1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This transformation implements the well known scalar replacement of
10 /// aggregates transformation. It tries to identify promotable elements of an
11 /// aggregate alloca, and promote them to registers. It will also try to
12 /// convert uses of an element (or set of elements) of an alloca into a vector
13 /// or bitfield-style integer scalar if appropriate.
15 /// It works to do this with minimal slicing of the alloca so that regions
16 /// which are merely transferred in and out of external memory remain unchanged
17 /// and are not decomposed to scalar code.
19 /// Because this also performs alloca promotion, it can be thought of as also
20 /// serving the purpose of SSA formation. The algorithm iterates on the
21 /// function until all opportunities for promotion have been realized.
23 //===----------------------------------------------------------------------===//
25 #include "llvm/Transforms/Scalar/SROA.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/PointerIntPair.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/iterator.h"
39 #include "llvm/ADT/iterator_range.h"
40 #include "llvm/Analysis/AssumptionCache.h"
41 #include "llvm/Analysis/GlobalsModRef.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/PtrUseVisitor.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantFolder.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DIBuilder.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalAlias.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstVisitor.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/Metadata.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/InitializePasses.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/Casting.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/raw_ostream.h"
82 #include "llvm/Transforms/Scalar.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
98 using namespace llvm::sroa
;
100 #define DEBUG_TYPE "sroa"
102 STATISTIC(NumAllocasAnalyzed
, "Number of allocas analyzed for replacement");
103 STATISTIC(NumAllocaPartitions
, "Number of alloca partitions formed");
104 STATISTIC(MaxPartitionsPerAlloca
, "Maximum number of partitions per alloca");
105 STATISTIC(NumAllocaPartitionUses
, "Number of alloca partition uses rewritten");
106 STATISTIC(MaxUsesPerAllocaPartition
, "Maximum number of uses of a partition");
107 STATISTIC(NumNewAllocas
, "Number of new, smaller allocas introduced");
108 STATISTIC(NumPromoted
, "Number of allocas promoted to SSA values");
109 STATISTIC(NumLoadsSpeculated
, "Number of loads speculated to allow promotion");
110 STATISTIC(NumDeleted
, "Number of instructions deleted");
111 STATISTIC(NumVectorized
, "Number of vectorized aggregates");
113 /// Hidden option to experiment with completely strict handling of inbounds
115 static cl::opt
<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
120 /// A custom IRBuilder inserter which prefixes all names, but only in
122 class IRBuilderPrefixedInserter final
: public IRBuilderDefaultInserter
{
125 Twine
getNameWithPrefix(const Twine
&Name
) const {
126 return Name
.isTriviallyEmpty() ? Name
: Prefix
+ Name
;
130 void SetNamePrefix(const Twine
&P
) { Prefix
= P
.str(); }
132 void InsertHelper(Instruction
*I
, const Twine
&Name
, BasicBlock
*BB
,
133 BasicBlock::iterator InsertPt
) const override
{
134 IRBuilderDefaultInserter::InsertHelper(I
, getNameWithPrefix(Name
), BB
,
139 /// Provide a type for IRBuilder that drops names in release builds.
140 using IRBuilderTy
= IRBuilder
<ConstantFolder
, IRBuilderPrefixedInserter
>;
142 /// A used slice of an alloca.
144 /// This structure represents a slice of an alloca used by some instruction. It
145 /// stores both the begin and end offsets of this use, a pointer to the use
146 /// itself, and a flag indicating whether we can classify the use as splittable
147 /// or not when forming partitions of the alloca.
149 /// The beginning offset of the range.
150 uint64_t BeginOffset
= 0;
152 /// The ending offset, not included in the range.
153 uint64_t EndOffset
= 0;
155 /// Storage for both the use of this slice and whether it can be
157 PointerIntPair
<Use
*, 1, bool> UseAndIsSplittable
;
162 Slice(uint64_t BeginOffset
, uint64_t EndOffset
, Use
*U
, bool IsSplittable
)
163 : BeginOffset(BeginOffset
), EndOffset(EndOffset
),
164 UseAndIsSplittable(U
, IsSplittable
) {}
166 uint64_t beginOffset() const { return BeginOffset
; }
167 uint64_t endOffset() const { return EndOffset
; }
169 bool isSplittable() const { return UseAndIsSplittable
.getInt(); }
170 void makeUnsplittable() { UseAndIsSplittable
.setInt(false); }
172 Use
*getUse() const { return UseAndIsSplittable
.getPointer(); }
174 bool isDead() const { return getUse() == nullptr; }
175 void kill() { UseAndIsSplittable
.setPointer(nullptr); }
177 /// Support for ordering ranges.
179 /// This provides an ordering over ranges such that start offsets are
180 /// always increasing, and within equal start offsets, the end offsets are
181 /// decreasing. Thus the spanning range comes first in a cluster with the
182 /// same start position.
183 bool operator<(const Slice
&RHS
) const {
184 if (beginOffset() < RHS
.beginOffset())
186 if (beginOffset() > RHS
.beginOffset())
188 if (isSplittable() != RHS
.isSplittable())
189 return !isSplittable();
190 if (endOffset() > RHS
.endOffset())
195 /// Support comparison with a single offset to allow binary searches.
196 friend LLVM_ATTRIBUTE_UNUSED
bool operator<(const Slice
&LHS
,
197 uint64_t RHSOffset
) {
198 return LHS
.beginOffset() < RHSOffset
;
200 friend LLVM_ATTRIBUTE_UNUSED
bool operator<(uint64_t LHSOffset
,
202 return LHSOffset
< RHS
.beginOffset();
205 bool operator==(const Slice
&RHS
) const {
206 return isSplittable() == RHS
.isSplittable() &&
207 beginOffset() == RHS
.beginOffset() && endOffset() == RHS
.endOffset();
209 bool operator!=(const Slice
&RHS
) const { return !operator==(RHS
); }
212 } // end anonymous namespace
214 /// Representation of the alloca slices.
216 /// This class represents the slices of an alloca which are formed by its
217 /// various uses. If a pointer escapes, we can't fully build a representation
218 /// for the slices used and we reflect that in this structure. The uses are
219 /// stored, sorted by increasing beginning offset and with unsplittable slices
220 /// starting at a particular offset before splittable slices.
221 class llvm::sroa::AllocaSlices
{
223 /// Construct the slices of a particular alloca.
224 AllocaSlices(const DataLayout
&DL
, AllocaInst
&AI
);
226 /// Test whether a pointer to the allocation escapes our analysis.
228 /// If this is true, the slices are never fully built and should be
230 bool isEscaped() const { return PointerEscapingInstr
; }
232 /// Support for iterating over the slices.
234 using iterator
= SmallVectorImpl
<Slice
>::iterator
;
235 using range
= iterator_range
<iterator
>;
237 iterator
begin() { return Slices
.begin(); }
238 iterator
end() { return Slices
.end(); }
240 using const_iterator
= SmallVectorImpl
<Slice
>::const_iterator
;
241 using const_range
= iterator_range
<const_iterator
>;
243 const_iterator
begin() const { return Slices
.begin(); }
244 const_iterator
end() const { return Slices
.end(); }
247 /// Erase a range of slices.
248 void erase(iterator Start
, iterator Stop
) { Slices
.erase(Start
, Stop
); }
250 /// Insert new slices for this alloca.
252 /// This moves the slices into the alloca's slices collection, and re-sorts
253 /// everything so that the usual ordering properties of the alloca's slices
255 void insert(ArrayRef
<Slice
> NewSlices
) {
256 int OldSize
= Slices
.size();
257 Slices
.append(NewSlices
.begin(), NewSlices
.end());
258 auto SliceI
= Slices
.begin() + OldSize
;
259 llvm::sort(SliceI
, Slices
.end());
260 std::inplace_merge(Slices
.begin(), SliceI
, Slices
.end());
263 // Forward declare the iterator and range accessor for walking the
265 class partition_iterator
;
266 iterator_range
<partition_iterator
> partitions();
268 /// Access the dead users for this alloca.
269 ArrayRef
<Instruction
*> getDeadUsers() const { return DeadUsers
; }
271 /// Access Uses that should be dropped if the alloca is promotable.
272 ArrayRef
<Use
*> getDeadUsesIfPromotable() const {
273 return DeadUseIfPromotable
;
276 /// Access the dead operands referring to this alloca.
278 /// These are operands which have cannot actually be used to refer to the
279 /// alloca as they are outside its range and the user doesn't correct for
280 /// that. These mostly consist of PHI node inputs and the like which we just
281 /// need to replace with undef.
282 ArrayRef
<Use
*> getDeadOperands() const { return DeadOperands
; }
284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
285 void print(raw_ostream
&OS
, const_iterator I
, StringRef Indent
= " ") const;
286 void printSlice(raw_ostream
&OS
, const_iterator I
,
287 StringRef Indent
= " ") const;
288 void printUse(raw_ostream
&OS
, const_iterator I
,
289 StringRef Indent
= " ") const;
290 void print(raw_ostream
&OS
) const;
291 void dump(const_iterator I
) const;
296 template <typename DerivedT
, typename RetT
= void> class BuilderBase
;
299 friend class AllocaSlices::SliceBuilder
;
301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
302 /// Handle to alloca instruction to simplify method interfaces.
306 /// The instruction responsible for this alloca not having a known set
309 /// When an instruction (potentially) escapes the pointer to the alloca, we
310 /// store a pointer to that here and abort trying to form slices of the
311 /// alloca. This will be null if the alloca slices are analyzed successfully.
312 Instruction
*PointerEscapingInstr
;
314 /// The slices of the alloca.
316 /// We store a vector of the slices formed by uses of the alloca here. This
317 /// vector is sorted by increasing begin offset, and then the unsplittable
318 /// slices before the splittable ones. See the Slice inner class for more
320 SmallVector
<Slice
, 8> Slices
;
322 /// Instructions which will become dead if we rewrite the alloca.
324 /// Note that these are not separated by slice. This is because we expect an
325 /// alloca to be completely rewritten or not rewritten at all. If rewritten,
326 /// all these instructions can simply be removed and replaced with undef as
327 /// they come from outside of the allocated space.
328 SmallVector
<Instruction
*, 8> DeadUsers
;
330 /// Uses which will become dead if can promote the alloca.
331 SmallVector
<Use
*, 8> DeadUseIfPromotable
;
333 /// Operands which will become dead if we rewrite the alloca.
335 /// These are operands that in their particular use can be replaced with
336 /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
337 /// to PHI nodes and the like. They aren't entirely dead (there might be
338 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
339 /// want to swap this particular input for undef to simplify the use lists of
341 SmallVector
<Use
*, 8> DeadOperands
;
344 /// A partition of the slices.
346 /// An ephemeral representation for a range of slices which can be viewed as
347 /// a partition of the alloca. This range represents a span of the alloca's
348 /// memory which cannot be split, and provides access to all of the slices
349 /// overlapping some part of the partition.
351 /// Objects of this type are produced by traversing the alloca's slices, but
352 /// are only ephemeral and not persistent.
353 class llvm::sroa::Partition
{
355 friend class AllocaSlices
;
356 friend class AllocaSlices::partition_iterator
;
358 using iterator
= AllocaSlices::iterator
;
360 /// The beginning and ending offsets of the alloca for this
362 uint64_t BeginOffset
= 0, EndOffset
= 0;
364 /// The start and end iterators of this partition.
367 /// A collection of split slice tails overlapping the partition.
368 SmallVector
<Slice
*, 4> SplitTails
;
370 /// Raw constructor builds an empty partition starting and ending at
371 /// the given iterator.
372 Partition(iterator SI
) : SI(SI
), SJ(SI
) {}
375 /// The start offset of this partition.
377 /// All of the contained slices start at or after this offset.
378 uint64_t beginOffset() const { return BeginOffset
; }
380 /// The end offset of this partition.
382 /// All of the contained slices end at or before this offset.
383 uint64_t endOffset() const { return EndOffset
; }
385 /// The size of the partition.
387 /// Note that this can never be zero.
388 uint64_t size() const {
389 assert(BeginOffset
< EndOffset
&& "Partitions must span some bytes!");
390 return EndOffset
- BeginOffset
;
393 /// Test whether this partition contains no slices, and merely spans
394 /// a region occupied by split slices.
395 bool empty() const { return SI
== SJ
; }
397 /// \name Iterate slices that start within the partition.
398 /// These may be splittable or unsplittable. They have a begin offset >= the
399 /// partition begin offset.
401 // FIXME: We should probably define a "concat_iterator" helper and use that
402 // to stitch together pointee_iterators over the split tails and the
403 // contiguous iterators of the partition. That would give a much nicer
404 // interface here. We could then additionally expose filtered iterators for
405 // split, unsplit, and unsplittable splices based on the usage patterns.
406 iterator
begin() const { return SI
; }
407 iterator
end() const { return SJ
; }
410 /// Get the sequence of split slice tails.
412 /// These tails are of slices which start before this partition but are
413 /// split and overlap into the partition. We accumulate these while forming
415 ArrayRef
<Slice
*> splitSliceTails() const { return SplitTails
; }
418 /// An iterator over partitions of the alloca's slices.
420 /// This iterator implements the core algorithm for partitioning the alloca's
421 /// slices. It is a forward iterator as we don't support backtracking for
422 /// efficiency reasons, and re-use a single storage area to maintain the
423 /// current set of split slices.
425 /// It is templated on the slice iterator type to use so that it can operate
426 /// with either const or non-const slice iterators.
427 class AllocaSlices::partition_iterator
428 : public iterator_facade_base
<partition_iterator
, std::forward_iterator_tag
,
430 friend class AllocaSlices
;
432 /// Most of the state for walking the partitions is held in a class
433 /// with a nice interface for examining them.
436 /// We need to keep the end of the slices to know when to stop.
437 AllocaSlices::iterator SE
;
439 /// We also need to keep track of the maximum split end offset seen.
440 /// FIXME: Do we really?
441 uint64_t MaxSplitSliceEndOffset
= 0;
443 /// Sets the partition to be empty at given iterator, and sets the
445 partition_iterator(AllocaSlices::iterator SI
, AllocaSlices::iterator SE
)
447 // If not already at the end, advance our state to form the initial
453 /// Advance the iterator to the next partition.
455 /// Requires that the iterator not be at the end of the slices.
457 assert((P
.SI
!= SE
|| !P
.SplitTails
.empty()) &&
458 "Cannot advance past the end of the slices!");
460 // Clear out any split uses which have ended.
461 if (!P
.SplitTails
.empty()) {
462 if (P
.EndOffset
>= MaxSplitSliceEndOffset
) {
463 // If we've finished all splits, this is easy.
464 P
.SplitTails
.clear();
465 MaxSplitSliceEndOffset
= 0;
467 // Remove the uses which have ended in the prior partition. This
468 // cannot change the max split slice end because we just checked that
469 // the prior partition ended prior to that max.
470 llvm::erase_if(P
.SplitTails
,
471 [&](Slice
*S
) { return S
->endOffset() <= P
.EndOffset
; });
472 assert(llvm::any_of(P
.SplitTails
,
474 return S
->endOffset() == MaxSplitSliceEndOffset
;
476 "Could not find the current max split slice offset!");
477 assert(llvm::all_of(P
.SplitTails
,
479 return S
->endOffset() <= MaxSplitSliceEndOffset
;
481 "Max split slice end offset is not actually the max!");
485 // If P.SI is already at the end, then we've cleared the split tail and
486 // now have an end iterator.
488 assert(P
.SplitTails
.empty() && "Failed to clear the split slices!");
492 // If we had a non-empty partition previously, set up the state for
493 // subsequent partitions.
495 // Accumulate all the splittable slices which started in the old
496 // partition into the split list.
498 if (S
.isSplittable() && S
.endOffset() > P
.EndOffset
) {
499 P
.SplitTails
.push_back(&S
);
500 MaxSplitSliceEndOffset
=
501 std::max(S
.endOffset(), MaxSplitSliceEndOffset
);
504 // Start from the end of the previous partition.
507 // If P.SI is now at the end, we at most have a tail of split slices.
509 P
.BeginOffset
= P
.EndOffset
;
510 P
.EndOffset
= MaxSplitSliceEndOffset
;
514 // If the we have split slices and the next slice is after a gap and is
515 // not splittable immediately form an empty partition for the split
516 // slices up until the next slice begins.
517 if (!P
.SplitTails
.empty() && P
.SI
->beginOffset() != P
.EndOffset
&&
518 !P
.SI
->isSplittable()) {
519 P
.BeginOffset
= P
.EndOffset
;
520 P
.EndOffset
= P
.SI
->beginOffset();
525 // OK, we need to consume new slices. Set the end offset based on the
526 // current slice, and step SJ past it. The beginning offset of the
527 // partition is the beginning offset of the next slice unless we have
528 // pre-existing split slices that are continuing, in which case we begin
529 // at the prior end offset.
530 P
.BeginOffset
= P
.SplitTails
.empty() ? P
.SI
->beginOffset() : P
.EndOffset
;
531 P
.EndOffset
= P
.SI
->endOffset();
534 // There are two strategies to form a partition based on whether the
535 // partition starts with an unsplittable slice or a splittable slice.
536 if (!P
.SI
->isSplittable()) {
537 // When we're forming an unsplittable region, it must always start at
538 // the first slice and will extend through its end.
539 assert(P
.BeginOffset
== P
.SI
->beginOffset());
541 // Form a partition including all of the overlapping slices with this
542 // unsplittable slice.
543 while (P
.SJ
!= SE
&& P
.SJ
->beginOffset() < P
.EndOffset
) {
544 if (!P
.SJ
->isSplittable())
545 P
.EndOffset
= std::max(P
.EndOffset
, P
.SJ
->endOffset());
549 // We have a partition across a set of overlapping unsplittable
554 // If we're starting with a splittable slice, then we need to form
555 // a synthetic partition spanning it and any other overlapping splittable
557 assert(P
.SI
->isSplittable() && "Forming a splittable partition!");
559 // Collect all of the overlapping splittable slices.
560 while (P
.SJ
!= SE
&& P
.SJ
->beginOffset() < P
.EndOffset
&&
561 P
.SJ
->isSplittable()) {
562 P
.EndOffset
= std::max(P
.EndOffset
, P
.SJ
->endOffset());
566 // Back upiP.EndOffset if we ended the span early when encountering an
567 // unsplittable slice. This synthesizes the early end offset of
568 // a partition spanning only splittable slices.
569 if (P
.SJ
!= SE
&& P
.SJ
->beginOffset() < P
.EndOffset
) {
570 assert(!P
.SJ
->isSplittable());
571 P
.EndOffset
= P
.SJ
->beginOffset();
576 bool operator==(const partition_iterator
&RHS
) const {
577 assert(SE
== RHS
.SE
&&
578 "End iterators don't match between compared partition iterators!");
580 // The observed positions of partitions is marked by the P.SI iterator and
581 // the emptiness of the split slices. The latter is only relevant when
582 // P.SI == SE, as the end iterator will additionally have an empty split
583 // slices list, but the prior may have the same P.SI and a tail of split
585 if (P
.SI
== RHS
.P
.SI
&& P
.SplitTails
.empty() == RHS
.P
.SplitTails
.empty()) {
586 assert(P
.SJ
== RHS
.P
.SJ
&&
587 "Same set of slices formed two different sized partitions!");
588 assert(P
.SplitTails
.size() == RHS
.P
.SplitTails
.size() &&
589 "Same slice position with differently sized non-empty split "
596 partition_iterator
&operator++() {
601 Partition
&operator*() { return P
; }
604 /// A forward range over the partitions of the alloca's slices.
606 /// This accesses an iterator range over the partitions of the alloca's
607 /// slices. It computes these partitions on the fly based on the overlapping
608 /// offsets of the slices and the ability to split them. It will visit "empty"
609 /// partitions to cover regions of the alloca only accessed via split
611 iterator_range
<AllocaSlices::partition_iterator
> AllocaSlices::partitions() {
612 return make_range(partition_iterator(begin(), end()),
613 partition_iterator(end(), end()));
616 static Value
*foldSelectInst(SelectInst
&SI
) {
617 // If the condition being selected on is a constant or the same value is
618 // being selected between, fold the select. Yes this does (rarely) happen
620 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(SI
.getCondition()))
621 return SI
.getOperand(1 + CI
->isZero());
622 if (SI
.getOperand(1) == SI
.getOperand(2))
623 return SI
.getOperand(1);
628 /// A helper that folds a PHI node or a select.
629 static Value
*foldPHINodeOrSelectInst(Instruction
&I
) {
630 if (PHINode
*PN
= dyn_cast
<PHINode
>(&I
)) {
631 // If PN merges together the same value, return that value.
632 return PN
->hasConstantValue();
634 return foldSelectInst(cast
<SelectInst
>(I
));
637 /// Builder for the alloca slices.
639 /// This class builds a set of alloca slices by recursively visiting the uses
640 /// of an alloca and making a slice for each load and store at each offset.
641 class AllocaSlices::SliceBuilder
: public PtrUseVisitor
<SliceBuilder
> {
642 friend class PtrUseVisitor
<SliceBuilder
>;
643 friend class InstVisitor
<SliceBuilder
>;
645 using Base
= PtrUseVisitor
<SliceBuilder
>;
647 const uint64_t AllocSize
;
650 SmallDenseMap
<Instruction
*, unsigned> MemTransferSliceMap
;
651 SmallDenseMap
<Instruction
*, uint64_t> PHIOrSelectSizes
;
653 /// Set to de-duplicate dead instructions found in the use walk.
654 SmallPtrSet
<Instruction
*, 4> VisitedDeadInsts
;
657 SliceBuilder(const DataLayout
&DL
, AllocaInst
&AI
, AllocaSlices
&AS
)
658 : PtrUseVisitor
<SliceBuilder
>(DL
),
659 AllocSize(DL
.getTypeAllocSize(AI
.getAllocatedType()).getFixedSize()),
663 void markAsDead(Instruction
&I
) {
664 if (VisitedDeadInsts
.insert(&I
).second
)
665 AS
.DeadUsers
.push_back(&I
);
668 void insertUse(Instruction
&I
, const APInt
&Offset
, uint64_t Size
,
669 bool IsSplittable
= false) {
670 // Completely skip uses which have a zero size or start either before or
671 // past the end of the allocation.
672 if (Size
== 0 || Offset
.uge(AllocSize
)) {
673 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size
<< " byte use @"
675 << " which has zero size or starts outside of the "
676 << AllocSize
<< " byte alloca:\n"
677 << " alloca: " << AS
.AI
<< "\n"
678 << " use: " << I
<< "\n");
679 return markAsDead(I
);
682 uint64_t BeginOffset
= Offset
.getZExtValue();
683 uint64_t EndOffset
= BeginOffset
+ Size
;
685 // Clamp the end offset to the end of the allocation. Note that this is
686 // formulated to handle even the case where "BeginOffset + Size" overflows.
687 // This may appear superficially to be something we could ignore entirely,
688 // but that is not so! There may be widened loads or PHI-node uses where
689 // some instructions are dead but not others. We can't completely ignore
690 // them, and so have to record at least the information here.
691 assert(AllocSize
>= BeginOffset
); // Established above.
692 if (Size
> AllocSize
- BeginOffset
) {
693 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size
<< " byte use @"
694 << Offset
<< " to remain within the " << AllocSize
696 << " alloca: " << AS
.AI
<< "\n"
697 << " use: " << I
<< "\n");
698 EndOffset
= AllocSize
;
701 AS
.Slices
.push_back(Slice(BeginOffset
, EndOffset
, U
, IsSplittable
));
704 void visitBitCastInst(BitCastInst
&BC
) {
706 return markAsDead(BC
);
708 return Base::visitBitCastInst(BC
);
711 void visitAddrSpaceCastInst(AddrSpaceCastInst
&ASC
) {
713 return markAsDead(ASC
);
715 return Base::visitAddrSpaceCastInst(ASC
);
718 void visitGetElementPtrInst(GetElementPtrInst
&GEPI
) {
719 if (GEPI
.use_empty())
720 return markAsDead(GEPI
);
722 if (SROAStrictInbounds
&& GEPI
.isInBounds()) {
723 // FIXME: This is a manually un-factored variant of the basic code inside
724 // of GEPs with checking of the inbounds invariant specified in the
725 // langref in a very strict sense. If we ever want to enable
726 // SROAStrictInbounds, this code should be factored cleanly into
727 // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
728 // by writing out the code here where we have the underlying allocation
729 // size readily available.
730 APInt GEPOffset
= Offset
;
731 const DataLayout
&DL
= GEPI
.getModule()->getDataLayout();
732 for (gep_type_iterator GTI
= gep_type_begin(GEPI
),
733 GTE
= gep_type_end(GEPI
);
735 ConstantInt
*OpC
= dyn_cast
<ConstantInt
>(GTI
.getOperand());
739 // Handle a struct index, which adds its field offset to the pointer.
740 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
741 unsigned ElementIdx
= OpC
->getZExtValue();
742 const StructLayout
*SL
= DL
.getStructLayout(STy
);
744 APInt(Offset
.getBitWidth(), SL
->getElementOffset(ElementIdx
));
746 // For array or vector indices, scale the index by the size of the
748 APInt Index
= OpC
->getValue().sextOrTrunc(Offset
.getBitWidth());
751 APInt(Offset
.getBitWidth(),
752 DL
.getTypeAllocSize(GTI
.getIndexedType()).getFixedSize());
755 // If this index has computed an intermediate pointer which is not
756 // inbounds, then the result of the GEP is a poison value and we can
757 // delete it and all uses.
758 if (GEPOffset
.ugt(AllocSize
))
759 return markAsDead(GEPI
);
763 return Base::visitGetElementPtrInst(GEPI
);
766 void handleLoadOrStore(Type
*Ty
, Instruction
&I
, const APInt
&Offset
,
767 uint64_t Size
, bool IsVolatile
) {
768 // We allow splitting of non-volatile loads and stores where the type is an
769 // integer type. These may be used to implement 'memcpy' or other "transfer
770 // of bits" patterns.
772 Ty
->isIntegerTy() && !IsVolatile
&& DL
.typeSizeEqualsStoreSize(Ty
);
774 insertUse(I
, Offset
, Size
, IsSplittable
);
777 void visitLoadInst(LoadInst
&LI
) {
778 assert((!LI
.isSimple() || LI
.getType()->isSingleValueType()) &&
779 "All simple FCA loads should have been pre-split");
782 return PI
.setAborted(&LI
);
784 if (LI
.isVolatile() &&
785 LI
.getPointerAddressSpace() != DL
.getAllocaAddrSpace())
786 return PI
.setAborted(&LI
);
788 if (isa
<ScalableVectorType
>(LI
.getType()))
789 return PI
.setAborted(&LI
);
791 uint64_t Size
= DL
.getTypeStoreSize(LI
.getType()).getFixedSize();
792 return handleLoadOrStore(LI
.getType(), LI
, Offset
, Size
, LI
.isVolatile());
795 void visitStoreInst(StoreInst
&SI
) {
796 Value
*ValOp
= SI
.getValueOperand();
798 return PI
.setEscapedAndAborted(&SI
);
800 return PI
.setAborted(&SI
);
802 if (SI
.isVolatile() &&
803 SI
.getPointerAddressSpace() != DL
.getAllocaAddrSpace())
804 return PI
.setAborted(&SI
);
806 if (isa
<ScalableVectorType
>(ValOp
->getType()))
807 return PI
.setAborted(&SI
);
809 uint64_t Size
= DL
.getTypeStoreSize(ValOp
->getType()).getFixedSize();
811 // If this memory access can be shown to *statically* extend outside the
812 // bounds of the allocation, it's behavior is undefined, so simply
813 // ignore it. Note that this is more strict than the generic clamping
814 // behavior of insertUse. We also try to handle cases which might run the
816 // FIXME: We should instead consider the pointer to have escaped if this
817 // function is being instrumented for addressing bugs or race conditions.
818 if (Size
> AllocSize
|| Offset
.ugt(AllocSize
- Size
)) {
819 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size
<< " byte store @"
820 << Offset
<< " which extends past the end of the "
821 << AllocSize
<< " byte alloca:\n"
822 << " alloca: " << AS
.AI
<< "\n"
823 << " use: " << SI
<< "\n");
824 return markAsDead(SI
);
827 assert((!SI
.isSimple() || ValOp
->getType()->isSingleValueType()) &&
828 "All simple FCA stores should have been pre-split");
829 handleLoadOrStore(ValOp
->getType(), SI
, Offset
, Size
, SI
.isVolatile());
832 void visitMemSetInst(MemSetInst
&II
) {
833 assert(II
.getRawDest() == *U
&& "Pointer use is not the destination?");
834 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(II
.getLength());
835 if ((Length
&& Length
->getValue() == 0) ||
836 (IsOffsetKnown
&& Offset
.uge(AllocSize
)))
837 // Zero-length mem transfer intrinsics can be ignored entirely.
838 return markAsDead(II
);
841 return PI
.setAborted(&II
);
843 // Don't replace this with a store with a different address space. TODO:
844 // Use a store with the casted new alloca?
845 if (II
.isVolatile() && II
.getDestAddressSpace() != DL
.getAllocaAddrSpace())
846 return PI
.setAborted(&II
);
848 insertUse(II
, Offset
, Length
? Length
->getLimitedValue()
849 : AllocSize
- Offset
.getLimitedValue(),
853 void visitMemTransferInst(MemTransferInst
&II
) {
854 ConstantInt
*Length
= dyn_cast
<ConstantInt
>(II
.getLength());
855 if (Length
&& Length
->getValue() == 0)
856 // Zero-length mem transfer intrinsics can be ignored entirely.
857 return markAsDead(II
);
859 // Because we can visit these intrinsics twice, also check to see if the
860 // first time marked this instruction as dead. If so, skip it.
861 if (VisitedDeadInsts
.count(&II
))
865 return PI
.setAborted(&II
);
867 // Don't replace this with a load/store with a different address space.
868 // TODO: Use a store with the casted new alloca?
869 if (II
.isVolatile() &&
870 (II
.getDestAddressSpace() != DL
.getAllocaAddrSpace() ||
871 II
.getSourceAddressSpace() != DL
.getAllocaAddrSpace()))
872 return PI
.setAborted(&II
);
874 // This side of the transfer is completely out-of-bounds, and so we can
875 // nuke the entire transfer. However, we also need to nuke the other side
876 // if already added to our partitions.
877 // FIXME: Yet another place we really should bypass this when
878 // instrumenting for ASan.
879 if (Offset
.uge(AllocSize
)) {
880 SmallDenseMap
<Instruction
*, unsigned>::iterator MTPI
=
881 MemTransferSliceMap
.find(&II
);
882 if (MTPI
!= MemTransferSliceMap
.end())
883 AS
.Slices
[MTPI
->second
].kill();
884 return markAsDead(II
);
887 uint64_t RawOffset
= Offset
.getLimitedValue();
888 uint64_t Size
= Length
? Length
->getLimitedValue() : AllocSize
- RawOffset
;
890 // Check for the special case where the same exact value is used for both
892 if (*U
== II
.getRawDest() && *U
== II
.getRawSource()) {
893 // For non-volatile transfers this is a no-op.
894 if (!II
.isVolatile())
895 return markAsDead(II
);
897 return insertUse(II
, Offset
, Size
, /*IsSplittable=*/false);
900 // If we have seen both source and destination for a mem transfer, then
901 // they both point to the same alloca.
903 SmallDenseMap
<Instruction
*, unsigned>::iterator MTPI
;
904 std::tie(MTPI
, Inserted
) =
905 MemTransferSliceMap
.insert(std::make_pair(&II
, AS
.Slices
.size()));
906 unsigned PrevIdx
= MTPI
->second
;
908 Slice
&PrevP
= AS
.Slices
[PrevIdx
];
910 // Check if the begin offsets match and this is a non-volatile transfer.
911 // In that case, we can completely elide the transfer.
912 if (!II
.isVolatile() && PrevP
.beginOffset() == RawOffset
) {
914 return markAsDead(II
);
917 // Otherwise we have an offset transfer within the same alloca. We can't
919 PrevP
.makeUnsplittable();
922 // Insert the use now that we've fixed up the splittable nature.
923 insertUse(II
, Offset
, Size
, /*IsSplittable=*/Inserted
&& Length
);
925 // Check that we ended up with a valid index in the map.
926 assert(AS
.Slices
[PrevIdx
].getUse()->getUser() == &II
&&
927 "Map index doesn't point back to a slice with this user.");
930 // Disable SRoA for any intrinsics except for lifetime invariants and
932 // FIXME: What about debug intrinsics? This matches old behavior, but
933 // doesn't make sense.
934 void visitIntrinsicInst(IntrinsicInst
&II
) {
935 if (II
.isDroppable()) {
936 AS
.DeadUseIfPromotable
.push_back(U
);
941 return PI
.setAborted(&II
);
943 if (II
.isLifetimeStartOrEnd()) {
944 ConstantInt
*Length
= cast
<ConstantInt
>(II
.getArgOperand(0));
945 uint64_t Size
= std::min(AllocSize
- Offset
.getLimitedValue(),
946 Length
->getLimitedValue());
947 insertUse(II
, Offset
, Size
, true);
951 if (II
.isLaunderOrStripInvariantGroup()) {
956 Base::visitIntrinsicInst(II
);
959 Instruction
*hasUnsafePHIOrSelectUse(Instruction
*Root
, uint64_t &Size
) {
960 // We consider any PHI or select that results in a direct load or store of
961 // the same offset to be a viable use for slicing purposes. These uses
962 // are considered unsplittable and the size is the maximum loaded or stored
964 SmallPtrSet
<Instruction
*, 4> Visited
;
965 SmallVector
<std::pair
<Instruction
*, Instruction
*>, 4> Uses
;
966 Visited
.insert(Root
);
967 Uses
.push_back(std::make_pair(cast
<Instruction
>(*U
), Root
));
968 const DataLayout
&DL
= Root
->getModule()->getDataLayout();
969 // If there are no loads or stores, the access is dead. We mark that as
970 // a size zero access.
973 Instruction
*I
, *UsedI
;
974 std::tie(UsedI
, I
) = Uses
.pop_back_val();
976 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
977 Size
= std::max(Size
,
978 DL
.getTypeStoreSize(LI
->getType()).getFixedSize());
981 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
982 Value
*Op
= SI
->getOperand(0);
985 Size
= std::max(Size
,
986 DL
.getTypeStoreSize(Op
->getType()).getFixedSize());
990 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
991 if (!GEP
->hasAllZeroIndices())
993 } else if (!isa
<BitCastInst
>(I
) && !isa
<PHINode
>(I
) &&
994 !isa
<SelectInst
>(I
) && !isa
<AddrSpaceCastInst
>(I
)) {
998 for (User
*U
: I
->users())
999 if (Visited
.insert(cast
<Instruction
>(U
)).second
)
1000 Uses
.push_back(std::make_pair(I
, cast
<Instruction
>(U
)));
1001 } while (!Uses
.empty());
1006 void visitPHINodeOrSelectInst(Instruction
&I
) {
1007 assert(isa
<PHINode
>(I
) || isa
<SelectInst
>(I
));
1009 return markAsDead(I
);
1011 // TODO: We could use SimplifyInstruction here to fold PHINodes and
1012 // SelectInsts. However, doing so requires to change the current
1013 // dead-operand-tracking mechanism. For instance, suppose neither loading
1014 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1015 // trap either. However, if we simply replace %U with undef using the
1016 // current dead-operand-tracking mechanism, "load (select undef, undef,
1017 // %other)" may trap because the select may return the first operand
1019 if (Value
*Result
= foldPHINodeOrSelectInst(I
)) {
1021 // If the result of the constant fold will be the pointer, recurse
1022 // through the PHI/select as if we had RAUW'ed it.
1025 // Otherwise the operand to the PHI/select is dead, and we can replace
1027 AS
.DeadOperands
.push_back(U
);
1033 return PI
.setAborted(&I
);
1035 // See if we already have computed info on this node.
1036 uint64_t &Size
= PHIOrSelectSizes
[&I
];
1038 // This is a new PHI/Select, check for an unsafe use of it.
1039 if (Instruction
*UnsafeI
= hasUnsafePHIOrSelectUse(&I
, Size
))
1040 return PI
.setAborted(UnsafeI
);
1043 // For PHI and select operands outside the alloca, we can't nuke the entire
1044 // phi or select -- the other side might still be relevant, so we special
1045 // case them here and use a separate structure to track the operands
1046 // themselves which should be replaced with undef.
1047 // FIXME: This should instead be escaped in the event we're instrumenting
1048 // for address sanitization.
1049 if (Offset
.uge(AllocSize
)) {
1050 AS
.DeadOperands
.push_back(U
);
1054 insertUse(I
, Offset
, Size
);
1057 void visitPHINode(PHINode
&PN
) { visitPHINodeOrSelectInst(PN
); }
1059 void visitSelectInst(SelectInst
&SI
) { visitPHINodeOrSelectInst(SI
); }
1061 /// Disable SROA entirely if there are unhandled users of the alloca.
1062 void visitInstruction(Instruction
&I
) { PI
.setAborted(&I
); }
1065 AllocaSlices::AllocaSlices(const DataLayout
&DL
, AllocaInst
&AI
)
1067 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1070 PointerEscapingInstr(nullptr) {
1071 SliceBuilder
PB(DL
, AI
, *this);
1072 SliceBuilder::PtrInfo PtrI
= PB
.visitPtr(AI
);
1073 if (PtrI
.isEscaped() || PtrI
.isAborted()) {
1074 // FIXME: We should sink the escape vs. abort info into the caller nicely,
1075 // possibly by just storing the PtrInfo in the AllocaSlices.
1076 PointerEscapingInstr
= PtrI
.getEscapingInst() ? PtrI
.getEscapingInst()
1077 : PtrI
.getAbortingInst();
1078 assert(PointerEscapingInstr
&& "Did not track a bad instruction");
1082 llvm::erase_if(Slices
, [](const Slice
&S
) { return S
.isDead(); });
1084 // Sort the uses. This arranges for the offsets to be in ascending order,
1085 // and the sizes to be in descending order.
1086 llvm::stable_sort(Slices
);
1089 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1091 void AllocaSlices::print(raw_ostream
&OS
, const_iterator I
,
1092 StringRef Indent
) const {
1093 printSlice(OS
, I
, Indent
);
1095 printUse(OS
, I
, Indent
);
1098 void AllocaSlices::printSlice(raw_ostream
&OS
, const_iterator I
,
1099 StringRef Indent
) const {
1100 OS
<< Indent
<< "[" << I
->beginOffset() << "," << I
->endOffset() << ")"
1101 << " slice #" << (I
- begin())
1102 << (I
->isSplittable() ? " (splittable)" : "");
1105 void AllocaSlices::printUse(raw_ostream
&OS
, const_iterator I
,
1106 StringRef Indent
) const {
1107 OS
<< Indent
<< " used by: " << *I
->getUse()->getUser() << "\n";
1110 void AllocaSlices::print(raw_ostream
&OS
) const {
1111 if (PointerEscapingInstr
) {
1112 OS
<< "Can't analyze slices for alloca: " << AI
<< "\n"
1113 << " A pointer to this alloca escaped by:\n"
1114 << " " << *PointerEscapingInstr
<< "\n";
1118 OS
<< "Slices of alloca: " << AI
<< "\n";
1119 for (const_iterator I
= begin(), E
= end(); I
!= E
; ++I
)
1123 LLVM_DUMP_METHOD
void AllocaSlices::dump(const_iterator I
) const {
1126 LLVM_DUMP_METHOD
void AllocaSlices::dump() const { print(dbgs()); }
1128 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1130 /// Walk the range of a partitioning looking for a common type to cover this
1131 /// sequence of slices.
1132 static std::pair
<Type
*, IntegerType
*>
1133 findCommonType(AllocaSlices::const_iterator B
, AllocaSlices::const_iterator E
,
1134 uint64_t EndOffset
) {
1136 bool TyIsCommon
= true;
1137 IntegerType
*ITy
= nullptr;
1139 // Note that we need to look at *every* alloca slice's Use to ensure we
1140 // always get consistent results regardless of the order of slices.
1141 for (AllocaSlices::const_iterator I
= B
; I
!= E
; ++I
) {
1142 Use
*U
= I
->getUse();
1143 if (isa
<IntrinsicInst
>(*U
->getUser()))
1145 if (I
->beginOffset() != B
->beginOffset() || I
->endOffset() != EndOffset
)
1148 Type
*UserTy
= nullptr;
1149 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
->getUser())) {
1150 UserTy
= LI
->getType();
1151 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
1152 UserTy
= SI
->getValueOperand()->getType();
1155 if (IntegerType
*UserITy
= dyn_cast_or_null
<IntegerType
>(UserTy
)) {
1156 // If the type is larger than the partition, skip it. We only encounter
1157 // this for split integer operations where we want to use the type of the
1158 // entity causing the split. Also skip if the type is not a byte width
1160 if (UserITy
->getBitWidth() % 8 != 0 ||
1161 UserITy
->getBitWidth() / 8 > (EndOffset
- B
->beginOffset()))
1164 // Track the largest bitwidth integer type used in this way in case there
1165 // is no common type.
1166 if (!ITy
|| ITy
->getBitWidth() < UserITy
->getBitWidth())
1170 // To avoid depending on the order of slices, Ty and TyIsCommon must not
1171 // depend on types skipped above.
1172 if (!UserTy
|| (Ty
&& Ty
!= UserTy
))
1173 TyIsCommon
= false; // Give up on anything but an iN type.
1178 return {TyIsCommon
? Ty
: nullptr, ITy
};
1181 /// PHI instructions that use an alloca and are subsequently loaded can be
1182 /// rewritten to load both input pointers in the pred blocks and then PHI the
1183 /// results, allowing the load of the alloca to be promoted.
1185 /// %P2 = phi [i32* %Alloca, i32* %Other]
1186 /// %V = load i32* %P2
1188 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1190 /// %V2 = load i32* %Other
1192 /// %V = phi [i32 %V1, i32 %V2]
1194 /// We can do this to a select if its only uses are loads and if the operands
1195 /// to the select can be loaded unconditionally.
1197 /// FIXME: This should be hoisted into a generic utility, likely in
1198 /// Transforms/Util/Local.h
1199 static bool isSafePHIToSpeculate(PHINode
&PN
) {
1200 const DataLayout
&DL
= PN
.getModule()->getDataLayout();
1202 // For now, we can only do this promotion if the load is in the same block
1203 // as the PHI, and if there are no stores between the phi and load.
1204 // TODO: Allow recursive phi users.
1205 // TODO: Allow stores.
1206 BasicBlock
*BB
= PN
.getParent();
1208 uint64_t APWidth
= DL
.getIndexTypeSizeInBits(PN
.getType());
1209 APInt
MaxSize(APWidth
, 0);
1210 bool HaveLoad
= false;
1211 for (User
*U
: PN
.users()) {
1212 LoadInst
*LI
= dyn_cast
<LoadInst
>(U
);
1213 if (!LI
|| !LI
->isSimple())
1216 // For now we only allow loads in the same block as the PHI. This is
1217 // a common case that happens when instcombine merges two loads through
1219 if (LI
->getParent() != BB
)
1222 // Ensure that there are no instructions between the PHI and the load that
1224 for (BasicBlock::iterator
BBI(PN
); &*BBI
!= LI
; ++BBI
)
1225 if (BBI
->mayWriteToMemory())
1228 uint64_t Size
= DL
.getTypeStoreSize(LI
->getType()).getFixedSize();
1229 MaxAlign
= std::max(MaxAlign
, LI
->getAlign());
1230 MaxSize
= MaxSize
.ult(Size
) ? APInt(APWidth
, Size
) : MaxSize
;
1237 // We can only transform this if it is safe to push the loads into the
1238 // predecessor blocks. The only thing to watch out for is that we can't put
1239 // a possibly trapping load in the predecessor if it is a critical edge.
1240 for (unsigned Idx
= 0, Num
= PN
.getNumIncomingValues(); Idx
!= Num
; ++Idx
) {
1241 Instruction
*TI
= PN
.getIncomingBlock(Idx
)->getTerminator();
1242 Value
*InVal
= PN
.getIncomingValue(Idx
);
1244 // If the value is produced by the terminator of the predecessor (an
1245 // invoke) or it has side-effects, there is no valid place to put a load
1246 // in the predecessor.
1247 if (TI
== InVal
|| TI
->mayHaveSideEffects())
1250 // If the predecessor has a single successor, then the edge isn't
1252 if (TI
->getNumSuccessors() == 1)
1255 // If this pointer is always safe to load, or if we can prove that there
1256 // is already a load in the block, then we can move the load to the pred
1258 if (isSafeToLoadUnconditionally(InVal
, MaxAlign
, MaxSize
, DL
, TI
))
1267 static void speculatePHINodeLoads(PHINode
&PN
) {
1268 LLVM_DEBUG(dbgs() << " original: " << PN
<< "\n");
1270 LoadInst
*SomeLoad
= cast
<LoadInst
>(PN
.user_back());
1271 Type
*LoadTy
= SomeLoad
->getType();
1272 IRBuilderTy
PHIBuilder(&PN
);
1273 PHINode
*NewPN
= PHIBuilder
.CreatePHI(LoadTy
, PN
.getNumIncomingValues(),
1274 PN
.getName() + ".sroa.speculated");
1276 // Get the AA tags and alignment to use from one of the loads. It does not
1277 // matter which one we get and if any differ.
1279 SomeLoad
->getAAMetadata(AATags
);
1280 Align Alignment
= SomeLoad
->getAlign();
1282 // Rewrite all loads of the PN to use the new PHI.
1283 while (!PN
.use_empty()) {
1284 LoadInst
*LI
= cast
<LoadInst
>(PN
.user_back());
1285 LI
->replaceAllUsesWith(NewPN
);
1286 LI
->eraseFromParent();
1289 // Inject loads into all of the pred blocks.
1290 DenseMap
<BasicBlock
*, Value
*> InjectedLoads
;
1291 for (unsigned Idx
= 0, Num
= PN
.getNumIncomingValues(); Idx
!= Num
; ++Idx
) {
1292 BasicBlock
*Pred
= PN
.getIncomingBlock(Idx
);
1293 Value
*InVal
= PN
.getIncomingValue(Idx
);
1295 // A PHI node is allowed to have multiple (duplicated) entries for the same
1296 // basic block, as long as the value is the same. So if we already injected
1297 // a load in the predecessor, then we should reuse the same load for all
1298 // duplicated entries.
1299 if (Value
* V
= InjectedLoads
.lookup(Pred
)) {
1300 NewPN
->addIncoming(V
, Pred
);
1304 Instruction
*TI
= Pred
->getTerminator();
1305 IRBuilderTy
PredBuilder(TI
);
1307 LoadInst
*Load
= PredBuilder
.CreateAlignedLoad(
1308 LoadTy
, InVal
, Alignment
,
1309 (PN
.getName() + ".sroa.speculate.load." + Pred
->getName()));
1310 ++NumLoadsSpeculated
;
1312 Load
->setAAMetadata(AATags
);
1313 NewPN
->addIncoming(Load
, Pred
);
1314 InjectedLoads
[Pred
] = Load
;
1317 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN
<< "\n");
1318 PN
.eraseFromParent();
1321 /// Select instructions that use an alloca and are subsequently loaded can be
1322 /// rewritten to load both input pointers and then select between the result,
1323 /// allowing the load of the alloca to be promoted.
1325 /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1326 /// %V = load i32* %P2
1328 /// %V1 = load i32* %Alloca -> will be mem2reg'd
1329 /// %V2 = load i32* %Other
1330 /// %V = select i1 %cond, i32 %V1, i32 %V2
1332 /// We can do this to a select if its only uses are loads and if the operand
1333 /// to the select can be loaded unconditionally. If found an intervening bitcast
1334 /// with a single use of the load, allow the promotion.
1335 static bool isSafeSelectToSpeculate(SelectInst
&SI
) {
1336 Value
*TValue
= SI
.getTrueValue();
1337 Value
*FValue
= SI
.getFalseValue();
1338 const DataLayout
&DL
= SI
.getModule()->getDataLayout();
1340 for (User
*U
: SI
.users()) {
1342 BitCastInst
*BC
= dyn_cast
<BitCastInst
>(U
);
1343 if (BC
&& BC
->hasOneUse())
1344 LI
= dyn_cast
<LoadInst
>(*BC
->user_begin());
1346 LI
= dyn_cast
<LoadInst
>(U
);
1348 if (!LI
|| !LI
->isSimple())
1351 // Both operands to the select need to be dereferenceable, either
1352 // absolutely (e.g. allocas) or at this point because we can see other
1354 if (!isSafeToLoadUnconditionally(TValue
, LI
->getType(),
1355 LI
->getAlign(), DL
, LI
))
1357 if (!isSafeToLoadUnconditionally(FValue
, LI
->getType(),
1358 LI
->getAlign(), DL
, LI
))
1365 static void speculateSelectInstLoads(SelectInst
&SI
) {
1366 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
1368 IRBuilderTy
IRB(&SI
);
1369 Value
*TV
= SI
.getTrueValue();
1370 Value
*FV
= SI
.getFalseValue();
1371 // Replace the loads of the select with a select of two loads.
1372 while (!SI
.use_empty()) {
1374 BitCastInst
*BC
= dyn_cast
<BitCastInst
>(SI
.user_back());
1376 assert(BC
->hasOneUse() && "Bitcast should have a single use.");
1377 LI
= cast
<LoadInst
>(BC
->user_back());
1379 LI
= cast
<LoadInst
>(SI
.user_back());
1382 assert(LI
->isSimple() && "We only speculate simple loads");
1384 IRB
.SetInsertPoint(LI
);
1386 BC
? IRB
.CreateBitCast(TV
, BC
->getType(), TV
->getName() + ".sroa.cast")
1389 BC
? IRB
.CreateBitCast(FV
, BC
->getType(), FV
->getName() + ".sroa.cast")
1391 LoadInst
*TL
= IRB
.CreateLoad(LI
->getType(), NewTV
,
1392 LI
->getName() + ".sroa.speculate.load.true");
1393 LoadInst
*FL
= IRB
.CreateLoad(LI
->getType(), NewFV
,
1394 LI
->getName() + ".sroa.speculate.load.false");
1395 NumLoadsSpeculated
+= 2;
1397 // Transfer alignment and AA info if present.
1398 TL
->setAlignment(LI
->getAlign());
1399 FL
->setAlignment(LI
->getAlign());
1402 LI
->getAAMetadata(Tags
);
1404 TL
->setAAMetadata(Tags
);
1405 FL
->setAAMetadata(Tags
);
1408 Value
*V
= IRB
.CreateSelect(SI
.getCondition(), TL
, FL
,
1409 LI
->getName() + ".sroa.speculated");
1411 LLVM_DEBUG(dbgs() << " speculated to: " << *V
<< "\n");
1412 LI
->replaceAllUsesWith(V
);
1413 LI
->eraseFromParent();
1415 BC
->eraseFromParent();
1417 SI
.eraseFromParent();
1420 /// Build a GEP out of a base pointer and indices.
1422 /// This will return the BasePtr if that is valid, or build a new GEP
1423 /// instruction using the IRBuilder if GEP-ing is needed.
1424 static Value
*buildGEP(IRBuilderTy
&IRB
, Value
*BasePtr
,
1425 SmallVectorImpl
<Value
*> &Indices
,
1426 const Twine
&NamePrefix
) {
1427 if (Indices
.empty())
1430 // A single zero index is a no-op, so check for this and avoid building a GEP
1432 if (Indices
.size() == 1 && cast
<ConstantInt
>(Indices
.back())->isZero())
1435 return IRB
.CreateInBoundsGEP(BasePtr
->getType()->getPointerElementType(),
1436 BasePtr
, Indices
, NamePrefix
+ "sroa_idx");
1439 /// Get a natural GEP off of the BasePtr walking through Ty toward
1440 /// TargetTy without changing the offset of the pointer.
1442 /// This routine assumes we've already established a properly offset GEP with
1443 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1444 /// zero-indices down through type layers until we find one the same as
1445 /// TargetTy. If we can't find one with the same type, we at least try to use
1446 /// one with the same size. If none of that works, we just produce the GEP as
1447 /// indicated by Indices to have the correct offset.
1448 static Value
*getNaturalGEPWithType(IRBuilderTy
&IRB
, const DataLayout
&DL
,
1449 Value
*BasePtr
, Type
*Ty
, Type
*TargetTy
,
1450 SmallVectorImpl
<Value
*> &Indices
,
1451 const Twine
&NamePrefix
) {
1453 return buildGEP(IRB
, BasePtr
, Indices
, NamePrefix
);
1455 // Offset size to use for the indices.
1456 unsigned OffsetSize
= DL
.getIndexTypeSizeInBits(BasePtr
->getType());
1458 // See if we can descend into a struct and locate a field with the correct
1460 unsigned NumLayers
= 0;
1461 Type
*ElementTy
= Ty
;
1463 if (ElementTy
->isPointerTy())
1466 if (ArrayType
*ArrayTy
= dyn_cast
<ArrayType
>(ElementTy
)) {
1467 ElementTy
= ArrayTy
->getElementType();
1468 Indices
.push_back(IRB
.getIntN(OffsetSize
, 0));
1469 } else if (VectorType
*VectorTy
= dyn_cast
<VectorType
>(ElementTy
)) {
1470 ElementTy
= VectorTy
->getElementType();
1471 Indices
.push_back(IRB
.getInt32(0));
1472 } else if (StructType
*STy
= dyn_cast
<StructType
>(ElementTy
)) {
1473 if (STy
->element_begin() == STy
->element_end())
1474 break; // Nothing left to descend into.
1475 ElementTy
= *STy
->element_begin();
1476 Indices
.push_back(IRB
.getInt32(0));
1481 } while (ElementTy
!= TargetTy
);
1482 if (ElementTy
!= TargetTy
)
1483 Indices
.erase(Indices
.end() - NumLayers
, Indices
.end());
1485 return buildGEP(IRB
, BasePtr
, Indices
, NamePrefix
);
1488 /// Recursively compute indices for a natural GEP.
1490 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1491 /// element types adding appropriate indices for the GEP.
1492 static Value
*getNaturalGEPRecursively(IRBuilderTy
&IRB
, const DataLayout
&DL
,
1493 Value
*Ptr
, Type
*Ty
, APInt
&Offset
,
1495 SmallVectorImpl
<Value
*> &Indices
,
1496 const Twine
&NamePrefix
) {
1498 return getNaturalGEPWithType(IRB
, DL
, Ptr
, Ty
, TargetTy
, Indices
,
1501 // We can't recurse through pointer types.
1502 if (Ty
->isPointerTy())
1505 // We try to analyze GEPs over vectors here, but note that these GEPs are
1506 // extremely poorly defined currently. The long-term goal is to remove GEPing
1507 // over a vector from the IR completely.
1508 if (VectorType
*VecTy
= dyn_cast
<VectorType
>(Ty
)) {
1509 unsigned ElementSizeInBits
=
1510 DL
.getTypeSizeInBits(VecTy
->getScalarType()).getFixedSize();
1511 if (ElementSizeInBits
% 8 != 0) {
1512 // GEPs over non-multiple of 8 size vector elements are invalid.
1515 APInt
ElementSize(Offset
.getBitWidth(), ElementSizeInBits
/ 8);
1516 APInt NumSkippedElements
= Offset
.sdiv(ElementSize
);
1517 if (NumSkippedElements
.ugt(cast
<FixedVectorType
>(VecTy
)->getNumElements()))
1519 Offset
-= NumSkippedElements
* ElementSize
;
1520 Indices
.push_back(IRB
.getInt(NumSkippedElements
));
1521 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, VecTy
->getElementType(),
1522 Offset
, TargetTy
, Indices
, NamePrefix
);
1525 if (ArrayType
*ArrTy
= dyn_cast
<ArrayType
>(Ty
)) {
1526 Type
*ElementTy
= ArrTy
->getElementType();
1527 APInt
ElementSize(Offset
.getBitWidth(),
1528 DL
.getTypeAllocSize(ElementTy
).getFixedSize());
1529 APInt NumSkippedElements
= Offset
.sdiv(ElementSize
);
1530 if (NumSkippedElements
.ugt(ArrTy
->getNumElements()))
1533 Offset
-= NumSkippedElements
* ElementSize
;
1534 Indices
.push_back(IRB
.getInt(NumSkippedElements
));
1535 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, ElementTy
, Offset
, TargetTy
,
1536 Indices
, NamePrefix
);
1539 StructType
*STy
= dyn_cast
<StructType
>(Ty
);
1543 const StructLayout
*SL
= DL
.getStructLayout(STy
);
1544 uint64_t StructOffset
= Offset
.getZExtValue();
1545 if (StructOffset
>= SL
->getSizeInBytes())
1547 unsigned Index
= SL
->getElementContainingOffset(StructOffset
);
1548 Offset
-= APInt(Offset
.getBitWidth(), SL
->getElementOffset(Index
));
1549 Type
*ElementTy
= STy
->getElementType(Index
);
1550 if (Offset
.uge(DL
.getTypeAllocSize(ElementTy
).getFixedSize()))
1551 return nullptr; // The offset points into alignment padding.
1553 Indices
.push_back(IRB
.getInt32(Index
));
1554 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, ElementTy
, Offset
, TargetTy
,
1555 Indices
, NamePrefix
);
1558 /// Get a natural GEP from a base pointer to a particular offset and
1559 /// resulting in a particular type.
1561 /// The goal is to produce a "natural" looking GEP that works with the existing
1562 /// composite types to arrive at the appropriate offset and element type for
1563 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1564 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1565 /// Indices, and setting Ty to the result subtype.
1567 /// If no natural GEP can be constructed, this function returns null.
1568 static Value
*getNaturalGEPWithOffset(IRBuilderTy
&IRB
, const DataLayout
&DL
,
1569 Value
*Ptr
, APInt Offset
, Type
*TargetTy
,
1570 SmallVectorImpl
<Value
*> &Indices
,
1571 const Twine
&NamePrefix
) {
1572 PointerType
*Ty
= cast
<PointerType
>(Ptr
->getType());
1574 // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1576 if (Ty
== IRB
.getInt8PtrTy(Ty
->getAddressSpace()) && TargetTy
->isIntegerTy(8))
1579 Type
*ElementTy
= Ty
->getElementType();
1580 if (!ElementTy
->isSized())
1581 return nullptr; // We can't GEP through an unsized element.
1582 if (isa
<ScalableVectorType
>(ElementTy
))
1584 APInt
ElementSize(Offset
.getBitWidth(),
1585 DL
.getTypeAllocSize(ElementTy
).getFixedSize());
1586 if (ElementSize
== 0)
1587 return nullptr; // Zero-length arrays can't help us build a natural GEP.
1588 APInt NumSkippedElements
= Offset
.sdiv(ElementSize
);
1590 Offset
-= NumSkippedElements
* ElementSize
;
1591 Indices
.push_back(IRB
.getInt(NumSkippedElements
));
1592 return getNaturalGEPRecursively(IRB
, DL
, Ptr
, ElementTy
, Offset
, TargetTy
,
1593 Indices
, NamePrefix
);
1596 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1597 /// resulting pointer has PointerTy.
1599 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1600 /// and produces the pointer type desired. Where it cannot, it will try to use
1601 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1602 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1603 /// bitcast to the type.
1605 /// The strategy for finding the more natural GEPs is to peel off layers of the
1606 /// pointer, walking back through bit casts and GEPs, searching for a base
1607 /// pointer from which we can compute a natural GEP with the desired
1608 /// properties. The algorithm tries to fold as many constant indices into
1609 /// a single GEP as possible, thus making each GEP more independent of the
1610 /// surrounding code.
1611 static Value
*getAdjustedPtr(IRBuilderTy
&IRB
, const DataLayout
&DL
, Value
*Ptr
,
1612 APInt Offset
, Type
*PointerTy
,
1613 const Twine
&NamePrefix
) {
1614 // Even though we don't look through PHI nodes, we could be called on an
1615 // instruction in an unreachable block, which may be on a cycle.
1616 SmallPtrSet
<Value
*, 4> Visited
;
1617 Visited
.insert(Ptr
);
1618 SmallVector
<Value
*, 4> Indices
;
1620 // We may end up computing an offset pointer that has the wrong type. If we
1621 // never are able to compute one directly that has the correct type, we'll
1622 // fall back to it, so keep it and the base it was computed from around here.
1623 Value
*OffsetPtr
= nullptr;
1624 Value
*OffsetBasePtr
;
1626 // Remember any i8 pointer we come across to re-use if we need to do a raw
1628 Value
*Int8Ptr
= nullptr;
1629 APInt
Int8PtrOffset(Offset
.getBitWidth(), 0);
1631 PointerType
*TargetPtrTy
= cast
<PointerType
>(PointerTy
);
1632 Type
*TargetTy
= TargetPtrTy
->getElementType();
1634 // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1635 // address space from the expected `PointerTy` (the pointer to be used).
1636 // Adjust the pointer type based the original storage pointer.
1637 auto AS
= cast
<PointerType
>(Ptr
->getType())->getAddressSpace();
1638 PointerTy
= TargetTy
->getPointerTo(AS
);
1641 // First fold any existing GEPs into the offset.
1642 while (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(Ptr
)) {
1643 APInt
GEPOffset(Offset
.getBitWidth(), 0);
1644 if (!GEP
->accumulateConstantOffset(DL
, GEPOffset
))
1646 Offset
+= GEPOffset
;
1647 Ptr
= GEP
->getPointerOperand();
1648 if (!Visited
.insert(Ptr
).second
)
1652 // See if we can perform a natural GEP here.
1654 if (Value
*P
= getNaturalGEPWithOffset(IRB
, DL
, Ptr
, Offset
, TargetTy
,
1655 Indices
, NamePrefix
)) {
1656 // If we have a new natural pointer at the offset, clear out any old
1657 // offset pointer we computed. Unless it is the base pointer or
1658 // a non-instruction, we built a GEP we don't need. Zap it.
1659 if (OffsetPtr
&& OffsetPtr
!= OffsetBasePtr
)
1660 if (Instruction
*I
= dyn_cast
<Instruction
>(OffsetPtr
)) {
1661 assert(I
->use_empty() && "Built a GEP with uses some how!");
1662 I
->eraseFromParent();
1665 OffsetBasePtr
= Ptr
;
1666 // If we also found a pointer of the right type, we're done.
1667 if (P
->getType() == PointerTy
)
1671 // Stash this pointer if we've found an i8*.
1672 if (Ptr
->getType()->isIntegerTy(8)) {
1674 Int8PtrOffset
= Offset
;
1677 // Peel off a layer of the pointer and update the offset appropriately.
1678 if (Operator::getOpcode(Ptr
) == Instruction::BitCast
) {
1679 Ptr
= cast
<Operator
>(Ptr
)->getOperand(0);
1680 } else if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(Ptr
)) {
1681 if (GA
->isInterposable())
1683 Ptr
= GA
->getAliasee();
1687 assert(Ptr
->getType()->isPointerTy() && "Unexpected operand type!");
1688 } while (Visited
.insert(Ptr
).second
);
1692 Int8Ptr
= IRB
.CreateBitCast(
1693 Ptr
, IRB
.getInt8PtrTy(PointerTy
->getPointerAddressSpace()),
1694 NamePrefix
+ "sroa_raw_cast");
1695 Int8PtrOffset
= Offset
;
1698 OffsetPtr
= Int8PtrOffset
== 0
1700 : IRB
.CreateInBoundsGEP(IRB
.getInt8Ty(), Int8Ptr
,
1701 IRB
.getInt(Int8PtrOffset
),
1702 NamePrefix
+ "sroa_raw_idx");
1706 // On the off chance we were targeting i8*, guard the bitcast here.
1707 if (cast
<PointerType
>(Ptr
->getType()) != TargetPtrTy
) {
1708 Ptr
= IRB
.CreatePointerBitCastOrAddrSpaceCast(Ptr
,
1710 NamePrefix
+ "sroa_cast");
1716 /// Compute the adjusted alignment for a load or store from an offset.
1717 static Align
getAdjustedAlignment(Instruction
*I
, uint64_t Offset
) {
1718 return commonAlignment(getLoadStoreAlignment(I
), Offset
);
1721 /// Test whether we can convert a value from the old to the new type.
1723 /// This predicate should be used to guard calls to convertValue in order to
1724 /// ensure that we only try to convert viable values. The strategy is that we
1725 /// will peel off single element struct and array wrappings to get to an
1726 /// underlying value, and convert that value.
1727 static bool canConvertValue(const DataLayout
&DL
, Type
*OldTy
, Type
*NewTy
) {
1731 // For integer types, we can't handle any bit-width differences. This would
1732 // break both vector conversions with extension and introduce endianness
1733 // issues when in conjunction with loads and stores.
1734 if (isa
<IntegerType
>(OldTy
) && isa
<IntegerType
>(NewTy
)) {
1735 assert(cast
<IntegerType
>(OldTy
)->getBitWidth() !=
1736 cast
<IntegerType
>(NewTy
)->getBitWidth() &&
1737 "We can't have the same bitwidth for different int types");
1741 if (DL
.getTypeSizeInBits(NewTy
).getFixedSize() !=
1742 DL
.getTypeSizeInBits(OldTy
).getFixedSize())
1744 if (!NewTy
->isSingleValueType() || !OldTy
->isSingleValueType())
1747 // We can convert pointers to integers and vice-versa. Same for vectors
1748 // of pointers and integers.
1749 OldTy
= OldTy
->getScalarType();
1750 NewTy
= NewTy
->getScalarType();
1751 if (NewTy
->isPointerTy() || OldTy
->isPointerTy()) {
1752 if (NewTy
->isPointerTy() && OldTy
->isPointerTy()) {
1753 unsigned OldAS
= OldTy
->getPointerAddressSpace();
1754 unsigned NewAS
= NewTy
->getPointerAddressSpace();
1755 // Convert pointers if they are pointers from the same address space or
1756 // different integral (not non-integral) address spaces with the same
1758 return OldAS
== NewAS
||
1759 (!DL
.isNonIntegralAddressSpace(OldAS
) &&
1760 !DL
.isNonIntegralAddressSpace(NewAS
) &&
1761 DL
.getPointerSize(OldAS
) == DL
.getPointerSize(NewAS
));
1764 // We can convert integers to integral pointers, but not to non-integral
1766 if (OldTy
->isIntegerTy())
1767 return !DL
.isNonIntegralPointerType(NewTy
);
1769 // We can convert integral pointers to integers, but non-integral pointers
1770 // need to remain pointers.
1771 if (!DL
.isNonIntegralPointerType(OldTy
))
1772 return NewTy
->isIntegerTy();
1780 /// Generic routine to convert an SSA value to a value of a different
1783 /// This will try various different casting techniques, such as bitcasts,
1784 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1785 /// two types for viability with this routine.
1786 static Value
*convertValue(const DataLayout
&DL
, IRBuilderTy
&IRB
, Value
*V
,
1788 Type
*OldTy
= V
->getType();
1789 assert(canConvertValue(DL
, OldTy
, NewTy
) && "Value not convertable to type");
1794 assert(!(isa
<IntegerType
>(OldTy
) && isa
<IntegerType
>(NewTy
)) &&
1795 "Integer types must be the exact same to convert.");
1797 // See if we need inttoptr for this type pair. May require additional bitcast.
1798 if (OldTy
->isIntOrIntVectorTy() && NewTy
->isPtrOrPtrVectorTy()) {
1799 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1800 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1801 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*>
1802 // Directly handle i64 to i8*
1803 return IRB
.CreateIntToPtr(IRB
.CreateBitCast(V
, DL
.getIntPtrType(NewTy
)),
1807 // See if we need ptrtoint for this type pair. May require additional bitcast.
1808 if (OldTy
->isPtrOrPtrVectorTy() && NewTy
->isIntOrIntVectorTy()) {
1809 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1810 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1811 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32>
1812 // Expand i8* to i64 --> i8* to i64 to i64
1813 return IRB
.CreateBitCast(IRB
.CreatePtrToInt(V
, DL
.getIntPtrType(OldTy
)),
1817 if (OldTy
->isPtrOrPtrVectorTy() && NewTy
->isPtrOrPtrVectorTy()) {
1818 unsigned OldAS
= OldTy
->getPointerAddressSpace();
1819 unsigned NewAS
= NewTy
->getPointerAddressSpace();
1820 // To convert pointers with different address spaces (they are already
1821 // checked convertible, i.e. they have the same pointer size), so far we
1822 // cannot use `bitcast` (which has restrict on the same address space) or
1823 // `addrspacecast` (which is not always no-op casting). Instead, use a pair
1824 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit
1826 if (OldAS
!= NewAS
) {
1827 assert(DL
.getPointerSize(OldAS
) == DL
.getPointerSize(NewAS
));
1828 return IRB
.CreateIntToPtr(IRB
.CreatePtrToInt(V
, DL
.getIntPtrType(OldTy
)),
1833 return IRB
.CreateBitCast(V
, NewTy
);
1836 /// Test whether the given slice use can be promoted to a vector.
1838 /// This function is called to test each entry in a partition which is slated
1839 /// for a single slice.
1840 static bool isVectorPromotionViableForSlice(Partition
&P
, const Slice
&S
,
1842 uint64_t ElementSize
,
1843 const DataLayout
&DL
) {
1844 // First validate the slice offsets.
1845 uint64_t BeginOffset
=
1846 std::max(S
.beginOffset(), P
.beginOffset()) - P
.beginOffset();
1847 uint64_t BeginIndex
= BeginOffset
/ ElementSize
;
1848 if (BeginIndex
* ElementSize
!= BeginOffset
||
1849 BeginIndex
>= cast
<FixedVectorType
>(Ty
)->getNumElements())
1851 uint64_t EndOffset
=
1852 std::min(S
.endOffset(), P
.endOffset()) - P
.beginOffset();
1853 uint64_t EndIndex
= EndOffset
/ ElementSize
;
1854 if (EndIndex
* ElementSize
!= EndOffset
||
1855 EndIndex
> cast
<FixedVectorType
>(Ty
)->getNumElements())
1858 assert(EndIndex
> BeginIndex
&& "Empty vector!");
1859 uint64_t NumElements
= EndIndex
- BeginIndex
;
1860 Type
*SliceTy
= (NumElements
== 1)
1861 ? Ty
->getElementType()
1862 : FixedVectorType::get(Ty
->getElementType(), NumElements
);
1865 Type::getIntNTy(Ty
->getContext(), NumElements
* ElementSize
* 8);
1867 Use
*U
= S
.getUse();
1869 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
->getUser())) {
1870 if (MI
->isVolatile())
1872 if (!S
.isSplittable())
1873 return false; // Skip any unsplittable intrinsics.
1874 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
->getUser())) {
1875 if (!II
->isLifetimeStartOrEnd() && !II
->isDroppable())
1877 } else if (U
->get()->getType()->getPointerElementType()->isStructTy()) {
1878 // Disable vector promotion when there are loads or stores of an FCA.
1880 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
->getUser())) {
1881 if (LI
->isVolatile())
1883 Type
*LTy
= LI
->getType();
1884 if (P
.beginOffset() > S
.beginOffset() || P
.endOffset() < S
.endOffset()) {
1885 assert(LTy
->isIntegerTy());
1888 if (!canConvertValue(DL
, SliceTy
, LTy
))
1890 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
1891 if (SI
->isVolatile())
1893 Type
*STy
= SI
->getValueOperand()->getType();
1894 if (P
.beginOffset() > S
.beginOffset() || P
.endOffset() < S
.endOffset()) {
1895 assert(STy
->isIntegerTy());
1898 if (!canConvertValue(DL
, STy
, SliceTy
))
1907 /// Test whether the given alloca partitioning and range of slices can be
1908 /// promoted to a vector.
1910 /// This is a quick test to check whether we can rewrite a particular alloca
1911 /// partition (and its newly formed alloca) into a vector alloca with only
1912 /// whole-vector loads and stores such that it could be promoted to a vector
1913 /// SSA value. We only can ensure this for a limited set of operations, and we
1914 /// don't want to do the rewrites unless we are confident that the result will
1915 /// be promotable, so we have an early test here.
1916 static VectorType
*isVectorPromotionViable(Partition
&P
, const DataLayout
&DL
) {
1917 // Collect the candidate types for vector-based promotion. Also track whether
1918 // we have different element types.
1919 SmallVector
<VectorType
*, 4> CandidateTys
;
1920 Type
*CommonEltTy
= nullptr;
1921 bool HaveCommonEltTy
= true;
1922 auto CheckCandidateType
= [&](Type
*Ty
) {
1923 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
)) {
1924 // Return if bitcast to vectors is different for total size in bits.
1925 if (!CandidateTys
.empty()) {
1926 VectorType
*V
= CandidateTys
[0];
1927 if (DL
.getTypeSizeInBits(VTy
).getFixedSize() !=
1928 DL
.getTypeSizeInBits(V
).getFixedSize()) {
1929 CandidateTys
.clear();
1933 CandidateTys
.push_back(VTy
);
1935 CommonEltTy
= VTy
->getElementType();
1936 else if (CommonEltTy
!= VTy
->getElementType())
1937 HaveCommonEltTy
= false;
1940 // Consider any loads or stores that are the exact size of the slice.
1941 for (const Slice
&S
: P
)
1942 if (S
.beginOffset() == P
.beginOffset() &&
1943 S
.endOffset() == P
.endOffset()) {
1944 if (auto *LI
= dyn_cast
<LoadInst
>(S
.getUse()->getUser()))
1945 CheckCandidateType(LI
->getType());
1946 else if (auto *SI
= dyn_cast
<StoreInst
>(S
.getUse()->getUser()))
1947 CheckCandidateType(SI
->getValueOperand()->getType());
1950 // If we didn't find a vector type, nothing to do here.
1951 if (CandidateTys
.empty())
1954 // Remove non-integer vector types if we had multiple common element types.
1955 // FIXME: It'd be nice to replace them with integer vector types, but we can't
1956 // do that until all the backends are known to produce good code for all
1957 // integer vector types.
1958 if (!HaveCommonEltTy
) {
1959 llvm::erase_if(CandidateTys
, [](VectorType
*VTy
) {
1960 return !VTy
->getElementType()->isIntegerTy();
1963 // If there were no integer vector types, give up.
1964 if (CandidateTys
.empty())
1967 // Rank the remaining candidate vector types. This is easy because we know
1968 // they're all integer vectors. We sort by ascending number of elements.
1969 auto RankVectorTypes
= [&DL
](VectorType
*RHSTy
, VectorType
*LHSTy
) {
1971 assert(DL
.getTypeSizeInBits(RHSTy
).getFixedSize() ==
1972 DL
.getTypeSizeInBits(LHSTy
).getFixedSize() &&
1973 "Cannot have vector types of different sizes!");
1974 assert(RHSTy
->getElementType()->isIntegerTy() &&
1975 "All non-integer types eliminated!");
1976 assert(LHSTy
->getElementType()->isIntegerTy() &&
1977 "All non-integer types eliminated!");
1978 return cast
<FixedVectorType
>(RHSTy
)->getNumElements() <
1979 cast
<FixedVectorType
>(LHSTy
)->getNumElements();
1981 llvm::sort(CandidateTys
, RankVectorTypes
);
1983 std::unique(CandidateTys
.begin(), CandidateTys
.end(), RankVectorTypes
),
1984 CandidateTys
.end());
1986 // The only way to have the same element type in every vector type is to
1987 // have the same vector type. Check that and remove all but one.
1989 for (VectorType
*VTy
: CandidateTys
) {
1990 assert(VTy
->getElementType() == CommonEltTy
&&
1991 "Unaccounted for element type!");
1992 assert(VTy
== CandidateTys
[0] &&
1993 "Different vector types with the same element type!");
1996 CandidateTys
.resize(1);
1999 // Try each vector type, and return the one which works.
2000 auto CheckVectorTypeForPromotion
= [&](VectorType
*VTy
) {
2001 uint64_t ElementSize
=
2002 DL
.getTypeSizeInBits(VTy
->getElementType()).getFixedSize();
2004 // While the definition of LLVM vectors is bitpacked, we don't support sizes
2005 // that aren't byte sized.
2006 if (ElementSize
% 8)
2008 assert((DL
.getTypeSizeInBits(VTy
).getFixedSize() % 8) == 0 &&
2009 "vector size not a multiple of element size?");
2012 for (const Slice
&S
: P
)
2013 if (!isVectorPromotionViableForSlice(P
, S
, VTy
, ElementSize
, DL
))
2016 for (const Slice
*S
: P
.splitSliceTails())
2017 if (!isVectorPromotionViableForSlice(P
, *S
, VTy
, ElementSize
, DL
))
2022 for (VectorType
*VTy
: CandidateTys
)
2023 if (CheckVectorTypeForPromotion(VTy
))
2029 /// Test whether a slice of an alloca is valid for integer widening.
2031 /// This implements the necessary checking for the \c isIntegerWideningViable
2032 /// test below on a single slice of the alloca.
2033 static bool isIntegerWideningViableForSlice(const Slice
&S
,
2034 uint64_t AllocBeginOffset
,
2036 const DataLayout
&DL
,
2037 bool &WholeAllocaOp
) {
2038 uint64_t Size
= DL
.getTypeStoreSize(AllocaTy
).getFixedSize();
2040 uint64_t RelBegin
= S
.beginOffset() - AllocBeginOffset
;
2041 uint64_t RelEnd
= S
.endOffset() - AllocBeginOffset
;
2043 // We can't reasonably handle cases where the load or store extends past
2044 // the end of the alloca's type and into its padding.
2048 Use
*U
= S
.getUse();
2050 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(U
->getUser())) {
2051 if (LI
->isVolatile())
2053 // We can't handle loads that extend past the allocated memory.
2054 if (DL
.getTypeStoreSize(LI
->getType()).getFixedSize() > Size
)
2056 // So far, AllocaSliceRewriter does not support widening split slice tails
2057 // in rewriteIntegerLoad.
2058 if (S
.beginOffset() < AllocBeginOffset
)
2060 // Note that we don't count vector loads or stores as whole-alloca
2061 // operations which enable integer widening because we would prefer to use
2062 // vector widening instead.
2063 if (!isa
<VectorType
>(LI
->getType()) && RelBegin
== 0 && RelEnd
== Size
)
2064 WholeAllocaOp
= true;
2065 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(LI
->getType())) {
2066 if (ITy
->getBitWidth() < DL
.getTypeStoreSizeInBits(ITy
).getFixedSize())
2068 } else if (RelBegin
!= 0 || RelEnd
!= Size
||
2069 !canConvertValue(DL
, AllocaTy
, LI
->getType())) {
2070 // Non-integer loads need to be convertible from the alloca type so that
2071 // they are promotable.
2074 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(U
->getUser())) {
2075 Type
*ValueTy
= SI
->getValueOperand()->getType();
2076 if (SI
->isVolatile())
2078 // We can't handle stores that extend past the allocated memory.
2079 if (DL
.getTypeStoreSize(ValueTy
).getFixedSize() > Size
)
2081 // So far, AllocaSliceRewriter does not support widening split slice tails
2082 // in rewriteIntegerStore.
2083 if (S
.beginOffset() < AllocBeginOffset
)
2085 // Note that we don't count vector loads or stores as whole-alloca
2086 // operations which enable integer widening because we would prefer to use
2087 // vector widening instead.
2088 if (!isa
<VectorType
>(ValueTy
) && RelBegin
== 0 && RelEnd
== Size
)
2089 WholeAllocaOp
= true;
2090 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(ValueTy
)) {
2091 if (ITy
->getBitWidth() < DL
.getTypeStoreSizeInBits(ITy
).getFixedSize())
2093 } else if (RelBegin
!= 0 || RelEnd
!= Size
||
2094 !canConvertValue(DL
, ValueTy
, AllocaTy
)) {
2095 // Non-integer stores need to be convertible to the alloca type so that
2096 // they are promotable.
2099 } else if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(U
->getUser())) {
2100 if (MI
->isVolatile() || !isa
<Constant
>(MI
->getLength()))
2102 if (!S
.isSplittable())
2103 return false; // Skip any unsplittable intrinsics.
2104 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(U
->getUser())) {
2105 if (!II
->isLifetimeStartOrEnd() && !II
->isDroppable())
2114 /// Test whether the given alloca partition's integer operations can be
2115 /// widened to promotable ones.
2117 /// This is a quick test to check whether we can rewrite the integer loads and
2118 /// stores to a particular alloca into wider loads and stores and be able to
2119 /// promote the resulting alloca.
2120 static bool isIntegerWideningViable(Partition
&P
, Type
*AllocaTy
,
2121 const DataLayout
&DL
) {
2122 uint64_t SizeInBits
= DL
.getTypeSizeInBits(AllocaTy
).getFixedSize();
2123 // Don't create integer types larger than the maximum bitwidth.
2124 if (SizeInBits
> IntegerType::MAX_INT_BITS
)
2127 // Don't try to handle allocas with bit-padding.
2128 if (SizeInBits
!= DL
.getTypeStoreSizeInBits(AllocaTy
).getFixedSize())
2131 // We need to ensure that an integer type with the appropriate bitwidth can
2132 // be converted to the alloca type, whatever that is. We don't want to force
2133 // the alloca itself to have an integer type if there is a more suitable one.
2134 Type
*IntTy
= Type::getIntNTy(AllocaTy
->getContext(), SizeInBits
);
2135 if (!canConvertValue(DL
, AllocaTy
, IntTy
) ||
2136 !canConvertValue(DL
, IntTy
, AllocaTy
))
2139 // While examining uses, we ensure that the alloca has a covering load or
2140 // store. We don't want to widen the integer operations only to fail to
2141 // promote due to some other unsplittable entry (which we may make splittable
2142 // later). However, if there are only splittable uses, go ahead and assume
2143 // that we cover the alloca.
2144 // FIXME: We shouldn't consider split slices that happen to start in the
2145 // partition here...
2146 bool WholeAllocaOp
= P
.empty() && DL
.isLegalInteger(SizeInBits
);
2148 for (const Slice
&S
: P
)
2149 if (!isIntegerWideningViableForSlice(S
, P
.beginOffset(), AllocaTy
, DL
,
2153 for (const Slice
*S
: P
.splitSliceTails())
2154 if (!isIntegerWideningViableForSlice(*S
, P
.beginOffset(), AllocaTy
, DL
,
2158 return WholeAllocaOp
;
2161 static Value
*extractInteger(const DataLayout
&DL
, IRBuilderTy
&IRB
, Value
*V
,
2162 IntegerType
*Ty
, uint64_t Offset
,
2163 const Twine
&Name
) {
2164 LLVM_DEBUG(dbgs() << " start: " << *V
<< "\n");
2165 IntegerType
*IntTy
= cast
<IntegerType
>(V
->getType());
2166 assert(DL
.getTypeStoreSize(Ty
).getFixedSize() + Offset
<=
2167 DL
.getTypeStoreSize(IntTy
).getFixedSize() &&
2168 "Element extends past full value");
2169 uint64_t ShAmt
= 8 * Offset
;
2170 if (DL
.isBigEndian())
2171 ShAmt
= 8 * (DL
.getTypeStoreSize(IntTy
).getFixedSize() -
2172 DL
.getTypeStoreSize(Ty
).getFixedSize() - Offset
);
2174 V
= IRB
.CreateLShr(V
, ShAmt
, Name
+ ".shift");
2175 LLVM_DEBUG(dbgs() << " shifted: " << *V
<< "\n");
2177 assert(Ty
->getBitWidth() <= IntTy
->getBitWidth() &&
2178 "Cannot extract to a larger integer!");
2180 V
= IRB
.CreateTrunc(V
, Ty
, Name
+ ".trunc");
2181 LLVM_DEBUG(dbgs() << " trunced: " << *V
<< "\n");
2186 static Value
*insertInteger(const DataLayout
&DL
, IRBuilderTy
&IRB
, Value
*Old
,
2187 Value
*V
, uint64_t Offset
, const Twine
&Name
) {
2188 IntegerType
*IntTy
= cast
<IntegerType
>(Old
->getType());
2189 IntegerType
*Ty
= cast
<IntegerType
>(V
->getType());
2190 assert(Ty
->getBitWidth() <= IntTy
->getBitWidth() &&
2191 "Cannot insert a larger integer!");
2192 LLVM_DEBUG(dbgs() << " start: " << *V
<< "\n");
2194 V
= IRB
.CreateZExt(V
, IntTy
, Name
+ ".ext");
2195 LLVM_DEBUG(dbgs() << " extended: " << *V
<< "\n");
2197 assert(DL
.getTypeStoreSize(Ty
).getFixedSize() + Offset
<=
2198 DL
.getTypeStoreSize(IntTy
).getFixedSize() &&
2199 "Element store outside of alloca store");
2200 uint64_t ShAmt
= 8 * Offset
;
2201 if (DL
.isBigEndian())
2202 ShAmt
= 8 * (DL
.getTypeStoreSize(IntTy
).getFixedSize() -
2203 DL
.getTypeStoreSize(Ty
).getFixedSize() - Offset
);
2205 V
= IRB
.CreateShl(V
, ShAmt
, Name
+ ".shift");
2206 LLVM_DEBUG(dbgs() << " shifted: " << *V
<< "\n");
2209 if (ShAmt
|| Ty
->getBitWidth() < IntTy
->getBitWidth()) {
2210 APInt Mask
= ~Ty
->getMask().zext(IntTy
->getBitWidth()).shl(ShAmt
);
2211 Old
= IRB
.CreateAnd(Old
, Mask
, Name
+ ".mask");
2212 LLVM_DEBUG(dbgs() << " masked: " << *Old
<< "\n");
2213 V
= IRB
.CreateOr(Old
, V
, Name
+ ".insert");
2214 LLVM_DEBUG(dbgs() << " inserted: " << *V
<< "\n");
2219 static Value
*extractVector(IRBuilderTy
&IRB
, Value
*V
, unsigned BeginIndex
,
2220 unsigned EndIndex
, const Twine
&Name
) {
2221 auto *VecTy
= cast
<FixedVectorType
>(V
->getType());
2222 unsigned NumElements
= EndIndex
- BeginIndex
;
2223 assert(NumElements
<= VecTy
->getNumElements() && "Too many elements!");
2225 if (NumElements
== VecTy
->getNumElements())
2228 if (NumElements
== 1) {
2229 V
= IRB
.CreateExtractElement(V
, IRB
.getInt32(BeginIndex
),
2231 LLVM_DEBUG(dbgs() << " extract: " << *V
<< "\n");
2235 SmallVector
<int, 8> Mask
;
2236 Mask
.reserve(NumElements
);
2237 for (unsigned i
= BeginIndex
; i
!= EndIndex
; ++i
)
2239 V
= IRB
.CreateShuffleVector(V
, Mask
, Name
+ ".extract");
2240 LLVM_DEBUG(dbgs() << " shuffle: " << *V
<< "\n");
2244 static Value
*insertVector(IRBuilderTy
&IRB
, Value
*Old
, Value
*V
,
2245 unsigned BeginIndex
, const Twine
&Name
) {
2246 VectorType
*VecTy
= cast
<VectorType
>(Old
->getType());
2247 assert(VecTy
&& "Can only insert a vector into a vector");
2249 VectorType
*Ty
= dyn_cast
<VectorType
>(V
->getType());
2251 // Single element to insert.
2252 V
= IRB
.CreateInsertElement(Old
, V
, IRB
.getInt32(BeginIndex
),
2254 LLVM_DEBUG(dbgs() << " insert: " << *V
<< "\n");
2258 assert(cast
<FixedVectorType
>(Ty
)->getNumElements() <=
2259 cast
<FixedVectorType
>(VecTy
)->getNumElements() &&
2260 "Too many elements!");
2261 if (cast
<FixedVectorType
>(Ty
)->getNumElements() ==
2262 cast
<FixedVectorType
>(VecTy
)->getNumElements()) {
2263 assert(V
->getType() == VecTy
&& "Vector type mismatch");
2266 unsigned EndIndex
= BeginIndex
+ cast
<FixedVectorType
>(Ty
)->getNumElements();
2268 // When inserting a smaller vector into the larger to store, we first
2269 // use a shuffle vector to widen it with undef elements, and then
2270 // a second shuffle vector to select between the loaded vector and the
2272 SmallVector
<int, 8> Mask
;
2273 Mask
.reserve(cast
<FixedVectorType
>(VecTy
)->getNumElements());
2274 for (unsigned i
= 0; i
!= cast
<FixedVectorType
>(VecTy
)->getNumElements(); ++i
)
2275 if (i
>= BeginIndex
&& i
< EndIndex
)
2276 Mask
.push_back(i
- BeginIndex
);
2279 V
= IRB
.CreateShuffleVector(V
, Mask
, Name
+ ".expand");
2280 LLVM_DEBUG(dbgs() << " shuffle: " << *V
<< "\n");
2282 SmallVector
<Constant
*, 8> Mask2
;
2283 Mask2
.reserve(cast
<FixedVectorType
>(VecTy
)->getNumElements());
2284 for (unsigned i
= 0; i
!= cast
<FixedVectorType
>(VecTy
)->getNumElements(); ++i
)
2285 Mask2
.push_back(IRB
.getInt1(i
>= BeginIndex
&& i
< EndIndex
));
2287 V
= IRB
.CreateSelect(ConstantVector::get(Mask2
), V
, Old
, Name
+ "blend");
2289 LLVM_DEBUG(dbgs() << " blend: " << *V
<< "\n");
2293 /// Visitor to rewrite instructions using p particular slice of an alloca
2294 /// to use a new alloca.
2296 /// Also implements the rewriting to vector-based accesses when the partition
2297 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2299 class llvm::sroa::AllocaSliceRewriter
2300 : public InstVisitor
<AllocaSliceRewriter
, bool> {
2301 // Befriend the base class so it can delegate to private visit methods.
2302 friend class InstVisitor
<AllocaSliceRewriter
, bool>;
2304 using Base
= InstVisitor
<AllocaSliceRewriter
, bool>;
2306 const DataLayout
&DL
;
2309 AllocaInst
&OldAI
, &NewAI
;
2310 const uint64_t NewAllocaBeginOffset
, NewAllocaEndOffset
;
2313 // This is a convenience and flag variable that will be null unless the new
2314 // alloca's integer operations should be widened to this integer type due to
2315 // passing isIntegerWideningViable above. If it is non-null, the desired
2316 // integer type will be stored here for easy access during rewriting.
2319 // If we are rewriting an alloca partition which can be written as pure
2320 // vector operations, we stash extra information here. When VecTy is
2321 // non-null, we have some strict guarantees about the rewritten alloca:
2322 // - The new alloca is exactly the size of the vector type here.
2323 // - The accesses all either map to the entire vector or to a single
2325 // - The set of accessing instructions is only one of those handled above
2326 // in isVectorPromotionViable. Generally these are the same access kinds
2327 // which are promotable via mem2reg.
2330 uint64_t ElementSize
;
2332 // The original offset of the slice currently being rewritten relative to
2333 // the original alloca.
2334 uint64_t BeginOffset
= 0;
2335 uint64_t EndOffset
= 0;
2337 // The new offsets of the slice currently being rewritten relative to the
2339 uint64_t NewBeginOffset
= 0, NewEndOffset
= 0;
2341 uint64_t SliceSize
= 0;
2342 bool IsSplittable
= false;
2343 bool IsSplit
= false;
2344 Use
*OldUse
= nullptr;
2345 Instruction
*OldPtr
= nullptr;
2347 // Track post-rewrite users which are PHI nodes and Selects.
2348 SmallSetVector
<PHINode
*, 8> &PHIUsers
;
2349 SmallSetVector
<SelectInst
*, 8> &SelectUsers
;
2351 // Utility IR builder, whose name prefix is setup for each visited use, and
2352 // the insertion point is set to point to the user.
2356 AllocaSliceRewriter(const DataLayout
&DL
, AllocaSlices
&AS
, SROA
&Pass
,
2357 AllocaInst
&OldAI
, AllocaInst
&NewAI
,
2358 uint64_t NewAllocaBeginOffset
,
2359 uint64_t NewAllocaEndOffset
, bool IsIntegerPromotable
,
2360 VectorType
*PromotableVecTy
,
2361 SmallSetVector
<PHINode
*, 8> &PHIUsers
,
2362 SmallSetVector
<SelectInst
*, 8> &SelectUsers
)
2363 : DL(DL
), AS(AS
), Pass(Pass
), OldAI(OldAI
), NewAI(NewAI
),
2364 NewAllocaBeginOffset(NewAllocaBeginOffset
),
2365 NewAllocaEndOffset(NewAllocaEndOffset
),
2366 NewAllocaTy(NewAI
.getAllocatedType()),
2369 ? Type::getIntNTy(NewAI
.getContext(),
2370 DL
.getTypeSizeInBits(NewAI
.getAllocatedType())
2373 VecTy(PromotableVecTy
),
2374 ElementTy(VecTy
? VecTy
->getElementType() : nullptr),
2375 ElementSize(VecTy
? DL
.getTypeSizeInBits(ElementTy
).getFixedSize() / 8
2377 PHIUsers(PHIUsers
), SelectUsers(SelectUsers
),
2378 IRB(NewAI
.getContext(), ConstantFolder()) {
2380 assert((DL
.getTypeSizeInBits(ElementTy
).getFixedSize() % 8) == 0 &&
2381 "Only multiple-of-8 sized vector elements are viable");
2384 assert((!IntTy
&& !VecTy
) || (IntTy
&& !VecTy
) || (!IntTy
&& VecTy
));
2387 bool visit(AllocaSlices::const_iterator I
) {
2388 bool CanSROA
= true;
2389 BeginOffset
= I
->beginOffset();
2390 EndOffset
= I
->endOffset();
2391 IsSplittable
= I
->isSplittable();
2393 BeginOffset
< NewAllocaBeginOffset
|| EndOffset
> NewAllocaEndOffset
;
2394 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit
? "split " : ""));
2395 LLVM_DEBUG(AS
.printSlice(dbgs(), I
, ""));
2396 LLVM_DEBUG(dbgs() << "\n");
2398 // Compute the intersecting offset range.
2399 assert(BeginOffset
< NewAllocaEndOffset
);
2400 assert(EndOffset
> NewAllocaBeginOffset
);
2401 NewBeginOffset
= std::max(BeginOffset
, NewAllocaBeginOffset
);
2402 NewEndOffset
= std::min(EndOffset
, NewAllocaEndOffset
);
2404 SliceSize
= NewEndOffset
- NewBeginOffset
;
2406 OldUse
= I
->getUse();
2407 OldPtr
= cast
<Instruction
>(OldUse
->get());
2409 Instruction
*OldUserI
= cast
<Instruction
>(OldUse
->getUser());
2410 IRB
.SetInsertPoint(OldUserI
);
2411 IRB
.SetCurrentDebugLocation(OldUserI
->getDebugLoc());
2412 IRB
.getInserter().SetNamePrefix(
2413 Twine(NewAI
.getName()) + "." + Twine(BeginOffset
) + ".");
2415 CanSROA
&= visit(cast
<Instruction
>(OldUse
->getUser()));
2422 // Make sure the other visit overloads are visible.
2425 // Every instruction which can end up as a user must have a rewrite rule.
2426 bool visitInstruction(Instruction
&I
) {
2427 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I
<< "\n");
2428 llvm_unreachable("No rewrite rule for this instruction!");
2431 Value
*getNewAllocaSlicePtr(IRBuilderTy
&IRB
, Type
*PointerTy
) {
2432 // Note that the offset computation can use BeginOffset or NewBeginOffset
2433 // interchangeably for unsplit slices.
2434 assert(IsSplit
|| BeginOffset
== NewBeginOffset
);
2435 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
2438 StringRef OldName
= OldPtr
->getName();
2439 // Skip through the last '.sroa.' component of the name.
2440 size_t LastSROAPrefix
= OldName
.rfind(".sroa.");
2441 if (LastSROAPrefix
!= StringRef::npos
) {
2442 OldName
= OldName
.substr(LastSROAPrefix
+ strlen(".sroa."));
2443 // Look for an SROA slice index.
2444 size_t IndexEnd
= OldName
.find_first_not_of("0123456789");
2445 if (IndexEnd
!= StringRef::npos
&& OldName
[IndexEnd
] == '.') {
2446 // Strip the index and look for the offset.
2447 OldName
= OldName
.substr(IndexEnd
+ 1);
2448 size_t OffsetEnd
= OldName
.find_first_not_of("0123456789");
2449 if (OffsetEnd
!= StringRef::npos
&& OldName
[OffsetEnd
] == '.')
2450 // Strip the offset.
2451 OldName
= OldName
.substr(OffsetEnd
+ 1);
2454 // Strip any SROA suffixes as well.
2455 OldName
= OldName
.substr(0, OldName
.find(".sroa_"));
2458 return getAdjustedPtr(IRB
, DL
, &NewAI
,
2459 APInt(DL
.getIndexTypeSizeInBits(PointerTy
), Offset
),
2462 Twine(OldName
) + "."
2469 /// Compute suitable alignment to access this slice of the *new*
2472 /// You can optionally pass a type to this routine and if that type's ABI
2473 /// alignment is itself suitable, this will return zero.
2474 Align
getSliceAlign() {
2475 return commonAlignment(NewAI
.getAlign(),
2476 NewBeginOffset
- NewAllocaBeginOffset
);
2479 unsigned getIndex(uint64_t Offset
) {
2480 assert(VecTy
&& "Can only call getIndex when rewriting a vector");
2481 uint64_t RelOffset
= Offset
- NewAllocaBeginOffset
;
2482 assert(RelOffset
/ ElementSize
< UINT32_MAX
&& "Index out of bounds");
2483 uint32_t Index
= RelOffset
/ ElementSize
;
2484 assert(Index
* ElementSize
== RelOffset
);
2488 void deleteIfTriviallyDead(Value
*V
) {
2489 Instruction
*I
= cast
<Instruction
>(V
);
2490 if (isInstructionTriviallyDead(I
))
2491 Pass
.DeadInsts
.push_back(I
);
2494 Value
*rewriteVectorizedLoadInst(LoadInst
&LI
) {
2495 unsigned BeginIndex
= getIndex(NewBeginOffset
);
2496 unsigned EndIndex
= getIndex(NewEndOffset
);
2497 assert(EndIndex
> BeginIndex
&& "Empty vector!");
2499 LoadInst
*Load
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2500 NewAI
.getAlign(), "load");
2502 Load
->copyMetadata(LI
, {LLVMContext::MD_mem_parallel_loop_access
,
2503 LLVMContext::MD_access_group
});
2504 return extractVector(IRB
, Load
, BeginIndex
, EndIndex
, "vec");
2507 Value
*rewriteIntegerLoad(LoadInst
&LI
) {
2508 assert(IntTy
&& "We cannot insert an integer to the alloca");
2509 assert(!LI
.isVolatile());
2510 Value
*V
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2511 NewAI
.getAlign(), "load");
2512 V
= convertValue(DL
, IRB
, V
, IntTy
);
2513 assert(NewBeginOffset
>= NewAllocaBeginOffset
&& "Out of bounds offset");
2514 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
2515 if (Offset
> 0 || NewEndOffset
< NewAllocaEndOffset
) {
2516 IntegerType
*ExtractTy
= Type::getIntNTy(LI
.getContext(), SliceSize
* 8);
2517 V
= extractInteger(DL
, IRB
, V
, ExtractTy
, Offset
, "extract");
2519 // It is possible that the extracted type is not the load type. This
2520 // happens if there is a load past the end of the alloca, and as
2521 // a consequence the slice is narrower but still a candidate for integer
2522 // lowering. To handle this case, we just zero extend the extracted
2524 assert(cast
<IntegerType
>(LI
.getType())->getBitWidth() >= SliceSize
* 8 &&
2525 "Can only handle an extract for an overly wide load");
2526 if (cast
<IntegerType
>(LI
.getType())->getBitWidth() > SliceSize
* 8)
2527 V
= IRB
.CreateZExt(V
, LI
.getType());
2531 bool visitLoadInst(LoadInst
&LI
) {
2532 LLVM_DEBUG(dbgs() << " original: " << LI
<< "\n");
2533 Value
*OldOp
= LI
.getOperand(0);
2534 assert(OldOp
== OldPtr
);
2537 LI
.getAAMetadata(AATags
);
2539 unsigned AS
= LI
.getPointerAddressSpace();
2541 Type
*TargetTy
= IsSplit
? Type::getIntNTy(LI
.getContext(), SliceSize
* 8)
2543 const bool IsLoadPastEnd
=
2544 DL
.getTypeStoreSize(TargetTy
).getFixedSize() > SliceSize
;
2545 bool IsPtrAdjusted
= false;
2548 V
= rewriteVectorizedLoadInst(LI
);
2549 } else if (IntTy
&& LI
.getType()->isIntegerTy()) {
2550 V
= rewriteIntegerLoad(LI
);
2551 } else if (NewBeginOffset
== NewAllocaBeginOffset
&&
2552 NewEndOffset
== NewAllocaEndOffset
&&
2553 (canConvertValue(DL
, NewAllocaTy
, TargetTy
) ||
2554 (IsLoadPastEnd
&& NewAllocaTy
->isIntegerTy() &&
2555 TargetTy
->isIntegerTy()))) {
2556 LoadInst
*NewLI
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2557 NewAI
.getAlign(), LI
.isVolatile(),
2560 NewLI
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2561 if (LI
.isVolatile())
2562 NewLI
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
2563 if (NewLI
->isAtomic())
2564 NewLI
->setAlignment(LI
.getAlign());
2566 // Any !nonnull metadata or !range metadata on the old load is also valid
2567 // on the new load. This is even true in some cases even when the loads
2568 // are different types, for example by mapping !nonnull metadata to
2569 // !range metadata by modeling the null pointer constant converted to the
2571 // FIXME: Add support for range metadata here. Currently the utilities
2572 // for this don't propagate range metadata in trivial cases from one
2573 // integer load to another, don't handle non-addrspace-0 null pointers
2574 // correctly, and don't have any support for mapping ranges as the
2575 // integer type becomes winder or narrower.
2576 if (MDNode
*N
= LI
.getMetadata(LLVMContext::MD_nonnull
))
2577 copyNonnullMetadata(LI
, N
, *NewLI
);
2579 // Try to preserve nonnull metadata
2582 // If this is an integer load past the end of the slice (which means the
2583 // bytes outside the slice are undef or this load is dead) just forcibly
2584 // fix the integer size with correct handling of endianness.
2585 if (auto *AITy
= dyn_cast
<IntegerType
>(NewAllocaTy
))
2586 if (auto *TITy
= dyn_cast
<IntegerType
>(TargetTy
))
2587 if (AITy
->getBitWidth() < TITy
->getBitWidth()) {
2588 V
= IRB
.CreateZExt(V
, TITy
, "load.ext");
2589 if (DL
.isBigEndian())
2590 V
= IRB
.CreateShl(V
, TITy
->getBitWidth() - AITy
->getBitWidth(),
2594 Type
*LTy
= TargetTy
->getPointerTo(AS
);
2596 IRB
.CreateAlignedLoad(TargetTy
, getNewAllocaSlicePtr(IRB
, LTy
),
2597 getSliceAlign(), LI
.isVolatile(), LI
.getName());
2599 NewLI
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2600 if (LI
.isVolatile())
2601 NewLI
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
2602 NewLI
->copyMetadata(LI
, {LLVMContext::MD_mem_parallel_loop_access
,
2603 LLVMContext::MD_access_group
});
2606 IsPtrAdjusted
= true;
2608 V
= convertValue(DL
, IRB
, V
, TargetTy
);
2611 assert(!LI
.isVolatile());
2612 assert(LI
.getType()->isIntegerTy() &&
2613 "Only integer type loads and stores are split");
2614 assert(SliceSize
< DL
.getTypeStoreSize(LI
.getType()).getFixedSize() &&
2615 "Split load isn't smaller than original load");
2616 assert(DL
.typeSizeEqualsStoreSize(LI
.getType()) &&
2617 "Non-byte-multiple bit width");
2618 // Move the insertion point just past the load so that we can refer to it.
2619 IRB
.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI
)));
2620 // Create a placeholder value with the same type as LI to use as the
2621 // basis for the new value. This allows us to replace the uses of LI with
2622 // the computed value, and then replace the placeholder with LI, leaving
2623 // LI only used for this computation.
2624 Value
*Placeholder
= new LoadInst(
2625 LI
.getType(), UndefValue::get(LI
.getType()->getPointerTo(AS
)), "",
2627 V
= insertInteger(DL
, IRB
, Placeholder
, V
, NewBeginOffset
- BeginOffset
,
2629 LI
.replaceAllUsesWith(V
);
2630 Placeholder
->replaceAllUsesWith(&LI
);
2631 Placeholder
->deleteValue();
2633 LI
.replaceAllUsesWith(V
);
2636 Pass
.DeadInsts
.push_back(&LI
);
2637 deleteIfTriviallyDead(OldOp
);
2638 LLVM_DEBUG(dbgs() << " to: " << *V
<< "\n");
2639 return !LI
.isVolatile() && !IsPtrAdjusted
;
2642 bool rewriteVectorizedStoreInst(Value
*V
, StoreInst
&SI
, Value
*OldOp
,
2644 if (V
->getType() != VecTy
) {
2645 unsigned BeginIndex
= getIndex(NewBeginOffset
);
2646 unsigned EndIndex
= getIndex(NewEndOffset
);
2647 assert(EndIndex
> BeginIndex
&& "Empty vector!");
2648 unsigned NumElements
= EndIndex
- BeginIndex
;
2649 assert(NumElements
<= cast
<FixedVectorType
>(VecTy
)->getNumElements() &&
2650 "Too many elements!");
2651 Type
*SliceTy
= (NumElements
== 1)
2653 : FixedVectorType::get(ElementTy
, NumElements
);
2654 if (V
->getType() != SliceTy
)
2655 V
= convertValue(DL
, IRB
, V
, SliceTy
);
2657 // Mix in the existing elements.
2658 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2659 NewAI
.getAlign(), "load");
2660 V
= insertVector(IRB
, Old
, V
, BeginIndex
, "vec");
2662 StoreInst
*Store
= IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlign());
2663 Store
->copyMetadata(SI
, {LLVMContext::MD_mem_parallel_loop_access
,
2664 LLVMContext::MD_access_group
});
2666 Store
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2667 Pass
.DeadInsts
.push_back(&SI
);
2669 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
2673 bool rewriteIntegerStore(Value
*V
, StoreInst
&SI
, AAMDNodes AATags
) {
2674 assert(IntTy
&& "We cannot extract an integer from the alloca");
2675 assert(!SI
.isVolatile());
2676 if (DL
.getTypeSizeInBits(V
->getType()).getFixedSize() !=
2677 IntTy
->getBitWidth()) {
2678 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2679 NewAI
.getAlign(), "oldload");
2680 Old
= convertValue(DL
, IRB
, Old
, IntTy
);
2681 assert(BeginOffset
>= NewAllocaBeginOffset
&& "Out of bounds offset");
2682 uint64_t Offset
= BeginOffset
- NewAllocaBeginOffset
;
2683 V
= insertInteger(DL
, IRB
, Old
, SI
.getValueOperand(), Offset
, "insert");
2685 V
= convertValue(DL
, IRB
, V
, NewAllocaTy
);
2686 StoreInst
*Store
= IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlign());
2687 Store
->copyMetadata(SI
, {LLVMContext::MD_mem_parallel_loop_access
,
2688 LLVMContext::MD_access_group
});
2690 Store
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2691 Pass
.DeadInsts
.push_back(&SI
);
2692 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
2696 bool visitStoreInst(StoreInst
&SI
) {
2697 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
2698 Value
*OldOp
= SI
.getOperand(1);
2699 assert(OldOp
== OldPtr
);
2702 SI
.getAAMetadata(AATags
);
2704 Value
*V
= SI
.getValueOperand();
2706 // Strip all inbounds GEPs and pointer casts to try to dig out any root
2707 // alloca that should be re-examined after promoting this alloca.
2708 if (V
->getType()->isPointerTy())
2709 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
->stripInBoundsOffsets()))
2710 Pass
.PostPromotionWorklist
.insert(AI
);
2712 if (SliceSize
< DL
.getTypeStoreSize(V
->getType()).getFixedSize()) {
2713 assert(!SI
.isVolatile());
2714 assert(V
->getType()->isIntegerTy() &&
2715 "Only integer type loads and stores are split");
2716 assert(DL
.typeSizeEqualsStoreSize(V
->getType()) &&
2717 "Non-byte-multiple bit width");
2718 IntegerType
*NarrowTy
= Type::getIntNTy(SI
.getContext(), SliceSize
* 8);
2719 V
= extractInteger(DL
, IRB
, V
, NarrowTy
, NewBeginOffset
- BeginOffset
,
2724 return rewriteVectorizedStoreInst(V
, SI
, OldOp
, AATags
);
2725 if (IntTy
&& V
->getType()->isIntegerTy())
2726 return rewriteIntegerStore(V
, SI
, AATags
);
2728 const bool IsStorePastEnd
=
2729 DL
.getTypeStoreSize(V
->getType()).getFixedSize() > SliceSize
;
2731 if (NewBeginOffset
== NewAllocaBeginOffset
&&
2732 NewEndOffset
== NewAllocaEndOffset
&&
2733 (canConvertValue(DL
, V
->getType(), NewAllocaTy
) ||
2734 (IsStorePastEnd
&& NewAllocaTy
->isIntegerTy() &&
2735 V
->getType()->isIntegerTy()))) {
2736 // If this is an integer store past the end of slice (and thus the bytes
2737 // past that point are irrelevant or this is unreachable), truncate the
2738 // value prior to storing.
2739 if (auto *VITy
= dyn_cast
<IntegerType
>(V
->getType()))
2740 if (auto *AITy
= dyn_cast
<IntegerType
>(NewAllocaTy
))
2741 if (VITy
->getBitWidth() > AITy
->getBitWidth()) {
2742 if (DL
.isBigEndian())
2743 V
= IRB
.CreateLShr(V
, VITy
->getBitWidth() - AITy
->getBitWidth(),
2745 V
= IRB
.CreateTrunc(V
, AITy
, "load.trunc");
2748 V
= convertValue(DL
, IRB
, V
, NewAllocaTy
);
2750 IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlign(), SI
.isVolatile());
2752 unsigned AS
= SI
.getPointerAddressSpace();
2753 Value
*NewPtr
= getNewAllocaSlicePtr(IRB
, V
->getType()->getPointerTo(AS
));
2755 IRB
.CreateAlignedStore(V
, NewPtr
, getSliceAlign(), SI
.isVolatile());
2757 NewSI
->copyMetadata(SI
, {LLVMContext::MD_mem_parallel_loop_access
,
2758 LLVMContext::MD_access_group
});
2760 NewSI
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2761 if (SI
.isVolatile())
2762 NewSI
->setAtomic(SI
.getOrdering(), SI
.getSyncScopeID());
2763 if (NewSI
->isAtomic())
2764 NewSI
->setAlignment(SI
.getAlign());
2765 Pass
.DeadInsts
.push_back(&SI
);
2766 deleteIfTriviallyDead(OldOp
);
2768 LLVM_DEBUG(dbgs() << " to: " << *NewSI
<< "\n");
2769 return NewSI
->getPointerOperand() == &NewAI
&& !SI
.isVolatile();
2772 /// Compute an integer value from splatting an i8 across the given
2773 /// number of bytes.
2775 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2776 /// call this routine.
2777 /// FIXME: Heed the advice above.
2779 /// \param V The i8 value to splat.
2780 /// \param Size The number of bytes in the output (assuming i8 is one byte)
2781 Value
*getIntegerSplat(Value
*V
, unsigned Size
) {
2782 assert(Size
> 0 && "Expected a positive number of bytes.");
2783 IntegerType
*VTy
= cast
<IntegerType
>(V
->getType());
2784 assert(VTy
->getBitWidth() == 8 && "Expected an i8 value for the byte");
2788 Type
*SplatIntTy
= Type::getIntNTy(VTy
->getContext(), Size
* 8);
2790 IRB
.CreateZExt(V
, SplatIntTy
, "zext"),
2791 ConstantExpr::getUDiv(
2792 Constant::getAllOnesValue(SplatIntTy
),
2793 ConstantExpr::getZExt(Constant::getAllOnesValue(V
->getType()),
2799 /// Compute a vector splat for a given element value.
2800 Value
*getVectorSplat(Value
*V
, unsigned NumElements
) {
2801 V
= IRB
.CreateVectorSplat(NumElements
, V
, "vsplat");
2802 LLVM_DEBUG(dbgs() << " splat: " << *V
<< "\n");
2806 bool visitMemSetInst(MemSetInst
&II
) {
2807 LLVM_DEBUG(dbgs() << " original: " << II
<< "\n");
2808 assert(II
.getRawDest() == OldPtr
);
2811 II
.getAAMetadata(AATags
);
2813 // If the memset has a variable size, it cannot be split, just adjust the
2814 // pointer to the new alloca.
2815 if (!isa
<ConstantInt
>(II
.getLength())) {
2817 assert(NewBeginOffset
== BeginOffset
);
2818 II
.setDest(getNewAllocaSlicePtr(IRB
, OldPtr
->getType()));
2819 II
.setDestAlignment(getSliceAlign());
2821 deleteIfTriviallyDead(OldPtr
);
2825 // Record this instruction for deletion.
2826 Pass
.DeadInsts
.push_back(&II
);
2828 Type
*AllocaTy
= NewAI
.getAllocatedType();
2829 Type
*ScalarTy
= AllocaTy
->getScalarType();
2831 const bool CanContinue
= [&]() {
2834 if (BeginOffset
> NewAllocaBeginOffset
||
2835 EndOffset
< NewAllocaEndOffset
)
2837 // Length must be in range for FixedVectorType.
2838 auto *C
= cast
<ConstantInt
>(II
.getLength());
2839 const uint64_t Len
= C
->getLimitedValue();
2840 if (Len
> std::numeric_limits
<unsigned>::max())
2842 auto *Int8Ty
= IntegerType::getInt8Ty(NewAI
.getContext());
2843 auto *SrcTy
= FixedVectorType::get(Int8Ty
, Len
);
2844 return canConvertValue(DL
, SrcTy
, AllocaTy
) &&
2845 DL
.isLegalInteger(DL
.getTypeSizeInBits(ScalarTy
).getFixedSize());
2848 // If this doesn't map cleanly onto the alloca type, and that type isn't
2849 // a single value type, just emit a memset.
2851 Type
*SizeTy
= II
.getLength()->getType();
2852 Constant
*Size
= ConstantInt::get(SizeTy
, NewEndOffset
- NewBeginOffset
);
2853 CallInst
*New
= IRB
.CreateMemSet(
2854 getNewAllocaSlicePtr(IRB
, OldPtr
->getType()), II
.getValue(), Size
,
2855 MaybeAlign(getSliceAlign()), II
.isVolatile());
2857 New
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2858 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
2862 // If we can represent this as a simple value, we have to build the actual
2863 // value to store, which requires expanding the byte present in memset to
2864 // a sensible representation for the alloca type. This is essentially
2865 // splatting the byte to a sufficiently wide integer, splatting it across
2866 // any desired vector width, and bitcasting to the final type.
2870 // If this is a memset of a vectorized alloca, insert it.
2871 assert(ElementTy
== ScalarTy
);
2873 unsigned BeginIndex
= getIndex(NewBeginOffset
);
2874 unsigned EndIndex
= getIndex(NewEndOffset
);
2875 assert(EndIndex
> BeginIndex
&& "Empty vector!");
2876 unsigned NumElements
= EndIndex
- BeginIndex
;
2877 assert(NumElements
<= cast
<FixedVectorType
>(VecTy
)->getNumElements() &&
2878 "Too many elements!");
2880 Value
*Splat
= getIntegerSplat(
2881 II
.getValue(), DL
.getTypeSizeInBits(ElementTy
).getFixedSize() / 8);
2882 Splat
= convertValue(DL
, IRB
, Splat
, ElementTy
);
2883 if (NumElements
> 1)
2884 Splat
= getVectorSplat(Splat
, NumElements
);
2886 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2887 NewAI
.getAlign(), "oldload");
2888 V
= insertVector(IRB
, Old
, Splat
, BeginIndex
, "vec");
2890 // If this is a memset on an alloca where we can widen stores, insert the
2892 assert(!II
.isVolatile());
2894 uint64_t Size
= NewEndOffset
- NewBeginOffset
;
2895 V
= getIntegerSplat(II
.getValue(), Size
);
2897 if (IntTy
&& (BeginOffset
!= NewAllocaBeginOffset
||
2898 EndOffset
!= NewAllocaBeginOffset
)) {
2899 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
2900 NewAI
.getAlign(), "oldload");
2901 Old
= convertValue(DL
, IRB
, Old
, IntTy
);
2902 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
2903 V
= insertInteger(DL
, IRB
, Old
, V
, Offset
, "insert");
2905 assert(V
->getType() == IntTy
&&
2906 "Wrong type for an alloca wide integer!");
2908 V
= convertValue(DL
, IRB
, V
, AllocaTy
);
2910 // Established these invariants above.
2911 assert(NewBeginOffset
== NewAllocaBeginOffset
);
2912 assert(NewEndOffset
== NewAllocaEndOffset
);
2914 V
= getIntegerSplat(II
.getValue(),
2915 DL
.getTypeSizeInBits(ScalarTy
).getFixedSize() / 8);
2916 if (VectorType
*AllocaVecTy
= dyn_cast
<VectorType
>(AllocaTy
))
2918 V
, cast
<FixedVectorType
>(AllocaVecTy
)->getNumElements());
2920 V
= convertValue(DL
, IRB
, V
, AllocaTy
);
2924 IRB
.CreateAlignedStore(V
, &NewAI
, NewAI
.getAlign(), II
.isVolatile());
2925 New
->copyMetadata(II
, {LLVMContext::MD_mem_parallel_loop_access
,
2926 LLVMContext::MD_access_group
});
2928 New
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
2929 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
2930 return !II
.isVolatile();
2933 bool visitMemTransferInst(MemTransferInst
&II
) {
2934 // Rewriting of memory transfer instructions can be a bit tricky. We break
2935 // them into two categories: split intrinsics and unsplit intrinsics.
2937 LLVM_DEBUG(dbgs() << " original: " << II
<< "\n");
2940 II
.getAAMetadata(AATags
);
2942 bool IsDest
= &II
.getRawDestUse() == OldUse
;
2943 assert((IsDest
&& II
.getRawDest() == OldPtr
) ||
2944 (!IsDest
&& II
.getRawSource() == OldPtr
));
2946 MaybeAlign SliceAlign
= getSliceAlign();
2948 // For unsplit intrinsics, we simply modify the source and destination
2949 // pointers in place. This isn't just an optimization, it is a matter of
2950 // correctness. With unsplit intrinsics we may be dealing with transfers
2951 // within a single alloca before SROA ran, or with transfers that have
2952 // a variable length. We may also be dealing with memmove instead of
2953 // memcpy, and so simply updating the pointers is the necessary for us to
2954 // update both source and dest of a single call.
2955 if (!IsSplittable
) {
2956 Value
*AdjustedPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
2958 II
.setDest(AdjustedPtr
);
2959 II
.setDestAlignment(SliceAlign
);
2962 II
.setSource(AdjustedPtr
);
2963 II
.setSourceAlignment(SliceAlign
);
2966 LLVM_DEBUG(dbgs() << " to: " << II
<< "\n");
2967 deleteIfTriviallyDead(OldPtr
);
2970 // For split transfer intrinsics we have an incredibly useful assurance:
2971 // the source and destination do not reside within the same alloca, and at
2972 // least one of them does not escape. This means that we can replace
2973 // memmove with memcpy, and we don't need to worry about all manner of
2974 // downsides to splitting and transforming the operations.
2976 // If this doesn't map cleanly onto the alloca type, and that type isn't
2977 // a single value type, just emit a memcpy.
2980 (BeginOffset
> NewAllocaBeginOffset
|| EndOffset
< NewAllocaEndOffset
||
2982 DL
.getTypeStoreSize(NewAI
.getAllocatedType()).getFixedSize() ||
2983 !NewAI
.getAllocatedType()->isSingleValueType());
2985 // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2986 // size hasn't been shrunk based on analysis of the viable range, this is
2988 if (EmitMemCpy
&& &OldAI
== &NewAI
) {
2989 // Ensure the start lines up.
2990 assert(NewBeginOffset
== BeginOffset
);
2992 // Rewrite the size as needed.
2993 if (NewEndOffset
!= EndOffset
)
2994 II
.setLength(ConstantInt::get(II
.getLength()->getType(),
2995 NewEndOffset
- NewBeginOffset
));
2998 // Record this instruction for deletion.
2999 Pass
.DeadInsts
.push_back(&II
);
3001 // Strip all inbounds GEPs and pointer casts to try to dig out any root
3002 // alloca that should be re-examined after rewriting this instruction.
3003 Value
*OtherPtr
= IsDest
? II
.getRawSource() : II
.getRawDest();
3004 if (AllocaInst
*AI
=
3005 dyn_cast
<AllocaInst
>(OtherPtr
->stripInBoundsOffsets())) {
3006 assert(AI
!= &OldAI
&& AI
!= &NewAI
&&
3007 "Splittable transfers cannot reach the same alloca on both ends.");
3008 Pass
.Worklist
.insert(AI
);
3011 Type
*OtherPtrTy
= OtherPtr
->getType();
3012 unsigned OtherAS
= OtherPtrTy
->getPointerAddressSpace();
3014 // Compute the relative offset for the other pointer within the transfer.
3015 unsigned OffsetWidth
= DL
.getIndexSizeInBits(OtherAS
);
3016 APInt
OtherOffset(OffsetWidth
, NewBeginOffset
- BeginOffset
);
3018 (IsDest
? II
.getSourceAlign() : II
.getDestAlign()).valueOrOne();
3020 commonAlignment(OtherAlign
, OtherOffset
.zextOrTrunc(64).getZExtValue());
3023 // Compute the other pointer, folding as much as possible to produce
3024 // a single, simple GEP in most cases.
3025 OtherPtr
= getAdjustedPtr(IRB
, DL
, OtherPtr
, OtherOffset
, OtherPtrTy
,
3026 OtherPtr
->getName() + ".");
3028 Value
*OurPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
3029 Type
*SizeTy
= II
.getLength()->getType();
3030 Constant
*Size
= ConstantInt::get(SizeTy
, NewEndOffset
- NewBeginOffset
);
3032 Value
*DestPtr
, *SrcPtr
;
3033 MaybeAlign DestAlign
, SrcAlign
;
3034 // Note: IsDest is true iff we're copying into the new alloca slice
3037 DestAlign
= SliceAlign
;
3039 SrcAlign
= OtherAlign
;
3042 DestAlign
= OtherAlign
;
3044 SrcAlign
= SliceAlign
;
3046 CallInst
*New
= IRB
.CreateMemCpy(DestPtr
, DestAlign
, SrcPtr
, SrcAlign
,
3047 Size
, II
.isVolatile());
3049 New
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
3050 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
3054 bool IsWholeAlloca
= NewBeginOffset
== NewAllocaBeginOffset
&&
3055 NewEndOffset
== NewAllocaEndOffset
;
3056 uint64_t Size
= NewEndOffset
- NewBeginOffset
;
3057 unsigned BeginIndex
= VecTy
? getIndex(NewBeginOffset
) : 0;
3058 unsigned EndIndex
= VecTy
? getIndex(NewEndOffset
) : 0;
3059 unsigned NumElements
= EndIndex
- BeginIndex
;
3060 IntegerType
*SubIntTy
=
3061 IntTy
? Type::getIntNTy(IntTy
->getContext(), Size
* 8) : nullptr;
3063 // Reset the other pointer type to match the register type we're going to
3064 // use, but using the address space of the original other pointer.
3066 if (VecTy
&& !IsWholeAlloca
) {
3067 if (NumElements
== 1)
3068 OtherTy
= VecTy
->getElementType();
3070 OtherTy
= FixedVectorType::get(VecTy
->getElementType(), NumElements
);
3071 } else if (IntTy
&& !IsWholeAlloca
) {
3074 OtherTy
= NewAllocaTy
;
3076 OtherPtrTy
= OtherTy
->getPointerTo(OtherAS
);
3078 Value
*SrcPtr
= getAdjustedPtr(IRB
, DL
, OtherPtr
, OtherOffset
, OtherPtrTy
,
3079 OtherPtr
->getName() + ".");
3080 MaybeAlign SrcAlign
= OtherAlign
;
3081 Value
*DstPtr
= &NewAI
;
3082 MaybeAlign DstAlign
= SliceAlign
;
3084 std::swap(SrcPtr
, DstPtr
);
3085 std::swap(SrcAlign
, DstAlign
);
3089 if (VecTy
&& !IsWholeAlloca
&& !IsDest
) {
3090 Src
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3091 NewAI
.getAlign(), "load");
3092 Src
= extractVector(IRB
, Src
, BeginIndex
, EndIndex
, "vec");
3093 } else if (IntTy
&& !IsWholeAlloca
&& !IsDest
) {
3094 Src
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3095 NewAI
.getAlign(), "load");
3096 Src
= convertValue(DL
, IRB
, Src
, IntTy
);
3097 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
3098 Src
= extractInteger(DL
, IRB
, Src
, SubIntTy
, Offset
, "extract");
3100 LoadInst
*Load
= IRB
.CreateAlignedLoad(OtherTy
, SrcPtr
, SrcAlign
,
3101 II
.isVolatile(), "copyload");
3102 Load
->copyMetadata(II
, {LLVMContext::MD_mem_parallel_loop_access
,
3103 LLVMContext::MD_access_group
});
3105 Load
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
3109 if (VecTy
&& !IsWholeAlloca
&& IsDest
) {
3110 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3111 NewAI
.getAlign(), "oldload");
3112 Src
= insertVector(IRB
, Old
, Src
, BeginIndex
, "vec");
3113 } else if (IntTy
&& !IsWholeAlloca
&& IsDest
) {
3114 Value
*Old
= IRB
.CreateAlignedLoad(NewAI
.getAllocatedType(), &NewAI
,
3115 NewAI
.getAlign(), "oldload");
3116 Old
= convertValue(DL
, IRB
, Old
, IntTy
);
3117 uint64_t Offset
= NewBeginOffset
- NewAllocaBeginOffset
;
3118 Src
= insertInteger(DL
, IRB
, Old
, Src
, Offset
, "insert");
3119 Src
= convertValue(DL
, IRB
, Src
, NewAllocaTy
);
3122 StoreInst
*Store
= cast
<StoreInst
>(
3123 IRB
.CreateAlignedStore(Src
, DstPtr
, DstAlign
, II
.isVolatile()));
3124 Store
->copyMetadata(II
, {LLVMContext::MD_mem_parallel_loop_access
,
3125 LLVMContext::MD_access_group
});
3127 Store
->setAAMetadata(AATags
.shift(NewBeginOffset
- BeginOffset
));
3128 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
3129 return !II
.isVolatile();
3132 bool visitIntrinsicInst(IntrinsicInst
&II
) {
3133 assert((II
.isLifetimeStartOrEnd() || II
.isDroppable()) &&
3134 "Unexpected intrinsic!");
3135 LLVM_DEBUG(dbgs() << " original: " << II
<< "\n");
3137 // Record this instruction for deletion.
3138 Pass
.DeadInsts
.push_back(&II
);
3140 if (II
.isDroppable()) {
3141 assert(II
.getIntrinsicID() == Intrinsic::assume
&& "Expected assume");
3142 // TODO For now we forget assumed information, this can be improved.
3143 OldPtr
->dropDroppableUsesIn(II
);
3147 assert(II
.getArgOperand(1) == OldPtr
);
3148 // Lifetime intrinsics are only promotable if they cover the whole alloca.
3149 // Therefore, we drop lifetime intrinsics which don't cover the whole
3151 // (In theory, intrinsics which partially cover an alloca could be
3152 // promoted, but PromoteMemToReg doesn't handle that case.)
3153 // FIXME: Check whether the alloca is promotable before dropping the
3154 // lifetime intrinsics?
3155 if (NewBeginOffset
!= NewAllocaBeginOffset
||
3156 NewEndOffset
!= NewAllocaEndOffset
)
3160 ConstantInt::get(cast
<IntegerType
>(II
.getArgOperand(0)->getType()),
3161 NewEndOffset
- NewBeginOffset
);
3162 // Lifetime intrinsics always expect an i8* so directly get such a pointer
3163 // for the new alloca slice.
3164 Type
*PointerTy
= IRB
.getInt8PtrTy(OldPtr
->getType()->getPointerAddressSpace());
3165 Value
*Ptr
= getNewAllocaSlicePtr(IRB
, PointerTy
);
3167 if (II
.getIntrinsicID() == Intrinsic::lifetime_start
)
3168 New
= IRB
.CreateLifetimeStart(Ptr
, Size
);
3170 New
= IRB
.CreateLifetimeEnd(Ptr
, Size
);
3173 LLVM_DEBUG(dbgs() << " to: " << *New
<< "\n");
3178 void fixLoadStoreAlign(Instruction
&Root
) {
3179 // This algorithm implements the same visitor loop as
3180 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3182 SmallPtrSet
<Instruction
*, 4> Visited
;
3183 SmallVector
<Instruction
*, 4> Uses
;
3184 Visited
.insert(&Root
);
3185 Uses
.push_back(&Root
);
3187 Instruction
*I
= Uses
.pop_back_val();
3189 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
3190 LI
->setAlignment(std::min(LI
->getAlign(), getSliceAlign()));
3193 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
3194 SI
->setAlignment(std::min(SI
->getAlign(), getSliceAlign()));
3198 assert(isa
<BitCastInst
>(I
) || isa
<AddrSpaceCastInst
>(I
) ||
3199 isa
<PHINode
>(I
) || isa
<SelectInst
>(I
) ||
3200 isa
<GetElementPtrInst
>(I
));
3201 for (User
*U
: I
->users())
3202 if (Visited
.insert(cast
<Instruction
>(U
)).second
)
3203 Uses
.push_back(cast
<Instruction
>(U
));
3204 } while (!Uses
.empty());
3207 bool visitPHINode(PHINode
&PN
) {
3208 LLVM_DEBUG(dbgs() << " original: " << PN
<< "\n");
3209 assert(BeginOffset
>= NewAllocaBeginOffset
&& "PHIs are unsplittable");
3210 assert(EndOffset
<= NewAllocaEndOffset
&& "PHIs are unsplittable");
3212 // We would like to compute a new pointer in only one place, but have it be
3213 // as local as possible to the PHI. To do that, we re-use the location of
3214 // the old pointer, which necessarily must be in the right position to
3215 // dominate the PHI.
3216 IRBuilderBase::InsertPointGuard
Guard(IRB
);
3217 if (isa
<PHINode
>(OldPtr
))
3218 IRB
.SetInsertPoint(&*OldPtr
->getParent()->getFirstInsertionPt());
3220 IRB
.SetInsertPoint(OldPtr
);
3221 IRB
.SetCurrentDebugLocation(OldPtr
->getDebugLoc());
3223 Value
*NewPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
3224 // Replace the operands which were using the old pointer.
3225 std::replace(PN
.op_begin(), PN
.op_end(), cast
<Value
>(OldPtr
), NewPtr
);
3227 LLVM_DEBUG(dbgs() << " to: " << PN
<< "\n");
3228 deleteIfTriviallyDead(OldPtr
);
3230 // Fix the alignment of any loads or stores using this PHI node.
3231 fixLoadStoreAlign(PN
);
3233 // PHIs can't be promoted on their own, but often can be speculated. We
3234 // check the speculation outside of the rewriter so that we see the
3235 // fully-rewritten alloca.
3236 PHIUsers
.insert(&PN
);
3240 bool visitSelectInst(SelectInst
&SI
) {
3241 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
3242 assert((SI
.getTrueValue() == OldPtr
|| SI
.getFalseValue() == OldPtr
) &&
3243 "Pointer isn't an operand!");
3244 assert(BeginOffset
>= NewAllocaBeginOffset
&& "Selects are unsplittable");
3245 assert(EndOffset
<= NewAllocaEndOffset
&& "Selects are unsplittable");
3247 Value
*NewPtr
= getNewAllocaSlicePtr(IRB
, OldPtr
->getType());
3248 // Replace the operands which were using the old pointer.
3249 if (SI
.getOperand(1) == OldPtr
)
3250 SI
.setOperand(1, NewPtr
);
3251 if (SI
.getOperand(2) == OldPtr
)
3252 SI
.setOperand(2, NewPtr
);
3254 LLVM_DEBUG(dbgs() << " to: " << SI
<< "\n");
3255 deleteIfTriviallyDead(OldPtr
);
3257 // Fix the alignment of any loads or stores using this select.
3258 fixLoadStoreAlign(SI
);
3260 // Selects can't be promoted on their own, but often can be speculated. We
3261 // check the speculation outside of the rewriter so that we see the
3262 // fully-rewritten alloca.
3263 SelectUsers
.insert(&SI
);
3270 /// Visitor to rewrite aggregate loads and stores as scalar.
3272 /// This pass aggressively rewrites all aggregate loads and stores on
3273 /// a particular pointer (or any pointer derived from it which we can identify)
3274 /// with scalar loads and stores.
3275 class AggLoadStoreRewriter
: public InstVisitor
<AggLoadStoreRewriter
, bool> {
3276 // Befriend the base class so it can delegate to private visit methods.
3277 friend class InstVisitor
<AggLoadStoreRewriter
, bool>;
3279 /// Queue of pointer uses to analyze and potentially rewrite.
3280 SmallVector
<Use
*, 8> Queue
;
3282 /// Set to prevent us from cycling with phi nodes and loops.
3283 SmallPtrSet
<User
*, 8> Visited
;
3285 /// The current pointer use being rewritten. This is used to dig up the used
3286 /// value (as opposed to the user).
3289 /// Used to calculate offsets, and hence alignment, of subobjects.
3290 const DataLayout
&DL
;
3293 AggLoadStoreRewriter(const DataLayout
&DL
) : DL(DL
) {}
3295 /// Rewrite loads and stores through a pointer and all pointers derived from
3297 bool rewrite(Instruction
&I
) {
3298 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n");
3300 bool Changed
= false;
3301 while (!Queue
.empty()) {
3302 U
= Queue
.pop_back_val();
3303 Changed
|= visit(cast
<Instruction
>(U
->getUser()));
3309 /// Enqueue all the users of the given instruction for further processing.
3310 /// This uses a set to de-duplicate users.
3311 void enqueueUsers(Instruction
&I
) {
3312 for (Use
&U
: I
.uses())
3313 if (Visited
.insert(U
.getUser()).second
)
3314 Queue
.push_back(&U
);
3317 // Conservative default is to not rewrite anything.
3318 bool visitInstruction(Instruction
&I
) { return false; }
3320 /// Generic recursive split emission class.
3321 template <typename Derived
> class OpSplitter
{
3323 /// The builder used to form new instructions.
3326 /// The indices which to be used with insert- or extractvalue to select the
3327 /// appropriate value within the aggregate.
3328 SmallVector
<unsigned, 4> Indices
;
3330 /// The indices to a GEP instruction which will move Ptr to the correct slot
3331 /// within the aggregate.
3332 SmallVector
<Value
*, 4> GEPIndices
;
3334 /// The base pointer of the original op, used as a base for GEPing the
3335 /// split operations.
3338 /// The base pointee type being GEPed into.
3341 /// Known alignment of the base pointer.
3344 /// To calculate offset of each component so we can correctly deduce
3346 const DataLayout
&DL
;
3348 /// Initialize the splitter with an insertion point, Ptr and start with a
3349 /// single zero GEP index.
3350 OpSplitter(Instruction
*InsertionPoint
, Value
*Ptr
, Type
*BaseTy
,
3351 Align BaseAlign
, const DataLayout
&DL
)
3352 : IRB(InsertionPoint
), GEPIndices(1, IRB
.getInt32(0)), Ptr(Ptr
),
3353 BaseTy(BaseTy
), BaseAlign(BaseAlign
), DL(DL
) {}
3356 /// Generic recursive split emission routine.
3358 /// This method recursively splits an aggregate op (load or store) into
3359 /// scalar or vector ops. It splits recursively until it hits a single value
3360 /// and emits that single value operation via the template argument.
3362 /// The logic of this routine relies on GEPs and insertvalue and
3363 /// extractvalue all operating with the same fundamental index list, merely
3364 /// formatted differently (GEPs need actual values).
3366 /// \param Ty The type being split recursively into smaller ops.
3367 /// \param Agg The aggregate value being built up or stored, depending on
3368 /// whether this is splitting a load or a store respectively.
3369 void emitSplitOps(Type
*Ty
, Value
*&Agg
, const Twine
&Name
) {
3370 if (Ty
->isSingleValueType()) {
3371 unsigned Offset
= DL
.getIndexedOffsetInType(BaseTy
, GEPIndices
);
3372 return static_cast<Derived
*>(this)->emitFunc(
3373 Ty
, Agg
, commonAlignment(BaseAlign
, Offset
), Name
);
3376 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
3377 unsigned OldSize
= Indices
.size();
3379 for (unsigned Idx
= 0, Size
= ATy
->getNumElements(); Idx
!= Size
;
3381 assert(Indices
.size() == OldSize
&& "Did not return to the old size");
3382 Indices
.push_back(Idx
);
3383 GEPIndices
.push_back(IRB
.getInt32(Idx
));
3384 emitSplitOps(ATy
->getElementType(), Agg
, Name
+ "." + Twine(Idx
));
3385 GEPIndices
.pop_back();
3391 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
3392 unsigned OldSize
= Indices
.size();
3394 for (unsigned Idx
= 0, Size
= STy
->getNumElements(); Idx
!= Size
;
3396 assert(Indices
.size() == OldSize
&& "Did not return to the old size");
3397 Indices
.push_back(Idx
);
3398 GEPIndices
.push_back(IRB
.getInt32(Idx
));
3399 emitSplitOps(STy
->getElementType(Idx
), Agg
, Name
+ "." + Twine(Idx
));
3400 GEPIndices
.pop_back();
3406 llvm_unreachable("Only arrays and structs are aggregate loadable types");
3410 struct LoadOpSplitter
: public OpSplitter
<LoadOpSplitter
> {
3413 LoadOpSplitter(Instruction
*InsertionPoint
, Value
*Ptr
, Type
*BaseTy
,
3414 AAMDNodes AATags
, Align BaseAlign
, const DataLayout
&DL
)
3415 : OpSplitter
<LoadOpSplitter
>(InsertionPoint
, Ptr
, BaseTy
, BaseAlign
,
3419 /// Emit a leaf load of a single value. This is called at the leaves of the
3420 /// recursive emission to actually load values.
3421 void emitFunc(Type
*Ty
, Value
*&Agg
, Align Alignment
, const Twine
&Name
) {
3422 assert(Ty
->isSingleValueType());
3423 // Load the single value and insert it using the indices.
3425 IRB
.CreateInBoundsGEP(BaseTy
, Ptr
, GEPIndices
, Name
+ ".gep");
3427 IRB
.CreateAlignedLoad(Ty
, GEP
, Alignment
, Name
+ ".load");
3430 DL
.getIndexSizeInBits(Ptr
->getType()->getPointerAddressSpace()), 0);
3432 GEPOperator::accumulateConstantOffset(BaseTy
, GEPIndices
, DL
, Offset
))
3433 Load
->setAAMetadata(AATags
.shift(Offset
.getZExtValue()));
3435 Agg
= IRB
.CreateInsertValue(Agg
, Load
, Indices
, Name
+ ".insert");
3436 LLVM_DEBUG(dbgs() << " to: " << *Load
<< "\n");
3440 bool visitLoadInst(LoadInst
&LI
) {
3441 assert(LI
.getPointerOperand() == *U
);
3442 if (!LI
.isSimple() || LI
.getType()->isSingleValueType())
3445 // We have an aggregate being loaded, split it apart.
3446 LLVM_DEBUG(dbgs() << " original: " << LI
<< "\n");
3448 LI
.getAAMetadata(AATags
);
3449 LoadOpSplitter
Splitter(&LI
, *U
, LI
.getType(), AATags
,
3450 getAdjustedAlignment(&LI
, 0), DL
);
3451 Value
*V
= UndefValue::get(LI
.getType());
3452 Splitter
.emitSplitOps(LI
.getType(), V
, LI
.getName() + ".fca");
3454 LI
.replaceAllUsesWith(V
);
3455 LI
.eraseFromParent();
3459 struct StoreOpSplitter
: public OpSplitter
<StoreOpSplitter
> {
3460 StoreOpSplitter(Instruction
*InsertionPoint
, Value
*Ptr
, Type
*BaseTy
,
3461 AAMDNodes AATags
, Align BaseAlign
, const DataLayout
&DL
)
3462 : OpSplitter
<StoreOpSplitter
>(InsertionPoint
, Ptr
, BaseTy
, BaseAlign
,
3466 /// Emit a leaf store of a single value. This is called at the leaves of the
3467 /// recursive emission to actually produce stores.
3468 void emitFunc(Type
*Ty
, Value
*&Agg
, Align Alignment
, const Twine
&Name
) {
3469 assert(Ty
->isSingleValueType());
3470 // Extract the single value and store it using the indices.
3472 // The gep and extractvalue values are factored out of the CreateStore
3473 // call to make the output independent of the argument evaluation order.
3474 Value
*ExtractValue
=
3475 IRB
.CreateExtractValue(Agg
, Indices
, Name
+ ".extract");
3476 Value
*InBoundsGEP
=
3477 IRB
.CreateInBoundsGEP(BaseTy
, Ptr
, GEPIndices
, Name
+ ".gep");
3479 IRB
.CreateAlignedStore(ExtractValue
, InBoundsGEP
, Alignment
);
3482 DL
.getIndexSizeInBits(Ptr
->getType()->getPointerAddressSpace()), 0);
3484 GEPOperator::accumulateConstantOffset(BaseTy
, GEPIndices
, DL
, Offset
))
3485 Store
->setAAMetadata(AATags
.shift(Offset
.getZExtValue()));
3487 LLVM_DEBUG(dbgs() << " to: " << *Store
<< "\n");
3491 bool visitStoreInst(StoreInst
&SI
) {
3492 if (!SI
.isSimple() || SI
.getPointerOperand() != *U
)
3494 Value
*V
= SI
.getValueOperand();
3495 if (V
->getType()->isSingleValueType())
3498 // We have an aggregate being stored, split it apart.
3499 LLVM_DEBUG(dbgs() << " original: " << SI
<< "\n");
3501 SI
.getAAMetadata(AATags
);
3502 StoreOpSplitter
Splitter(&SI
, *U
, V
->getType(), AATags
,
3503 getAdjustedAlignment(&SI
, 0), DL
);
3504 Splitter
.emitSplitOps(V
->getType(), V
, V
->getName() + ".fca");
3506 SI
.eraseFromParent();
3510 bool visitBitCastInst(BitCastInst
&BC
) {
3515 bool visitAddrSpaceCastInst(AddrSpaceCastInst
&ASC
) {
3520 // Fold gep (select cond, ptr1, ptr2) => select cond, gep(ptr1), gep(ptr2)
3521 bool foldGEPSelect(GetElementPtrInst
&GEPI
) {
3522 if (!GEPI
.hasAllConstantIndices())
3525 SelectInst
*Sel
= cast
<SelectInst
>(GEPI
.getPointerOperand());
3527 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):"
3528 << "\n original: " << *Sel
3531 IRBuilderTy
Builder(&GEPI
);
3532 SmallVector
<Value
*, 4> Index(GEPI
.indices());
3533 bool IsInBounds
= GEPI
.isInBounds();
3535 Type
*Ty
= GEPI
.getSourceElementType();
3536 Value
*True
= Sel
->getTrueValue();
3539 ? Builder
.CreateInBoundsGEP(Ty
, True
, Index
,
3540 True
->getName() + ".sroa.gep")
3541 : Builder
.CreateGEP(Ty
, True
, Index
, True
->getName() + ".sroa.gep");
3543 Value
*False
= Sel
->getFalseValue();
3547 ? Builder
.CreateInBoundsGEP(Ty
, False
, Index
,
3548 False
->getName() + ".sroa.gep")
3549 : Builder
.CreateGEP(Ty
, False
, Index
,
3550 False
->getName() + ".sroa.gep");
3552 Value
*NSel
= Builder
.CreateSelect(Sel
->getCondition(), NTrue
, NFalse
,
3553 Sel
->getName() + ".sroa.sel");
3554 Visited
.erase(&GEPI
);
3555 GEPI
.replaceAllUsesWith(NSel
);
3556 GEPI
.eraseFromParent();
3557 Instruction
*NSelI
= cast
<Instruction
>(NSel
);
3558 Visited
.insert(NSelI
);
3559 enqueueUsers(*NSelI
);
3561 LLVM_DEBUG(dbgs() << "\n to: " << *NTrue
3563 << "\n " << *NSel
<< '\n');
3568 // Fold gep (phi ptr1, ptr2) => phi gep(ptr1), gep(ptr2)
3569 bool foldGEPPhi(GetElementPtrInst
&GEPI
) {
3570 if (!GEPI
.hasAllConstantIndices())
3573 PHINode
*PHI
= cast
<PHINode
>(GEPI
.getPointerOperand());
3574 if (GEPI
.getParent() != PHI
->getParent() ||
3575 llvm::any_of(PHI
->incoming_values(), [](Value
*In
)
3576 { Instruction
*I
= dyn_cast
<Instruction
>(In
);
3577 return !I
|| isa
<GetElementPtrInst
>(I
) || isa
<PHINode
>(I
) ||
3578 succ_empty(I
->getParent()) ||
3579 !I
->getParent()->isLegalToHoistInto();
3583 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):"
3584 << "\n original: " << *PHI
3588 SmallVector
<Value
*, 4> Index(GEPI
.indices());
3589 bool IsInBounds
= GEPI
.isInBounds();
3590 IRBuilderTy
PHIBuilder(GEPI
.getParent()->getFirstNonPHI());
3591 PHINode
*NewPN
= PHIBuilder
.CreatePHI(GEPI
.getType(),
3592 PHI
->getNumIncomingValues(),
3593 PHI
->getName() + ".sroa.phi");
3594 for (unsigned I
= 0, E
= PHI
->getNumIncomingValues(); I
!= E
; ++I
) {
3595 BasicBlock
*B
= PHI
->getIncomingBlock(I
);
3596 Value
*NewVal
= nullptr;
3597 int Idx
= NewPN
->getBasicBlockIndex(B
);
3599 NewVal
= NewPN
->getIncomingValue(Idx
);
3601 Instruction
*In
= cast
<Instruction
>(PHI
->getIncomingValue(I
));
3603 IRBuilderTy
B(In
->getParent(), std::next(In
->getIterator()));
3604 Type
*Ty
= GEPI
.getSourceElementType();
3606 ? B
.CreateInBoundsGEP(Ty
, In
, Index
, In
->getName() + ".sroa.gep")
3607 : B
.CreateGEP(Ty
, In
, Index
, In
->getName() + ".sroa.gep");
3609 NewPN
->addIncoming(NewVal
, B
);
3612 Visited
.erase(&GEPI
);
3613 GEPI
.replaceAllUsesWith(NewPN
);
3614 GEPI
.eraseFromParent();
3615 Visited
.insert(NewPN
);
3616 enqueueUsers(*NewPN
);
3618 LLVM_DEBUG(for (Value
*In
: NewPN
->incoming_values())
3619 dbgs() << "\n " << *In
;
3620 dbgs() << "\n " << *NewPN
<< '\n');
3625 bool visitGetElementPtrInst(GetElementPtrInst
&GEPI
) {
3626 if (isa
<SelectInst
>(GEPI
.getPointerOperand()) &&
3627 foldGEPSelect(GEPI
))
3630 if (isa
<PHINode
>(GEPI
.getPointerOperand()) &&
3638 bool visitPHINode(PHINode
&PN
) {
3643 bool visitSelectInst(SelectInst
&SI
) {
3649 } // end anonymous namespace
3651 /// Strip aggregate type wrapping.
3653 /// This removes no-op aggregate types wrapping an underlying type. It will
3654 /// strip as many layers of types as it can without changing either the type
3655 /// size or the allocated size.
3656 static Type
*stripAggregateTypeWrapping(const DataLayout
&DL
, Type
*Ty
) {
3657 if (Ty
->isSingleValueType())
3660 uint64_t AllocSize
= DL
.getTypeAllocSize(Ty
).getFixedSize();
3661 uint64_t TypeSize
= DL
.getTypeSizeInBits(Ty
).getFixedSize();
3664 if (ArrayType
*ArrTy
= dyn_cast
<ArrayType
>(Ty
)) {
3665 InnerTy
= ArrTy
->getElementType();
3666 } else if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
3667 const StructLayout
*SL
= DL
.getStructLayout(STy
);
3668 unsigned Index
= SL
->getElementContainingOffset(0);
3669 InnerTy
= STy
->getElementType(Index
);
3674 if (AllocSize
> DL
.getTypeAllocSize(InnerTy
).getFixedSize() ||
3675 TypeSize
> DL
.getTypeSizeInBits(InnerTy
).getFixedSize())
3678 return stripAggregateTypeWrapping(DL
, InnerTy
);
3681 /// Try to find a partition of the aggregate type passed in for a given
3682 /// offset and size.
3684 /// This recurses through the aggregate type and tries to compute a subtype
3685 /// based on the offset and size. When the offset and size span a sub-section
3686 /// of an array, it will even compute a new array type for that sub-section,
3687 /// and the same for structs.
3689 /// Note that this routine is very strict and tries to find a partition of the
3690 /// type which produces the *exact* right offset and size. It is not forgiving
3691 /// when the size or offset cause either end of type-based partition to be off.
3692 /// Also, this is a best-effort routine. It is reasonable to give up and not
3693 /// return a type if necessary.
3694 static Type
*getTypePartition(const DataLayout
&DL
, Type
*Ty
, uint64_t Offset
,
3696 if (Offset
== 0 && DL
.getTypeAllocSize(Ty
).getFixedSize() == Size
)
3697 return stripAggregateTypeWrapping(DL
, Ty
);
3698 if (Offset
> DL
.getTypeAllocSize(Ty
).getFixedSize() ||
3699 (DL
.getTypeAllocSize(Ty
).getFixedSize() - Offset
) < Size
)
3702 if (isa
<ArrayType
>(Ty
) || isa
<VectorType
>(Ty
)) {
3704 uint64_t TyNumElements
;
3705 if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
3706 ElementTy
= AT
->getElementType();
3707 TyNumElements
= AT
->getNumElements();
3709 // FIXME: This isn't right for vectors with non-byte-sized or
3710 // non-power-of-two sized elements.
3711 auto *VT
= cast
<FixedVectorType
>(Ty
);
3712 ElementTy
= VT
->getElementType();
3713 TyNumElements
= VT
->getNumElements();
3715 uint64_t ElementSize
= DL
.getTypeAllocSize(ElementTy
).getFixedSize();
3716 uint64_t NumSkippedElements
= Offset
/ ElementSize
;
3717 if (NumSkippedElements
>= TyNumElements
)
3719 Offset
-= NumSkippedElements
* ElementSize
;
3721 // First check if we need to recurse.
3722 if (Offset
> 0 || Size
< ElementSize
) {
3723 // Bail if the partition ends in a different array element.
3724 if ((Offset
+ Size
) > ElementSize
)
3726 // Recurse through the element type trying to peel off offset bytes.
3727 return getTypePartition(DL
, ElementTy
, Offset
, Size
);
3729 assert(Offset
== 0);
3731 if (Size
== ElementSize
)
3732 return stripAggregateTypeWrapping(DL
, ElementTy
);
3733 assert(Size
> ElementSize
);
3734 uint64_t NumElements
= Size
/ ElementSize
;
3735 if (NumElements
* ElementSize
!= Size
)
3737 return ArrayType::get(ElementTy
, NumElements
);
3740 StructType
*STy
= dyn_cast
<StructType
>(Ty
);
3744 const StructLayout
*SL
= DL
.getStructLayout(STy
);
3745 if (Offset
>= SL
->getSizeInBytes())
3747 uint64_t EndOffset
= Offset
+ Size
;
3748 if (EndOffset
> SL
->getSizeInBytes())
3751 unsigned Index
= SL
->getElementContainingOffset(Offset
);
3752 Offset
-= SL
->getElementOffset(Index
);
3754 Type
*ElementTy
= STy
->getElementType(Index
);
3755 uint64_t ElementSize
= DL
.getTypeAllocSize(ElementTy
).getFixedSize();
3756 if (Offset
>= ElementSize
)
3757 return nullptr; // The offset points into alignment padding.
3759 // See if any partition must be contained by the element.
3760 if (Offset
> 0 || Size
< ElementSize
) {
3761 if ((Offset
+ Size
) > ElementSize
)
3763 return getTypePartition(DL
, ElementTy
, Offset
, Size
);
3765 assert(Offset
== 0);
3767 if (Size
== ElementSize
)
3768 return stripAggregateTypeWrapping(DL
, ElementTy
);
3770 StructType::element_iterator EI
= STy
->element_begin() + Index
,
3771 EE
= STy
->element_end();
3772 if (EndOffset
< SL
->getSizeInBytes()) {
3773 unsigned EndIndex
= SL
->getElementContainingOffset(EndOffset
);
3774 if (Index
== EndIndex
)
3775 return nullptr; // Within a single element and its padding.
3777 // Don't try to form "natural" types if the elements don't line up with the
3779 // FIXME: We could potentially recurse down through the last element in the
3780 // sub-struct to find a natural end point.
3781 if (SL
->getElementOffset(EndIndex
) != EndOffset
)
3784 assert(Index
< EndIndex
);
3785 EE
= STy
->element_begin() + EndIndex
;
3788 // Try to build up a sub-structure.
3790 StructType::get(STy
->getContext(), makeArrayRef(EI
, EE
), STy
->isPacked());
3791 const StructLayout
*SubSL
= DL
.getStructLayout(SubTy
);
3792 if (Size
!= SubSL
->getSizeInBytes())
3793 return nullptr; // The sub-struct doesn't have quite the size needed.
3798 /// Pre-split loads and stores to simplify rewriting.
3800 /// We want to break up the splittable load+store pairs as much as
3801 /// possible. This is important to do as a preprocessing step, as once we
3802 /// start rewriting the accesses to partitions of the alloca we lose the
3803 /// necessary information to correctly split apart paired loads and stores
3804 /// which both point into this alloca. The case to consider is something like
3807 /// %a = alloca [12 x i8]
3808 /// %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3809 /// %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3810 /// %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3811 /// %iptr1 = bitcast i8* %gep1 to i64*
3812 /// %iptr2 = bitcast i8* %gep2 to i64*
3813 /// %fptr1 = bitcast i8* %gep1 to float*
3814 /// %fptr2 = bitcast i8* %gep2 to float*
3815 /// %fptr3 = bitcast i8* %gep3 to float*
3816 /// store float 0.0, float* %fptr1
3817 /// store float 1.0, float* %fptr2
3818 /// %v = load i64* %iptr1
3819 /// store i64 %v, i64* %iptr2
3820 /// %f1 = load float* %fptr2
3821 /// %f2 = load float* %fptr3
3823 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3824 /// promote everything so we recover the 2 SSA values that should have been
3825 /// there all along.
3827 /// \returns true if any changes are made.
3828 bool SROA::presplitLoadsAndStores(AllocaInst
&AI
, AllocaSlices
&AS
) {
3829 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3831 // Track the loads and stores which are candidates for pre-splitting here, in
3832 // the order they first appear during the partition scan. These give stable
3833 // iteration order and a basis for tracking which loads and stores we
3835 SmallVector
<LoadInst
*, 4> Loads
;
3836 SmallVector
<StoreInst
*, 4> Stores
;
3838 // We need to accumulate the splits required of each load or store where we
3839 // can find them via a direct lookup. This is important to cross-check loads
3840 // and stores against each other. We also track the slice so that we can kill
3841 // all the slices that end up split.
3842 struct SplitOffsets
{
3844 std::vector
<uint64_t> Splits
;
3846 SmallDenseMap
<Instruction
*, SplitOffsets
, 8> SplitOffsetsMap
;
3848 // Track loads out of this alloca which cannot, for any reason, be pre-split.
3849 // This is important as we also cannot pre-split stores of those loads!
3850 // FIXME: This is all pretty gross. It means that we can be more aggressive
3851 // in pre-splitting when the load feeding the store happens to come from
3852 // a separate alloca. Put another way, the effectiveness of SROA would be
3853 // decreased by a frontend which just concatenated all of its local allocas
3854 // into one big flat alloca. But defeating such patterns is exactly the job
3855 // SROA is tasked with! Sadly, to not have this discrepancy we would have
3856 // change store pre-splitting to actually force pre-splitting of the load
3857 // that feeds it *and all stores*. That makes pre-splitting much harder, but
3858 // maybe it would make it more principled?
3859 SmallPtrSet
<LoadInst
*, 8> UnsplittableLoads
;
3861 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n");
3862 for (auto &P
: AS
.partitions()) {
3863 for (Slice
&S
: P
) {
3864 Instruction
*I
= cast
<Instruction
>(S
.getUse()->getUser());
3865 if (!S
.isSplittable() || S
.endOffset() <= P
.endOffset()) {
3866 // If this is a load we have to track that it can't participate in any
3867 // pre-splitting. If this is a store of a load we have to track that
3868 // that load also can't participate in any pre-splitting.
3869 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
3870 UnsplittableLoads
.insert(LI
);
3871 else if (auto *SI
= dyn_cast
<StoreInst
>(I
))
3872 if (auto *LI
= dyn_cast
<LoadInst
>(SI
->getValueOperand()))
3873 UnsplittableLoads
.insert(LI
);
3876 assert(P
.endOffset() > S
.beginOffset() &&
3877 "Empty or backwards partition!");
3879 // Determine if this is a pre-splittable slice.
3880 if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
3881 assert(!LI
->isVolatile() && "Cannot split volatile loads!");
3883 // The load must be used exclusively to store into other pointers for
3884 // us to be able to arbitrarily pre-split it. The stores must also be
3885 // simple to avoid changing semantics.
3886 auto IsLoadSimplyStored
= [](LoadInst
*LI
) {
3887 for (User
*LU
: LI
->users()) {
3888 auto *SI
= dyn_cast
<StoreInst
>(LU
);
3889 if (!SI
|| !SI
->isSimple())
3894 if (!IsLoadSimplyStored(LI
)) {
3895 UnsplittableLoads
.insert(LI
);
3899 Loads
.push_back(LI
);
3900 } else if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
3901 if (S
.getUse() != &SI
->getOperandUse(SI
->getPointerOperandIndex()))
3902 // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3904 auto *StoredLoad
= dyn_cast
<LoadInst
>(SI
->getValueOperand());
3905 if (!StoredLoad
|| !StoredLoad
->isSimple())
3907 assert(!SI
->isVolatile() && "Cannot split volatile stores!");
3909 Stores
.push_back(SI
);
3911 // Other uses cannot be pre-split.
3915 // Record the initial split.
3916 LLVM_DEBUG(dbgs() << " Candidate: " << *I
<< "\n");
3917 auto &Offsets
= SplitOffsetsMap
[I
];
3918 assert(Offsets
.Splits
.empty() &&
3919 "Should not have splits the first time we see an instruction!");
3921 Offsets
.Splits
.push_back(P
.endOffset() - S
.beginOffset());
3924 // Now scan the already split slices, and add a split for any of them which
3925 // we're going to pre-split.
3926 for (Slice
*S
: P
.splitSliceTails()) {
3927 auto SplitOffsetsMapI
=
3928 SplitOffsetsMap
.find(cast
<Instruction
>(S
->getUse()->getUser()));
3929 if (SplitOffsetsMapI
== SplitOffsetsMap
.end())
3931 auto &Offsets
= SplitOffsetsMapI
->second
;
3933 assert(Offsets
.S
== S
&& "Found a mismatched slice!");
3934 assert(!Offsets
.Splits
.empty() &&
3935 "Cannot have an empty set of splits on the second partition!");
3936 assert(Offsets
.Splits
.back() ==
3937 P
.beginOffset() - Offsets
.S
->beginOffset() &&
3938 "Previous split does not end where this one begins!");
3940 // Record each split. The last partition's end isn't needed as the size
3941 // of the slice dictates that.
3942 if (S
->endOffset() > P
.endOffset())
3943 Offsets
.Splits
.push_back(P
.endOffset() - Offsets
.S
->beginOffset());
3947 // We may have split loads where some of their stores are split stores. For
3948 // such loads and stores, we can only pre-split them if their splits exactly
3949 // match relative to their starting offset. We have to verify this prior to
3951 llvm::erase_if(Stores
, [&UnsplittableLoads
, &SplitOffsetsMap
](StoreInst
*SI
) {
3952 // Lookup the load we are storing in our map of split
3954 auto *LI
= cast
<LoadInst
>(SI
->getValueOperand());
3955 // If it was completely unsplittable, then we're done,
3956 // and this store can't be pre-split.
3957 if (UnsplittableLoads
.count(LI
))
3960 auto LoadOffsetsI
= SplitOffsetsMap
.find(LI
);
3961 if (LoadOffsetsI
== SplitOffsetsMap
.end())
3962 return false; // Unrelated loads are definitely safe.
3963 auto &LoadOffsets
= LoadOffsetsI
->second
;
3965 // Now lookup the store's offsets.
3966 auto &StoreOffsets
= SplitOffsetsMap
[SI
];
3968 // If the relative offsets of each split in the load and
3969 // store match exactly, then we can split them and we
3970 // don't need to remove them here.
3971 if (LoadOffsets
.Splits
== StoreOffsets
.Splits
)
3974 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n"
3975 << " " << *LI
<< "\n"
3976 << " " << *SI
<< "\n");
3978 // We've found a store and load that we need to split
3979 // with mismatched relative splits. Just give up on them
3980 // and remove both instructions from our list of
3982 UnsplittableLoads
.insert(LI
);
3985 // Now we have to go *back* through all the stores, because a later store may
3986 // have caused an earlier store's load to become unsplittable and if it is
3987 // unsplittable for the later store, then we can't rely on it being split in
3988 // the earlier store either.
3989 llvm::erase_if(Stores
, [&UnsplittableLoads
](StoreInst
*SI
) {
3990 auto *LI
= cast
<LoadInst
>(SI
->getValueOperand());
3991 return UnsplittableLoads
.count(LI
);
3993 // Once we've established all the loads that can't be split for some reason,
3994 // filter any that made it into our list out.
3995 llvm::erase_if(Loads
, [&UnsplittableLoads
](LoadInst
*LI
) {
3996 return UnsplittableLoads
.count(LI
);
3999 // If no loads or stores are left, there is no pre-splitting to be done for
4001 if (Loads
.empty() && Stores
.empty())
4004 // From here on, we can't fail and will be building new accesses, so rig up
4006 IRBuilderTy
IRB(&AI
);
4008 // Collect the new slices which we will merge into the alloca slices.
4009 SmallVector
<Slice
, 4> NewSlices
;
4011 // Track any allocas we end up splitting loads and stores for so we iterate
4013 SmallPtrSet
<AllocaInst
*, 4> ResplitPromotableAllocas
;
4015 // At this point, we have collected all of the loads and stores we can
4016 // pre-split, and the specific splits needed for them. We actually do the
4017 // splitting in a specific order in order to handle when one of the loads in
4018 // the value operand to one of the stores.
4020 // First, we rewrite all of the split loads, and just accumulate each split
4021 // load in a parallel structure. We also build the slices for them and append
4022 // them to the alloca slices.
4023 SmallDenseMap
<LoadInst
*, std::vector
<LoadInst
*>, 1> SplitLoadsMap
;
4024 std::vector
<LoadInst
*> SplitLoads
;
4025 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4026 for (LoadInst
*LI
: Loads
) {
4029 IntegerType
*Ty
= cast
<IntegerType
>(LI
->getType());
4030 assert(Ty
->getBitWidth() % 8 == 0);
4031 uint64_t LoadSize
= Ty
->getBitWidth() / 8;
4032 assert(LoadSize
> 0 && "Cannot have a zero-sized integer load!");
4034 auto &Offsets
= SplitOffsetsMap
[LI
];
4035 assert(LoadSize
== Offsets
.S
->endOffset() - Offsets
.S
->beginOffset() &&
4036 "Slice size should always match load size exactly!");
4037 uint64_t BaseOffset
= Offsets
.S
->beginOffset();
4038 assert(BaseOffset
+ LoadSize
> BaseOffset
&&
4039 "Cannot represent alloca access size using 64-bit integers!");
4041 Instruction
*BasePtr
= cast
<Instruction
>(LI
->getPointerOperand());
4042 IRB
.SetInsertPoint(LI
);
4044 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI
<< "\n");
4046 uint64_t PartOffset
= 0, PartSize
= Offsets
.Splits
.front();
4047 int Idx
= 0, Size
= Offsets
.Splits
.size();
4049 auto *PartTy
= Type::getIntNTy(Ty
->getContext(), PartSize
* 8);
4050 auto AS
= LI
->getPointerAddressSpace();
4051 auto *PartPtrTy
= PartTy
->getPointerTo(AS
);
4052 LoadInst
*PLoad
= IRB
.CreateAlignedLoad(
4054 getAdjustedPtr(IRB
, DL
, BasePtr
,
4055 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
4056 PartPtrTy
, BasePtr
->getName() + "."),
4057 getAdjustedAlignment(LI
, PartOffset
),
4058 /*IsVolatile*/ false, LI
->getName());
4059 PLoad
->copyMetadata(*LI
, {LLVMContext::MD_mem_parallel_loop_access
,
4060 LLVMContext::MD_access_group
});
4062 // Append this load onto the list of split loads so we can find it later
4063 // to rewrite the stores.
4064 SplitLoads
.push_back(PLoad
);
4066 // Now build a new slice for the alloca.
4067 NewSlices
.push_back(
4068 Slice(BaseOffset
+ PartOffset
, BaseOffset
+ PartOffset
+ PartSize
,
4069 &PLoad
->getOperandUse(PLoad
->getPointerOperandIndex()),
4070 /*IsSplittable*/ false));
4071 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices
.back().beginOffset()
4072 << ", " << NewSlices
.back().endOffset()
4073 << "): " << *PLoad
<< "\n");
4075 // See if we've handled all the splits.
4079 // Setup the next partition.
4080 PartOffset
= Offsets
.Splits
[Idx
];
4082 PartSize
= (Idx
< Size
? Offsets
.Splits
[Idx
] : LoadSize
) - PartOffset
;
4085 // Now that we have the split loads, do the slow walk over all uses of the
4086 // load and rewrite them as split stores, or save the split loads to use
4087 // below if the store is going to be split there anyways.
4088 bool DeferredStores
= false;
4089 for (User
*LU
: LI
->users()) {
4090 StoreInst
*SI
= cast
<StoreInst
>(LU
);
4091 if (!Stores
.empty() && SplitOffsetsMap
.count(SI
)) {
4092 DeferredStores
= true;
4093 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI
4098 Value
*StoreBasePtr
= SI
->getPointerOperand();
4099 IRB
.SetInsertPoint(SI
);
4101 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI
<< "\n");
4103 for (int Idx
= 0, Size
= SplitLoads
.size(); Idx
< Size
; ++Idx
) {
4104 LoadInst
*PLoad
= SplitLoads
[Idx
];
4105 uint64_t PartOffset
= Idx
== 0 ? 0 : Offsets
.Splits
[Idx
- 1];
4107 PLoad
->getType()->getPointerTo(SI
->getPointerAddressSpace());
4109 auto AS
= SI
->getPointerAddressSpace();
4110 StoreInst
*PStore
= IRB
.CreateAlignedStore(
4112 getAdjustedPtr(IRB
, DL
, StoreBasePtr
,
4113 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
4114 PartPtrTy
, StoreBasePtr
->getName() + "."),
4115 getAdjustedAlignment(SI
, PartOffset
),
4116 /*IsVolatile*/ false);
4117 PStore
->copyMetadata(*SI
, {LLVMContext::MD_mem_parallel_loop_access
,
4118 LLVMContext::MD_access_group
});
4119 LLVM_DEBUG(dbgs() << " +" << PartOffset
<< ":" << *PStore
<< "\n");
4122 // We want to immediately iterate on any allocas impacted by splitting
4123 // this store, and we have to track any promotable alloca (indicated by
4124 // a direct store) as needing to be resplit because it is no longer
4126 if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(StoreBasePtr
)) {
4127 ResplitPromotableAllocas
.insert(OtherAI
);
4128 Worklist
.insert(OtherAI
);
4129 } else if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(
4130 StoreBasePtr
->stripInBoundsOffsets())) {
4131 Worklist
.insert(OtherAI
);
4134 // Mark the original store as dead.
4135 DeadInsts
.push_back(SI
);
4138 // Save the split loads if there are deferred stores among the users.
4140 SplitLoadsMap
.insert(std::make_pair(LI
, std::move(SplitLoads
)));
4142 // Mark the original load as dead and kill the original slice.
4143 DeadInsts
.push_back(LI
);
4147 // Second, we rewrite all of the split stores. At this point, we know that
4148 // all loads from this alloca have been split already. For stores of such
4149 // loads, we can simply look up the pre-existing split loads. For stores of
4150 // other loads, we split those loads first and then write split stores of
4152 for (StoreInst
*SI
: Stores
) {
4153 auto *LI
= cast
<LoadInst
>(SI
->getValueOperand());
4154 IntegerType
*Ty
= cast
<IntegerType
>(LI
->getType());
4155 assert(Ty
->getBitWidth() % 8 == 0);
4156 uint64_t StoreSize
= Ty
->getBitWidth() / 8;
4157 assert(StoreSize
> 0 && "Cannot have a zero-sized integer store!");
4159 auto &Offsets
= SplitOffsetsMap
[SI
];
4160 assert(StoreSize
== Offsets
.S
->endOffset() - Offsets
.S
->beginOffset() &&
4161 "Slice size should always match load size exactly!");
4162 uint64_t BaseOffset
= Offsets
.S
->beginOffset();
4163 assert(BaseOffset
+ StoreSize
> BaseOffset
&&
4164 "Cannot represent alloca access size using 64-bit integers!");
4166 Value
*LoadBasePtr
= LI
->getPointerOperand();
4167 Instruction
*StoreBasePtr
= cast
<Instruction
>(SI
->getPointerOperand());
4169 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI
<< "\n");
4171 // Check whether we have an already split load.
4172 auto SplitLoadsMapI
= SplitLoadsMap
.find(LI
);
4173 std::vector
<LoadInst
*> *SplitLoads
= nullptr;
4174 if (SplitLoadsMapI
!= SplitLoadsMap
.end()) {
4175 SplitLoads
= &SplitLoadsMapI
->second
;
4176 assert(SplitLoads
->size() == Offsets
.Splits
.size() + 1 &&
4177 "Too few split loads for the number of splits in the store!");
4179 LLVM_DEBUG(dbgs() << " of load: " << *LI
<< "\n");
4182 uint64_t PartOffset
= 0, PartSize
= Offsets
.Splits
.front();
4183 int Idx
= 0, Size
= Offsets
.Splits
.size();
4185 auto *PartTy
= Type::getIntNTy(Ty
->getContext(), PartSize
* 8);
4186 auto *LoadPartPtrTy
= PartTy
->getPointerTo(LI
->getPointerAddressSpace());
4187 auto *StorePartPtrTy
= PartTy
->getPointerTo(SI
->getPointerAddressSpace());
4189 // Either lookup a split load or create one.
4192 PLoad
= (*SplitLoads
)[Idx
];
4194 IRB
.SetInsertPoint(LI
);
4195 auto AS
= LI
->getPointerAddressSpace();
4196 PLoad
= IRB
.CreateAlignedLoad(
4198 getAdjustedPtr(IRB
, DL
, LoadBasePtr
,
4199 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
4200 LoadPartPtrTy
, LoadBasePtr
->getName() + "."),
4201 getAdjustedAlignment(LI
, PartOffset
),
4202 /*IsVolatile*/ false, LI
->getName());
4203 PLoad
->copyMetadata(*LI
, {LLVMContext::MD_mem_parallel_loop_access
,
4204 LLVMContext::MD_access_group
});
4207 // And store this partition.
4208 IRB
.SetInsertPoint(SI
);
4209 auto AS
= SI
->getPointerAddressSpace();
4210 StoreInst
*PStore
= IRB
.CreateAlignedStore(
4212 getAdjustedPtr(IRB
, DL
, StoreBasePtr
,
4213 APInt(DL
.getIndexSizeInBits(AS
), PartOffset
),
4214 StorePartPtrTy
, StoreBasePtr
->getName() + "."),
4215 getAdjustedAlignment(SI
, PartOffset
),
4216 /*IsVolatile*/ false);
4217 PStore
->copyMetadata(*SI
, {LLVMContext::MD_mem_parallel_loop_access
,
4218 LLVMContext::MD_access_group
});
4220 // Now build a new slice for the alloca.
4221 NewSlices
.push_back(
4222 Slice(BaseOffset
+ PartOffset
, BaseOffset
+ PartOffset
+ PartSize
,
4223 &PStore
->getOperandUse(PStore
->getPointerOperandIndex()),
4224 /*IsSplittable*/ false));
4225 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices
.back().beginOffset()
4226 << ", " << NewSlices
.back().endOffset()
4227 << "): " << *PStore
<< "\n");
4229 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad
<< "\n");
4232 // See if we've finished all the splits.
4236 // Setup the next partition.
4237 PartOffset
= Offsets
.Splits
[Idx
];
4239 PartSize
= (Idx
< Size
? Offsets
.Splits
[Idx
] : StoreSize
) - PartOffset
;
4242 // We want to immediately iterate on any allocas impacted by splitting
4243 // this load, which is only relevant if it isn't a load of this alloca and
4244 // thus we didn't already split the loads above. We also have to keep track
4245 // of any promotable allocas we split loads on as they can no longer be
4248 if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(LoadBasePtr
)) {
4249 assert(OtherAI
!= &AI
&& "We can't re-split our own alloca!");
4250 ResplitPromotableAllocas
.insert(OtherAI
);
4251 Worklist
.insert(OtherAI
);
4252 } else if (AllocaInst
*OtherAI
= dyn_cast
<AllocaInst
>(
4253 LoadBasePtr
->stripInBoundsOffsets())) {
4254 assert(OtherAI
!= &AI
&& "We can't re-split our own alloca!");
4255 Worklist
.insert(OtherAI
);
4259 // Mark the original store as dead now that we've split it up and kill its
4260 // slice. Note that we leave the original load in place unless this store
4261 // was its only use. It may in turn be split up if it is an alloca load
4262 // for some other alloca, but it may be a normal load. This may introduce
4263 // redundant loads, but where those can be merged the rest of the optimizer
4264 // should handle the merging, and this uncovers SSA splits which is more
4265 // important. In practice, the original loads will almost always be fully
4266 // split and removed eventually, and the splits will be merged by any
4267 // trivial CSE, including instcombine.
4268 if (LI
->hasOneUse()) {
4269 assert(*LI
->user_begin() == SI
&& "Single use isn't this store!");
4270 DeadInsts
.push_back(LI
);
4272 DeadInsts
.push_back(SI
);
4276 // Remove the killed slices that have ben pre-split.
4277 llvm::erase_if(AS
, [](const Slice
&S
) { return S
.isDead(); });
4279 // Insert our new slices. This will sort and merge them into the sorted
4281 AS
.insert(NewSlices
);
4283 LLVM_DEBUG(dbgs() << " Pre-split slices:\n");
4285 for (auto I
= AS
.begin(), E
= AS
.end(); I
!= E
; ++I
)
4286 LLVM_DEBUG(AS
.print(dbgs(), I
, " "));
4289 // Finally, don't try to promote any allocas that new require re-splitting.
4290 // They have already been added to the worklist above.
4291 llvm::erase_if(PromotableAllocas
, [&](AllocaInst
*AI
) {
4292 return ResplitPromotableAllocas
.count(AI
);
4298 /// Rewrite an alloca partition's users.
4300 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4301 /// to rewrite uses of an alloca partition to be conducive for SSA value
4302 /// promotion. If the partition needs a new, more refined alloca, this will
4303 /// build that new alloca, preserving as much type information as possible, and
4304 /// rewrite the uses of the old alloca to point at the new one and have the
4305 /// appropriate new offsets. It also evaluates how successful the rewrite was
4306 /// at enabling promotion and if it was successful queues the alloca to be
4308 AllocaInst
*SROA::rewritePartition(AllocaInst
&AI
, AllocaSlices
&AS
,
4310 // Try to compute a friendly type for this partition of the alloca. This
4311 // won't always succeed, in which case we fall back to a legal integer type
4312 // or an i8 array of an appropriate size.
4313 Type
*SliceTy
= nullptr;
4314 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4315 std::pair
<Type
*, IntegerType
*> CommonUseTy
=
4316 findCommonType(P
.begin(), P
.end(), P
.endOffset());
4317 // Do all uses operate on the same type?
4318 if (CommonUseTy
.first
)
4319 if (DL
.getTypeAllocSize(CommonUseTy
.first
).getFixedSize() >= P
.size())
4320 SliceTy
= CommonUseTy
.first
;
4321 // If not, can we find an appropriate subtype in the original allocated type?
4323 if (Type
*TypePartitionTy
= getTypePartition(DL
, AI
.getAllocatedType(),
4324 P
.beginOffset(), P
.size()))
4325 SliceTy
= TypePartitionTy
;
4326 // If still not, can we use the largest bitwidth integer type used?
4327 if (!SliceTy
&& CommonUseTy
.second
)
4328 if (DL
.getTypeAllocSize(CommonUseTy
.second
).getFixedSize() >= P
.size())
4329 SliceTy
= CommonUseTy
.second
;
4330 if ((!SliceTy
|| (SliceTy
->isArrayTy() &&
4331 SliceTy
->getArrayElementType()->isIntegerTy())) &&
4332 DL
.isLegalInteger(P
.size() * 8))
4333 SliceTy
= Type::getIntNTy(*C
, P
.size() * 8);
4335 SliceTy
= ArrayType::get(Type::getInt8Ty(*C
), P
.size());
4336 assert(DL
.getTypeAllocSize(SliceTy
).getFixedSize() >= P
.size());
4338 bool IsIntegerPromotable
= isIntegerWideningViable(P
, SliceTy
, DL
);
4341 IsIntegerPromotable
? nullptr : isVectorPromotionViable(P
, DL
);
4345 // Check for the case where we're going to rewrite to a new alloca of the
4346 // exact same type as the original, and with the same access offsets. In that
4347 // case, re-use the existing alloca, but still run through the rewriter to
4348 // perform phi and select speculation.
4349 // P.beginOffset() can be non-zero even with the same type in a case with
4350 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4352 if (SliceTy
== AI
.getAllocatedType() && P
.beginOffset() == 0) {
4354 // FIXME: We should be able to bail at this point with "nothing changed".
4355 // FIXME: We might want to defer PHI speculation until after here.
4356 // FIXME: return nullptr;
4358 // Make sure the alignment is compatible with P.beginOffset().
4359 const Align Alignment
= commonAlignment(AI
.getAlign(), P
.beginOffset());
4360 // If we will get at least this much alignment from the type alone, leave
4361 // the alloca's alignment unconstrained.
4362 const bool IsUnconstrained
= Alignment
<= DL
.getABITypeAlign(SliceTy
);
4363 NewAI
= new AllocaInst(
4364 SliceTy
, AI
.getType()->getAddressSpace(), nullptr,
4365 IsUnconstrained
? DL
.getPrefTypeAlign(SliceTy
) : Alignment
,
4366 AI
.getName() + ".sroa." + Twine(P
.begin() - AS
.begin()), &AI
);
4367 // Copy the old AI debug location over to the new one.
4368 NewAI
->setDebugLoc(AI
.getDebugLoc());
4372 LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4373 << "[" << P
.beginOffset() << "," << P
.endOffset()
4374 << ") to: " << *NewAI
<< "\n");
4376 // Track the high watermark on the worklist as it is only relevant for
4377 // promoted allocas. We will reset it to this point if the alloca is not in
4378 // fact scheduled for promotion.
4379 unsigned PPWOldSize
= PostPromotionWorklist
.size();
4380 unsigned NumUses
= 0;
4381 SmallSetVector
<PHINode
*, 8> PHIUsers
;
4382 SmallSetVector
<SelectInst
*, 8> SelectUsers
;
4384 AllocaSliceRewriter
Rewriter(DL
, AS
, *this, AI
, *NewAI
, P
.beginOffset(),
4385 P
.endOffset(), IsIntegerPromotable
, VecTy
,
4386 PHIUsers
, SelectUsers
);
4387 bool Promotable
= true;
4388 for (Slice
*S
: P
.splitSliceTails()) {
4389 Promotable
&= Rewriter
.visit(S
);
4392 for (Slice
&S
: P
) {
4393 Promotable
&= Rewriter
.visit(&S
);
4397 NumAllocaPartitionUses
+= NumUses
;
4398 MaxUsesPerAllocaPartition
.updateMax(NumUses
);
4400 // Now that we've processed all the slices in the new partition, check if any
4401 // PHIs or Selects would block promotion.
4402 for (PHINode
*PHI
: PHIUsers
)
4403 if (!isSafePHIToSpeculate(*PHI
)) {
4406 SelectUsers
.clear();
4410 for (SelectInst
*Sel
: SelectUsers
)
4411 if (!isSafeSelectToSpeculate(*Sel
)) {
4414 SelectUsers
.clear();
4419 for (Use
*U
: AS
.getDeadUsesIfPromotable()) {
4420 auto *OldInst
= dyn_cast
<Instruction
>(U
->get());
4421 Value::dropDroppableUse(*U
);
4423 if (isInstructionTriviallyDead(OldInst
))
4424 DeadInsts
.push_back(OldInst
);
4426 if (PHIUsers
.empty() && SelectUsers
.empty()) {
4427 // Promote the alloca.
4428 PromotableAllocas
.push_back(NewAI
);
4430 // If we have either PHIs or Selects to speculate, add them to those
4431 // worklists and re-queue the new alloca so that we promote in on the
4433 for (PHINode
*PHIUser
: PHIUsers
)
4434 SpeculatablePHIs
.insert(PHIUser
);
4435 for (SelectInst
*SelectUser
: SelectUsers
)
4436 SpeculatableSelects
.insert(SelectUser
);
4437 Worklist
.insert(NewAI
);
4440 // Drop any post-promotion work items if promotion didn't happen.
4441 while (PostPromotionWorklist
.size() > PPWOldSize
)
4442 PostPromotionWorklist
.pop_back();
4444 // We couldn't promote and we didn't create a new partition, nothing
4449 // If we can't promote the alloca, iterate on it to check for new
4450 // refinements exposed by splitting the current alloca. Don't iterate on an
4451 // alloca which didn't actually change and didn't get promoted.
4452 Worklist
.insert(NewAI
);
4458 /// Walks the slices of an alloca and form partitions based on them,
4459 /// rewriting each of their uses.
4460 bool SROA::splitAlloca(AllocaInst
&AI
, AllocaSlices
&AS
) {
4461 if (AS
.begin() == AS
.end())
4464 unsigned NumPartitions
= 0;
4465 bool Changed
= false;
4466 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4468 // First try to pre-split loads and stores.
4469 Changed
|= presplitLoadsAndStores(AI
, AS
);
4471 // Now that we have identified any pre-splitting opportunities,
4472 // mark loads and stores unsplittable except for the following case.
4473 // We leave a slice splittable if all other slices are disjoint or fully
4474 // included in the slice, such as whole-alloca loads and stores.
4475 // If we fail to split these during pre-splitting, we want to force them
4476 // to be rewritten into a partition.
4477 bool IsSorted
= true;
4479 uint64_t AllocaSize
=
4480 DL
.getTypeAllocSize(AI
.getAllocatedType()).getFixedSize();
4481 const uint64_t MaxBitVectorSize
= 1024;
4482 if (AllocaSize
<= MaxBitVectorSize
) {
4483 // If a byte boundary is included in any load or store, a slice starting or
4484 // ending at the boundary is not splittable.
4485 SmallBitVector
SplittableOffset(AllocaSize
+ 1, true);
4487 for (unsigned O
= S
.beginOffset() + 1;
4488 O
< S
.endOffset() && O
< AllocaSize
; O
++)
4489 SplittableOffset
.reset(O
);
4491 for (Slice
&S
: AS
) {
4492 if (!S
.isSplittable())
4495 if ((S
.beginOffset() > AllocaSize
|| SplittableOffset
[S
.beginOffset()]) &&
4496 (S
.endOffset() > AllocaSize
|| SplittableOffset
[S
.endOffset()]))
4499 if (isa
<LoadInst
>(S
.getUse()->getUser()) ||
4500 isa
<StoreInst
>(S
.getUse()->getUser())) {
4501 S
.makeUnsplittable();
4507 // We only allow whole-alloca splittable loads and stores
4508 // for a large alloca to avoid creating too large BitVector.
4509 for (Slice
&S
: AS
) {
4510 if (!S
.isSplittable())
4513 if (S
.beginOffset() == 0 && S
.endOffset() >= AllocaSize
)
4516 if (isa
<LoadInst
>(S
.getUse()->getUser()) ||
4517 isa
<StoreInst
>(S
.getUse()->getUser())) {
4518 S
.makeUnsplittable();
4527 /// Describes the allocas introduced by rewritePartition in order to migrate
4533 Fragment(AllocaInst
*AI
, uint64_t O
, uint64_t S
)
4534 : Alloca(AI
), Offset(O
), Size(S
) {}
4536 SmallVector
<Fragment
, 4> Fragments
;
4538 // Rewrite each partition.
4539 for (auto &P
: AS
.partitions()) {
4540 if (AllocaInst
*NewAI
= rewritePartition(AI
, AS
, P
)) {
4543 uint64_t SizeOfByte
= 8;
4544 uint64_t AllocaSize
=
4545 DL
.getTypeSizeInBits(NewAI
->getAllocatedType()).getFixedSize();
4546 // Don't include any padding.
4547 uint64_t Size
= std::min(AllocaSize
, P
.size() * SizeOfByte
);
4548 Fragments
.push_back(Fragment(NewAI
, P
.beginOffset() * SizeOfByte
, Size
));
4554 NumAllocaPartitions
+= NumPartitions
;
4555 MaxPartitionsPerAlloca
.updateMax(NumPartitions
);
4557 // Migrate debug information from the old alloca to the new alloca(s)
4558 // and the individual partitions.
4559 TinyPtrVector
<DbgVariableIntrinsic
*> DbgDeclares
= FindDbgAddrUses(&AI
);
4560 for (DbgVariableIntrinsic
*DbgDeclare
: DbgDeclares
) {
4561 auto *Expr
= DbgDeclare
->getExpression();
4562 DIBuilder
DIB(*AI
.getModule(), /*AllowUnresolved*/ false);
4563 uint64_t AllocaSize
=
4564 DL
.getTypeSizeInBits(AI
.getAllocatedType()).getFixedSize();
4565 for (auto Fragment
: Fragments
) {
4566 // Create a fragment expression describing the new partition or reuse AI's
4567 // expression if there is only one partition.
4568 auto *FragmentExpr
= Expr
;
4569 if (Fragment
.Size
< AllocaSize
|| Expr
->isFragment()) {
4570 // If this alloca is already a scalar replacement of a larger aggregate,
4571 // Fragment.Offset describes the offset inside the scalar.
4572 auto ExprFragment
= Expr
->getFragmentInfo();
4573 uint64_t Offset
= ExprFragment
? ExprFragment
->OffsetInBits
: 0;
4574 uint64_t Start
= Offset
+ Fragment
.Offset
;
4575 uint64_t Size
= Fragment
.Size
;
4578 ExprFragment
->OffsetInBits
+ ExprFragment
->SizeInBits
;
4579 if (Start
>= AbsEnd
)
4580 // No need to describe a SROAed padding.
4582 Size
= std::min(Size
, AbsEnd
- Start
);
4584 // The new, smaller fragment is stenciled out from the old fragment.
4585 if (auto OrigFragment
= FragmentExpr
->getFragmentInfo()) {
4586 assert(Start
>= OrigFragment
->OffsetInBits
&&
4587 "new fragment is outside of original fragment");
4588 Start
-= OrigFragment
->OffsetInBits
;
4591 // The alloca may be larger than the variable.
4592 auto VarSize
= DbgDeclare
->getVariable()->getSizeInBits();
4594 if (Size
> *VarSize
)
4596 if (Size
== 0 || Start
+ Size
> *VarSize
)
4600 // Avoid creating a fragment expression that covers the entire variable.
4601 if (!VarSize
|| *VarSize
!= Size
) {
4603 DIExpression::createFragmentExpression(Expr
, Start
, Size
))
4610 // Remove any existing intrinsics on the new alloca describing
4611 // the variable fragment.
4612 for (DbgVariableIntrinsic
*OldDII
: FindDbgAddrUses(Fragment
.Alloca
)) {
4613 auto SameVariableFragment
= [](const DbgVariableIntrinsic
*LHS
,
4614 const DbgVariableIntrinsic
*RHS
) {
4615 return LHS
->getVariable() == RHS
->getVariable() &&
4616 LHS
->getDebugLoc()->getInlinedAt() ==
4617 RHS
->getDebugLoc()->getInlinedAt();
4619 if (SameVariableFragment(OldDII
, DbgDeclare
))
4620 OldDII
->eraseFromParent();
4623 DIB
.insertDeclare(Fragment
.Alloca
, DbgDeclare
->getVariable(), FragmentExpr
,
4624 DbgDeclare
->getDebugLoc(), &AI
);
4630 /// Clobber a use with undef, deleting the used value if it becomes dead.
4631 void SROA::clobberUse(Use
&U
) {
4633 // Replace the use with an undef value.
4634 U
= UndefValue::get(OldV
->getType());
4636 // Check for this making an instruction dead. We have to garbage collect
4637 // all the dead instructions to ensure the uses of any alloca end up being
4639 if (Instruction
*OldI
= dyn_cast
<Instruction
>(OldV
))
4640 if (isInstructionTriviallyDead(OldI
)) {
4641 DeadInsts
.push_back(OldI
);
4645 /// Analyze an alloca for SROA.
4647 /// This analyzes the alloca to ensure we can reason about it, builds
4648 /// the slices of the alloca, and then hands it off to be split and
4649 /// rewritten as needed.
4650 bool SROA::runOnAlloca(AllocaInst
&AI
) {
4651 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI
<< "\n");
4652 ++NumAllocasAnalyzed
;
4654 // Special case dead allocas, as they're trivial.
4655 if (AI
.use_empty()) {
4656 AI
.eraseFromParent();
4659 const DataLayout
&DL
= AI
.getModule()->getDataLayout();
4661 // Skip alloca forms that this analysis can't handle.
4662 auto *AT
= AI
.getAllocatedType();
4663 if (AI
.isArrayAllocation() || !AT
->isSized() || isa
<ScalableVectorType
>(AT
) ||
4664 DL
.getTypeAllocSize(AT
).getFixedSize() == 0)
4667 bool Changed
= false;
4669 // First, split any FCA loads and stores touching this alloca to promote
4670 // better splitting and promotion opportunities.
4671 AggLoadStoreRewriter
AggRewriter(DL
);
4672 Changed
|= AggRewriter
.rewrite(AI
);
4674 // Build the slices using a recursive instruction-visiting builder.
4675 AllocaSlices
AS(DL
, AI
);
4676 LLVM_DEBUG(AS
.print(dbgs()));
4680 // Delete all the dead users of this alloca before splitting and rewriting it.
4681 for (Instruction
*DeadUser
: AS
.getDeadUsers()) {
4682 // Free up everything used by this instruction.
4683 for (Use
&DeadOp
: DeadUser
->operands())
4686 // Now replace the uses of this instruction.
4687 DeadUser
->replaceAllUsesWith(UndefValue::get(DeadUser
->getType()));
4689 // And mark it for deletion.
4690 DeadInsts
.push_back(DeadUser
);
4693 for (Use
*DeadOp
: AS
.getDeadOperands()) {
4694 clobberUse(*DeadOp
);
4698 // No slices to split. Leave the dead alloca for a later pass to clean up.
4699 if (AS
.begin() == AS
.end())
4702 Changed
|= splitAlloca(AI
, AS
);
4704 LLVM_DEBUG(dbgs() << " Speculating PHIs\n");
4705 while (!SpeculatablePHIs
.empty())
4706 speculatePHINodeLoads(*SpeculatablePHIs
.pop_back_val());
4708 LLVM_DEBUG(dbgs() << " Speculating Selects\n");
4709 while (!SpeculatableSelects
.empty())
4710 speculateSelectInstLoads(*SpeculatableSelects
.pop_back_val());
4715 /// Delete the dead instructions accumulated in this run.
4717 /// Recursively deletes the dead instructions we've accumulated. This is done
4718 /// at the very end to maximize locality of the recursive delete and to
4719 /// minimize the problems of invalidated instruction pointers as such pointers
4720 /// are used heavily in the intermediate stages of the algorithm.
4722 /// We also record the alloca instructions deleted here so that they aren't
4723 /// subsequently handed to mem2reg to promote.
4724 bool SROA::deleteDeadInstructions(
4725 SmallPtrSetImpl
<AllocaInst
*> &DeletedAllocas
) {
4726 bool Changed
= false;
4727 while (!DeadInsts
.empty()) {
4728 Instruction
*I
= dyn_cast_or_null
<Instruction
>(DeadInsts
.pop_back_val());
4730 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I
<< "\n");
4732 // If the instruction is an alloca, find the possible dbg.declare connected
4733 // to it, and remove it too. We must do this before calling RAUW or we will
4734 // not be able to find it.
4735 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
4736 DeletedAllocas
.insert(AI
);
4737 for (DbgVariableIntrinsic
*OldDII
: FindDbgAddrUses(AI
))
4738 OldDII
->eraseFromParent();
4741 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
4743 for (Use
&Operand
: I
->operands())
4744 if (Instruction
*U
= dyn_cast
<Instruction
>(Operand
)) {
4745 // Zero out the operand and see if it becomes trivially dead.
4747 if (isInstructionTriviallyDead(U
))
4748 DeadInsts
.push_back(U
);
4752 I
->eraseFromParent();
4758 /// Promote the allocas, using the best available technique.
4760 /// This attempts to promote whatever allocas have been identified as viable in
4761 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4762 /// This function returns whether any promotion occurred.
4763 bool SROA::promoteAllocas(Function
&F
) {
4764 if (PromotableAllocas
.empty())
4767 NumPromoted
+= PromotableAllocas
.size();
4769 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4770 PromoteMemToReg(PromotableAllocas
, *DT
, AC
);
4771 PromotableAllocas
.clear();
4775 PreservedAnalyses
SROA::runImpl(Function
&F
, DominatorTree
&RunDT
,
4776 AssumptionCache
&RunAC
) {
4777 LLVM_DEBUG(dbgs() << "SROA function: " << F
.getName() << "\n");
4778 C
= &F
.getContext();
4782 BasicBlock
&EntryBB
= F
.getEntryBlock();
4783 for (BasicBlock::iterator I
= EntryBB
.begin(), E
= std::prev(EntryBB
.end());
4785 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(I
)) {
4786 if (isa
<ScalableVectorType
>(AI
->getAllocatedType())) {
4787 if (isAllocaPromotable(AI
))
4788 PromotableAllocas
.push_back(AI
);
4790 Worklist
.insert(AI
);
4795 bool Changed
= false;
4796 // A set of deleted alloca instruction pointers which should be removed from
4797 // the list of promotable allocas.
4798 SmallPtrSet
<AllocaInst
*, 4> DeletedAllocas
;
4801 while (!Worklist
.empty()) {
4802 Changed
|= runOnAlloca(*Worklist
.pop_back_val());
4803 Changed
|= deleteDeadInstructions(DeletedAllocas
);
4805 // Remove the deleted allocas from various lists so that we don't try to
4806 // continue processing them.
4807 if (!DeletedAllocas
.empty()) {
4808 auto IsInSet
= [&](AllocaInst
*AI
) { return DeletedAllocas
.count(AI
); };
4809 Worklist
.remove_if(IsInSet
);
4810 PostPromotionWorklist
.remove_if(IsInSet
);
4811 llvm::erase_if(PromotableAllocas
, IsInSet
);
4812 DeletedAllocas
.clear();
4816 Changed
|= promoteAllocas(F
);
4818 Worklist
= PostPromotionWorklist
;
4819 PostPromotionWorklist
.clear();
4820 } while (!Worklist
.empty());
4823 return PreservedAnalyses::all();
4825 PreservedAnalyses PA
;
4826 PA
.preserveSet
<CFGAnalyses
>();
4830 PreservedAnalyses
SROA::run(Function
&F
, FunctionAnalysisManager
&AM
) {
4831 return runImpl(F
, AM
.getResult
<DominatorTreeAnalysis
>(F
),
4832 AM
.getResult
<AssumptionAnalysis
>(F
));
4835 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4837 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4839 class llvm::sroa::SROALegacyPass
: public FunctionPass
{
4840 /// The SROA implementation.
4846 SROALegacyPass() : FunctionPass(ID
) {
4847 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4850 bool runOnFunction(Function
&F
) override
{
4851 if (skipFunction(F
))
4854 auto PA
= Impl
.runImpl(
4855 F
, getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
4856 getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
));
4857 return !PA
.areAllPreserved();
4860 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
4861 AU
.addRequired
<AssumptionCacheTracker
>();
4862 AU
.addRequired
<DominatorTreeWrapperPass
>();
4863 AU
.addPreserved
<GlobalsAAWrapperPass
>();
4864 AU
.setPreservesCFG();
4867 StringRef
getPassName() const override
{ return "SROA"; }
4870 char SROALegacyPass::ID
= 0;
4872 FunctionPass
*llvm::createSROAPass() { return new SROALegacyPass(); }
4874 INITIALIZE_PASS_BEGIN(SROALegacyPass
, "sroa",
4875 "Scalar Replacement Of Aggregates", false, false)
4876 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
4877 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
4878 INITIALIZE_PASS_END(SROALegacyPass
, "sroa", "Scalar Replacement Of Aggregates",