[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / SimpleLoopUnswitch.cpp
bloba6d489f825b226adc2ad7bde6fdce77af049969a
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/GenericDomTree.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 #include "llvm/Transforms/Utils/ValueMapper.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <iterator>
61 #include <numeric>
62 #include <utility>
64 #define DEBUG_TYPE "simple-loop-unswitch"
66 using namespace llvm;
67 using namespace llvm::PatternMatch;
69 STATISTIC(NumBranches, "Number of branches unswitched");
70 STATISTIC(NumSwitches, "Number of switches unswitched");
71 STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
72 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
73 STATISTIC(
74 NumCostMultiplierSkipped,
75 "Number of unswitch candidates that had their cost multiplier skipped");
77 static cl::opt<bool> EnableNonTrivialUnswitch(
78 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
79 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
80 "following the configuration passed into the pass."));
82 static cl::opt<int>
83 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
84 cl::desc("The cost threshold for unswitching a loop."));
86 static cl::opt<bool> EnableUnswitchCostMultiplier(
87 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
88 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
89 "explosion in nontrivial unswitch."));
90 static cl::opt<int> UnswitchSiblingsToplevelDiv(
91 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
92 cl::desc("Toplevel siblings divisor for cost multiplier."));
93 static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
94 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
95 cl::desc("Number of unswitch candidates that are ignored when calculating "
96 "cost multiplier."));
97 static cl::opt<bool> UnswitchGuards(
98 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
99 cl::desc("If enabled, simple loop unswitching will also consider "
100 "llvm.experimental.guard intrinsics as unswitch candidates."));
101 static cl::opt<bool> DropNonTrivialImplicitNullChecks(
102 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
103 cl::init(false), cl::Hidden,
104 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
105 "null checks to save time analyzing if we can keep it."));
106 static cl::opt<unsigned>
107 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
108 cl::desc("Max number of memory uses to explore during "
109 "partial unswitching analysis"),
110 cl::init(100), cl::Hidden);
112 /// Collect all of the loop invariant input values transitively used by the
113 /// homogeneous instruction graph from a given root.
115 /// This essentially walks from a root recursively through loop variant operands
116 /// which have the exact same opcode and finds all inputs which are loop
117 /// invariant. For some operations these can be re-associated and unswitched out
118 /// of the loop entirely.
119 static TinyPtrVector<Value *>
120 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
121 LoopInfo &LI) {
122 assert(!L.isLoopInvariant(&Root) &&
123 "Only need to walk the graph if root itself is not invariant.");
124 TinyPtrVector<Value *> Invariants;
126 bool IsRootAnd = match(&Root, m_LogicalAnd());
127 bool IsRootOr = match(&Root, m_LogicalOr());
129 // Build a worklist and recurse through operators collecting invariants.
130 SmallVector<Instruction *, 4> Worklist;
131 SmallPtrSet<Instruction *, 8> Visited;
132 Worklist.push_back(&Root);
133 Visited.insert(&Root);
134 do {
135 Instruction &I = *Worklist.pop_back_val();
136 for (Value *OpV : I.operand_values()) {
137 // Skip constants as unswitching isn't interesting for them.
138 if (isa<Constant>(OpV))
139 continue;
141 // Add it to our result if loop invariant.
142 if (L.isLoopInvariant(OpV)) {
143 Invariants.push_back(OpV);
144 continue;
147 // If not an instruction with the same opcode, nothing we can do.
148 Instruction *OpI = dyn_cast<Instruction>(OpV);
150 if (OpI && ((IsRootAnd && match(OpI, m_LogicalAnd())) ||
151 (IsRootOr && match(OpI, m_LogicalOr())))) {
152 // Visit this operand.
153 if (Visited.insert(OpI).second)
154 Worklist.push_back(OpI);
157 } while (!Worklist.empty());
159 return Invariants;
162 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
163 Constant &Replacement) {
164 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
166 // Replace uses of LIC in the loop with the given constant.
167 // We use make_early_inc_range as set invalidates the iterator.
168 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
169 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
171 // Replace this use within the loop body.
172 if (UserI && L.contains(UserI))
173 U.set(&Replacement);
177 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
178 /// incoming values along this edge.
179 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
180 BasicBlock &ExitBB) {
181 for (Instruction &I : ExitBB) {
182 auto *PN = dyn_cast<PHINode>(&I);
183 if (!PN)
184 // No more PHIs to check.
185 return true;
187 // If the incoming value for this edge isn't loop invariant the unswitch
188 // won't be trivial.
189 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
190 return false;
192 llvm_unreachable("Basic blocks should never be empty!");
195 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
196 /// end of \p BB and conditionally branch on the copied condition. We only
197 /// branch on a single value.
198 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
199 ArrayRef<Value *> Invariants,
200 bool Direction,
201 BasicBlock &UnswitchedSucc,
202 BasicBlock &NormalSucc) {
203 IRBuilder<> IRB(&BB);
205 Value *Cond = Direction ? IRB.CreateOr(Invariants) :
206 IRB.CreateAnd(Invariants);
207 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
208 Direction ? &NormalSucc : &UnswitchedSucc);
211 /// Copy a set of loop invariant values, and conditionally branch on them.
212 static void buildPartialInvariantUnswitchConditionalBranch(
213 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
214 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
215 MemorySSAUpdater *MSSAU) {
216 ValueToValueMapTy VMap;
217 for (auto *Val : reverse(ToDuplicate)) {
218 Instruction *Inst = cast<Instruction>(Val);
219 Instruction *NewInst = Inst->clone();
220 BB.getInstList().insert(BB.end(), NewInst);
221 RemapInstruction(NewInst, VMap,
222 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
223 VMap[Val] = NewInst;
225 if (!MSSAU)
226 continue;
228 MemorySSA *MSSA = MSSAU->getMemorySSA();
229 if (auto *MemUse =
230 dyn_cast_or_null<MemoryUse>(MSSA->getMemoryAccess(Inst))) {
231 auto *DefiningAccess = MemUse->getDefiningAccess();
232 // Get the first defining access before the loop.
233 while (L.contains(DefiningAccess->getBlock())) {
234 // If the defining access is a MemoryPhi, get the incoming
235 // value for the pre-header as defining access.
236 if (auto *MemPhi = dyn_cast<MemoryPhi>(DefiningAccess))
237 DefiningAccess =
238 MemPhi->getIncomingValueForBlock(L.getLoopPreheader());
239 else
240 DefiningAccess = cast<MemoryDef>(DefiningAccess)->getDefiningAccess();
242 MSSAU->createMemoryAccessInBB(NewInst, DefiningAccess,
243 NewInst->getParent(),
244 MemorySSA::BeforeTerminator);
248 IRBuilder<> IRB(&BB);
249 Value *Cond = VMap[ToDuplicate[0]];
250 IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
251 Direction ? &NormalSucc : &UnswitchedSucc);
254 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
256 /// Requires that the loop exit and unswitched basic block are the same, and
257 /// that the exiting block was a unique predecessor of that block. Rewrites the
258 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
259 /// PHI nodes from the old preheader that now contains the unswitched
260 /// terminator.
261 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
262 BasicBlock &OldExitingBB,
263 BasicBlock &OldPH) {
264 for (PHINode &PN : UnswitchedBB.phis()) {
265 // When the loop exit is directly unswitched we just need to update the
266 // incoming basic block. We loop to handle weird cases with repeated
267 // incoming blocks, but expect to typically only have one operand here.
268 for (auto i : seq<int>(0, PN.getNumOperands())) {
269 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
270 "Found incoming block different from unique predecessor!");
271 PN.setIncomingBlock(i, &OldPH);
276 /// Rewrite the PHI nodes in the loop exit basic block and the split off
277 /// unswitched block.
279 /// Because the exit block remains an exit from the loop, this rewrites the
280 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
281 /// nodes into the unswitched basic block to select between the value in the
282 /// old preheader and the loop exit.
283 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
284 BasicBlock &UnswitchedBB,
285 BasicBlock &OldExitingBB,
286 BasicBlock &OldPH,
287 bool FullUnswitch) {
288 assert(&ExitBB != &UnswitchedBB &&
289 "Must have different loop exit and unswitched blocks!");
290 Instruction *InsertPt = &*UnswitchedBB.begin();
291 for (PHINode &PN : ExitBB.phis()) {
292 auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
293 PN.getName() + ".split", InsertPt);
295 // Walk backwards over the old PHI node's inputs to minimize the cost of
296 // removing each one. We have to do this weird loop manually so that we
297 // create the same number of new incoming edges in the new PHI as we expect
298 // each case-based edge to be included in the unswitched switch in some
299 // cases.
300 // FIXME: This is really, really gross. It would be much cleaner if LLVM
301 // allowed us to create a single entry for a predecessor block without
302 // having separate entries for each "edge" even though these edges are
303 // required to produce identical results.
304 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
305 if (PN.getIncomingBlock(i) != &OldExitingBB)
306 continue;
308 Value *Incoming = PN.getIncomingValue(i);
309 if (FullUnswitch)
310 // No more edge from the old exiting block to the exit block.
311 PN.removeIncomingValue(i);
313 NewPN->addIncoming(Incoming, &OldPH);
316 // Now replace the old PHI with the new one and wire the old one in as an
317 // input to the new one.
318 PN.replaceAllUsesWith(NewPN);
319 NewPN->addIncoming(&PN, &ExitBB);
323 /// Hoist the current loop up to the innermost loop containing a remaining exit.
325 /// Because we've removed an exit from the loop, we may have changed the set of
326 /// loops reachable and need to move the current loop up the loop nest or even
327 /// to an entirely separate nest.
328 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
329 DominatorTree &DT, LoopInfo &LI,
330 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
331 // If the loop is already at the top level, we can't hoist it anywhere.
332 Loop *OldParentL = L.getParentLoop();
333 if (!OldParentL)
334 return;
336 SmallVector<BasicBlock *, 4> Exits;
337 L.getExitBlocks(Exits);
338 Loop *NewParentL = nullptr;
339 for (auto *ExitBB : Exits)
340 if (Loop *ExitL = LI.getLoopFor(ExitBB))
341 if (!NewParentL || NewParentL->contains(ExitL))
342 NewParentL = ExitL;
344 if (NewParentL == OldParentL)
345 return;
347 // The new parent loop (if different) should always contain the old one.
348 if (NewParentL)
349 assert(NewParentL->contains(OldParentL) &&
350 "Can only hoist this loop up the nest!");
352 // The preheader will need to move with the body of this loop. However,
353 // because it isn't in this loop we also need to update the primary loop map.
354 assert(OldParentL == LI.getLoopFor(&Preheader) &&
355 "Parent loop of this loop should contain this loop's preheader!");
356 LI.changeLoopFor(&Preheader, NewParentL);
358 // Remove this loop from its old parent.
359 OldParentL->removeChildLoop(&L);
361 // Add the loop either to the new parent or as a top-level loop.
362 if (NewParentL)
363 NewParentL->addChildLoop(&L);
364 else
365 LI.addTopLevelLoop(&L);
367 // Remove this loops blocks from the old parent and every other loop up the
368 // nest until reaching the new parent. Also update all of these
369 // no-longer-containing loops to reflect the nesting change.
370 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
371 OldContainingL = OldContainingL->getParentLoop()) {
372 llvm::erase_if(OldContainingL->getBlocksVector(),
373 [&](const BasicBlock *BB) {
374 return BB == &Preheader || L.contains(BB);
377 OldContainingL->getBlocksSet().erase(&Preheader);
378 for (BasicBlock *BB : L.blocks())
379 OldContainingL->getBlocksSet().erase(BB);
381 // Because we just hoisted a loop out of this one, we have essentially
382 // created new exit paths from it. That means we need to form LCSSA PHI
383 // nodes for values used in the no-longer-nested loop.
384 formLCSSA(*OldContainingL, DT, &LI, SE);
386 // We shouldn't need to form dedicated exits because the exit introduced
387 // here is the (just split by unswitching) preheader. However, after trivial
388 // unswitching it is possible to get new non-dedicated exits out of parent
389 // loop so let's conservatively form dedicated exit blocks and figure out
390 // if we can optimize later.
391 formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
392 /*PreserveLCSSA*/ true);
396 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
397 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
398 // as exiting block.
399 static Loop *getTopMostExitingLoop(BasicBlock *ExitBB, LoopInfo &LI) {
400 Loop *TopMost = LI.getLoopFor(ExitBB);
401 Loop *Current = TopMost;
402 while (Current) {
403 if (Current->isLoopExiting(ExitBB))
404 TopMost = Current;
405 Current = Current->getParentLoop();
407 return TopMost;
410 /// Unswitch a trivial branch if the condition is loop invariant.
412 /// This routine should only be called when loop code leading to the branch has
413 /// been validated as trivial (no side effects). This routine checks if the
414 /// condition is invariant and one of the successors is a loop exit. This
415 /// allows us to unswitch without duplicating the loop, making it trivial.
417 /// If this routine fails to unswitch the branch it returns false.
419 /// If the branch can be unswitched, this routine splits the preheader and
420 /// hoists the branch above that split. Preserves loop simplified form
421 /// (splitting the exit block as necessary). It simplifies the branch within
422 /// the loop to an unconditional branch but doesn't remove it entirely. Further
423 /// cleanup can be done with some simplifycfg like pass.
425 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
426 /// invalidated by this.
427 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
428 LoopInfo &LI, ScalarEvolution *SE,
429 MemorySSAUpdater *MSSAU) {
430 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
431 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
433 // The loop invariant values that we want to unswitch.
434 TinyPtrVector<Value *> Invariants;
436 // When true, we're fully unswitching the branch rather than just unswitching
437 // some input conditions to the branch.
438 bool FullUnswitch = false;
440 if (L.isLoopInvariant(BI.getCondition())) {
441 Invariants.push_back(BI.getCondition());
442 FullUnswitch = true;
443 } else {
444 if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
445 Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
446 if (Invariants.empty()) {
447 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
448 return false;
452 // Check that one of the branch's successors exits, and which one.
453 bool ExitDirection = true;
454 int LoopExitSuccIdx = 0;
455 auto *LoopExitBB = BI.getSuccessor(0);
456 if (L.contains(LoopExitBB)) {
457 ExitDirection = false;
458 LoopExitSuccIdx = 1;
459 LoopExitBB = BI.getSuccessor(1);
460 if (L.contains(LoopExitBB)) {
461 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
462 return false;
465 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
466 auto *ParentBB = BI.getParent();
467 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB)) {
468 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
469 return false;
472 // When unswitching only part of the branch's condition, we need the exit
473 // block to be reached directly from the partially unswitched input. This can
474 // be done when the exit block is along the true edge and the branch condition
475 // is a graph of `or` operations, or the exit block is along the false edge
476 // and the condition is a graph of `and` operations.
477 if (!FullUnswitch) {
478 if (ExitDirection ? !match(BI.getCondition(), m_LogicalOr())
479 : !match(BI.getCondition(), m_LogicalAnd())) {
480 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
481 "non-full unswitch!\n");
482 return false;
486 LLVM_DEBUG({
487 dbgs() << " unswitching trivial invariant conditions for: " << BI
488 << "\n";
489 for (Value *Invariant : Invariants) {
490 dbgs() << " " << *Invariant << " == true";
491 if (Invariant != Invariants.back())
492 dbgs() << " ||";
493 dbgs() << "\n";
497 // If we have scalar evolutions, we need to invalidate them including this
498 // loop, the loop containing the exit block and the topmost parent loop
499 // exiting via LoopExitBB.
500 if (SE) {
501 if (Loop *ExitL = getTopMostExitingLoop(LoopExitBB, LI))
502 SE->forgetLoop(ExitL);
503 else
504 // Forget the entire nest as this exits the entire nest.
505 SE->forgetTopmostLoop(&L);
508 if (MSSAU && VerifyMemorySSA)
509 MSSAU->getMemorySSA()->verifyMemorySSA();
511 // Split the preheader, so that we know that there is a safe place to insert
512 // the conditional branch. We will change the preheader to have a conditional
513 // branch on LoopCond.
514 BasicBlock *OldPH = L.getLoopPreheader();
515 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
517 // Now that we have a place to insert the conditional branch, create a place
518 // to branch to: this is the exit block out of the loop that we are
519 // unswitching. We need to split this if there are other loop predecessors.
520 // Because the loop is in simplified form, *any* other predecessor is enough.
521 BasicBlock *UnswitchedBB;
522 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
523 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
524 "A branch's parent isn't a predecessor!");
525 UnswitchedBB = LoopExitBB;
526 } else {
527 UnswitchedBB =
528 SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
531 if (MSSAU && VerifyMemorySSA)
532 MSSAU->getMemorySSA()->verifyMemorySSA();
534 // Actually move the invariant uses into the unswitched position. If possible,
535 // we do this by moving the instructions, but when doing partial unswitching
536 // we do it by building a new merge of the values in the unswitched position.
537 OldPH->getTerminator()->eraseFromParent();
538 if (FullUnswitch) {
539 // If fully unswitching, we can use the existing branch instruction.
540 // Splice it into the old PH to gate reaching the new preheader and re-point
541 // its successors.
542 OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
543 BI);
544 if (MSSAU) {
545 // Temporarily clone the terminator, to make MSSA update cheaper by
546 // separating "insert edge" updates from "remove edge" ones.
547 ParentBB->getInstList().push_back(BI.clone());
548 } else {
549 // Create a new unconditional branch that will continue the loop as a new
550 // terminator.
551 BranchInst::Create(ContinueBB, ParentBB);
553 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
554 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
555 } else {
556 // Only unswitching a subset of inputs to the condition, so we will need to
557 // build a new branch that merges the invariant inputs.
558 if (ExitDirection)
559 assert(match(BI.getCondition(), m_LogicalOr()) &&
560 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
561 "condition!");
562 else
563 assert(match(BI.getCondition(), m_LogicalAnd()) &&
564 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
565 " condition!");
566 buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
567 *UnswitchedBB, *NewPH);
570 // Update the dominator tree with the added edge.
571 DT.insertEdge(OldPH, UnswitchedBB);
573 // After the dominator tree was updated with the added edge, update MemorySSA
574 // if available.
575 if (MSSAU) {
576 SmallVector<CFGUpdate, 1> Updates;
577 Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
578 MSSAU->applyInsertUpdates(Updates, DT);
581 // Finish updating dominator tree and memory ssa for full unswitch.
582 if (FullUnswitch) {
583 if (MSSAU) {
584 // Remove the cloned branch instruction.
585 ParentBB->getTerminator()->eraseFromParent();
586 // Create unconditional branch now.
587 BranchInst::Create(ContinueBB, ParentBB);
588 MSSAU->removeEdge(ParentBB, LoopExitBB);
590 DT.deleteEdge(ParentBB, LoopExitBB);
593 if (MSSAU && VerifyMemorySSA)
594 MSSAU->getMemorySSA()->verifyMemorySSA();
596 // Rewrite the relevant PHI nodes.
597 if (UnswitchedBB == LoopExitBB)
598 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
599 else
600 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
601 *ParentBB, *OldPH, FullUnswitch);
603 // The constant we can replace all of our invariants with inside the loop
604 // body. If any of the invariants have a value other than this the loop won't
605 // be entered.
606 ConstantInt *Replacement = ExitDirection
607 ? ConstantInt::getFalse(BI.getContext())
608 : ConstantInt::getTrue(BI.getContext());
610 // Since this is an i1 condition we can also trivially replace uses of it
611 // within the loop with a constant.
612 for (Value *Invariant : Invariants)
613 replaceLoopInvariantUses(L, Invariant, *Replacement);
615 // If this was full unswitching, we may have changed the nesting relationship
616 // for this loop so hoist it to its correct parent if needed.
617 if (FullUnswitch)
618 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
620 if (MSSAU && VerifyMemorySSA)
621 MSSAU->getMemorySSA()->verifyMemorySSA();
623 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
624 ++NumTrivial;
625 ++NumBranches;
626 return true;
629 /// Unswitch a trivial switch if the condition is loop invariant.
631 /// This routine should only be called when loop code leading to the switch has
632 /// been validated as trivial (no side effects). This routine checks if the
633 /// condition is invariant and that at least one of the successors is a loop
634 /// exit. This allows us to unswitch without duplicating the loop, making it
635 /// trivial.
637 /// If this routine fails to unswitch the switch it returns false.
639 /// If the switch can be unswitched, this routine splits the preheader and
640 /// copies the switch above that split. If the default case is one of the
641 /// exiting cases, it copies the non-exiting cases and points them at the new
642 /// preheader. If the default case is not exiting, it copies the exiting cases
643 /// and points the default at the preheader. It preserves loop simplified form
644 /// (splitting the exit blocks as necessary). It simplifies the switch within
645 /// the loop by removing now-dead cases. If the default case is one of those
646 /// unswitched, it replaces its destination with a new basic block containing
647 /// only unreachable. Such basic blocks, while technically loop exits, are not
648 /// considered for unswitching so this is a stable transform and the same
649 /// switch will not be revisited. If after unswitching there is only a single
650 /// in-loop successor, the switch is further simplified to an unconditional
651 /// branch. Still more cleanup can be done with some simplifycfg like pass.
653 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
654 /// invalidated by this.
655 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
656 LoopInfo &LI, ScalarEvolution *SE,
657 MemorySSAUpdater *MSSAU) {
658 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
659 Value *LoopCond = SI.getCondition();
661 // If this isn't switching on an invariant condition, we can't unswitch it.
662 if (!L.isLoopInvariant(LoopCond))
663 return false;
665 auto *ParentBB = SI.getParent();
667 // The same check must be used both for the default and the exit cases. We
668 // should never leave edges from the switch instruction to a basic block that
669 // we are unswitching, hence the condition used to determine the default case
670 // needs to also be used to populate ExitCaseIndices, which is then used to
671 // remove cases from the switch.
672 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
673 // BBToCheck is not an exit block if it is inside loop L.
674 if (L.contains(&BBToCheck))
675 return false;
676 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
677 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, BBToCheck))
678 return false;
679 // We do not unswitch a block that only has an unreachable statement, as
680 // it's possible this is a previously unswitched block. Only unswitch if
681 // either the terminator is not unreachable, or, if it is, it's not the only
682 // instruction in the block.
683 auto *TI = BBToCheck.getTerminator();
684 bool isUnreachable = isa<UnreachableInst>(TI);
685 return !isUnreachable ||
686 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
689 SmallVector<int, 4> ExitCaseIndices;
690 for (auto Case : SI.cases())
691 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
692 ExitCaseIndices.push_back(Case.getCaseIndex());
693 BasicBlock *DefaultExitBB = nullptr;
694 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
695 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
696 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
697 DefaultExitBB = SI.getDefaultDest();
698 } else if (ExitCaseIndices.empty())
699 return false;
701 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
703 if (MSSAU && VerifyMemorySSA)
704 MSSAU->getMemorySSA()->verifyMemorySSA();
706 // We may need to invalidate SCEVs for the outermost loop reached by any of
707 // the exits.
708 Loop *OuterL = &L;
710 if (DefaultExitBB) {
711 // Clear out the default destination temporarily to allow accurate
712 // predecessor lists to be examined below.
713 SI.setDefaultDest(nullptr);
714 // Check the loop containing this exit.
715 Loop *ExitL = LI.getLoopFor(DefaultExitBB);
716 if (!ExitL || ExitL->contains(OuterL))
717 OuterL = ExitL;
720 // Store the exit cases into a separate data structure and remove them from
721 // the switch.
722 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
723 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
724 4> ExitCases;
725 ExitCases.reserve(ExitCaseIndices.size());
726 SwitchInstProfUpdateWrapper SIW(SI);
727 // We walk the case indices backwards so that we remove the last case first
728 // and don't disrupt the earlier indices.
729 for (unsigned Index : reverse(ExitCaseIndices)) {
730 auto CaseI = SI.case_begin() + Index;
731 // Compute the outer loop from this exit.
732 Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
733 if (!ExitL || ExitL->contains(OuterL))
734 OuterL = ExitL;
735 // Save the value of this case.
736 auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
737 ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
738 // Delete the unswitched cases.
739 SIW.removeCase(CaseI);
742 if (SE) {
743 if (OuterL)
744 SE->forgetLoop(OuterL);
745 else
746 SE->forgetTopmostLoop(&L);
749 // Check if after this all of the remaining cases point at the same
750 // successor.
751 BasicBlock *CommonSuccBB = nullptr;
752 if (SI.getNumCases() > 0 &&
753 all_of(drop_begin(SI.cases()), [&SI](const SwitchInst::CaseHandle &Case) {
754 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
756 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
757 if (!DefaultExitBB) {
758 // If we're not unswitching the default, we need it to match any cases to
759 // have a common successor or if we have no cases it is the common
760 // successor.
761 if (SI.getNumCases() == 0)
762 CommonSuccBB = SI.getDefaultDest();
763 else if (SI.getDefaultDest() != CommonSuccBB)
764 CommonSuccBB = nullptr;
767 // Split the preheader, so that we know that there is a safe place to insert
768 // the switch.
769 BasicBlock *OldPH = L.getLoopPreheader();
770 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
771 OldPH->getTerminator()->eraseFromParent();
773 // Now add the unswitched switch.
774 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
775 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
777 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
778 // First, we split any exit blocks with remaining in-loop predecessors. Then
779 // we update the PHIs in one of two ways depending on if there was a split.
780 // We walk in reverse so that we split in the same order as the cases
781 // appeared. This is purely for convenience of reading the resulting IR, but
782 // it doesn't cost anything really.
783 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
784 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
785 // Handle the default exit if necessary.
786 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
787 // ranges aren't quite powerful enough yet.
788 if (DefaultExitBB) {
789 if (pred_empty(DefaultExitBB)) {
790 UnswitchedExitBBs.insert(DefaultExitBB);
791 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
792 } else {
793 auto *SplitBB =
794 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
795 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
796 *ParentBB, *OldPH,
797 /*FullUnswitch*/ true);
798 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
801 // Note that we must use a reference in the for loop so that we update the
802 // container.
803 for (auto &ExitCase : reverse(ExitCases)) {
804 // Grab a reference to the exit block in the pair so that we can update it.
805 BasicBlock *ExitBB = std::get<1>(ExitCase);
807 // If this case is the last edge into the exit block, we can simply reuse it
808 // as it will no longer be a loop exit. No mapping necessary.
809 if (pred_empty(ExitBB)) {
810 // Only rewrite once.
811 if (UnswitchedExitBBs.insert(ExitBB).second)
812 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
813 continue;
816 // Otherwise we need to split the exit block so that we retain an exit
817 // block from the loop and a target for the unswitched condition.
818 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
819 if (!SplitExitBB) {
820 // If this is the first time we see this, do the split and remember it.
821 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
822 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
823 *ParentBB, *OldPH,
824 /*FullUnswitch*/ true);
826 // Update the case pair to point to the split block.
827 std::get<1>(ExitCase) = SplitExitBB;
830 // Now add the unswitched cases. We do this in reverse order as we built them
831 // in reverse order.
832 for (auto &ExitCase : reverse(ExitCases)) {
833 ConstantInt *CaseVal = std::get<0>(ExitCase);
834 BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
836 NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
839 // If the default was unswitched, re-point it and add explicit cases for
840 // entering the loop.
841 if (DefaultExitBB) {
842 NewSIW->setDefaultDest(DefaultExitBB);
843 NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
845 // We removed all the exit cases, so we just copy the cases to the
846 // unswitched switch.
847 for (const auto &Case : SI.cases())
848 NewSIW.addCase(Case.getCaseValue(), NewPH,
849 SIW.getSuccessorWeight(Case.getSuccessorIndex()));
850 } else if (DefaultCaseWeight) {
851 // We have to set branch weight of the default case.
852 uint64_t SW = *DefaultCaseWeight;
853 for (const auto &Case : SI.cases()) {
854 auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
855 assert(W &&
856 "case weight must be defined as default case weight is defined");
857 SW += *W;
859 NewSIW.setSuccessorWeight(0, SW);
862 // If we ended up with a common successor for every path through the switch
863 // after unswitching, rewrite it to an unconditional branch to make it easy
864 // to recognize. Otherwise we potentially have to recognize the default case
865 // pointing at unreachable and other complexity.
866 if (CommonSuccBB) {
867 BasicBlock *BB = SI.getParent();
868 // We may have had multiple edges to this common successor block, so remove
869 // them as predecessors. We skip the first one, either the default or the
870 // actual first case.
871 bool SkippedFirst = DefaultExitBB == nullptr;
872 for (auto Case : SI.cases()) {
873 assert(Case.getCaseSuccessor() == CommonSuccBB &&
874 "Non-common successor!");
875 (void)Case;
876 if (!SkippedFirst) {
877 SkippedFirst = true;
878 continue;
880 CommonSuccBB->removePredecessor(BB,
881 /*KeepOneInputPHIs*/ true);
883 // Now nuke the switch and replace it with a direct branch.
884 SIW.eraseFromParent();
885 BranchInst::Create(CommonSuccBB, BB);
886 } else if (DefaultExitBB) {
887 assert(SI.getNumCases() > 0 &&
888 "If we had no cases we'd have a common successor!");
889 // Move the last case to the default successor. This is valid as if the
890 // default got unswitched it cannot be reached. This has the advantage of
891 // being simple and keeping the number of edges from this switch to
892 // successors the same, and avoiding any PHI update complexity.
893 auto LastCaseI = std::prev(SI.case_end());
895 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
896 SIW.setSuccessorWeight(
897 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
898 SIW.removeCase(LastCaseI);
901 // Walk the unswitched exit blocks and the unswitched split blocks and update
902 // the dominator tree based on the CFG edits. While we are walking unordered
903 // containers here, the API for applyUpdates takes an unordered list of
904 // updates and requires them to not contain duplicates.
905 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
906 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
907 DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
908 DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
910 for (auto SplitUnswitchedPair : SplitExitBBMap) {
911 DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
912 DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
915 if (MSSAU) {
916 MSSAU->applyUpdates(DTUpdates, DT, /*UpdateDT=*/true);
917 if (VerifyMemorySSA)
918 MSSAU->getMemorySSA()->verifyMemorySSA();
919 } else {
920 DT.applyUpdates(DTUpdates);
923 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
925 // We may have changed the nesting relationship for this loop so hoist it to
926 // its correct parent if needed.
927 hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU, SE);
929 if (MSSAU && VerifyMemorySSA)
930 MSSAU->getMemorySSA()->verifyMemorySSA();
932 ++NumTrivial;
933 ++NumSwitches;
934 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
935 return true;
938 /// This routine scans the loop to find a branch or switch which occurs before
939 /// any side effects occur. These can potentially be unswitched without
940 /// duplicating the loop. If a branch or switch is successfully unswitched the
941 /// scanning continues to see if subsequent branches or switches have become
942 /// trivial. Once all trivial candidates have been unswitched, this routine
943 /// returns.
945 /// The return value indicates whether anything was unswitched (and therefore
946 /// changed).
948 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
949 /// invalidated by this.
950 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
951 LoopInfo &LI, ScalarEvolution *SE,
952 MemorySSAUpdater *MSSAU) {
953 bool Changed = false;
955 // If loop header has only one reachable successor we should keep looking for
956 // trivial condition candidates in the successor as well. An alternative is
957 // to constant fold conditions and merge successors into loop header (then we
958 // only need to check header's terminator). The reason for not doing this in
959 // LoopUnswitch pass is that it could potentially break LoopPassManager's
960 // invariants. Folding dead branches could either eliminate the current loop
961 // or make other loops unreachable. LCSSA form might also not be preserved
962 // after deleting branches. The following code keeps traversing loop header's
963 // successors until it finds the trivial condition candidate (condition that
964 // is not a constant). Since unswitching generates branches with constant
965 // conditions, this scenario could be very common in practice.
966 BasicBlock *CurrentBB = L.getHeader();
967 SmallPtrSet<BasicBlock *, 8> Visited;
968 Visited.insert(CurrentBB);
969 do {
970 // Check if there are any side-effecting instructions (e.g. stores, calls,
971 // volatile loads) in the part of the loop that the code *would* execute
972 // without unswitching.
973 if (MSSAU) // Possible early exit with MSSA
974 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
975 if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
976 return Changed;
977 if (llvm::any_of(*CurrentBB,
978 [](Instruction &I) { return I.mayHaveSideEffects(); }))
979 return Changed;
981 Instruction *CurrentTerm = CurrentBB->getTerminator();
983 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
984 // Don't bother trying to unswitch past a switch with a constant
985 // condition. This should be removed prior to running this pass by
986 // simplifycfg.
987 if (isa<Constant>(SI->getCondition()))
988 return Changed;
990 if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
991 // Couldn't unswitch this one so we're done.
992 return Changed;
994 // Mark that we managed to unswitch something.
995 Changed = true;
997 // If unswitching turned the terminator into an unconditional branch then
998 // we can continue. The unswitching logic specifically works to fold any
999 // cases it can into an unconditional branch to make it easier to
1000 // recognize here.
1001 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
1002 if (!BI || BI->isConditional())
1003 return Changed;
1005 CurrentBB = BI->getSuccessor(0);
1006 continue;
1009 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
1010 if (!BI)
1011 // We do not understand other terminator instructions.
1012 return Changed;
1014 // Don't bother trying to unswitch past an unconditional branch or a branch
1015 // with a constant value. These should be removed by simplifycfg prior to
1016 // running this pass.
1017 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
1018 return Changed;
1020 // Found a trivial condition candidate: non-foldable conditional branch. If
1021 // we fail to unswitch this, we can't do anything else that is trivial.
1022 if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
1023 return Changed;
1025 // Mark that we managed to unswitch something.
1026 Changed = true;
1028 // If we only unswitched some of the conditions feeding the branch, we won't
1029 // have collapsed it to a single successor.
1030 BI = cast<BranchInst>(CurrentBB->getTerminator());
1031 if (BI->isConditional())
1032 return Changed;
1034 // Follow the newly unconditional branch into its successor.
1035 CurrentBB = BI->getSuccessor(0);
1037 // When continuing, if we exit the loop or reach a previous visited block,
1038 // then we can not reach any trivial condition candidates (unfoldable
1039 // branch instructions or switch instructions) and no unswitch can happen.
1040 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
1042 return Changed;
1045 /// Build the cloned blocks for an unswitched copy of the given loop.
1047 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1048 /// after the split block (`SplitBB`) that will be used to select between the
1049 /// cloned and original loop.
1051 /// This routine handles cloning all of the necessary loop blocks and exit
1052 /// blocks including rewriting their instructions and the relevant PHI nodes.
1053 /// Any loop blocks or exit blocks which are dominated by a different successor
1054 /// than the one for this clone of the loop blocks can be trivially skipped. We
1055 /// use the `DominatingSucc` map to determine whether a block satisfies that
1056 /// property with a simple map lookup.
1058 /// It also correctly creates the unconditional branch in the cloned
1059 /// unswitched parent block to only point at the unswitched successor.
1061 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1062 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1063 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1064 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1065 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1066 /// instead the caller must recompute an accurate DT. It *does* correctly
1067 /// update the `AssumptionCache` provided in `AC`.
1068 static BasicBlock *buildClonedLoopBlocks(
1069 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1070 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1071 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1072 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1073 ValueToValueMapTy &VMap,
1074 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1075 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
1076 SmallVector<BasicBlock *, 4> NewBlocks;
1077 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
1079 // We will need to clone a bunch of blocks, wrap up the clone operation in
1080 // a helper.
1081 auto CloneBlock = [&](BasicBlock *OldBB) {
1082 // Clone the basic block and insert it before the new preheader.
1083 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
1084 NewBB->moveBefore(LoopPH);
1086 // Record this block and the mapping.
1087 NewBlocks.push_back(NewBB);
1088 VMap[OldBB] = NewBB;
1090 return NewBB;
1093 // We skip cloning blocks when they have a dominating succ that is not the
1094 // succ we are cloning for.
1095 auto SkipBlock = [&](BasicBlock *BB) {
1096 auto It = DominatingSucc.find(BB);
1097 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1100 // First, clone the preheader.
1101 auto *ClonedPH = CloneBlock(LoopPH);
1103 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1104 for (auto *LoopBB : L.blocks())
1105 if (!SkipBlock(LoopBB))
1106 CloneBlock(LoopBB);
1108 // Split all the loop exit edges so that when we clone the exit blocks, if
1109 // any of the exit blocks are *also* a preheader for some other loop, we
1110 // don't create multiple predecessors entering the loop header.
1111 for (auto *ExitBB : ExitBlocks) {
1112 if (SkipBlock(ExitBB))
1113 continue;
1115 // When we are going to clone an exit, we don't need to clone all the
1116 // instructions in the exit block and we want to ensure we have an easy
1117 // place to merge the CFG, so split the exit first. This is always safe to
1118 // do because there cannot be any non-loop predecessors of a loop exit in
1119 // loop simplified form.
1120 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
1122 // Rearrange the names to make it easier to write test cases by having the
1123 // exit block carry the suffix rather than the merge block carrying the
1124 // suffix.
1125 MergeBB->takeName(ExitBB);
1126 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1128 // Now clone the original exit block.
1129 auto *ClonedExitBB = CloneBlock(ExitBB);
1130 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1131 "Exit block should have been split to have one successor!");
1132 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1133 "Cloned exit block has the wrong successor!");
1135 // Remap any cloned instructions and create a merge phi node for them.
1136 for (auto ZippedInsts : llvm::zip_first(
1137 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
1138 llvm::make_range(ClonedExitBB->begin(),
1139 std::prev(ClonedExitBB->end())))) {
1140 Instruction &I = std::get<0>(ZippedInsts);
1141 Instruction &ClonedI = std::get<1>(ZippedInsts);
1143 // The only instructions in the exit block should be PHI nodes and
1144 // potentially a landing pad.
1145 assert(
1146 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1147 "Bad instruction in exit block!");
1148 // We should have a value map between the instruction and its clone.
1149 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1151 auto *MergePN =
1152 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
1153 &*MergeBB->getFirstInsertionPt());
1154 I.replaceAllUsesWith(MergePN);
1155 MergePN->addIncoming(&I, ExitBB);
1156 MergePN->addIncoming(&ClonedI, ClonedExitBB);
1160 // Rewrite the instructions in the cloned blocks to refer to the instructions
1161 // in the cloned blocks. We have to do this as a second pass so that we have
1162 // everything available. Also, we have inserted new instructions which may
1163 // include assume intrinsics, so we update the assumption cache while
1164 // processing this.
1165 for (auto *ClonedBB : NewBlocks)
1166 for (Instruction &I : *ClonedBB) {
1167 RemapInstruction(&I, VMap,
1168 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1169 if (auto *II = dyn_cast<AssumeInst>(&I))
1170 AC.registerAssumption(II);
1173 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1174 // have spurious incoming values.
1175 for (auto *LoopBB : L.blocks())
1176 if (SkipBlock(LoopBB))
1177 for (auto *SuccBB : successors(LoopBB))
1178 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
1179 for (PHINode &PN : ClonedSuccBB->phis())
1180 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
1182 // Remove the cloned parent as a predecessor of any successor we ended up
1183 // cloning other than the unswitched one.
1184 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
1185 for (auto *SuccBB : successors(ParentBB)) {
1186 if (SuccBB == UnswitchedSuccBB)
1187 continue;
1189 auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
1190 if (!ClonedSuccBB)
1191 continue;
1193 ClonedSuccBB->removePredecessor(ClonedParentBB,
1194 /*KeepOneInputPHIs*/ true);
1197 // Replace the cloned branch with an unconditional branch to the cloned
1198 // unswitched successor.
1199 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1200 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1201 // Trivial Simplification. If Terminator is a conditional branch and
1202 // condition becomes dead - erase it.
1203 Value *ClonedConditionToErase = nullptr;
1204 if (auto *BI = dyn_cast<BranchInst>(ClonedTerminator))
1205 ClonedConditionToErase = BI->getCondition();
1206 else if (auto *SI = dyn_cast<SwitchInst>(ClonedTerminator))
1207 ClonedConditionToErase = SI->getCondition();
1209 ClonedTerminator->eraseFromParent();
1210 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1212 if (ClonedConditionToErase)
1213 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase, nullptr,
1214 MSSAU);
1216 // If there are duplicate entries in the PHI nodes because of multiple edges
1217 // to the unswitched successor, we need to nuke all but one as we replaced it
1218 // with a direct branch.
1219 for (PHINode &PN : ClonedSuccBB->phis()) {
1220 bool Found = false;
1221 // Loop over the incoming operands backwards so we can easily delete as we
1222 // go without invalidating the index.
1223 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1224 if (PN.getIncomingBlock(i) != ClonedParentBB)
1225 continue;
1226 if (!Found) {
1227 Found = true;
1228 continue;
1230 PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1234 // Record the domtree updates for the new blocks.
1235 SmallPtrSet<BasicBlock *, 4> SuccSet;
1236 for (auto *ClonedBB : NewBlocks) {
1237 for (auto *SuccBB : successors(ClonedBB))
1238 if (SuccSet.insert(SuccBB).second)
1239 DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1240 SuccSet.clear();
1243 return ClonedPH;
1246 /// Recursively clone the specified loop and all of its children.
1248 /// The target parent loop for the clone should be provided, or can be null if
1249 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1250 /// with the provided value map. The entire original loop must be present in
1251 /// the value map. The cloned loop is returned.
1252 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1253 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1254 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1255 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1256 ClonedL.reserveBlocks(OrigL.getNumBlocks());
1257 for (auto *BB : OrigL.blocks()) {
1258 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1259 ClonedL.addBlockEntry(ClonedBB);
1260 if (LI.getLoopFor(BB) == &OrigL)
1261 LI.changeLoopFor(ClonedBB, &ClonedL);
1265 // We specially handle the first loop because it may get cloned into
1266 // a different parent and because we most commonly are cloning leaf loops.
1267 Loop *ClonedRootL = LI.AllocateLoop();
1268 if (RootParentL)
1269 RootParentL->addChildLoop(ClonedRootL);
1270 else
1271 LI.addTopLevelLoop(ClonedRootL);
1272 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1274 if (OrigRootL.isInnermost())
1275 return ClonedRootL;
1277 // If we have a nest, we can quickly clone the entire loop nest using an
1278 // iterative approach because it is a tree. We keep the cloned parent in the
1279 // data structure to avoid repeatedly querying through a map to find it.
1280 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1281 // Build up the loops to clone in reverse order as we'll clone them from the
1282 // back.
1283 for (Loop *ChildL : llvm::reverse(OrigRootL))
1284 LoopsToClone.push_back({ClonedRootL, ChildL});
1285 do {
1286 Loop *ClonedParentL, *L;
1287 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1288 Loop *ClonedL = LI.AllocateLoop();
1289 ClonedParentL->addChildLoop(ClonedL);
1290 AddClonedBlocksToLoop(*L, *ClonedL);
1291 for (Loop *ChildL : llvm::reverse(*L))
1292 LoopsToClone.push_back({ClonedL, ChildL});
1293 } while (!LoopsToClone.empty());
1295 return ClonedRootL;
1298 /// Build the cloned loops of an original loop from unswitching.
1300 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1301 /// operation. We need to re-verify that there even is a loop (as the backedge
1302 /// may not have been cloned), and even if there are remaining backedges the
1303 /// backedge set may be different. However, we know that each child loop is
1304 /// undisturbed, we only need to find where to place each child loop within
1305 /// either any parent loop or within a cloned version of the original loop.
1307 /// Because child loops may end up cloned outside of any cloned version of the
1308 /// original loop, multiple cloned sibling loops may be created. All of them
1309 /// are returned so that the newly introduced loop nest roots can be
1310 /// identified.
1311 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1312 const ValueToValueMapTy &VMap, LoopInfo &LI,
1313 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1314 Loop *ClonedL = nullptr;
1316 auto *OrigPH = OrigL.getLoopPreheader();
1317 auto *OrigHeader = OrigL.getHeader();
1319 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1320 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1322 // We need to know the loops of the cloned exit blocks to even compute the
1323 // accurate parent loop. If we only clone exits to some parent of the
1324 // original parent, we want to clone into that outer loop. We also keep track
1325 // of the loops that our cloned exit blocks participate in.
1326 Loop *ParentL = nullptr;
1327 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1328 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1329 ClonedExitsInLoops.reserve(ExitBlocks.size());
1330 for (auto *ExitBB : ExitBlocks)
1331 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1332 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1333 ExitLoopMap[ClonedExitBB] = ExitL;
1334 ClonedExitsInLoops.push_back(ClonedExitBB);
1335 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1336 ParentL = ExitL;
1338 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1339 ParentL->contains(OrigL.getParentLoop())) &&
1340 "The computed parent loop should always contain (or be) the parent of "
1341 "the original loop.");
1343 // We build the set of blocks dominated by the cloned header from the set of
1344 // cloned blocks out of the original loop. While not all of these will
1345 // necessarily be in the cloned loop, it is enough to establish that they
1346 // aren't in unreachable cycles, etc.
1347 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1348 for (auto *BB : OrigL.blocks())
1349 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1350 ClonedLoopBlocks.insert(ClonedBB);
1352 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1353 // skipped cloning some region of this loop which can in turn skip some of
1354 // the backedges so we have to rebuild the blocks in the loop based on the
1355 // backedges that remain after cloning.
1356 SmallVector<BasicBlock *, 16> Worklist;
1357 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1358 for (auto *Pred : predecessors(ClonedHeader)) {
1359 // The only possible non-loop header predecessor is the preheader because
1360 // we know we cloned the loop in simplified form.
1361 if (Pred == ClonedPH)
1362 continue;
1364 // Because the loop was in simplified form, the only non-loop predecessor
1365 // should be the preheader.
1366 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1367 "header other than the preheader "
1368 "that is not part of the loop!");
1370 // Insert this block into the loop set and on the first visit (and if it
1371 // isn't the header we're currently walking) put it into the worklist to
1372 // recurse through.
1373 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1374 Worklist.push_back(Pred);
1377 // If we had any backedges then there *is* a cloned loop. Put the header into
1378 // the loop set and then walk the worklist backwards to find all the blocks
1379 // that remain within the loop after cloning.
1380 if (!BlocksInClonedLoop.empty()) {
1381 BlocksInClonedLoop.insert(ClonedHeader);
1383 while (!Worklist.empty()) {
1384 BasicBlock *BB = Worklist.pop_back_val();
1385 assert(BlocksInClonedLoop.count(BB) &&
1386 "Didn't put block into the loop set!");
1388 // Insert any predecessors that are in the possible set into the cloned
1389 // set, and if the insert is successful, add them to the worklist. Note
1390 // that we filter on the blocks that are definitely reachable via the
1391 // backedge to the loop header so we may prune out dead code within the
1392 // cloned loop.
1393 for (auto *Pred : predecessors(BB))
1394 if (ClonedLoopBlocks.count(Pred) &&
1395 BlocksInClonedLoop.insert(Pred).second)
1396 Worklist.push_back(Pred);
1399 ClonedL = LI.AllocateLoop();
1400 if (ParentL) {
1401 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1402 ParentL->addChildLoop(ClonedL);
1403 } else {
1404 LI.addTopLevelLoop(ClonedL);
1406 NonChildClonedLoops.push_back(ClonedL);
1408 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1409 // We don't want to just add the cloned loop blocks based on how we
1410 // discovered them. The original order of blocks was carefully built in
1411 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1412 // that logic, we just re-walk the original blocks (and those of the child
1413 // loops) and filter them as we add them into the cloned loop.
1414 for (auto *BB : OrigL.blocks()) {
1415 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1416 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1417 continue;
1419 // Directly add the blocks that are only in this loop.
1420 if (LI.getLoopFor(BB) == &OrigL) {
1421 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1422 continue;
1425 // We want to manually add it to this loop and parents.
1426 // Registering it with LoopInfo will happen when we clone the top
1427 // loop for this block.
1428 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1429 PL->addBlockEntry(ClonedBB);
1432 // Now add each child loop whose header remains within the cloned loop. All
1433 // of the blocks within the loop must satisfy the same constraints as the
1434 // header so once we pass the header checks we can just clone the entire
1435 // child loop nest.
1436 for (Loop *ChildL : OrigL) {
1437 auto *ClonedChildHeader =
1438 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1439 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1440 continue;
1442 #ifndef NDEBUG
1443 // We should never have a cloned child loop header but fail to have
1444 // all of the blocks for that child loop.
1445 for (auto *ChildLoopBB : ChildL->blocks())
1446 assert(BlocksInClonedLoop.count(
1447 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1448 "Child cloned loop has a header within the cloned outer "
1449 "loop but not all of its blocks!");
1450 #endif
1452 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1456 // Now that we've handled all the components of the original loop that were
1457 // cloned into a new loop, we still need to handle anything from the original
1458 // loop that wasn't in a cloned loop.
1460 // Figure out what blocks are left to place within any loop nest containing
1461 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1462 // them.
1463 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1464 if (BlocksInClonedLoop.empty())
1465 UnloopedBlockSet.insert(ClonedPH);
1466 for (auto *ClonedBB : ClonedLoopBlocks)
1467 if (!BlocksInClonedLoop.count(ClonedBB))
1468 UnloopedBlockSet.insert(ClonedBB);
1470 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1471 // backwards across these to process them inside out. The order shouldn't
1472 // matter as we're just trying to build up the map from inside-out; we use
1473 // the map in a more stably ordered way below.
1474 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1475 llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1476 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1477 ExitLoopMap.lookup(RHS)->getLoopDepth();
1480 // Populate the existing ExitLoopMap with everything reachable from each
1481 // exit, starting from the inner most exit.
1482 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1483 assert(Worklist.empty() && "Didn't clear worklist!");
1485 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1486 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1488 // Walk the CFG back until we hit the cloned PH adding everything reachable
1489 // and in the unlooped set to this exit block's loop.
1490 Worklist.push_back(ExitBB);
1491 do {
1492 BasicBlock *BB = Worklist.pop_back_val();
1493 // We can stop recursing at the cloned preheader (if we get there).
1494 if (BB == ClonedPH)
1495 continue;
1497 for (BasicBlock *PredBB : predecessors(BB)) {
1498 // If this pred has already been moved to our set or is part of some
1499 // (inner) loop, no update needed.
1500 if (!UnloopedBlockSet.erase(PredBB)) {
1501 assert(
1502 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1503 "Predecessor not mapped to a loop!");
1504 continue;
1507 // We just insert into the loop set here. We'll add these blocks to the
1508 // exit loop after we build up the set in an order that doesn't rely on
1509 // predecessor order (which in turn relies on use list order).
1510 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1511 (void)Inserted;
1512 assert(Inserted && "Should only visit an unlooped block once!");
1514 // And recurse through to its predecessors.
1515 Worklist.push_back(PredBB);
1517 } while (!Worklist.empty());
1520 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1521 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1522 // in their original order adding them to the correct loop.
1524 // We need a stable insertion order. We use the order of the original loop
1525 // order and map into the correct parent loop.
1526 for (auto *BB : llvm::concat<BasicBlock *const>(
1527 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1528 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1529 OuterL->addBasicBlockToLoop(BB, LI);
1531 #ifndef NDEBUG
1532 for (auto &BBAndL : ExitLoopMap) {
1533 auto *BB = BBAndL.first;
1534 auto *OuterL = BBAndL.second;
1535 assert(LI.getLoopFor(BB) == OuterL &&
1536 "Failed to put all blocks into outer loops!");
1538 #endif
1540 // Now that all the blocks are placed into the correct containing loop in the
1541 // absence of child loops, find all the potentially cloned child loops and
1542 // clone them into whatever outer loop we placed their header into.
1543 for (Loop *ChildL : OrigL) {
1544 auto *ClonedChildHeader =
1545 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1546 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1547 continue;
1549 #ifndef NDEBUG
1550 for (auto *ChildLoopBB : ChildL->blocks())
1551 assert(VMap.count(ChildLoopBB) &&
1552 "Cloned a child loop header but not all of that loops blocks!");
1553 #endif
1555 NonChildClonedLoops.push_back(cloneLoopNest(
1556 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1560 static void
1561 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1562 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1563 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1564 // Find all the dead clones, and remove them from their successors.
1565 SmallVector<BasicBlock *, 16> DeadBlocks;
1566 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1567 for (auto &VMap : VMaps)
1568 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1569 if (!DT.isReachableFromEntry(ClonedBB)) {
1570 for (BasicBlock *SuccBB : successors(ClonedBB))
1571 SuccBB->removePredecessor(ClonedBB);
1572 DeadBlocks.push_back(ClonedBB);
1575 // Remove all MemorySSA in the dead blocks
1576 if (MSSAU) {
1577 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1578 DeadBlocks.end());
1579 MSSAU->removeBlocks(DeadBlockSet);
1582 // Drop any remaining references to break cycles.
1583 for (BasicBlock *BB : DeadBlocks)
1584 BB->dropAllReferences();
1585 // Erase them from the IR.
1586 for (BasicBlock *BB : DeadBlocks)
1587 BB->eraseFromParent();
1590 static void deleteDeadBlocksFromLoop(Loop &L,
1591 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1592 DominatorTree &DT, LoopInfo &LI,
1593 MemorySSAUpdater *MSSAU) {
1594 // Find all the dead blocks tied to this loop, and remove them from their
1595 // successors.
1596 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1598 // Start with loop/exit blocks and get a transitive closure of reachable dead
1599 // blocks.
1600 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1601 ExitBlocks.end());
1602 DeathCandidates.append(L.blocks().begin(), L.blocks().end());
1603 while (!DeathCandidates.empty()) {
1604 auto *BB = DeathCandidates.pop_back_val();
1605 if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
1606 for (BasicBlock *SuccBB : successors(BB)) {
1607 SuccBB->removePredecessor(BB);
1608 DeathCandidates.push_back(SuccBB);
1610 DeadBlockSet.insert(BB);
1614 // Remove all MemorySSA in the dead blocks
1615 if (MSSAU)
1616 MSSAU->removeBlocks(DeadBlockSet);
1618 // Filter out the dead blocks from the exit blocks list so that it can be
1619 // used in the caller.
1620 llvm::erase_if(ExitBlocks,
1621 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1623 // Walk from this loop up through its parents removing all of the dead blocks.
1624 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1625 for (auto *BB : DeadBlockSet)
1626 ParentL->getBlocksSet().erase(BB);
1627 llvm::erase_if(ParentL->getBlocksVector(),
1628 [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1631 // Now delete the dead child loops. This raw delete will clear them
1632 // recursively.
1633 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1634 if (!DeadBlockSet.count(ChildL->getHeader()))
1635 return false;
1637 assert(llvm::all_of(ChildL->blocks(),
1638 [&](BasicBlock *ChildBB) {
1639 return DeadBlockSet.count(ChildBB);
1640 }) &&
1641 "If the child loop header is dead all blocks in the child loop must "
1642 "be dead as well!");
1643 LI.destroy(ChildL);
1644 return true;
1647 // Remove the loop mappings for the dead blocks and drop all the references
1648 // from these blocks to others to handle cyclic references as we start
1649 // deleting the blocks themselves.
1650 for (auto *BB : DeadBlockSet) {
1651 // Check that the dominator tree has already been updated.
1652 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1653 LI.changeLoopFor(BB, nullptr);
1654 // Drop all uses of the instructions to make sure we won't have dangling
1655 // uses in other blocks.
1656 for (auto &I : *BB)
1657 if (!I.use_empty())
1658 I.replaceAllUsesWith(UndefValue::get(I.getType()));
1659 BB->dropAllReferences();
1662 // Actually delete the blocks now that they've been fully unhooked from the
1663 // IR.
1664 for (auto *BB : DeadBlockSet)
1665 BB->eraseFromParent();
1668 /// Recompute the set of blocks in a loop after unswitching.
1670 /// This walks from the original headers predecessors to rebuild the loop. We
1671 /// take advantage of the fact that new blocks can't have been added, and so we
1672 /// filter by the original loop's blocks. This also handles potentially
1673 /// unreachable code that we don't want to explore but might be found examining
1674 /// the predecessors of the header.
1676 /// If the original loop is no longer a loop, this will return an empty set. If
1677 /// it remains a loop, all the blocks within it will be added to the set
1678 /// (including those blocks in inner loops).
1679 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1680 LoopInfo &LI) {
1681 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1683 auto *PH = L.getLoopPreheader();
1684 auto *Header = L.getHeader();
1686 // A worklist to use while walking backwards from the header.
1687 SmallVector<BasicBlock *, 16> Worklist;
1689 // First walk the predecessors of the header to find the backedges. This will
1690 // form the basis of our walk.
1691 for (auto *Pred : predecessors(Header)) {
1692 // Skip the preheader.
1693 if (Pred == PH)
1694 continue;
1696 // Because the loop was in simplified form, the only non-loop predecessor
1697 // is the preheader.
1698 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1699 "than the preheader that is not part of the "
1700 "loop!");
1702 // Insert this block into the loop set and on the first visit and, if it
1703 // isn't the header we're currently walking, put it into the worklist to
1704 // recurse through.
1705 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1706 Worklist.push_back(Pred);
1709 // If no backedges were found, we're done.
1710 if (LoopBlockSet.empty())
1711 return LoopBlockSet;
1713 // We found backedges, recurse through them to identify the loop blocks.
1714 while (!Worklist.empty()) {
1715 BasicBlock *BB = Worklist.pop_back_val();
1716 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1718 // No need to walk past the header.
1719 if (BB == Header)
1720 continue;
1722 // Because we know the inner loop structure remains valid we can use the
1723 // loop structure to jump immediately across the entire nested loop.
1724 // Further, because it is in loop simplified form, we can directly jump
1725 // to its preheader afterward.
1726 if (Loop *InnerL = LI.getLoopFor(BB))
1727 if (InnerL != &L) {
1728 assert(L.contains(InnerL) &&
1729 "Should not reach a loop *outside* this loop!");
1730 // The preheader is the only possible predecessor of the loop so
1731 // insert it into the set and check whether it was already handled.
1732 auto *InnerPH = InnerL->getLoopPreheader();
1733 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1734 "but not contain the inner loop "
1735 "preheader!");
1736 if (!LoopBlockSet.insert(InnerPH).second)
1737 // The only way to reach the preheader is through the loop body
1738 // itself so if it has been visited the loop is already handled.
1739 continue;
1741 // Insert all of the blocks (other than those already present) into
1742 // the loop set. We expect at least the block that led us to find the
1743 // inner loop to be in the block set, but we may also have other loop
1744 // blocks if they were already enqueued as predecessors of some other
1745 // outer loop block.
1746 for (auto *InnerBB : InnerL->blocks()) {
1747 if (InnerBB == BB) {
1748 assert(LoopBlockSet.count(InnerBB) &&
1749 "Block should already be in the set!");
1750 continue;
1753 LoopBlockSet.insert(InnerBB);
1756 // Add the preheader to the worklist so we will continue past the
1757 // loop body.
1758 Worklist.push_back(InnerPH);
1759 continue;
1762 // Insert any predecessors that were in the original loop into the new
1763 // set, and if the insert is successful, add them to the worklist.
1764 for (auto *Pred : predecessors(BB))
1765 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1766 Worklist.push_back(Pred);
1769 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1771 // We've found all the blocks participating in the loop, return our completed
1772 // set.
1773 return LoopBlockSet;
1776 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1778 /// The removal may have removed some child loops entirely but cannot have
1779 /// disturbed any remaining child loops. However, they may need to be hoisted
1780 /// to the parent loop (or to be top-level loops). The original loop may be
1781 /// completely removed.
1783 /// The sibling loops resulting from this update are returned. If the original
1784 /// loop remains a valid loop, it will be the first entry in this list with all
1785 /// of the newly sibling loops following it.
1787 /// Returns true if the loop remains a loop after unswitching, and false if it
1788 /// is no longer a loop after unswitching (and should not continue to be
1789 /// referenced).
1790 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1791 LoopInfo &LI,
1792 SmallVectorImpl<Loop *> &HoistedLoops) {
1793 auto *PH = L.getLoopPreheader();
1795 // Compute the actual parent loop from the exit blocks. Because we may have
1796 // pruned some exits the loop may be different from the original parent.
1797 Loop *ParentL = nullptr;
1798 SmallVector<Loop *, 4> ExitLoops;
1799 SmallVector<BasicBlock *, 4> ExitsInLoops;
1800 ExitsInLoops.reserve(ExitBlocks.size());
1801 for (auto *ExitBB : ExitBlocks)
1802 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1803 ExitLoops.push_back(ExitL);
1804 ExitsInLoops.push_back(ExitBB);
1805 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1806 ParentL = ExitL;
1809 // Recompute the blocks participating in this loop. This may be empty if it
1810 // is no longer a loop.
1811 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1813 // If we still have a loop, we need to re-set the loop's parent as the exit
1814 // block set changing may have moved it within the loop nest. Note that this
1815 // can only happen when this loop has a parent as it can only hoist the loop
1816 // *up* the nest.
1817 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1818 // Remove this loop's (original) blocks from all of the intervening loops.
1819 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1820 IL = IL->getParentLoop()) {
1821 IL->getBlocksSet().erase(PH);
1822 for (auto *BB : L.blocks())
1823 IL->getBlocksSet().erase(BB);
1824 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1825 return BB == PH || L.contains(BB);
1829 LI.changeLoopFor(PH, ParentL);
1830 L.getParentLoop()->removeChildLoop(&L);
1831 if (ParentL)
1832 ParentL->addChildLoop(&L);
1833 else
1834 LI.addTopLevelLoop(&L);
1837 // Now we update all the blocks which are no longer within the loop.
1838 auto &Blocks = L.getBlocksVector();
1839 auto BlocksSplitI =
1840 LoopBlockSet.empty()
1841 ? Blocks.begin()
1842 : std::stable_partition(
1843 Blocks.begin(), Blocks.end(),
1844 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1846 // Before we erase the list of unlooped blocks, build a set of them.
1847 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1848 if (LoopBlockSet.empty())
1849 UnloopedBlocks.insert(PH);
1851 // Now erase these blocks from the loop.
1852 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1853 L.getBlocksSet().erase(BB);
1854 Blocks.erase(BlocksSplitI, Blocks.end());
1856 // Sort the exits in ascending loop depth, we'll work backwards across these
1857 // to process them inside out.
1858 llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
1859 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1862 // We'll build up a set for each exit loop.
1863 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1864 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1866 auto RemoveUnloopedBlocksFromLoop =
1867 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1868 for (auto *BB : UnloopedBlocks)
1869 L.getBlocksSet().erase(BB);
1870 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1871 return UnloopedBlocks.count(BB);
1875 SmallVector<BasicBlock *, 16> Worklist;
1876 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1877 assert(Worklist.empty() && "Didn't clear worklist!");
1878 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1880 // Grab the next exit block, in decreasing loop depth order.
1881 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1882 Loop &ExitL = *LI.getLoopFor(ExitBB);
1883 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1885 // Erase all of the unlooped blocks from the loops between the previous
1886 // exit loop and this exit loop. This works because the ExitInLoops list is
1887 // sorted in increasing order of loop depth and thus we visit loops in
1888 // decreasing order of loop depth.
1889 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1890 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1892 // Walk the CFG back until we hit the cloned PH adding everything reachable
1893 // and in the unlooped set to this exit block's loop.
1894 Worklist.push_back(ExitBB);
1895 do {
1896 BasicBlock *BB = Worklist.pop_back_val();
1897 // We can stop recursing at the cloned preheader (if we get there).
1898 if (BB == PH)
1899 continue;
1901 for (BasicBlock *PredBB : predecessors(BB)) {
1902 // If this pred has already been moved to our set or is part of some
1903 // (inner) loop, no update needed.
1904 if (!UnloopedBlocks.erase(PredBB)) {
1905 assert((NewExitLoopBlocks.count(PredBB) ||
1906 ExitL.contains(LI.getLoopFor(PredBB))) &&
1907 "Predecessor not in a nested loop (or already visited)!");
1908 continue;
1911 // We just insert into the loop set here. We'll add these blocks to the
1912 // exit loop after we build up the set in a deterministic order rather
1913 // than the predecessor-influenced visit order.
1914 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1915 (void)Inserted;
1916 assert(Inserted && "Should only visit an unlooped block once!");
1918 // And recurse through to its predecessors.
1919 Worklist.push_back(PredBB);
1921 } while (!Worklist.empty());
1923 // If blocks in this exit loop were directly part of the original loop (as
1924 // opposed to a child loop) update the map to point to this exit loop. This
1925 // just updates a map and so the fact that the order is unstable is fine.
1926 for (auto *BB : NewExitLoopBlocks)
1927 if (Loop *BBL = LI.getLoopFor(BB))
1928 if (BBL == &L || !L.contains(BBL))
1929 LI.changeLoopFor(BB, &ExitL);
1931 // We will remove the remaining unlooped blocks from this loop in the next
1932 // iteration or below.
1933 NewExitLoopBlocks.clear();
1936 // Any remaining unlooped blocks are no longer part of any loop unless they
1937 // are part of some child loop.
1938 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1939 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1940 for (auto *BB : UnloopedBlocks)
1941 if (Loop *BBL = LI.getLoopFor(BB))
1942 if (BBL == &L || !L.contains(BBL))
1943 LI.changeLoopFor(BB, nullptr);
1945 // Sink all the child loops whose headers are no longer in the loop set to
1946 // the parent (or to be top level loops). We reach into the loop and directly
1947 // update its subloop vector to make this batch update efficient.
1948 auto &SubLoops = L.getSubLoopsVector();
1949 auto SubLoopsSplitI =
1950 LoopBlockSet.empty()
1951 ? SubLoops.begin()
1952 : std::stable_partition(
1953 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1954 return LoopBlockSet.count(SubL->getHeader());
1956 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1957 HoistedLoops.push_back(HoistedL);
1958 HoistedL->setParentLoop(nullptr);
1960 // To compute the new parent of this hoisted loop we look at where we
1961 // placed the preheader above. We can't lookup the header itself because we
1962 // retained the mapping from the header to the hoisted loop. But the
1963 // preheader and header should have the exact same new parent computed
1964 // based on the set of exit blocks from the original loop as the preheader
1965 // is a predecessor of the header and so reached in the reverse walk. And
1966 // because the loops were all in simplified form the preheader of the
1967 // hoisted loop can't be part of some *other* loop.
1968 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1969 NewParentL->addChildLoop(HoistedL);
1970 else
1971 LI.addTopLevelLoop(HoistedL);
1973 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1975 // Actually delete the loop if nothing remained within it.
1976 if (Blocks.empty()) {
1977 assert(SubLoops.empty() &&
1978 "Failed to remove all subloops from the original loop!");
1979 if (Loop *ParentL = L.getParentLoop())
1980 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1981 else
1982 LI.removeLoop(llvm::find(LI, &L));
1983 LI.destroy(&L);
1984 return false;
1987 return true;
1990 /// Helper to visit a dominator subtree, invoking a callable on each node.
1992 /// Returning false at any point will stop walking past that node of the tree.
1993 template <typename CallableT>
1994 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1995 SmallVector<DomTreeNode *, 4> DomWorklist;
1996 DomWorklist.push_back(DT[BB]);
1997 #ifndef NDEBUG
1998 SmallPtrSet<DomTreeNode *, 4> Visited;
1999 Visited.insert(DT[BB]);
2000 #endif
2001 do {
2002 DomTreeNode *N = DomWorklist.pop_back_val();
2004 // Visit this node.
2005 if (!Callable(N->getBlock()))
2006 continue;
2008 // Accumulate the child nodes.
2009 for (DomTreeNode *ChildN : *N) {
2010 assert(Visited.insert(ChildN).second &&
2011 "Cannot visit a node twice when walking a tree!");
2012 DomWorklist.push_back(ChildN);
2014 } while (!DomWorklist.empty());
2017 static void unswitchNontrivialInvariants(
2018 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2019 SmallVectorImpl<BasicBlock *> &ExitBlocks, IVConditionInfo &PartialIVInfo,
2020 DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2021 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2022 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2023 auto *ParentBB = TI.getParent();
2024 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2025 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
2027 // We can only unswitch switches, conditional branches with an invariant
2028 // condition, or combining invariant conditions with an instruction or
2029 // partially invariant instructions.
2030 assert((SI || (BI && BI->isConditional())) &&
2031 "Can only unswitch switches and conditional branch!");
2032 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2033 bool FullUnswitch =
2034 SI || (BI->getCondition() == Invariants[0] && !PartiallyInvariant);
2035 if (FullUnswitch)
2036 assert(Invariants.size() == 1 &&
2037 "Cannot have other invariants with full unswitching!");
2038 else
2039 assert(isa<Instruction>(BI->getCondition()) &&
2040 "Partial unswitching requires an instruction as the condition!");
2042 if (MSSAU && VerifyMemorySSA)
2043 MSSAU->getMemorySSA()->verifyMemorySSA();
2045 // Constant and BBs tracking the cloned and continuing successor. When we are
2046 // unswitching the entire condition, this can just be trivially chosen to
2047 // unswitch towards `true`. However, when we are unswitching a set of
2048 // invariants combined with `and` or `or` or partially invariant instructions,
2049 // the combining operation determines the best direction to unswitch: we want
2050 // to unswitch the direction that will collapse the branch.
2051 bool Direction = true;
2052 int ClonedSucc = 0;
2053 if (!FullUnswitch) {
2054 Value *Cond = BI->getCondition();
2055 (void)Cond;
2056 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2057 PartiallyInvariant) &&
2058 "Only `or`, `and`, an `select`, partially invariant instructions "
2059 "can combine invariants being unswitched.");
2060 if (!match(BI->getCondition(), m_LogicalOr())) {
2061 if (match(BI->getCondition(), m_LogicalAnd()) ||
2062 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2063 Direction = false;
2064 ClonedSucc = 1;
2069 BasicBlock *RetainedSuccBB =
2070 BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
2071 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2072 if (BI)
2073 UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
2074 else
2075 for (auto Case : SI->cases())
2076 if (Case.getCaseSuccessor() != RetainedSuccBB)
2077 UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
2079 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2080 "Should not unswitch the same successor we are retaining!");
2082 // The branch should be in this exact loop. Any inner loop's invariant branch
2083 // should be handled by unswitching that inner loop. The caller of this
2084 // routine should filter out any candidates that remain (but were skipped for
2085 // whatever reason).
2086 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2088 // Compute the parent loop now before we start hacking on things.
2089 Loop *ParentL = L.getParentLoop();
2090 // Get blocks in RPO order for MSSA update, before changing the CFG.
2091 LoopBlocksRPO LBRPO(&L);
2092 if (MSSAU)
2093 LBRPO.perform(&LI);
2095 // Compute the outer-most loop containing one of our exit blocks. This is the
2096 // furthest up our loopnest which can be mutated, which we will use below to
2097 // update things.
2098 Loop *OuterExitL = &L;
2099 for (auto *ExitBB : ExitBlocks) {
2100 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
2101 if (!NewOuterExitL) {
2102 // We exited the entire nest with this block, so we're done.
2103 OuterExitL = nullptr;
2104 break;
2106 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
2107 OuterExitL = NewOuterExitL;
2110 // At this point, we're definitely going to unswitch something so invalidate
2111 // any cached information in ScalarEvolution for the outer most loop
2112 // containing an exit block and all nested loops.
2113 if (SE) {
2114 if (OuterExitL)
2115 SE->forgetLoop(OuterExitL);
2116 else
2117 SE->forgetTopmostLoop(&L);
2120 // If the edge from this terminator to a successor dominates that successor,
2121 // store a map from each block in its dominator subtree to it. This lets us
2122 // tell when cloning for a particular successor if a block is dominated by
2123 // some *other* successor with a single data structure. We use this to
2124 // significantly reduce cloning.
2125 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2126 for (auto *SuccBB : llvm::concat<BasicBlock *const>(
2127 makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
2128 if (SuccBB->getUniquePredecessor() ||
2129 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2130 return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
2132 visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
2133 DominatingSucc[BB] = SuccBB;
2134 return true;
2137 // Split the preheader, so that we know that there is a safe place to insert
2138 // the conditional branch. We will change the preheader to have a conditional
2139 // branch on LoopCond. The original preheader will become the split point
2140 // between the unswitched versions, and we will have a new preheader for the
2141 // original loop.
2142 BasicBlock *SplitBB = L.getLoopPreheader();
2143 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
2145 // Keep track of the dominator tree updates needed.
2146 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2148 // Clone the loop for each unswitched successor.
2149 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2150 VMaps.reserve(UnswitchedSuccBBs.size());
2151 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2152 for (auto *SuccBB : UnswitchedSuccBBs) {
2153 VMaps.emplace_back(new ValueToValueMapTy());
2154 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2155 L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
2156 DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
2159 // Drop metadata if we may break its semantics by moving this instr into the
2160 // split block.
2161 if (TI.getMetadata(LLVMContext::MD_make_implicit)) {
2162 if (DropNonTrivialImplicitNullChecks)
2163 // Do not spend time trying to understand if we can keep it, just drop it
2164 // to save compile time.
2165 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2166 else {
2167 // It is only legal to preserve make.implicit metadata if we are
2168 // guaranteed no reach implicit null check after following this branch.
2169 ICFLoopSafetyInfo SafetyInfo;
2170 SafetyInfo.computeLoopSafetyInfo(&L);
2171 if (!SafetyInfo.isGuaranteedToExecute(TI, &DT, &L))
2172 TI.setMetadata(LLVMContext::MD_make_implicit, nullptr);
2176 // The stitching of the branched code back together depends on whether we're
2177 // doing full unswitching or not with the exception that we always want to
2178 // nuke the initial terminator placed in the split block.
2179 SplitBB->getTerminator()->eraseFromParent();
2180 if (FullUnswitch) {
2181 // Splice the terminator from the original loop and rewrite its
2182 // successors.
2183 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
2185 // Keep a clone of the terminator for MSSA updates.
2186 Instruction *NewTI = TI.clone();
2187 ParentBB->getInstList().push_back(NewTI);
2189 // First wire up the moved terminator to the preheaders.
2190 if (BI) {
2191 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2192 BI->setSuccessor(ClonedSucc, ClonedPH);
2193 BI->setSuccessor(1 - ClonedSucc, LoopPH);
2194 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2195 } else {
2196 assert(SI && "Must either be a branch or switch!");
2198 // Walk the cases and directly update their successors.
2199 assert(SI->getDefaultDest() == RetainedSuccBB &&
2200 "Not retaining default successor!");
2201 SI->setDefaultDest(LoopPH);
2202 for (auto &Case : SI->cases())
2203 if (Case.getCaseSuccessor() == RetainedSuccBB)
2204 Case.setSuccessor(LoopPH);
2205 else
2206 Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
2208 // We need to use the set to populate domtree updates as even when there
2209 // are multiple cases pointing at the same successor we only want to
2210 // remove and insert one edge in the domtree.
2211 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2212 DTUpdates.push_back(
2213 {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
2216 if (MSSAU) {
2217 DT.applyUpdates(DTUpdates);
2218 DTUpdates.clear();
2220 // Remove all but one edge to the retained block and all unswitched
2221 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2222 // when we know we only keep a single edge for each case.
2223 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
2224 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2225 MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
2227 for (auto &VMap : VMaps)
2228 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2229 /*IgnoreIncomingWithNoClones=*/true);
2230 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2232 // Remove all edges to unswitched blocks.
2233 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2234 MSSAU->removeEdge(ParentBB, SuccBB);
2237 // Now unhook the successor relationship as we'll be replacing
2238 // the terminator with a direct branch. This is much simpler for branches
2239 // than switches so we handle those first.
2240 if (BI) {
2241 // Remove the parent as a predecessor of the unswitched successor.
2242 assert(UnswitchedSuccBBs.size() == 1 &&
2243 "Only one possible unswitched block for a branch!");
2244 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2245 UnswitchedSuccBB->removePredecessor(ParentBB,
2246 /*KeepOneInputPHIs*/ true);
2247 DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2248 } else {
2249 // Note that we actually want to remove the parent block as a predecessor
2250 // of *every* case successor. The case successor is either unswitched,
2251 // completely eliminating an edge from the parent to that successor, or it
2252 // is a duplicate edge to the retained successor as the retained successor
2253 // is always the default successor and as we'll replace this with a direct
2254 // branch we no longer need the duplicate entries in the PHI nodes.
2255 SwitchInst *NewSI = cast<SwitchInst>(NewTI);
2256 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2257 "Not retaining default successor!");
2258 for (auto &Case : NewSI->cases())
2259 Case.getCaseSuccessor()->removePredecessor(
2260 ParentBB,
2261 /*KeepOneInputPHIs*/ true);
2263 // We need to use the set to populate domtree updates as even when there
2264 // are multiple cases pointing at the same successor we only want to
2265 // remove and insert one edge in the domtree.
2266 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2267 DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
2270 // After MSSAU update, remove the cloned terminator instruction NewTI.
2271 ParentBB->getTerminator()->eraseFromParent();
2273 // Create a new unconditional branch to the continuing block (as opposed to
2274 // the one cloned).
2275 BranchInst::Create(RetainedSuccBB, ParentBB);
2276 } else {
2277 assert(BI && "Only branches have partial unswitching.");
2278 assert(UnswitchedSuccBBs.size() == 1 &&
2279 "Only one possible unswitched block for a branch!");
2280 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2281 // When doing a partial unswitch, we have to do a bit more work to build up
2282 // the branch in the split block.
2283 if (PartiallyInvariant)
2284 buildPartialInvariantUnswitchConditionalBranch(
2285 *SplitBB, Invariants, Direction, *ClonedPH, *LoopPH, L, MSSAU);
2286 else
2287 buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
2288 *ClonedPH, *LoopPH);
2289 DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2291 if (MSSAU) {
2292 DT.applyUpdates(DTUpdates);
2293 DTUpdates.clear();
2295 // Perform MSSA cloning updates.
2296 for (auto &VMap : VMaps)
2297 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
2298 /*IgnoreIncomingWithNoClones=*/true);
2299 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2303 // Apply the updates accumulated above to get an up-to-date dominator tree.
2304 DT.applyUpdates(DTUpdates);
2306 // Now that we have an accurate dominator tree, first delete the dead cloned
2307 // blocks so that we can accurately build any cloned loops. It is important to
2308 // not delete the blocks from the original loop yet because we still want to
2309 // reference the original loop to understand the cloned loop's structure.
2310 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2312 // Build the cloned loop structure itself. This may be substantially
2313 // different from the original structure due to the simplified CFG. This also
2314 // handles inserting all the cloned blocks into the correct loops.
2315 SmallVector<Loop *, 4> NonChildClonedLoops;
2316 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2317 buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2319 // Now that our cloned loops have been built, we can update the original loop.
2320 // First we delete the dead blocks from it and then we rebuild the loop
2321 // structure taking these deletions into account.
2322 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
2324 if (MSSAU && VerifyMemorySSA)
2325 MSSAU->getMemorySSA()->verifyMemorySSA();
2327 SmallVector<Loop *, 4> HoistedLoops;
2328 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2330 if (MSSAU && VerifyMemorySSA)
2331 MSSAU->getMemorySSA()->verifyMemorySSA();
2333 // This transformation has a high risk of corrupting the dominator tree, and
2334 // the below steps to rebuild loop structures will result in hard to debug
2335 // errors in that case so verify that the dominator tree is sane first.
2336 // FIXME: Remove this when the bugs stop showing up and rely on existing
2337 // verification steps.
2338 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2340 if (BI && !PartiallyInvariant) {
2341 // If we unswitched a branch which collapses the condition to a known
2342 // constant we want to replace all the uses of the invariants within both
2343 // the original and cloned blocks. We do this here so that we can use the
2344 // now updated dominator tree to identify which side the users are on.
2345 assert(UnswitchedSuccBBs.size() == 1 &&
2346 "Only one possible unswitched block for a branch!");
2347 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2349 // When considering multiple partially-unswitched invariants
2350 // we cant just go replace them with constants in both branches.
2352 // For 'AND' we infer that true branch ("continue") means true
2353 // for each invariant operand.
2354 // For 'OR' we can infer that false branch ("continue") means false
2355 // for each invariant operand.
2356 // So it happens that for multiple-partial case we dont replace
2357 // in the unswitched branch.
2358 bool ReplaceUnswitched =
2359 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2361 ConstantInt *UnswitchedReplacement =
2362 Direction ? ConstantInt::getTrue(BI->getContext())
2363 : ConstantInt::getFalse(BI->getContext());
2364 ConstantInt *ContinueReplacement =
2365 Direction ? ConstantInt::getFalse(BI->getContext())
2366 : ConstantInt::getTrue(BI->getContext());
2367 for (Value *Invariant : Invariants)
2368 // Use make_early_inc_range here as set invalidates the iterator.
2369 for (Use &U : llvm::make_early_inc_range(Invariant->uses())) {
2370 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
2371 if (!UserI)
2372 continue;
2374 // Replace it with the 'continue' side if in the main loop body, and the
2375 // unswitched if in the cloned blocks.
2376 if (DT.dominates(LoopPH, UserI->getParent()))
2377 U.set(ContinueReplacement);
2378 else if (ReplaceUnswitched &&
2379 DT.dominates(ClonedPH, UserI->getParent()))
2380 U.set(UnswitchedReplacement);
2384 // We can change which blocks are exit blocks of all the cloned sibling
2385 // loops, the current loop, and any parent loops which shared exit blocks
2386 // with the current loop. As a consequence, we need to re-form LCSSA for
2387 // them. But we shouldn't need to re-form LCSSA for any child loops.
2388 // FIXME: This could be made more efficient by tracking which exit blocks are
2389 // new, and focusing on them, but that isn't likely to be necessary.
2391 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2392 // loop nest and update every loop that could have had its exits changed. We
2393 // also need to cover any intervening loops. We add all of these loops to
2394 // a list and sort them by loop depth to achieve this without updating
2395 // unnecessary loops.
2396 auto UpdateLoop = [&](Loop &UpdateL) {
2397 #ifndef NDEBUG
2398 UpdateL.verifyLoop();
2399 for (Loop *ChildL : UpdateL) {
2400 ChildL->verifyLoop();
2401 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2402 "Perturbed a child loop's LCSSA form!");
2404 #endif
2405 // First build LCSSA for this loop so that we can preserve it when
2406 // forming dedicated exits. We don't want to perturb some other loop's
2407 // LCSSA while doing that CFG edit.
2408 formLCSSA(UpdateL, DT, &LI, SE);
2410 // For loops reached by this loop's original exit blocks we may
2411 // introduced new, non-dedicated exits. At least try to re-form dedicated
2412 // exits for these loops. This may fail if they couldn't have dedicated
2413 // exits to start with.
2414 formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
2417 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2418 // and we can do it in any order as they don't nest relative to each other.
2420 // Also check if any of the loops we have updated have become top-level loops
2421 // as that will necessitate widening the outer loop scope.
2422 for (Loop *UpdatedL :
2423 llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2424 UpdateLoop(*UpdatedL);
2425 if (UpdatedL->isOutermost())
2426 OuterExitL = nullptr;
2428 if (IsStillLoop) {
2429 UpdateLoop(L);
2430 if (L.isOutermost())
2431 OuterExitL = nullptr;
2434 // If the original loop had exit blocks, walk up through the outer most loop
2435 // of those exit blocks to update LCSSA and form updated dedicated exits.
2436 if (OuterExitL != &L)
2437 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2438 OuterL = OuterL->getParentLoop())
2439 UpdateLoop(*OuterL);
2441 #ifndef NDEBUG
2442 // Verify the entire loop structure to catch any incorrect updates before we
2443 // progress in the pass pipeline.
2444 LI.verify(DT);
2445 #endif
2447 // Now that we've unswitched something, make callbacks to report the changes.
2448 // For that we need to merge together the updated loops and the cloned loops
2449 // and check whether the original loop survived.
2450 SmallVector<Loop *, 4> SibLoops;
2451 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2452 if (UpdatedL->getParentLoop() == ParentL)
2453 SibLoops.push_back(UpdatedL);
2454 UnswitchCB(IsStillLoop, PartiallyInvariant, SibLoops);
2456 if (MSSAU && VerifyMemorySSA)
2457 MSSAU->getMemorySSA()->verifyMemorySSA();
2459 if (BI)
2460 ++NumBranches;
2461 else
2462 ++NumSwitches;
2465 /// Recursively compute the cost of a dominator subtree based on the per-block
2466 /// cost map provided.
2468 /// The recursive computation is memozied into the provided DT-indexed cost map
2469 /// to allow querying it for most nodes in the domtree without it becoming
2470 /// quadratic.
2471 static InstructionCost computeDomSubtreeCost(
2472 DomTreeNode &N,
2473 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2474 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2475 // Don't accumulate cost (or recurse through) blocks not in our block cost
2476 // map and thus not part of the duplication cost being considered.
2477 auto BBCostIt = BBCostMap.find(N.getBlock());
2478 if (BBCostIt == BBCostMap.end())
2479 return 0;
2481 // Lookup this node to see if we already computed its cost.
2482 auto DTCostIt = DTCostMap.find(&N);
2483 if (DTCostIt != DTCostMap.end())
2484 return DTCostIt->second;
2486 // If not, we have to compute it. We can't use insert above and update
2487 // because computing the cost may insert more things into the map.
2488 InstructionCost Cost = std::accumulate(
2489 N.begin(), N.end(), BBCostIt->second,
2490 [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2491 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2493 bool Inserted = DTCostMap.insert({&N, Cost}).second;
2494 (void)Inserted;
2495 assert(Inserted && "Should not insert a node while visiting children!");
2496 return Cost;
2499 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2500 /// making the following replacement:
2502 /// --code before guard--
2503 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2504 /// --code after guard--
2506 /// into
2508 /// --code before guard--
2509 /// br i1 %cond, label %guarded, label %deopt
2511 /// guarded:
2512 /// --code after guard--
2514 /// deopt:
2515 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2516 /// unreachable
2518 /// It also makes all relevant DT and LI updates, so that all structures are in
2519 /// valid state after this transform.
2520 static BranchInst *
2521 turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2522 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2523 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
2524 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2525 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2526 BasicBlock *CheckBB = GI->getParent();
2528 if (MSSAU && VerifyMemorySSA)
2529 MSSAU->getMemorySSA()->verifyMemorySSA();
2531 // Remove all CheckBB's successors from DomTree. A block can be seen among
2532 // successors more than once, but for DomTree it should be added only once.
2533 SmallPtrSet<BasicBlock *, 4> Successors;
2534 for (auto *Succ : successors(CheckBB))
2535 if (Successors.insert(Succ).second)
2536 DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
2538 Instruction *DeoptBlockTerm =
2539 SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
2540 BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
2541 // SplitBlockAndInsertIfThen inserts control flow that branches to
2542 // DeoptBlockTerm if the condition is true. We want the opposite.
2543 CheckBI->swapSuccessors();
2545 BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
2546 GuardedBlock->setName("guarded");
2547 CheckBI->getSuccessor(1)->setName("deopt");
2548 BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
2550 // We now have a new exit block.
2551 ExitBlocks.push_back(CheckBI->getSuccessor(1));
2553 if (MSSAU)
2554 MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
2556 GI->moveBefore(DeoptBlockTerm);
2557 GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
2559 // Add new successors of CheckBB into DomTree.
2560 for (auto *Succ : successors(CheckBB))
2561 DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
2563 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2564 // successors.
2565 for (auto *Succ : Successors)
2566 DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
2568 // Make proper changes to DT.
2569 DT.applyUpdates(DTUpdates);
2570 // Inform LI of a new loop block.
2571 L.addBasicBlockToLoop(GuardedBlock, LI);
2573 if (MSSAU) {
2574 MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
2575 MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::BeforeTerminator);
2576 if (VerifyMemorySSA)
2577 MSSAU->getMemorySSA()->verifyMemorySSA();
2580 ++NumGuards;
2581 return CheckBI;
2584 /// Cost multiplier is a way to limit potentially exponential behavior
2585 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2586 /// candidates available. Also accounting for the number of "sibling" loops with
2587 /// the idea to account for previous unswitches that already happened on this
2588 /// cluster of loops. There was an attempt to keep this formula simple,
2589 /// just enough to limit the worst case behavior. Even if it is not that simple
2590 /// now it is still not an attempt to provide a detailed heuristic size
2591 /// prediction.
2593 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2594 /// unswitch candidates, making adequate predictions instead of wild guesses.
2595 /// That requires knowing not just the number of "remaining" candidates but
2596 /// also costs of unswitching for each of these candidates.
2597 static int CalculateUnswitchCostMultiplier(
2598 Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
2599 ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
2600 UnswitchCandidates) {
2602 // Guards and other exiting conditions do not contribute to exponential
2603 // explosion as soon as they dominate the latch (otherwise there might be
2604 // another path to the latch remaining that does not allow to eliminate the
2605 // loop copy on unswitch).
2606 BasicBlock *Latch = L.getLoopLatch();
2607 BasicBlock *CondBlock = TI.getParent();
2608 if (DT.dominates(CondBlock, Latch) &&
2609 (isGuard(&TI) ||
2610 llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
2611 return L.contains(SuccBB);
2612 }) <= 1)) {
2613 NumCostMultiplierSkipped++;
2614 return 1;
2617 auto *ParentL = L.getParentLoop();
2618 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2619 : std::distance(LI.begin(), LI.end()));
2620 // Count amount of clones that all the candidates might cause during
2621 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2622 int UnswitchedClones = 0;
2623 for (auto Candidate : UnswitchCandidates) {
2624 Instruction *CI = Candidate.first;
2625 BasicBlock *CondBlock = CI->getParent();
2626 bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
2627 if (isGuard(CI)) {
2628 if (!SkipExitingSuccessors)
2629 UnswitchedClones++;
2630 continue;
2632 int NonExitingSuccessors = llvm::count_if(
2633 successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
2634 return !SkipExitingSuccessors || L.contains(SuccBB);
2636 UnswitchedClones += Log2_32(NonExitingSuccessors);
2639 // Ignore up to the "unscaled candidates" number of unswitch candidates
2640 // when calculating the power-of-two scaling of the cost. The main idea
2641 // with this control is to allow a small number of unswitches to happen
2642 // and rely more on siblings multiplier (see below) when the number
2643 // of candidates is small.
2644 unsigned ClonesPower =
2645 std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
2647 // Allowing top-level loops to spread a bit more than nested ones.
2648 int SiblingsMultiplier =
2649 std::max((ParentL ? SiblingsCount
2650 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2652 // Compute the cost multiplier in a way that won't overflow by saturating
2653 // at an upper bound.
2654 int CostMultiplier;
2655 if (ClonesPower > Log2_32(UnswitchThreshold) ||
2656 SiblingsMultiplier > UnswitchThreshold)
2657 CostMultiplier = UnswitchThreshold;
2658 else
2659 CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
2660 (int)UnswitchThreshold);
2662 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2663 << " (siblings " << SiblingsMultiplier << " * clones "
2664 << (1 << ClonesPower) << ")"
2665 << " for unswitch candidate: " << TI << "\n");
2666 return CostMultiplier;
2669 static bool unswitchBestCondition(
2670 Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2671 AAResults &AA, TargetTransformInfo &TTI,
2672 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2673 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2674 // Collect all invariant conditions within this loop (as opposed to an inner
2675 // loop which would be handled when visiting that inner loop).
2676 SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
2677 UnswitchCandidates;
2679 // Whether or not we should also collect guards in the loop.
2680 bool CollectGuards = false;
2681 if (UnswitchGuards) {
2682 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2683 Intrinsic::getName(Intrinsic::experimental_guard));
2684 if (GuardDecl && !GuardDecl->use_empty())
2685 CollectGuards = true;
2688 IVConditionInfo PartialIVInfo;
2689 for (auto *BB : L.blocks()) {
2690 if (LI.getLoopFor(BB) != &L)
2691 continue;
2693 if (CollectGuards)
2694 for (auto &I : *BB)
2695 if (isGuard(&I)) {
2696 auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
2697 // TODO: Support AND, OR conditions and partial unswitching.
2698 if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
2699 UnswitchCandidates.push_back({&I, {Cond}});
2702 if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2703 // We can only consider fully loop-invariant switch conditions as we need
2704 // to completely eliminate the switch after unswitching.
2705 if (!isa<Constant>(SI->getCondition()) &&
2706 L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
2707 UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2708 continue;
2711 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2712 if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2713 BI->getSuccessor(0) == BI->getSuccessor(1))
2714 continue;
2716 // If BI's condition is 'select _, true, false', simplify it to confuse
2717 // matchers
2718 Value *Cond = BI->getCondition(), *CondNext;
2719 while (match(Cond, m_Select(m_Value(CondNext), m_One(), m_Zero())))
2720 Cond = CondNext;
2721 BI->setCondition(Cond);
2723 if (L.isLoopInvariant(BI->getCondition())) {
2724 UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2725 continue;
2728 Instruction &CondI = *cast<Instruction>(BI->getCondition());
2729 if (match(&CondI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2730 TinyPtrVector<Value *> Invariants =
2731 collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2732 if (Invariants.empty())
2733 continue;
2735 UnswitchCandidates.push_back({BI, std::move(Invariants)});
2736 continue;
2740 Instruction *PartialIVCondBranch = nullptr;
2741 if (MSSAU && !findOptionMDForLoop(&L, "llvm.loop.unswitch.partial.disable") &&
2742 !any_of(UnswitchCandidates, [&L](auto &TerminatorAndInvariants) {
2743 return TerminatorAndInvariants.first == L.getHeader()->getTerminator();
2744 })) {
2745 MemorySSA *MSSA = MSSAU->getMemorySSA();
2746 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, *MSSA, AA)) {
2747 LLVM_DEBUG(
2748 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2749 << *Info->InstToDuplicate[0] << "\n");
2750 PartialIVInfo = *Info;
2751 PartialIVCondBranch = L.getHeader()->getTerminator();
2752 TinyPtrVector<Value *> ValsToDuplicate;
2753 for (auto *Inst : Info->InstToDuplicate)
2754 ValsToDuplicate.push_back(Inst);
2755 UnswitchCandidates.push_back(
2756 {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2760 // If we didn't find any candidates, we're done.
2761 if (UnswitchCandidates.empty())
2762 return false;
2764 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2765 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2766 // irreducible control flow into reducible control flow and introduce new
2767 // loops "out of thin air". If we ever discover important use cases for doing
2768 // this, we can add support to loop unswitch, but it is a lot of complexity
2769 // for what seems little or no real world benefit.
2770 LoopBlocksRPO RPOT(&L);
2771 RPOT.perform(&LI);
2772 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2773 return false;
2775 SmallVector<BasicBlock *, 4> ExitBlocks;
2776 L.getUniqueExitBlocks(ExitBlocks);
2778 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2779 // instruction as we don't know how to split those exit blocks.
2780 // FIXME: We should teach SplitBlock to handle this and remove this
2781 // restriction.
2782 for (auto *ExitBB : ExitBlocks) {
2783 auto *I = ExitBB->getFirstNonPHI();
2784 if (isa<CleanupPadInst>(I) || isa<CatchSwitchInst>(I)) {
2785 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2786 "in exit block\n");
2787 return false;
2791 LLVM_DEBUG(
2792 dbgs() << "Considering " << UnswitchCandidates.size()
2793 << " non-trivial loop invariant conditions for unswitching.\n");
2795 // Given that unswitching these terminators will require duplicating parts of
2796 // the loop, so we need to be able to model that cost. Compute the ephemeral
2797 // values and set up a data structure to hold per-BB costs. We cache each
2798 // block's cost so that we don't recompute this when considering different
2799 // subsets of the loop for duplication during unswitching.
2800 SmallPtrSet<const Value *, 4> EphValues;
2801 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2802 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
2804 // Compute the cost of each block, as well as the total loop cost. Also, bail
2805 // out if we see instructions which are incompatible with loop unswitching
2806 // (convergent, noduplicate, or cross-basic-block tokens).
2807 // FIXME: We might be able to safely handle some of these in non-duplicated
2808 // regions.
2809 TargetTransformInfo::TargetCostKind CostKind =
2810 L.getHeader()->getParent()->hasMinSize()
2811 ? TargetTransformInfo::TCK_CodeSize
2812 : TargetTransformInfo::TCK_SizeAndLatency;
2813 InstructionCost LoopCost = 0;
2814 for (auto *BB : L.blocks()) {
2815 InstructionCost Cost = 0;
2816 for (auto &I : *BB) {
2817 if (EphValues.count(&I))
2818 continue;
2820 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2821 return false;
2822 if (auto *CB = dyn_cast<CallBase>(&I))
2823 if (CB->isConvergent() || CB->cannotDuplicate())
2824 return false;
2826 Cost += TTI.getUserCost(&I, CostKind);
2828 assert(Cost >= 0 && "Must not have negative costs!");
2829 LoopCost += Cost;
2830 assert(LoopCost >= 0 && "Must not have negative loop costs!");
2831 BBCostMap[BB] = Cost;
2833 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
2835 // Now we find the best candidate by searching for the one with the following
2836 // properties in order:
2838 // 1) An unswitching cost below the threshold
2839 // 2) The smallest number of duplicated unswitch candidates (to avoid
2840 // creating redundant subsequent unswitching)
2841 // 3) The smallest cost after unswitching.
2843 // We prioritize reducing fanout of unswitch candidates provided the cost
2844 // remains below the threshold because this has a multiplicative effect.
2846 // This requires memoizing each dominator subtree to avoid redundant work.
2848 // FIXME: Need to actually do the number of candidates part above.
2849 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
2850 // Given a terminator which might be unswitched, computes the non-duplicated
2851 // cost for that terminator.
2852 auto ComputeUnswitchedCost = [&](Instruction &TI,
2853 bool FullUnswitch) -> InstructionCost {
2854 BasicBlock &BB = *TI.getParent();
2855 SmallPtrSet<BasicBlock *, 4> Visited;
2857 InstructionCost Cost = 0;
2858 for (BasicBlock *SuccBB : successors(&BB)) {
2859 // Don't count successors more than once.
2860 if (!Visited.insert(SuccBB).second)
2861 continue;
2863 // If this is a partial unswitch candidate, then it must be a conditional
2864 // branch with a condition of either `or`, `and`, their corresponding
2865 // select forms or partially invariant instructions. In that case, one of
2866 // the successors is necessarily duplicated, so don't even try to remove
2867 // its cost.
2868 if (!FullUnswitch) {
2869 auto &BI = cast<BranchInst>(TI);
2870 if (match(BI.getCondition(), m_LogicalAnd())) {
2871 if (SuccBB == BI.getSuccessor(1))
2872 continue;
2873 } else if (match(BI.getCondition(), m_LogicalOr())) {
2874 if (SuccBB == BI.getSuccessor(0))
2875 continue;
2876 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
2877 SuccBB == BI.getSuccessor(0)) ||
2878 (!PartialIVInfo.KnownValue->isOneValue() &&
2879 SuccBB == BI.getSuccessor(1)))
2880 continue;
2883 // This successor's domtree will not need to be duplicated after
2884 // unswitching if the edge to the successor dominates it (and thus the
2885 // entire tree). This essentially means there is no other path into this
2886 // subtree and so it will end up live in only one clone of the loop.
2887 if (SuccBB->getUniquePredecessor() ||
2888 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2889 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2890 })) {
2891 Cost += computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2892 assert(Cost <= LoopCost &&
2893 "Non-duplicated cost should never exceed total loop cost!");
2897 // Now scale the cost by the number of unique successors minus one. We
2898 // subtract one because there is already at least one copy of the entire
2899 // loop. This is computing the new cost of unswitching a condition.
2900 // Note that guards always have 2 unique successors that are implicit and
2901 // will be materialized if we decide to unswitch it.
2902 int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
2903 assert(SuccessorsCount > 1 &&
2904 "Cannot unswitch a condition without multiple distinct successors!");
2905 return (LoopCost - Cost) * (SuccessorsCount - 1);
2907 Instruction *BestUnswitchTI = nullptr;
2908 InstructionCost BestUnswitchCost = 0;
2909 ArrayRef<Value *> BestUnswitchInvariants;
2910 for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2911 Instruction &TI = *TerminatorAndInvariants.first;
2912 ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2913 BranchInst *BI = dyn_cast<BranchInst>(&TI);
2914 InstructionCost CandidateCost = ComputeUnswitchedCost(
2915 TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2916 Invariants[0] == BI->getCondition()));
2917 // Calculate cost multiplier which is a tool to limit potentially
2918 // exponential behavior of loop-unswitch.
2919 if (EnableUnswitchCostMultiplier) {
2920 int CostMultiplier =
2921 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
2922 assert(
2923 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
2924 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2925 CandidateCost *= CostMultiplier;
2926 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2927 << " (multiplier: " << CostMultiplier << ")"
2928 << " for unswitch candidate: " << TI << "\n");
2929 } else {
2930 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2931 << " for unswitch candidate: " << TI << "\n");
2934 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2935 BestUnswitchTI = &TI;
2936 BestUnswitchCost = CandidateCost;
2937 BestUnswitchInvariants = Invariants;
2940 assert(BestUnswitchTI && "Failed to find loop unswitch candidate");
2942 if (BestUnswitchCost >= UnswitchThreshold) {
2943 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2944 << BestUnswitchCost << "\n");
2945 return false;
2948 if (BestUnswitchTI != PartialIVCondBranch)
2949 PartialIVInfo.InstToDuplicate.clear();
2951 // If the best candidate is a guard, turn it into a branch.
2952 if (isGuard(BestUnswitchTI))
2953 BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
2954 ExitBlocks, DT, LI, MSSAU);
2956 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
2957 << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2958 << "\n");
2959 unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
2960 ExitBlocks, PartialIVInfo, DT, LI, AC,
2961 UnswitchCB, SE, MSSAU);
2962 return true;
2965 /// Unswitch control flow predicated on loop invariant conditions.
2967 /// This first hoists all branches or switches which are trivial (IE, do not
2968 /// require duplicating any part of the loop) out of the loop body. It then
2969 /// looks at other loop invariant control flows and tries to unswitch those as
2970 /// well by cloning the loop if the result is small enough.
2972 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
2973 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
2974 /// valid (i.e. its use is enabled).
2976 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2977 /// true, we will attempt to do non-trivial unswitching as well as trivial
2978 /// unswitching.
2980 /// The `UnswitchCB` callback provided will be run after unswitching is
2981 /// complete, with the first parameter set to `true` if the provided loop
2982 /// remains a loop, and a list of new sibling loops created.
2984 /// If `SE` is non-null, we will update that analysis based on the unswitching
2985 /// done.
2986 static bool
2987 unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
2988 AAResults &AA, TargetTransformInfo &TTI, bool Trivial,
2989 bool NonTrivial,
2990 function_ref<void(bool, bool, ArrayRef<Loop *>)> UnswitchCB,
2991 ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
2992 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2993 "Loops must be in LCSSA form before unswitching.");
2995 // Must be in loop simplified form: we need a preheader and dedicated exits.
2996 if (!L.isLoopSimplifyForm())
2997 return false;
2999 // Try trivial unswitch first before loop over other basic blocks in the loop.
3000 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3001 // If we unswitched successfully we will want to clean up the loop before
3002 // processing it further so just mark it as unswitched and return.
3003 UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3004 return true;
3007 // Check whether we should continue with non-trivial conditions.
3008 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3009 // unswitching for testing and debugging.
3010 // NonTrivial: Parameter that enables non-trivial unswitching for this
3011 // invocation of the transform. But this should be allowed only
3012 // for targets without branch divergence.
3014 // FIXME: If divergence analysis becomes available to a loop
3015 // transform, we should allow unswitching for non-trivial uniform
3016 // branches even on targets that have divergence.
3017 // https://bugs.llvm.org/show_bug.cgi?id=48819
3018 bool ContinueWithNonTrivial =
3019 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence());
3020 if (!ContinueWithNonTrivial)
3021 return false;
3023 // Skip non-trivial unswitching for optsize functions.
3024 if (L.getHeader()->getParent()->hasOptSize())
3025 return false;
3027 // Skip non-trivial unswitching for loops that cannot be cloned.
3028 if (!L.isSafeToClone())
3029 return false;
3031 // For non-trivial unswitching, because it often creates new loops, we rely on
3032 // the pass manager to iterate on the loops rather than trying to immediately
3033 // reach a fixed point. There is no substantial advantage to iterating
3034 // internally, and if any of the new loops are simplified enough to contain
3035 // trivial unswitching we want to prefer those.
3037 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3038 // a partial unswitch when possible below the threshold.
3039 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, UnswitchCB, SE, MSSAU))
3040 return true;
3042 // No other opportunities to unswitch.
3043 return false;
3046 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3047 LoopStandardAnalysisResults &AR,
3048 LPMUpdater &U) {
3049 Function &F = *L.getHeader()->getParent();
3050 (void)F;
3052 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3053 << "\n");
3055 // Save the current loop name in a variable so that we can report it even
3056 // after it has been deleted.
3057 std::string LoopName = std::string(L.getName());
3059 auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
3060 bool PartiallyInvariant,
3061 ArrayRef<Loop *> NewLoops) {
3062 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3063 if (!NewLoops.empty())
3064 U.addSiblingLoops(NewLoops);
3066 // If the current loop remains valid, we should revisit it to catch any
3067 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3068 if (CurrentLoopValid) {
3069 if (PartiallyInvariant) {
3070 // Mark the new loop as partially unswitched, to avoid unswitching on
3071 // the same condition again.
3072 auto &Context = L.getHeader()->getContext();
3073 MDNode *DisableUnswitchMD = MDNode::get(
3074 Context,
3075 MDString::get(Context, "llvm.loop.unswitch.partial.disable"));
3076 MDNode *NewLoopID = makePostTransformationMetadata(
3077 Context, L.getLoopID(), {"llvm.loop.unswitch.partial"},
3078 {DisableUnswitchMD});
3079 L.setLoopID(NewLoopID);
3080 } else
3081 U.revisitCurrentLoop();
3082 } else
3083 U.markLoopAsDeleted(L, LoopName);
3086 Optional<MemorySSAUpdater> MSSAU;
3087 if (AR.MSSA) {
3088 MSSAU = MemorySSAUpdater(AR.MSSA);
3089 if (VerifyMemorySSA)
3090 AR.MSSA->verifyMemorySSA();
3092 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.AA, AR.TTI, Trivial, NonTrivial,
3093 UnswitchCB, &AR.SE,
3094 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
3095 return PreservedAnalyses::all();
3097 if (AR.MSSA && VerifyMemorySSA)
3098 AR.MSSA->verifyMemorySSA();
3100 // Historically this pass has had issues with the dominator tree so verify it
3101 // in asserts builds.
3102 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3104 auto PA = getLoopPassPreservedAnalyses();
3105 if (AR.MSSA)
3106 PA.preserve<MemorySSAAnalysis>();
3107 return PA;
3110 namespace {
3112 class SimpleLoopUnswitchLegacyPass : public LoopPass {
3113 bool NonTrivial;
3115 public:
3116 static char ID; // Pass ID, replacement for typeid
3118 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
3119 : LoopPass(ID), NonTrivial(NonTrivial) {
3120 initializeSimpleLoopUnswitchLegacyPassPass(
3121 *PassRegistry::getPassRegistry());
3124 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
3126 void getAnalysisUsage(AnalysisUsage &AU) const override {
3127 AU.addRequired<AssumptionCacheTracker>();
3128 AU.addRequired<TargetTransformInfoWrapperPass>();
3129 AU.addRequired<MemorySSAWrapperPass>();
3130 AU.addPreserved<MemorySSAWrapperPass>();
3131 getLoopAnalysisUsage(AU);
3135 } // end anonymous namespace
3137 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
3138 if (skipLoop(L))
3139 return false;
3141 Function &F = *L->getHeader()->getParent();
3143 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
3144 << "\n");
3146 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3147 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3148 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3149 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
3150 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3151 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
3152 MemorySSAUpdater MSSAU(MSSA);
3154 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
3155 auto *SE = SEWP ? &SEWP->getSE() : nullptr;
3157 auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid, bool PartiallyInvariant,
3158 ArrayRef<Loop *> NewLoops) {
3159 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3160 for (auto *NewL : NewLoops)
3161 LPM.addLoop(*NewL);
3163 // If the current loop remains valid, re-add it to the queue. This is
3164 // a little wasteful as we'll finish processing the current loop as well,
3165 // but it is the best we can do in the old PM.
3166 if (CurrentLoopValid) {
3167 // If the current loop has been unswitched using a partially invariant
3168 // condition, we should not re-add the current loop to avoid unswitching
3169 // on the same condition again.
3170 if (!PartiallyInvariant)
3171 LPM.addLoop(*L);
3172 } else
3173 LPM.markLoopAsDeleted(*L);
3176 if (VerifyMemorySSA)
3177 MSSA->verifyMemorySSA();
3179 bool Changed = unswitchLoop(*L, DT, LI, AC, AA, TTI, true, NonTrivial,
3180 UnswitchCB, SE, &MSSAU);
3182 if (VerifyMemorySSA)
3183 MSSA->verifyMemorySSA();
3185 // Historically this pass has had issues with the dominator tree so verify it
3186 // in asserts builds.
3187 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
3189 return Changed;
3192 char SimpleLoopUnswitchLegacyPass::ID = 0;
3193 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3194 "Simple unswitch loops", false, false)
3195 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3196 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3197 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
3198 INITIALIZE_PASS_DEPENDENCY(LoopPass)
3199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
3200 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3201 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
3202 "Simple unswitch loops", false, false)
3204 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
3205 return new SimpleLoopUnswitchLegacyPass(NonTrivial);