that because it processes each
27 // instruction individually and believes (a + 2) + b is the best form according
28 // to its rank system.
30 // To address this limitation, NaryReassociate reassociates an expression in a
31 // form that reuses existing instructions. As a result, NaryReassociate can
32 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
33 // (a + b) is computed before.
35 // NaryReassociate works as follows. For every instruction in the form of (a +
36 // b) + c, it checks whether a + c or b + c is already computed by a dominating
37 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
38 // c) + a and removes the redundancy accordingly. To efficiently look up whether
39 // an expression is computed before, we store each instruction seen and its SCEV
40 // into an SCEV-to-instruction map.
42 // Although the algorithm pattern-matches only ternary additions, it
43 // automatically handles many >3-ary expressions by walking through the function
44 // in the depth-first order. For example, given
46 // (a + c) + d
47 // ((a + b) + c) + d
49 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
50 // ((a + c) + b) + d into ((a + c) + d) + b.
52 // Finally, the above dominator-based algorithm may need to be run multiple
53 // iterations before emitting optimal code. One source of this need is that we
54 // only split an operand when it is used only once. The above algorithm can
55 // eliminate an instruction and decrease the usage count of its operands. As a
56 // result, an instruction that previously had multiple uses may become a
57 // single-use instruction and thus eligible for split consideration. For
58 // example,
60 // ac = a + c
61 // ab = a + b
62 // abc = ab + c
63 // ab2 = ab + b
64 // ab2c = ab2 + c
66 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
67 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
68 // result, ab2 becomes dead and ab will be used only once in the second
69 // iteration.
71 // Limitations and TODO items:
73 // 1) We only considers n-ary adds and muls for now. This should be extended
74 // and generalized.
76 //===----------------------------------------------------------------------===//
78 #include "llvm/Transforms/Scalar/NaryReassociate.h"
79 #include "llvm/ADT/DepthFirstIterator.h"
80 #include "llvm/ADT/SmallVector.h"
81 #include "llvm/Analysis/AssumptionCache.h"
82 #include "llvm/Analysis/ScalarEvolution.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/TargetTransformInfo.h"
86 #include "llvm/Analysis/ValueTracking.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/Constants.h"
89 #include "llvm/IR/DataLayout.h"
90 #include "llvm/IR/DerivedTypes.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Function.h"
93 #include "llvm/IR/GetElementPtrTypeIterator.h"
94 #include "llvm/IR/IRBuilder.h"
95 #include "llvm/IR/InstrTypes.h"
96 #include "llvm/IR/Instruction.h"
97 #include "llvm/IR/Instructions.h"
98 #include "llvm/IR/Module.h"
99 #include "llvm/IR/Operator.h"
100 #include "llvm/IR/PatternMatch.h"
101 #include "llvm/IR/Type.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
111 #include <cassert>
112 #include <cstdint>
114 using namespace llvm;
115 using namespace PatternMatch;
117 #define DEBUG_TYPE "nary-reassociate"
119 namespace {
121 class NaryReassociateLegacyPass : public FunctionPass {
122 public:
123 static char ID;
125 NaryReassociateLegacyPass() : FunctionPass(ID) {
126 initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry());
129 bool doInitialization(Module &M) override {
130 return false;
133 bool runOnFunction(Function &F) override;
135 void getAnalysisUsage(AnalysisUsage &AU) const override {
136 AU.addPreserved<DominatorTreeWrapperPass>();
137 AU.addPreserved<ScalarEvolutionWrapperPass>();
138 AU.addPreserved<TargetLibraryInfoWrapperPass>();
139 AU.addRequired<AssumptionCacheTracker>();
140 AU.addRequired<DominatorTreeWrapperPass>();
141 AU.addRequired<ScalarEvolutionWrapperPass>();
142 AU.addRequired<TargetLibraryInfoWrapperPass>();
143 AU.addRequired<TargetTransformInfoWrapperPass>();
144 AU.setPreservesCFG();
147 private:
148 NaryReassociatePass Impl;
151 } // end anonymous namespace
153 char NaryReassociateLegacyPass::ID = 0;
155 INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate",
156 "Nary reassociation", false, false)
157 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
158 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
161 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
162 INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate",
163 "Nary reassociation", false, false)
165 FunctionPass *llvm::createNaryReassociatePass() {
166 return new NaryReassociateLegacyPass();
169 bool NaryReassociateLegacyPass::runOnFunction(Function &F) {
170 if (skipFunction(F))
171 return false;
173 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
174 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
175 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
176 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
177 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
179 return Impl.runImpl(F, AC, DT, SE, TLI, TTI);
182 PreservedAnalyses NaryReassociatePass::run(Function &F,
183 FunctionAnalysisManager &AM) {
184 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
185 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
186 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
187 auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
188 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
190 if (!runImpl(F, AC, DT, SE, TLI, TTI))
191 return PreservedAnalyses::all();
193 PreservedAnalyses PA;
194 PA.preserveSet<CFGAnalyses>();
195 PA.preserve<ScalarEvolutionAnalysis>();
196 return PA;
199 bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_,
200 DominatorTree *DT_, ScalarEvolution *SE_,
201 TargetLibraryInfo *TLI_,
202 TargetTransformInfo *TTI_) {
203 AC = AC_;
204 DT = DT_;
205 SE = SE_;
206 TLI = TLI_;
207 TTI = TTI_;
208 DL = &F.getParent()->getDataLayout();
210 bool Changed = false, ChangedInThisIteration;
211 do {
212 ChangedInThisIteration = doOneIteration(F);
213 Changed |= ChangedInThisIteration;
214 } while (ChangedInThisIteration);
215 return Changed;
218 bool NaryReassociatePass::doOneIteration(Function &F) {
219 bool Changed = false;
220 SeenExprs.clear();
221 // Process the basic blocks in a depth first traversal of the dominator
222 // tree. This order ensures that all bases of a candidate are in Candidates
223 // when we process it.
224 SmallVector<WeakTrackingVH, 16> DeadInsts;
225 for (const auto Node : depth_first(DT)) {
226 BasicBlock *BB = Node->getBlock();
227 for (Instruction &OrigI : *BB) {
228 const SCEV *OrigSCEV = nullptr;
229 if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) {
230 Changed = true;
231 OrigI.replaceAllUsesWith(NewI);
233 // Add 'OrigI' to the list of dead instructions.
234 DeadInsts.push_back(WeakTrackingVH(&OrigI));
235 // Add the rewritten instruction to SeenExprs; the original
236 // instruction is deleted.
237 const SCEV *NewSCEV = SE->getSCEV(NewI);
238 SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI));
240 // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I)
241 // is equivalent to I. However, ScalarEvolution::getSCEV may
242 // weaken nsw causing NewSCEV not to equal OldSCEV. For example,
243 // suppose we reassociate
244 // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4
245 // to
246 // NewI = &a[sext(i)] + sext(j).
248 // ScalarEvolution computes
249 // getSCEV(I) = a + 4 * sext(i + j)
250 // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j)
251 // which are different SCEVs.
253 // To alleviate this issue of ScalarEvolution not always capturing
254 // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can
255 // map both SCEV before and after tryReassociate(I) to I.
257 // This improvement is exercised in @reassociate_gep_nsw in
258 // nary-gep.ll.
259 if (NewSCEV != OrigSCEV)
260 SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI));
261 } else if (OrigSCEV)
262 SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI));
265 // Delete all dead instructions from 'DeadInsts'.
266 // Please note ScalarEvolution is updated along the way.
267 RecursivelyDeleteTriviallyDeadInstructionsPermissive(
268 DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); });
270 return Changed;
273 template <typename PredT>
274 Instruction *
275 NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I,
276 const SCEV *&OrigSCEV) {
277 Value *LHS = nullptr;
278 Value *RHS = nullptr;
280 auto MinMaxMatcher =
281 MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>(
282 m_Value(LHS), m_Value(RHS));
283 if (match(I, MinMaxMatcher)) {
284 OrigSCEV = SE->getSCEV(I);
285 return dyn_cast_or_null<Instruction>(
286 tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS));
288 return nullptr;
291 Instruction *NaryReassociatePass::tryReassociate(Instruction * I,
292 const SCEV *&OrigSCEV) {
294 if (!SE->isSCEVable(I->getType()))
295 return nullptr;
297 switch (I->getOpcode()) {
298 case Instruction::Add:
299 case Instruction::Mul:
300 OrigSCEV = SE->getSCEV(I);
301 return tryReassociateBinaryOp(cast<BinaryOperator>(I));
302 case Instruction::GetElementPtr:
303 OrigSCEV = SE->getSCEV(I);
304 return tryReassociateGEP(cast<GetElementPtrInst>(I));
305 default:
306 break;
309 // Try to match signed/unsigned Min/Max.
310 Instruction *ResI = nullptr;
311 // TODO: Currently min/max reassociation is restricted to integer types only
312 // due to use of SCEVExpander which my introduce incompatible forms of min/max
313 // for pointer types.
314 if (I->getType()->isIntegerTy())
315 if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) ||
316 (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) ||
317 (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) ||
318 (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV)))
319 return ResI;
321 return nullptr;
324 static bool isGEPFoldable(GetElementPtrInst *GEP,
325 const TargetTransformInfo *TTI) {
326 SmallVector<const Value *, 4> Indices(GEP->indices());
327 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
328 Indices) == TargetTransformInfo::TCC_Free;
331 Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) {
332 // Not worth reassociating GEP if it is foldable.
333 if (isGEPFoldable(GEP, TTI))
334 return nullptr;
336 gep_type_iterator GTI = gep_type_begin(*GEP);
337 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
338 if (GTI.isSequential()) {
339 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1,
340 GTI.getIndexedType())) {
341 return NewGEP;
345 return nullptr;
348 bool NaryReassociatePass::requiresSignExtension(Value *Index,
349 GetElementPtrInst *GEP) {
350 unsigned PointerSizeInBits =
351 DL->getPointerSizeInBits(GEP->getType()->getPointerAddressSpace());
352 return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
355 GetElementPtrInst *
356 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
357 unsigned I, Type *IndexedType) {
358 Value *IndexToSplit = GEP->getOperand(I + 1);
359 if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) {
360 IndexToSplit = SExt->getOperand(0);
361 } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
362 // zext can be treated as sext if the source is non-negative.
363 if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
364 IndexToSplit = ZExt->getOperand(0);
367 if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) {
368 // If the I-th index needs sext and the underlying add is not equipped with
369 // nsw, we cannot split the add because
370 // sext(LHS + RHS) != sext(LHS) + sext(RHS).
371 if (requiresSignExtension(IndexToSplit, GEP) &&
372 computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
373 OverflowResult::NeverOverflows)
374 return nullptr;
376 Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
377 // IndexToSplit = LHS + RHS.
378 if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
379 return NewGEP;
380 // Symmetrically, try IndexToSplit = RHS + LHS.
381 if (LHS != RHS) {
382 if (auto *NewGEP =
383 tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType))
384 return NewGEP;
387 return nullptr;
390 GetElementPtrInst *
391 NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
392 unsigned I, Value *LHS,
393 Value *RHS, Type *IndexedType) {
394 // Look for GEP's closest dominator that has the same SCEV as GEP except that
395 // the I-th index is replaced with LHS.
396 SmallVector<const SCEV *, 4> IndexExprs;
397 for (Use &Index : GEP->indices())
398 IndexExprs.push_back(SE->getSCEV(Index));
399 // Replace the I-th index with LHS.
400 IndexExprs[I] = SE->getSCEV(LHS);
401 if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
402 DL->getTypeSizeInBits(LHS->getType()).getFixedSize() <
403 DL->getTypeSizeInBits(GEP->getOperand(I)->getType()).getFixedSize()) {
404 // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to
405 // zext if the source operand is proved non-negative. We should do that
406 // consistently so that CandidateExpr more likely appears before. See
407 // @reassociate_gep_assume for an example of this canonicalization.
408 IndexExprs[I] =
409 SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType());
411 const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP),
412 IndexExprs);
414 Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP);
415 if (Candidate == nullptr)
416 return nullptr;
418 IRBuilder<> Builder(GEP);
419 // Candidate does not necessarily have the same pointer type as GEP. Use
420 // bitcast or pointer cast to make sure they have the same type, so that the
421 // later RAUW doesn't complain.
422 Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType());
423 assert(Candidate->getType() == GEP->getType());
425 // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType)
426 uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType);
427 Type *ElementType = GEP->getResultElementType();
428 uint64_t ElementSize = DL->getTypeAllocSize(ElementType);
429 // Another less rare case: because I is not necessarily the last index of the
430 // GEP, the size of the type at the I-th index (IndexedSize) is not
431 // necessarily divisible by ElementSize. For example,
433 // #pragma pack(1)
434 // struct S {
435 // int a[3];
436 // int64 b[8];
437 // };
438 // #pragma pack()
440 // sizeof(S) = 100 is indivisible by sizeof(int64) = 8.
442 // TODO: bail out on this case for now. We could emit uglygep.
443 if (IndexedSize % ElementSize != 0)
444 return nullptr;
446 // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0])));
447 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
448 if (RHS->getType() != IntPtrTy)
449 RHS = Builder.CreateSExtOrTrunc(RHS, IntPtrTy);
450 if (IndexedSize != ElementSize) {
451 RHS = Builder.CreateMul(
452 RHS, ConstantInt::get(IntPtrTy, IndexedSize / ElementSize));
454 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(
455 Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS));
456 NewGEP->setIsInBounds(GEP->isInBounds());
457 NewGEP->takeName(GEP);
458 return NewGEP;
461 Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) {
462 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
463 // There is no need to reassociate 0.
464 if (SE->getSCEV(I)->isZero())
465 return nullptr;
466 if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I))
467 return NewI;
468 if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I))
469 return NewI;
470 return nullptr;
473 Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS,
474 BinaryOperator *I) {
475 Value *A = nullptr, *B = nullptr;
476 // To be conservative, we reassociate I only when it is the only user of (A op
477 // B).
478 if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) {
479 // I = (A op B) op RHS
480 // = (A op RHS) op B or (B op RHS) op A
481 const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
482 const SCEV *RHSExpr = SE->getSCEV(RHS);
483 if (BExpr != RHSExpr) {
484 if (auto *NewI =
485 tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I))
486 return NewI;
488 if (AExpr != RHSExpr) {
489 if (auto *NewI =
490 tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I))
491 return NewI;
494 return nullptr;
497 Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr,
498 Value *RHS,
499 BinaryOperator *I) {
500 // Look for the closest dominator LHS of I that computes LHSExpr, and replace
501 // I with LHS op RHS.
502 auto *LHS = findClosestMatchingDominator(LHSExpr, I);
503 if (LHS == nullptr)
504 return nullptr;
506 Instruction *NewI = nullptr;
507 switch (I->getOpcode()) {
508 case Instruction::Add:
509 NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I);
510 break;
511 case Instruction::Mul:
512 NewI = BinaryOperator::CreateMul(LHS, RHS, "", I);
513 break;
514 default:
515 llvm_unreachable("Unexpected instruction.");
517 NewI->takeName(I);
518 return NewI;
521 bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V,
522 Value *&Op1, Value *&Op2) {
523 switch (I->getOpcode()) {
524 case Instruction::Add:
525 return match(V, m_Add(m_Value(Op1), m_Value(Op2)));
526 case Instruction::Mul:
527 return match(V, m_Mul(m_Value(Op1), m_Value(Op2)));
528 default:
529 llvm_unreachable("Unexpected instruction.");
531 return false;
534 const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I,
535 const SCEV *LHS,
536 const SCEV *RHS) {
537 switch (I->getOpcode()) {
538 case Instruction::Add:
539 return SE->getAddExpr(LHS, RHS);
540 case Instruction::Mul:
541 return SE->getMulExpr(LHS, RHS);
542 default:
543 llvm_unreachable("Unexpected instruction.");
545 return nullptr;
548 Instruction *
549 NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr,
550 Instruction *Dominatee) {
551 auto Pos = SeenExprs.find(CandidateExpr);
552 if (Pos == SeenExprs.end())
553 return nullptr;
555 auto &Candidates = Pos->second;
556 // Because we process the basic blocks in pre-order of the dominator tree, a
557 // candidate that doesn't dominate the current instruction won't dominate any
558 // future instruction either. Therefore, we pop it out of the stack. This
559 // optimization makes the algorithm O(n).
560 while (!Candidates.empty()) {
561 // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's
562 // removed
563 // during rewriting.
564 if (Value *Candidate = Candidates.back()) {
565 Instruction *CandidateInstruction = cast<Instruction>(Candidate);
566 if (DT->dominates(CandidateInstruction, Dominatee))
567 return CandidateInstruction;
569 Candidates.pop_back();
571 return nullptr;
574 template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) {
575 if (std::is_same<smax_pred_ty, typename MaxMinT::PredType>::value)
576 return scSMaxExpr;
577 else if (std::is_same<umax_pred_ty, typename MaxMinT::PredType>::value)
578 return scUMaxExpr;
579 else if (std::is_same<smin_pred_ty, typename MaxMinT::PredType>::value)
580 return scSMinExpr;
581 else if (std::is_same<umin_pred_ty, typename MaxMinT::PredType>::value)
582 return scUMinExpr;
584 llvm_unreachable("Can't convert MinMax pattern to SCEV type");
585 return scUnknown;
588 // Parameters:
589 // I - instruction matched by MaxMinMatch matcher
590 // MaxMinMatch - min/max idiom matcher
591 // LHS - first operand of I
592 // RHS - second operand of I
593 template <typename MaxMinT>
594 Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I,
595 MaxMinT MaxMinMatch,
596 Value *LHS, Value *RHS) {
597 Value *A = nullptr, *B = nullptr;
598 MaxMinT m_MaxMin(m_Value(A), m_Value(B));
599 for (unsigned int i = 0; i < 2; ++i) {
600 if (!LHS->hasNUsesOrMore(3) && match(LHS, m_MaxMin)) {
601 const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B);
602 const SCEV *RHSExpr = SE->getSCEV(RHS);
603 for (unsigned int j = 0; j < 2; ++j) {
604 if (j == 0) {
605 if (BExpr == RHSExpr)
606 continue;
607 // Transform 'I = (A op B) op RHS' to 'I = (A op RHS) op B' on the
608 // first iteration.
609 std::swap(BExpr, RHSExpr);
610 } else {
611 if (AExpr == RHSExpr)
612 continue;
613 // Transform 'I = (A op RHS) op B' 'I = (B op RHS) op A' on the second
614 // iteration.
615 std::swap(AExpr, RHSExpr);
618 // The optimization is profitable only if LHS can be removed in the end.
619 // In other words LHS should be used (directly or indirectly) by I only.
620 if (llvm::any_of(LHS->users(), [&](auto *U) {
621 return U != I && !(U->hasOneUser() && *U->users().begin() == I);
623 continue;
625 SCEVExpander Expander(*SE, *DL, "nary-reassociate");
626 SmallVector<const SCEV *, 2> Ops1{ BExpr, AExpr };
627 const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin);
628 const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1);
630 Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I);
632 if (!R1MinMax)
633 continue;
635 LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax
636 << "\n");
638 R1Expr = SE->getUnknown(R1MinMax);
639 SmallVector<const SCEV *, 2> Ops2{ RHSExpr, R1Expr };
640 const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2);
642 Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I);
643 NewMinMax->setName(Twine(I->getName()).concat(".nary"));
645 LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n"
646 << "NARY: Inserting: " << *NewMinMax << "\n");
647 return NewMinMax;
650 std::swap(LHS, RHS);
652 return nullptr;