1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/Sequence.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/CodeMetrics.h"
21 #include "llvm/Analysis/GuardUtils.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/MustExecute.h"
30 #include "llvm/Analysis/ScalarEvolution.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/GenericDomTree.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Cloning.h"
55 #include "llvm/Transforms/Utils/Local.h"
56 #include "llvm/Transforms/Utils/LoopUtils.h"
57 #include "llvm/Transforms/Utils/ValueMapper.h"
64 #define DEBUG_TYPE "simple-loop-unswitch"
67 using namespace llvm::PatternMatch
;
69 STATISTIC(NumBranches
, "Number of branches unswitched");
70 STATISTIC(NumSwitches
, "Number of switches unswitched");
71 STATISTIC(NumGuards
, "Number of guards turned into branches for unswitching");
72 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
74 NumCostMultiplierSkipped
,
75 "Number of unswitch candidates that had their cost multiplier skipped");
77 static cl::opt
<bool> EnableNonTrivialUnswitch(
78 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden
,
79 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
80 "following the configuration passed into the pass."));
83 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden
,
84 cl::desc("The cost threshold for unswitching a loop."));
86 static cl::opt
<bool> EnableUnswitchCostMultiplier(
87 "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden
,
88 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
89 "explosion in nontrivial unswitch."));
90 static cl::opt
<int> UnswitchSiblingsToplevelDiv(
91 "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden
,
92 cl::desc("Toplevel siblings divisor for cost multiplier."));
93 static cl::opt
<int> UnswitchNumInitialUnscaledCandidates(
94 "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden
,
95 cl::desc("Number of unswitch candidates that are ignored when calculating "
97 static cl::opt
<bool> UnswitchGuards(
98 "simple-loop-unswitch-guards", cl::init(true), cl::Hidden
,
99 cl::desc("If enabled, simple loop unswitching will also consider "
100 "llvm.experimental.guard intrinsics as unswitch candidates."));
101 static cl::opt
<bool> DropNonTrivialImplicitNullChecks(
102 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
103 cl::init(false), cl::Hidden
,
104 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
105 "null checks to save time analyzing if we can keep it."));
106 static cl::opt
<unsigned>
107 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
108 cl::desc("Max number of memory uses to explore during "
109 "partial unswitching analysis"),
110 cl::init(100), cl::Hidden
);
112 /// Collect all of the loop invariant input values transitively used by the
113 /// homogeneous instruction graph from a given root.
115 /// This essentially walks from a root recursively through loop variant operands
116 /// which have the exact same opcode and finds all inputs which are loop
117 /// invariant. For some operations these can be re-associated and unswitched out
118 /// of the loop entirely.
119 static TinyPtrVector
<Value
*>
120 collectHomogenousInstGraphLoopInvariants(Loop
&L
, Instruction
&Root
,
122 assert(!L
.isLoopInvariant(&Root
) &&
123 "Only need to walk the graph if root itself is not invariant.");
124 TinyPtrVector
<Value
*> Invariants
;
126 bool IsRootAnd
= match(&Root
, m_LogicalAnd());
127 bool IsRootOr
= match(&Root
, m_LogicalOr());
129 // Build a worklist and recurse through operators collecting invariants.
130 SmallVector
<Instruction
*, 4> Worklist
;
131 SmallPtrSet
<Instruction
*, 8> Visited
;
132 Worklist
.push_back(&Root
);
133 Visited
.insert(&Root
);
135 Instruction
&I
= *Worklist
.pop_back_val();
136 for (Value
*OpV
: I
.operand_values()) {
137 // Skip constants as unswitching isn't interesting for them.
138 if (isa
<Constant
>(OpV
))
141 // Add it to our result if loop invariant.
142 if (L
.isLoopInvariant(OpV
)) {
143 Invariants
.push_back(OpV
);
147 // If not an instruction with the same opcode, nothing we can do.
148 Instruction
*OpI
= dyn_cast
<Instruction
>(OpV
);
150 if (OpI
&& ((IsRootAnd
&& match(OpI
, m_LogicalAnd())) ||
151 (IsRootOr
&& match(OpI
, m_LogicalOr())))) {
152 // Visit this operand.
153 if (Visited
.insert(OpI
).second
)
154 Worklist
.push_back(OpI
);
157 } while (!Worklist
.empty());
162 static void replaceLoopInvariantUses(Loop
&L
, Value
*Invariant
,
163 Constant
&Replacement
) {
164 assert(!isa
<Constant
>(Invariant
) && "Why are we unswitching on a constant?");
166 // Replace uses of LIC in the loop with the given constant.
167 // We use make_early_inc_range as set invalidates the iterator.
168 for (Use
&U
: llvm::make_early_inc_range(Invariant
->uses())) {
169 Instruction
*UserI
= dyn_cast
<Instruction
>(U
.getUser());
171 // Replace this use within the loop body.
172 if (UserI
&& L
.contains(UserI
))
177 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
178 /// incoming values along this edge.
179 static bool areLoopExitPHIsLoopInvariant(Loop
&L
, BasicBlock
&ExitingBB
,
180 BasicBlock
&ExitBB
) {
181 for (Instruction
&I
: ExitBB
) {
182 auto *PN
= dyn_cast
<PHINode
>(&I
);
184 // No more PHIs to check.
187 // If the incoming value for this edge isn't loop invariant the unswitch
189 if (!L
.isLoopInvariant(PN
->getIncomingValueForBlock(&ExitingBB
)))
192 llvm_unreachable("Basic blocks should never be empty!");
195 /// Copy a set of loop invariant values \p ToDuplicate and insert them at the
196 /// end of \p BB and conditionally branch on the copied condition. We only
197 /// branch on a single value.
198 static void buildPartialUnswitchConditionalBranch(BasicBlock
&BB
,
199 ArrayRef
<Value
*> Invariants
,
201 BasicBlock
&UnswitchedSucc
,
202 BasicBlock
&NormalSucc
) {
203 IRBuilder
<> IRB(&BB
);
205 Value
*Cond
= Direction
? IRB
.CreateOr(Invariants
) :
206 IRB
.CreateAnd(Invariants
);
207 IRB
.CreateCondBr(Cond
, Direction
? &UnswitchedSucc
: &NormalSucc
,
208 Direction
? &NormalSucc
: &UnswitchedSucc
);
211 /// Copy a set of loop invariant values, and conditionally branch on them.
212 static void buildPartialInvariantUnswitchConditionalBranch(
213 BasicBlock
&BB
, ArrayRef
<Value
*> ToDuplicate
, bool Direction
,
214 BasicBlock
&UnswitchedSucc
, BasicBlock
&NormalSucc
, Loop
&L
,
215 MemorySSAUpdater
*MSSAU
) {
216 ValueToValueMapTy VMap
;
217 for (auto *Val
: reverse(ToDuplicate
)) {
218 Instruction
*Inst
= cast
<Instruction
>(Val
);
219 Instruction
*NewInst
= Inst
->clone();
220 BB
.getInstList().insert(BB
.end(), NewInst
);
221 RemapInstruction(NewInst
, VMap
,
222 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
228 MemorySSA
*MSSA
= MSSAU
->getMemorySSA();
230 dyn_cast_or_null
<MemoryUse
>(MSSA
->getMemoryAccess(Inst
))) {
231 auto *DefiningAccess
= MemUse
->getDefiningAccess();
232 // Get the first defining access before the loop.
233 while (L
.contains(DefiningAccess
->getBlock())) {
234 // If the defining access is a MemoryPhi, get the incoming
235 // value for the pre-header as defining access.
236 if (auto *MemPhi
= dyn_cast
<MemoryPhi
>(DefiningAccess
))
238 MemPhi
->getIncomingValueForBlock(L
.getLoopPreheader());
240 DefiningAccess
= cast
<MemoryDef
>(DefiningAccess
)->getDefiningAccess();
242 MSSAU
->createMemoryAccessInBB(NewInst
, DefiningAccess
,
243 NewInst
->getParent(),
244 MemorySSA::BeforeTerminator
);
248 IRBuilder
<> IRB(&BB
);
249 Value
*Cond
= VMap
[ToDuplicate
[0]];
250 IRB
.CreateCondBr(Cond
, Direction
? &UnswitchedSucc
: &NormalSucc
,
251 Direction
? &NormalSucc
: &UnswitchedSucc
);
254 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
256 /// Requires that the loop exit and unswitched basic block are the same, and
257 /// that the exiting block was a unique predecessor of that block. Rewrites the
258 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
259 /// PHI nodes from the old preheader that now contains the unswitched
261 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock
&UnswitchedBB
,
262 BasicBlock
&OldExitingBB
,
264 for (PHINode
&PN
: UnswitchedBB
.phis()) {
265 // When the loop exit is directly unswitched we just need to update the
266 // incoming basic block. We loop to handle weird cases with repeated
267 // incoming blocks, but expect to typically only have one operand here.
268 for (auto i
: seq
<int>(0, PN
.getNumOperands())) {
269 assert(PN
.getIncomingBlock(i
) == &OldExitingBB
&&
270 "Found incoming block different from unique predecessor!");
271 PN
.setIncomingBlock(i
, &OldPH
);
276 /// Rewrite the PHI nodes in the loop exit basic block and the split off
277 /// unswitched block.
279 /// Because the exit block remains an exit from the loop, this rewrites the
280 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
281 /// nodes into the unswitched basic block to select between the value in the
282 /// old preheader and the loop exit.
283 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock
&ExitBB
,
284 BasicBlock
&UnswitchedBB
,
285 BasicBlock
&OldExitingBB
,
288 assert(&ExitBB
!= &UnswitchedBB
&&
289 "Must have different loop exit and unswitched blocks!");
290 Instruction
*InsertPt
= &*UnswitchedBB
.begin();
291 for (PHINode
&PN
: ExitBB
.phis()) {
292 auto *NewPN
= PHINode::Create(PN
.getType(), /*NumReservedValues*/ 2,
293 PN
.getName() + ".split", InsertPt
);
295 // Walk backwards over the old PHI node's inputs to minimize the cost of
296 // removing each one. We have to do this weird loop manually so that we
297 // create the same number of new incoming edges in the new PHI as we expect
298 // each case-based edge to be included in the unswitched switch in some
300 // FIXME: This is really, really gross. It would be much cleaner if LLVM
301 // allowed us to create a single entry for a predecessor block without
302 // having separate entries for each "edge" even though these edges are
303 // required to produce identical results.
304 for (int i
= PN
.getNumIncomingValues() - 1; i
>= 0; --i
) {
305 if (PN
.getIncomingBlock(i
) != &OldExitingBB
)
308 Value
*Incoming
= PN
.getIncomingValue(i
);
310 // No more edge from the old exiting block to the exit block.
311 PN
.removeIncomingValue(i
);
313 NewPN
->addIncoming(Incoming
, &OldPH
);
316 // Now replace the old PHI with the new one and wire the old one in as an
317 // input to the new one.
318 PN
.replaceAllUsesWith(NewPN
);
319 NewPN
->addIncoming(&PN
, &ExitBB
);
323 /// Hoist the current loop up to the innermost loop containing a remaining exit.
325 /// Because we've removed an exit from the loop, we may have changed the set of
326 /// loops reachable and need to move the current loop up the loop nest or even
327 /// to an entirely separate nest.
328 static void hoistLoopToNewParent(Loop
&L
, BasicBlock
&Preheader
,
329 DominatorTree
&DT
, LoopInfo
&LI
,
330 MemorySSAUpdater
*MSSAU
, ScalarEvolution
*SE
) {
331 // If the loop is already at the top level, we can't hoist it anywhere.
332 Loop
*OldParentL
= L
.getParentLoop();
336 SmallVector
<BasicBlock
*, 4> Exits
;
337 L
.getExitBlocks(Exits
);
338 Loop
*NewParentL
= nullptr;
339 for (auto *ExitBB
: Exits
)
340 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
))
341 if (!NewParentL
|| NewParentL
->contains(ExitL
))
344 if (NewParentL
== OldParentL
)
347 // The new parent loop (if different) should always contain the old one.
349 assert(NewParentL
->contains(OldParentL
) &&
350 "Can only hoist this loop up the nest!");
352 // The preheader will need to move with the body of this loop. However,
353 // because it isn't in this loop we also need to update the primary loop map.
354 assert(OldParentL
== LI
.getLoopFor(&Preheader
) &&
355 "Parent loop of this loop should contain this loop's preheader!");
356 LI
.changeLoopFor(&Preheader
, NewParentL
);
358 // Remove this loop from its old parent.
359 OldParentL
->removeChildLoop(&L
);
361 // Add the loop either to the new parent or as a top-level loop.
363 NewParentL
->addChildLoop(&L
);
365 LI
.addTopLevelLoop(&L
);
367 // Remove this loops blocks from the old parent and every other loop up the
368 // nest until reaching the new parent. Also update all of these
369 // no-longer-containing loops to reflect the nesting change.
370 for (Loop
*OldContainingL
= OldParentL
; OldContainingL
!= NewParentL
;
371 OldContainingL
= OldContainingL
->getParentLoop()) {
372 llvm::erase_if(OldContainingL
->getBlocksVector(),
373 [&](const BasicBlock
*BB
) {
374 return BB
== &Preheader
|| L
.contains(BB
);
377 OldContainingL
->getBlocksSet().erase(&Preheader
);
378 for (BasicBlock
*BB
: L
.blocks())
379 OldContainingL
->getBlocksSet().erase(BB
);
381 // Because we just hoisted a loop out of this one, we have essentially
382 // created new exit paths from it. That means we need to form LCSSA PHI
383 // nodes for values used in the no-longer-nested loop.
384 formLCSSA(*OldContainingL
, DT
, &LI
, SE
);
386 // We shouldn't need to form dedicated exits because the exit introduced
387 // here is the (just split by unswitching) preheader. However, after trivial
388 // unswitching it is possible to get new non-dedicated exits out of parent
389 // loop so let's conservatively form dedicated exit blocks and figure out
390 // if we can optimize later.
391 formDedicatedExitBlocks(OldContainingL
, &DT
, &LI
, MSSAU
,
392 /*PreserveLCSSA*/ true);
396 // Return the top-most loop containing ExitBB and having ExitBB as exiting block
397 // or the loop containing ExitBB, if there is no parent loop containing ExitBB
399 static Loop
*getTopMostExitingLoop(BasicBlock
*ExitBB
, LoopInfo
&LI
) {
400 Loop
*TopMost
= LI
.getLoopFor(ExitBB
);
401 Loop
*Current
= TopMost
;
403 if (Current
->isLoopExiting(ExitBB
))
405 Current
= Current
->getParentLoop();
410 /// Unswitch a trivial branch if the condition is loop invariant.
412 /// This routine should only be called when loop code leading to the branch has
413 /// been validated as trivial (no side effects). This routine checks if the
414 /// condition is invariant and one of the successors is a loop exit. This
415 /// allows us to unswitch without duplicating the loop, making it trivial.
417 /// If this routine fails to unswitch the branch it returns false.
419 /// If the branch can be unswitched, this routine splits the preheader and
420 /// hoists the branch above that split. Preserves loop simplified form
421 /// (splitting the exit block as necessary). It simplifies the branch within
422 /// the loop to an unconditional branch but doesn't remove it entirely. Further
423 /// cleanup can be done with some simplifycfg like pass.
425 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
426 /// invalidated by this.
427 static bool unswitchTrivialBranch(Loop
&L
, BranchInst
&BI
, DominatorTree
&DT
,
428 LoopInfo
&LI
, ScalarEvolution
*SE
,
429 MemorySSAUpdater
*MSSAU
) {
430 assert(BI
.isConditional() && "Can only unswitch a conditional branch!");
431 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI
<< "\n");
433 // The loop invariant values that we want to unswitch.
434 TinyPtrVector
<Value
*> Invariants
;
436 // When true, we're fully unswitching the branch rather than just unswitching
437 // some input conditions to the branch.
438 bool FullUnswitch
= false;
440 if (L
.isLoopInvariant(BI
.getCondition())) {
441 Invariants
.push_back(BI
.getCondition());
444 if (auto *CondInst
= dyn_cast
<Instruction
>(BI
.getCondition()))
445 Invariants
= collectHomogenousInstGraphLoopInvariants(L
, *CondInst
, LI
);
446 if (Invariants
.empty()) {
447 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
452 // Check that one of the branch's successors exits, and which one.
453 bool ExitDirection
= true;
454 int LoopExitSuccIdx
= 0;
455 auto *LoopExitBB
= BI
.getSuccessor(0);
456 if (L
.contains(LoopExitBB
)) {
457 ExitDirection
= false;
459 LoopExitBB
= BI
.getSuccessor(1);
460 if (L
.contains(LoopExitBB
)) {
461 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
465 auto *ContinueBB
= BI
.getSuccessor(1 - LoopExitSuccIdx
);
466 auto *ParentBB
= BI
.getParent();
467 if (!areLoopExitPHIsLoopInvariant(L
, *ParentBB
, *LoopExitBB
)) {
468 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
472 // When unswitching only part of the branch's condition, we need the exit
473 // block to be reached directly from the partially unswitched input. This can
474 // be done when the exit block is along the true edge and the branch condition
475 // is a graph of `or` operations, or the exit block is along the false edge
476 // and the condition is a graph of `and` operations.
478 if (ExitDirection
? !match(BI
.getCondition(), m_LogicalOr())
479 : !match(BI
.getCondition(), m_LogicalAnd())) {
480 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
481 "non-full unswitch!\n");
487 dbgs() << " unswitching trivial invariant conditions for: " << BI
489 for (Value
*Invariant
: Invariants
) {
490 dbgs() << " " << *Invariant
<< " == true";
491 if (Invariant
!= Invariants
.back())
497 // If we have scalar evolutions, we need to invalidate them including this
498 // loop, the loop containing the exit block and the topmost parent loop
499 // exiting via LoopExitBB.
501 if (Loop
*ExitL
= getTopMostExitingLoop(LoopExitBB
, LI
))
502 SE
->forgetLoop(ExitL
);
504 // Forget the entire nest as this exits the entire nest.
505 SE
->forgetTopmostLoop(&L
);
508 if (MSSAU
&& VerifyMemorySSA
)
509 MSSAU
->getMemorySSA()->verifyMemorySSA();
511 // Split the preheader, so that we know that there is a safe place to insert
512 // the conditional branch. We will change the preheader to have a conditional
513 // branch on LoopCond.
514 BasicBlock
*OldPH
= L
.getLoopPreheader();
515 BasicBlock
*NewPH
= SplitEdge(OldPH
, L
.getHeader(), &DT
, &LI
, MSSAU
);
517 // Now that we have a place to insert the conditional branch, create a place
518 // to branch to: this is the exit block out of the loop that we are
519 // unswitching. We need to split this if there are other loop predecessors.
520 // Because the loop is in simplified form, *any* other predecessor is enough.
521 BasicBlock
*UnswitchedBB
;
522 if (FullUnswitch
&& LoopExitBB
->getUniquePredecessor()) {
523 assert(LoopExitBB
->getUniquePredecessor() == BI
.getParent() &&
524 "A branch's parent isn't a predecessor!");
525 UnswitchedBB
= LoopExitBB
;
528 SplitBlock(LoopExitBB
, &LoopExitBB
->front(), &DT
, &LI
, MSSAU
);
531 if (MSSAU
&& VerifyMemorySSA
)
532 MSSAU
->getMemorySSA()->verifyMemorySSA();
534 // Actually move the invariant uses into the unswitched position. If possible,
535 // we do this by moving the instructions, but when doing partial unswitching
536 // we do it by building a new merge of the values in the unswitched position.
537 OldPH
->getTerminator()->eraseFromParent();
539 // If fully unswitching, we can use the existing branch instruction.
540 // Splice it into the old PH to gate reaching the new preheader and re-point
542 OldPH
->getInstList().splice(OldPH
->end(), BI
.getParent()->getInstList(),
545 // Temporarily clone the terminator, to make MSSA update cheaper by
546 // separating "insert edge" updates from "remove edge" ones.
547 ParentBB
->getInstList().push_back(BI
.clone());
549 // Create a new unconditional branch that will continue the loop as a new
551 BranchInst::Create(ContinueBB
, ParentBB
);
553 BI
.setSuccessor(LoopExitSuccIdx
, UnswitchedBB
);
554 BI
.setSuccessor(1 - LoopExitSuccIdx
, NewPH
);
556 // Only unswitching a subset of inputs to the condition, so we will need to
557 // build a new branch that merges the invariant inputs.
559 assert(match(BI
.getCondition(), m_LogicalOr()) &&
560 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
563 assert(match(BI
.getCondition(), m_LogicalAnd()) &&
564 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
566 buildPartialUnswitchConditionalBranch(*OldPH
, Invariants
, ExitDirection
,
567 *UnswitchedBB
, *NewPH
);
570 // Update the dominator tree with the added edge.
571 DT
.insertEdge(OldPH
, UnswitchedBB
);
573 // After the dominator tree was updated with the added edge, update MemorySSA
576 SmallVector
<CFGUpdate
, 1> Updates
;
577 Updates
.push_back({cfg::UpdateKind::Insert
, OldPH
, UnswitchedBB
});
578 MSSAU
->applyInsertUpdates(Updates
, DT
);
581 // Finish updating dominator tree and memory ssa for full unswitch.
584 // Remove the cloned branch instruction.
585 ParentBB
->getTerminator()->eraseFromParent();
586 // Create unconditional branch now.
587 BranchInst::Create(ContinueBB
, ParentBB
);
588 MSSAU
->removeEdge(ParentBB
, LoopExitBB
);
590 DT
.deleteEdge(ParentBB
, LoopExitBB
);
593 if (MSSAU
&& VerifyMemorySSA
)
594 MSSAU
->getMemorySSA()->verifyMemorySSA();
596 // Rewrite the relevant PHI nodes.
597 if (UnswitchedBB
== LoopExitBB
)
598 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB
, *ParentBB
, *OldPH
);
600 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB
, *UnswitchedBB
,
601 *ParentBB
, *OldPH
, FullUnswitch
);
603 // The constant we can replace all of our invariants with inside the loop
604 // body. If any of the invariants have a value other than this the loop won't
606 ConstantInt
*Replacement
= ExitDirection
607 ? ConstantInt::getFalse(BI
.getContext())
608 : ConstantInt::getTrue(BI
.getContext());
610 // Since this is an i1 condition we can also trivially replace uses of it
611 // within the loop with a constant.
612 for (Value
*Invariant
: Invariants
)
613 replaceLoopInvariantUses(L
, Invariant
, *Replacement
);
615 // If this was full unswitching, we may have changed the nesting relationship
616 // for this loop so hoist it to its correct parent if needed.
618 hoistLoopToNewParent(L
, *NewPH
, DT
, LI
, MSSAU
, SE
);
620 if (MSSAU
&& VerifyMemorySSA
)
621 MSSAU
->getMemorySSA()->verifyMemorySSA();
623 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
629 /// Unswitch a trivial switch if the condition is loop invariant.
631 /// This routine should only be called when loop code leading to the switch has
632 /// been validated as trivial (no side effects). This routine checks if the
633 /// condition is invariant and that at least one of the successors is a loop
634 /// exit. This allows us to unswitch without duplicating the loop, making it
637 /// If this routine fails to unswitch the switch it returns false.
639 /// If the switch can be unswitched, this routine splits the preheader and
640 /// copies the switch above that split. If the default case is one of the
641 /// exiting cases, it copies the non-exiting cases and points them at the new
642 /// preheader. If the default case is not exiting, it copies the exiting cases
643 /// and points the default at the preheader. It preserves loop simplified form
644 /// (splitting the exit blocks as necessary). It simplifies the switch within
645 /// the loop by removing now-dead cases. If the default case is one of those
646 /// unswitched, it replaces its destination with a new basic block containing
647 /// only unreachable. Such basic blocks, while technically loop exits, are not
648 /// considered for unswitching so this is a stable transform and the same
649 /// switch will not be revisited. If after unswitching there is only a single
650 /// in-loop successor, the switch is further simplified to an unconditional
651 /// branch. Still more cleanup can be done with some simplifycfg like pass.
653 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
654 /// invalidated by this.
655 static bool unswitchTrivialSwitch(Loop
&L
, SwitchInst
&SI
, DominatorTree
&DT
,
656 LoopInfo
&LI
, ScalarEvolution
*SE
,
657 MemorySSAUpdater
*MSSAU
) {
658 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI
<< "\n");
659 Value
*LoopCond
= SI
.getCondition();
661 // If this isn't switching on an invariant condition, we can't unswitch it.
662 if (!L
.isLoopInvariant(LoopCond
))
665 auto *ParentBB
= SI
.getParent();
667 // The same check must be used both for the default and the exit cases. We
668 // should never leave edges from the switch instruction to a basic block that
669 // we are unswitching, hence the condition used to determine the default case
670 // needs to also be used to populate ExitCaseIndices, which is then used to
671 // remove cases from the switch.
672 auto IsTriviallyUnswitchableExitBlock
= [&](BasicBlock
&BBToCheck
) {
673 // BBToCheck is not an exit block if it is inside loop L.
674 if (L
.contains(&BBToCheck
))
676 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
677 if (!areLoopExitPHIsLoopInvariant(L
, *ParentBB
, BBToCheck
))
679 // We do not unswitch a block that only has an unreachable statement, as
680 // it's possible this is a previously unswitched block. Only unswitch if
681 // either the terminator is not unreachable, or, if it is, it's not the only
682 // instruction in the block.
683 auto *TI
= BBToCheck
.getTerminator();
684 bool isUnreachable
= isa
<UnreachableInst
>(TI
);
685 return !isUnreachable
||
686 (isUnreachable
&& (BBToCheck
.getFirstNonPHIOrDbg() != TI
));
689 SmallVector
<int, 4> ExitCaseIndices
;
690 for (auto Case
: SI
.cases())
691 if (IsTriviallyUnswitchableExitBlock(*Case
.getCaseSuccessor()))
692 ExitCaseIndices
.push_back(Case
.getCaseIndex());
693 BasicBlock
*DefaultExitBB
= nullptr;
694 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight
=
695 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI
, 0);
696 if (IsTriviallyUnswitchableExitBlock(*SI
.getDefaultDest())) {
697 DefaultExitBB
= SI
.getDefaultDest();
698 } else if (ExitCaseIndices
.empty())
701 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
703 if (MSSAU
&& VerifyMemorySSA
)
704 MSSAU
->getMemorySSA()->verifyMemorySSA();
706 // We may need to invalidate SCEVs for the outermost loop reached by any of
711 // Clear out the default destination temporarily to allow accurate
712 // predecessor lists to be examined below.
713 SI
.setDefaultDest(nullptr);
714 // Check the loop containing this exit.
715 Loop
*ExitL
= LI
.getLoopFor(DefaultExitBB
);
716 if (!ExitL
|| ExitL
->contains(OuterL
))
720 // Store the exit cases into a separate data structure and remove them from
722 SmallVector
<std::tuple
<ConstantInt
*, BasicBlock
*,
723 SwitchInstProfUpdateWrapper::CaseWeightOpt
>,
725 ExitCases
.reserve(ExitCaseIndices
.size());
726 SwitchInstProfUpdateWrapper
SIW(SI
);
727 // We walk the case indices backwards so that we remove the last case first
728 // and don't disrupt the earlier indices.
729 for (unsigned Index
: reverse(ExitCaseIndices
)) {
730 auto CaseI
= SI
.case_begin() + Index
;
731 // Compute the outer loop from this exit.
732 Loop
*ExitL
= LI
.getLoopFor(CaseI
->getCaseSuccessor());
733 if (!ExitL
|| ExitL
->contains(OuterL
))
735 // Save the value of this case.
736 auto W
= SIW
.getSuccessorWeight(CaseI
->getSuccessorIndex());
737 ExitCases
.emplace_back(CaseI
->getCaseValue(), CaseI
->getCaseSuccessor(), W
);
738 // Delete the unswitched cases.
739 SIW
.removeCase(CaseI
);
744 SE
->forgetLoop(OuterL
);
746 SE
->forgetTopmostLoop(&L
);
749 // Check if after this all of the remaining cases point at the same
751 BasicBlock
*CommonSuccBB
= nullptr;
752 if (SI
.getNumCases() > 0 &&
753 all_of(drop_begin(SI
.cases()), [&SI
](const SwitchInst::CaseHandle
&Case
) {
754 return Case
.getCaseSuccessor() == SI
.case_begin()->getCaseSuccessor();
756 CommonSuccBB
= SI
.case_begin()->getCaseSuccessor();
757 if (!DefaultExitBB
) {
758 // If we're not unswitching the default, we need it to match any cases to
759 // have a common successor or if we have no cases it is the common
761 if (SI
.getNumCases() == 0)
762 CommonSuccBB
= SI
.getDefaultDest();
763 else if (SI
.getDefaultDest() != CommonSuccBB
)
764 CommonSuccBB
= nullptr;
767 // Split the preheader, so that we know that there is a safe place to insert
769 BasicBlock
*OldPH
= L
.getLoopPreheader();
770 BasicBlock
*NewPH
= SplitEdge(OldPH
, L
.getHeader(), &DT
, &LI
, MSSAU
);
771 OldPH
->getTerminator()->eraseFromParent();
773 // Now add the unswitched switch.
774 auto *NewSI
= SwitchInst::Create(LoopCond
, NewPH
, ExitCases
.size(), OldPH
);
775 SwitchInstProfUpdateWrapper
NewSIW(*NewSI
);
777 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
778 // First, we split any exit blocks with remaining in-loop predecessors. Then
779 // we update the PHIs in one of two ways depending on if there was a split.
780 // We walk in reverse so that we split in the same order as the cases
781 // appeared. This is purely for convenience of reading the resulting IR, but
782 // it doesn't cost anything really.
783 SmallPtrSet
<BasicBlock
*, 2> UnswitchedExitBBs
;
784 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 2> SplitExitBBMap
;
785 // Handle the default exit if necessary.
786 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
787 // ranges aren't quite powerful enough yet.
789 if (pred_empty(DefaultExitBB
)) {
790 UnswitchedExitBBs
.insert(DefaultExitBB
);
791 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB
, *ParentBB
, *OldPH
);
794 SplitBlock(DefaultExitBB
, &DefaultExitBB
->front(), &DT
, &LI
, MSSAU
);
795 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB
, *SplitBB
,
797 /*FullUnswitch*/ true);
798 DefaultExitBB
= SplitExitBBMap
[DefaultExitBB
] = SplitBB
;
801 // Note that we must use a reference in the for loop so that we update the
803 for (auto &ExitCase
: reverse(ExitCases
)) {
804 // Grab a reference to the exit block in the pair so that we can update it.
805 BasicBlock
*ExitBB
= std::get
<1>(ExitCase
);
807 // If this case is the last edge into the exit block, we can simply reuse it
808 // as it will no longer be a loop exit. No mapping necessary.
809 if (pred_empty(ExitBB
)) {
810 // Only rewrite once.
811 if (UnswitchedExitBBs
.insert(ExitBB
).second
)
812 rewritePHINodesForUnswitchedExitBlock(*ExitBB
, *ParentBB
, *OldPH
);
816 // Otherwise we need to split the exit block so that we retain an exit
817 // block from the loop and a target for the unswitched condition.
818 BasicBlock
*&SplitExitBB
= SplitExitBBMap
[ExitBB
];
820 // If this is the first time we see this, do the split and remember it.
821 SplitExitBB
= SplitBlock(ExitBB
, &ExitBB
->front(), &DT
, &LI
, MSSAU
);
822 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB
, *SplitExitBB
,
824 /*FullUnswitch*/ true);
826 // Update the case pair to point to the split block.
827 std::get
<1>(ExitCase
) = SplitExitBB
;
830 // Now add the unswitched cases. We do this in reverse order as we built them
832 for (auto &ExitCase
: reverse(ExitCases
)) {
833 ConstantInt
*CaseVal
= std::get
<0>(ExitCase
);
834 BasicBlock
*UnswitchedBB
= std::get
<1>(ExitCase
);
836 NewSIW
.addCase(CaseVal
, UnswitchedBB
, std::get
<2>(ExitCase
));
839 // If the default was unswitched, re-point it and add explicit cases for
840 // entering the loop.
842 NewSIW
->setDefaultDest(DefaultExitBB
);
843 NewSIW
.setSuccessorWeight(0, DefaultCaseWeight
);
845 // We removed all the exit cases, so we just copy the cases to the
846 // unswitched switch.
847 for (const auto &Case
: SI
.cases())
848 NewSIW
.addCase(Case
.getCaseValue(), NewPH
,
849 SIW
.getSuccessorWeight(Case
.getSuccessorIndex()));
850 } else if (DefaultCaseWeight
) {
851 // We have to set branch weight of the default case.
852 uint64_t SW
= *DefaultCaseWeight
;
853 for (const auto &Case
: SI
.cases()) {
854 auto W
= SIW
.getSuccessorWeight(Case
.getSuccessorIndex());
856 "case weight must be defined as default case weight is defined");
859 NewSIW
.setSuccessorWeight(0, SW
);
862 // If we ended up with a common successor for every path through the switch
863 // after unswitching, rewrite it to an unconditional branch to make it easy
864 // to recognize. Otherwise we potentially have to recognize the default case
865 // pointing at unreachable and other complexity.
867 BasicBlock
*BB
= SI
.getParent();
868 // We may have had multiple edges to this common successor block, so remove
869 // them as predecessors. We skip the first one, either the default or the
870 // actual first case.
871 bool SkippedFirst
= DefaultExitBB
== nullptr;
872 for (auto Case
: SI
.cases()) {
873 assert(Case
.getCaseSuccessor() == CommonSuccBB
&&
874 "Non-common successor!");
880 CommonSuccBB
->removePredecessor(BB
,
881 /*KeepOneInputPHIs*/ true);
883 // Now nuke the switch and replace it with a direct branch.
884 SIW
.eraseFromParent();
885 BranchInst::Create(CommonSuccBB
, BB
);
886 } else if (DefaultExitBB
) {
887 assert(SI
.getNumCases() > 0 &&
888 "If we had no cases we'd have a common successor!");
889 // Move the last case to the default successor. This is valid as if the
890 // default got unswitched it cannot be reached. This has the advantage of
891 // being simple and keeping the number of edges from this switch to
892 // successors the same, and avoiding any PHI update complexity.
893 auto LastCaseI
= std::prev(SI
.case_end());
895 SI
.setDefaultDest(LastCaseI
->getCaseSuccessor());
896 SIW
.setSuccessorWeight(
897 0, SIW
.getSuccessorWeight(LastCaseI
->getSuccessorIndex()));
898 SIW
.removeCase(LastCaseI
);
901 // Walk the unswitched exit blocks and the unswitched split blocks and update
902 // the dominator tree based on the CFG edits. While we are walking unordered
903 // containers here, the API for applyUpdates takes an unordered list of
904 // updates and requires them to not contain duplicates.
905 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
906 for (auto *UnswitchedExitBB
: UnswitchedExitBBs
) {
907 DTUpdates
.push_back({DT
.Delete
, ParentBB
, UnswitchedExitBB
});
908 DTUpdates
.push_back({DT
.Insert
, OldPH
, UnswitchedExitBB
});
910 for (auto SplitUnswitchedPair
: SplitExitBBMap
) {
911 DTUpdates
.push_back({DT
.Delete
, ParentBB
, SplitUnswitchedPair
.first
});
912 DTUpdates
.push_back({DT
.Insert
, OldPH
, SplitUnswitchedPair
.second
});
916 MSSAU
->applyUpdates(DTUpdates
, DT
, /*UpdateDT=*/true);
918 MSSAU
->getMemorySSA()->verifyMemorySSA();
920 DT
.applyUpdates(DTUpdates
);
923 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
925 // We may have changed the nesting relationship for this loop so hoist it to
926 // its correct parent if needed.
927 hoistLoopToNewParent(L
, *NewPH
, DT
, LI
, MSSAU
, SE
);
929 if (MSSAU
&& VerifyMemorySSA
)
930 MSSAU
->getMemorySSA()->verifyMemorySSA();
934 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
938 /// This routine scans the loop to find a branch or switch which occurs before
939 /// any side effects occur. These can potentially be unswitched without
940 /// duplicating the loop. If a branch or switch is successfully unswitched the
941 /// scanning continues to see if subsequent branches or switches have become
942 /// trivial. Once all trivial candidates have been unswitched, this routine
945 /// The return value indicates whether anything was unswitched (and therefore
948 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
949 /// invalidated by this.
950 static bool unswitchAllTrivialConditions(Loop
&L
, DominatorTree
&DT
,
951 LoopInfo
&LI
, ScalarEvolution
*SE
,
952 MemorySSAUpdater
*MSSAU
) {
953 bool Changed
= false;
955 // If loop header has only one reachable successor we should keep looking for
956 // trivial condition candidates in the successor as well. An alternative is
957 // to constant fold conditions and merge successors into loop header (then we
958 // only need to check header's terminator). The reason for not doing this in
959 // LoopUnswitch pass is that it could potentially break LoopPassManager's
960 // invariants. Folding dead branches could either eliminate the current loop
961 // or make other loops unreachable. LCSSA form might also not be preserved
962 // after deleting branches. The following code keeps traversing loop header's
963 // successors until it finds the trivial condition candidate (condition that
964 // is not a constant). Since unswitching generates branches with constant
965 // conditions, this scenario could be very common in practice.
966 BasicBlock
*CurrentBB
= L
.getHeader();
967 SmallPtrSet
<BasicBlock
*, 8> Visited
;
968 Visited
.insert(CurrentBB
);
970 // Check if there are any side-effecting instructions (e.g. stores, calls,
971 // volatile loads) in the part of the loop that the code *would* execute
972 // without unswitching.
973 if (MSSAU
) // Possible early exit with MSSA
974 if (auto *Defs
= MSSAU
->getMemorySSA()->getBlockDefs(CurrentBB
))
975 if (!isa
<MemoryPhi
>(*Defs
->begin()) || (++Defs
->begin() != Defs
->end()))
977 if (llvm::any_of(*CurrentBB
,
978 [](Instruction
&I
) { return I
.mayHaveSideEffects(); }))
981 Instruction
*CurrentTerm
= CurrentBB
->getTerminator();
983 if (auto *SI
= dyn_cast
<SwitchInst
>(CurrentTerm
)) {
984 // Don't bother trying to unswitch past a switch with a constant
985 // condition. This should be removed prior to running this pass by
987 if (isa
<Constant
>(SI
->getCondition()))
990 if (!unswitchTrivialSwitch(L
, *SI
, DT
, LI
, SE
, MSSAU
))
991 // Couldn't unswitch this one so we're done.
994 // Mark that we managed to unswitch something.
997 // If unswitching turned the terminator into an unconditional branch then
998 // we can continue. The unswitching logic specifically works to fold any
999 // cases it can into an unconditional branch to make it easier to
1001 auto *BI
= dyn_cast
<BranchInst
>(CurrentBB
->getTerminator());
1002 if (!BI
|| BI
->isConditional())
1005 CurrentBB
= BI
->getSuccessor(0);
1009 auto *BI
= dyn_cast
<BranchInst
>(CurrentTerm
);
1011 // We do not understand other terminator instructions.
1014 // Don't bother trying to unswitch past an unconditional branch or a branch
1015 // with a constant value. These should be removed by simplifycfg prior to
1016 // running this pass.
1017 if (!BI
->isConditional() || isa
<Constant
>(BI
->getCondition()))
1020 // Found a trivial condition candidate: non-foldable conditional branch. If
1021 // we fail to unswitch this, we can't do anything else that is trivial.
1022 if (!unswitchTrivialBranch(L
, *BI
, DT
, LI
, SE
, MSSAU
))
1025 // Mark that we managed to unswitch something.
1028 // If we only unswitched some of the conditions feeding the branch, we won't
1029 // have collapsed it to a single successor.
1030 BI
= cast
<BranchInst
>(CurrentBB
->getTerminator());
1031 if (BI
->isConditional())
1034 // Follow the newly unconditional branch into its successor.
1035 CurrentBB
= BI
->getSuccessor(0);
1037 // When continuing, if we exit the loop or reach a previous visited block,
1038 // then we can not reach any trivial condition candidates (unfoldable
1039 // branch instructions or switch instructions) and no unswitch can happen.
1040 } while (L
.contains(CurrentBB
) && Visited
.insert(CurrentBB
).second
);
1045 /// Build the cloned blocks for an unswitched copy of the given loop.
1047 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1048 /// after the split block (`SplitBB`) that will be used to select between the
1049 /// cloned and original loop.
1051 /// This routine handles cloning all of the necessary loop blocks and exit
1052 /// blocks including rewriting their instructions and the relevant PHI nodes.
1053 /// Any loop blocks or exit blocks which are dominated by a different successor
1054 /// than the one for this clone of the loop blocks can be trivially skipped. We
1055 /// use the `DominatingSucc` map to determine whether a block satisfies that
1056 /// property with a simple map lookup.
1058 /// It also correctly creates the unconditional branch in the cloned
1059 /// unswitched parent block to only point at the unswitched successor.
1061 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1062 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
1063 /// the cloned blocks (and their loops) are left without full `LoopInfo`
1064 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1065 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
1066 /// instead the caller must recompute an accurate DT. It *does* correctly
1067 /// update the `AssumptionCache` provided in `AC`.
1068 static BasicBlock
*buildClonedLoopBlocks(
1069 Loop
&L
, BasicBlock
*LoopPH
, BasicBlock
*SplitBB
,
1070 ArrayRef
<BasicBlock
*> ExitBlocks
, BasicBlock
*ParentBB
,
1071 BasicBlock
*UnswitchedSuccBB
, BasicBlock
*ContinueSuccBB
,
1072 const SmallDenseMap
<BasicBlock
*, BasicBlock
*, 16> &DominatingSucc
,
1073 ValueToValueMapTy
&VMap
,
1074 SmallVectorImpl
<DominatorTree::UpdateType
> &DTUpdates
, AssumptionCache
&AC
,
1075 DominatorTree
&DT
, LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
1076 SmallVector
<BasicBlock
*, 4> NewBlocks
;
1077 NewBlocks
.reserve(L
.getNumBlocks() + ExitBlocks
.size());
1079 // We will need to clone a bunch of blocks, wrap up the clone operation in
1081 auto CloneBlock
= [&](BasicBlock
*OldBB
) {
1082 // Clone the basic block and insert it before the new preheader.
1083 BasicBlock
*NewBB
= CloneBasicBlock(OldBB
, VMap
, ".us", OldBB
->getParent());
1084 NewBB
->moveBefore(LoopPH
);
1086 // Record this block and the mapping.
1087 NewBlocks
.push_back(NewBB
);
1088 VMap
[OldBB
] = NewBB
;
1093 // We skip cloning blocks when they have a dominating succ that is not the
1094 // succ we are cloning for.
1095 auto SkipBlock
= [&](BasicBlock
*BB
) {
1096 auto It
= DominatingSucc
.find(BB
);
1097 return It
!= DominatingSucc
.end() && It
->second
!= UnswitchedSuccBB
;
1100 // First, clone the preheader.
1101 auto *ClonedPH
= CloneBlock(LoopPH
);
1103 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1104 for (auto *LoopBB
: L
.blocks())
1105 if (!SkipBlock(LoopBB
))
1108 // Split all the loop exit edges so that when we clone the exit blocks, if
1109 // any of the exit blocks are *also* a preheader for some other loop, we
1110 // don't create multiple predecessors entering the loop header.
1111 for (auto *ExitBB
: ExitBlocks
) {
1112 if (SkipBlock(ExitBB
))
1115 // When we are going to clone an exit, we don't need to clone all the
1116 // instructions in the exit block and we want to ensure we have an easy
1117 // place to merge the CFG, so split the exit first. This is always safe to
1118 // do because there cannot be any non-loop predecessors of a loop exit in
1119 // loop simplified form.
1120 auto *MergeBB
= SplitBlock(ExitBB
, &ExitBB
->front(), &DT
, &LI
, MSSAU
);
1122 // Rearrange the names to make it easier to write test cases by having the
1123 // exit block carry the suffix rather than the merge block carrying the
1125 MergeBB
->takeName(ExitBB
);
1126 ExitBB
->setName(Twine(MergeBB
->getName()) + ".split");
1128 // Now clone the original exit block.
1129 auto *ClonedExitBB
= CloneBlock(ExitBB
);
1130 assert(ClonedExitBB
->getTerminator()->getNumSuccessors() == 1 &&
1131 "Exit block should have been split to have one successor!");
1132 assert(ClonedExitBB
->getTerminator()->getSuccessor(0) == MergeBB
&&
1133 "Cloned exit block has the wrong successor!");
1135 // Remap any cloned instructions and create a merge phi node for them.
1136 for (auto ZippedInsts
: llvm::zip_first(
1137 llvm::make_range(ExitBB
->begin(), std::prev(ExitBB
->end())),
1138 llvm::make_range(ClonedExitBB
->begin(),
1139 std::prev(ClonedExitBB
->end())))) {
1140 Instruction
&I
= std::get
<0>(ZippedInsts
);
1141 Instruction
&ClonedI
= std::get
<1>(ZippedInsts
);
1143 // The only instructions in the exit block should be PHI nodes and
1144 // potentially a landing pad.
1146 (isa
<PHINode
>(I
) || isa
<LandingPadInst
>(I
) || isa
<CatchPadInst
>(I
)) &&
1147 "Bad instruction in exit block!");
1148 // We should have a value map between the instruction and its clone.
1149 assert(VMap
.lookup(&I
) == &ClonedI
&& "Mismatch in the value map!");
1152 PHINode::Create(I
.getType(), /*NumReservedValues*/ 2, ".us-phi",
1153 &*MergeBB
->getFirstInsertionPt());
1154 I
.replaceAllUsesWith(MergePN
);
1155 MergePN
->addIncoming(&I
, ExitBB
);
1156 MergePN
->addIncoming(&ClonedI
, ClonedExitBB
);
1160 // Rewrite the instructions in the cloned blocks to refer to the instructions
1161 // in the cloned blocks. We have to do this as a second pass so that we have
1162 // everything available. Also, we have inserted new instructions which may
1163 // include assume intrinsics, so we update the assumption cache while
1165 for (auto *ClonedBB
: NewBlocks
)
1166 for (Instruction
&I
: *ClonedBB
) {
1167 RemapInstruction(&I
, VMap
,
1168 RF_NoModuleLevelChanges
| RF_IgnoreMissingLocals
);
1169 if (auto *II
= dyn_cast
<AssumeInst
>(&I
))
1170 AC
.registerAssumption(II
);
1173 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1174 // have spurious incoming values.
1175 for (auto *LoopBB
: L
.blocks())
1176 if (SkipBlock(LoopBB
))
1177 for (auto *SuccBB
: successors(LoopBB
))
1178 if (auto *ClonedSuccBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(SuccBB
)))
1179 for (PHINode
&PN
: ClonedSuccBB
->phis())
1180 PN
.removeIncomingValue(LoopBB
, /*DeletePHIIfEmpty*/ false);
1182 // Remove the cloned parent as a predecessor of any successor we ended up
1183 // cloning other than the unswitched one.
1184 auto *ClonedParentBB
= cast
<BasicBlock
>(VMap
.lookup(ParentBB
));
1185 for (auto *SuccBB
: successors(ParentBB
)) {
1186 if (SuccBB
== UnswitchedSuccBB
)
1189 auto *ClonedSuccBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(SuccBB
));
1193 ClonedSuccBB
->removePredecessor(ClonedParentBB
,
1194 /*KeepOneInputPHIs*/ true);
1197 // Replace the cloned branch with an unconditional branch to the cloned
1198 // unswitched successor.
1199 auto *ClonedSuccBB
= cast
<BasicBlock
>(VMap
.lookup(UnswitchedSuccBB
));
1200 Instruction
*ClonedTerminator
= ClonedParentBB
->getTerminator();
1201 // Trivial Simplification. If Terminator is a conditional branch and
1202 // condition becomes dead - erase it.
1203 Value
*ClonedConditionToErase
= nullptr;
1204 if (auto *BI
= dyn_cast
<BranchInst
>(ClonedTerminator
))
1205 ClonedConditionToErase
= BI
->getCondition();
1206 else if (auto *SI
= dyn_cast
<SwitchInst
>(ClonedTerminator
))
1207 ClonedConditionToErase
= SI
->getCondition();
1209 ClonedTerminator
->eraseFromParent();
1210 BranchInst::Create(ClonedSuccBB
, ClonedParentBB
);
1212 if (ClonedConditionToErase
)
1213 RecursivelyDeleteTriviallyDeadInstructions(ClonedConditionToErase
, nullptr,
1216 // If there are duplicate entries in the PHI nodes because of multiple edges
1217 // to the unswitched successor, we need to nuke all but one as we replaced it
1218 // with a direct branch.
1219 for (PHINode
&PN
: ClonedSuccBB
->phis()) {
1221 // Loop over the incoming operands backwards so we can easily delete as we
1222 // go without invalidating the index.
1223 for (int i
= PN
.getNumOperands() - 1; i
>= 0; --i
) {
1224 if (PN
.getIncomingBlock(i
) != ClonedParentBB
)
1230 PN
.removeIncomingValue(i
, /*DeletePHIIfEmpty*/ false);
1234 // Record the domtree updates for the new blocks.
1235 SmallPtrSet
<BasicBlock
*, 4> SuccSet
;
1236 for (auto *ClonedBB
: NewBlocks
) {
1237 for (auto *SuccBB
: successors(ClonedBB
))
1238 if (SuccSet
.insert(SuccBB
).second
)
1239 DTUpdates
.push_back({DominatorTree::Insert
, ClonedBB
, SuccBB
});
1246 /// Recursively clone the specified loop and all of its children.
1248 /// The target parent loop for the clone should be provided, or can be null if
1249 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1250 /// with the provided value map. The entire original loop must be present in
1251 /// the value map. The cloned loop is returned.
1252 static Loop
*cloneLoopNest(Loop
&OrigRootL
, Loop
*RootParentL
,
1253 const ValueToValueMapTy
&VMap
, LoopInfo
&LI
) {
1254 auto AddClonedBlocksToLoop
= [&](Loop
&OrigL
, Loop
&ClonedL
) {
1255 assert(ClonedL
.getBlocks().empty() && "Must start with an empty loop!");
1256 ClonedL
.reserveBlocks(OrigL
.getNumBlocks());
1257 for (auto *BB
: OrigL
.blocks()) {
1258 auto *ClonedBB
= cast
<BasicBlock
>(VMap
.lookup(BB
));
1259 ClonedL
.addBlockEntry(ClonedBB
);
1260 if (LI
.getLoopFor(BB
) == &OrigL
)
1261 LI
.changeLoopFor(ClonedBB
, &ClonedL
);
1265 // We specially handle the first loop because it may get cloned into
1266 // a different parent and because we most commonly are cloning leaf loops.
1267 Loop
*ClonedRootL
= LI
.AllocateLoop();
1269 RootParentL
->addChildLoop(ClonedRootL
);
1271 LI
.addTopLevelLoop(ClonedRootL
);
1272 AddClonedBlocksToLoop(OrigRootL
, *ClonedRootL
);
1274 if (OrigRootL
.isInnermost())
1277 // If we have a nest, we can quickly clone the entire loop nest using an
1278 // iterative approach because it is a tree. We keep the cloned parent in the
1279 // data structure to avoid repeatedly querying through a map to find it.
1280 SmallVector
<std::pair
<Loop
*, Loop
*>, 16> LoopsToClone
;
1281 // Build up the loops to clone in reverse order as we'll clone them from the
1283 for (Loop
*ChildL
: llvm::reverse(OrigRootL
))
1284 LoopsToClone
.push_back({ClonedRootL
, ChildL
});
1286 Loop
*ClonedParentL
, *L
;
1287 std::tie(ClonedParentL
, L
) = LoopsToClone
.pop_back_val();
1288 Loop
*ClonedL
= LI
.AllocateLoop();
1289 ClonedParentL
->addChildLoop(ClonedL
);
1290 AddClonedBlocksToLoop(*L
, *ClonedL
);
1291 for (Loop
*ChildL
: llvm::reverse(*L
))
1292 LoopsToClone
.push_back({ClonedL
, ChildL
});
1293 } while (!LoopsToClone
.empty());
1298 /// Build the cloned loops of an original loop from unswitching.
1300 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1301 /// operation. We need to re-verify that there even is a loop (as the backedge
1302 /// may not have been cloned), and even if there are remaining backedges the
1303 /// backedge set may be different. However, we know that each child loop is
1304 /// undisturbed, we only need to find where to place each child loop within
1305 /// either any parent loop or within a cloned version of the original loop.
1307 /// Because child loops may end up cloned outside of any cloned version of the
1308 /// original loop, multiple cloned sibling loops may be created. All of them
1309 /// are returned so that the newly introduced loop nest roots can be
1311 static void buildClonedLoops(Loop
&OrigL
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1312 const ValueToValueMapTy
&VMap
, LoopInfo
&LI
,
1313 SmallVectorImpl
<Loop
*> &NonChildClonedLoops
) {
1314 Loop
*ClonedL
= nullptr;
1316 auto *OrigPH
= OrigL
.getLoopPreheader();
1317 auto *OrigHeader
= OrigL
.getHeader();
1319 auto *ClonedPH
= cast
<BasicBlock
>(VMap
.lookup(OrigPH
));
1320 auto *ClonedHeader
= cast
<BasicBlock
>(VMap
.lookup(OrigHeader
));
1322 // We need to know the loops of the cloned exit blocks to even compute the
1323 // accurate parent loop. If we only clone exits to some parent of the
1324 // original parent, we want to clone into that outer loop. We also keep track
1325 // of the loops that our cloned exit blocks participate in.
1326 Loop
*ParentL
= nullptr;
1327 SmallVector
<BasicBlock
*, 4> ClonedExitsInLoops
;
1328 SmallDenseMap
<BasicBlock
*, Loop
*, 16> ExitLoopMap
;
1329 ClonedExitsInLoops
.reserve(ExitBlocks
.size());
1330 for (auto *ExitBB
: ExitBlocks
)
1331 if (auto *ClonedExitBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(ExitBB
)))
1332 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
)) {
1333 ExitLoopMap
[ClonedExitBB
] = ExitL
;
1334 ClonedExitsInLoops
.push_back(ClonedExitBB
);
1335 if (!ParentL
|| (ParentL
!= ExitL
&& ParentL
->contains(ExitL
)))
1338 assert((!ParentL
|| ParentL
== OrigL
.getParentLoop() ||
1339 ParentL
->contains(OrigL
.getParentLoop())) &&
1340 "The computed parent loop should always contain (or be) the parent of "
1341 "the original loop.");
1343 // We build the set of blocks dominated by the cloned header from the set of
1344 // cloned blocks out of the original loop. While not all of these will
1345 // necessarily be in the cloned loop, it is enough to establish that they
1346 // aren't in unreachable cycles, etc.
1347 SmallSetVector
<BasicBlock
*, 16> ClonedLoopBlocks
;
1348 for (auto *BB
: OrigL
.blocks())
1349 if (auto *ClonedBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
)))
1350 ClonedLoopBlocks
.insert(ClonedBB
);
1352 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1353 // skipped cloning some region of this loop which can in turn skip some of
1354 // the backedges so we have to rebuild the blocks in the loop based on the
1355 // backedges that remain after cloning.
1356 SmallVector
<BasicBlock
*, 16> Worklist
;
1357 SmallPtrSet
<BasicBlock
*, 16> BlocksInClonedLoop
;
1358 for (auto *Pred
: predecessors(ClonedHeader
)) {
1359 // The only possible non-loop header predecessor is the preheader because
1360 // we know we cloned the loop in simplified form.
1361 if (Pred
== ClonedPH
)
1364 // Because the loop was in simplified form, the only non-loop predecessor
1365 // should be the preheader.
1366 assert(ClonedLoopBlocks
.count(Pred
) && "Found a predecessor of the loop "
1367 "header other than the preheader "
1368 "that is not part of the loop!");
1370 // Insert this block into the loop set and on the first visit (and if it
1371 // isn't the header we're currently walking) put it into the worklist to
1373 if (BlocksInClonedLoop
.insert(Pred
).second
&& Pred
!= ClonedHeader
)
1374 Worklist
.push_back(Pred
);
1377 // If we had any backedges then there *is* a cloned loop. Put the header into
1378 // the loop set and then walk the worklist backwards to find all the blocks
1379 // that remain within the loop after cloning.
1380 if (!BlocksInClonedLoop
.empty()) {
1381 BlocksInClonedLoop
.insert(ClonedHeader
);
1383 while (!Worklist
.empty()) {
1384 BasicBlock
*BB
= Worklist
.pop_back_val();
1385 assert(BlocksInClonedLoop
.count(BB
) &&
1386 "Didn't put block into the loop set!");
1388 // Insert any predecessors that are in the possible set into the cloned
1389 // set, and if the insert is successful, add them to the worklist. Note
1390 // that we filter on the blocks that are definitely reachable via the
1391 // backedge to the loop header so we may prune out dead code within the
1393 for (auto *Pred
: predecessors(BB
))
1394 if (ClonedLoopBlocks
.count(Pred
) &&
1395 BlocksInClonedLoop
.insert(Pred
).second
)
1396 Worklist
.push_back(Pred
);
1399 ClonedL
= LI
.AllocateLoop();
1401 ParentL
->addBasicBlockToLoop(ClonedPH
, LI
);
1402 ParentL
->addChildLoop(ClonedL
);
1404 LI
.addTopLevelLoop(ClonedL
);
1406 NonChildClonedLoops
.push_back(ClonedL
);
1408 ClonedL
->reserveBlocks(BlocksInClonedLoop
.size());
1409 // We don't want to just add the cloned loop blocks based on how we
1410 // discovered them. The original order of blocks was carefully built in
1411 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1412 // that logic, we just re-walk the original blocks (and those of the child
1413 // loops) and filter them as we add them into the cloned loop.
1414 for (auto *BB
: OrigL
.blocks()) {
1415 auto *ClonedBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
));
1416 if (!ClonedBB
|| !BlocksInClonedLoop
.count(ClonedBB
))
1419 // Directly add the blocks that are only in this loop.
1420 if (LI
.getLoopFor(BB
) == &OrigL
) {
1421 ClonedL
->addBasicBlockToLoop(ClonedBB
, LI
);
1425 // We want to manually add it to this loop and parents.
1426 // Registering it with LoopInfo will happen when we clone the top
1427 // loop for this block.
1428 for (Loop
*PL
= ClonedL
; PL
; PL
= PL
->getParentLoop())
1429 PL
->addBlockEntry(ClonedBB
);
1432 // Now add each child loop whose header remains within the cloned loop. All
1433 // of the blocks within the loop must satisfy the same constraints as the
1434 // header so once we pass the header checks we can just clone the entire
1436 for (Loop
*ChildL
: OrigL
) {
1437 auto *ClonedChildHeader
=
1438 cast_or_null
<BasicBlock
>(VMap
.lookup(ChildL
->getHeader()));
1439 if (!ClonedChildHeader
|| !BlocksInClonedLoop
.count(ClonedChildHeader
))
1443 // We should never have a cloned child loop header but fail to have
1444 // all of the blocks for that child loop.
1445 for (auto *ChildLoopBB
: ChildL
->blocks())
1446 assert(BlocksInClonedLoop
.count(
1447 cast
<BasicBlock
>(VMap
.lookup(ChildLoopBB
))) &&
1448 "Child cloned loop has a header within the cloned outer "
1449 "loop but not all of its blocks!");
1452 cloneLoopNest(*ChildL
, ClonedL
, VMap
, LI
);
1456 // Now that we've handled all the components of the original loop that were
1457 // cloned into a new loop, we still need to handle anything from the original
1458 // loop that wasn't in a cloned loop.
1460 // Figure out what blocks are left to place within any loop nest containing
1461 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1463 SmallPtrSet
<BasicBlock
*, 16> UnloopedBlockSet
;
1464 if (BlocksInClonedLoop
.empty())
1465 UnloopedBlockSet
.insert(ClonedPH
);
1466 for (auto *ClonedBB
: ClonedLoopBlocks
)
1467 if (!BlocksInClonedLoop
.count(ClonedBB
))
1468 UnloopedBlockSet
.insert(ClonedBB
);
1470 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1471 // backwards across these to process them inside out. The order shouldn't
1472 // matter as we're just trying to build up the map from inside-out; we use
1473 // the map in a more stably ordered way below.
1474 auto OrderedClonedExitsInLoops
= ClonedExitsInLoops
;
1475 llvm::sort(OrderedClonedExitsInLoops
, [&](BasicBlock
*LHS
, BasicBlock
*RHS
) {
1476 return ExitLoopMap
.lookup(LHS
)->getLoopDepth() <
1477 ExitLoopMap
.lookup(RHS
)->getLoopDepth();
1480 // Populate the existing ExitLoopMap with everything reachable from each
1481 // exit, starting from the inner most exit.
1482 while (!UnloopedBlockSet
.empty() && !OrderedClonedExitsInLoops
.empty()) {
1483 assert(Worklist
.empty() && "Didn't clear worklist!");
1485 BasicBlock
*ExitBB
= OrderedClonedExitsInLoops
.pop_back_val();
1486 Loop
*ExitL
= ExitLoopMap
.lookup(ExitBB
);
1488 // Walk the CFG back until we hit the cloned PH adding everything reachable
1489 // and in the unlooped set to this exit block's loop.
1490 Worklist
.push_back(ExitBB
);
1492 BasicBlock
*BB
= Worklist
.pop_back_val();
1493 // We can stop recursing at the cloned preheader (if we get there).
1497 for (BasicBlock
*PredBB
: predecessors(BB
)) {
1498 // If this pred has already been moved to our set or is part of some
1499 // (inner) loop, no update needed.
1500 if (!UnloopedBlockSet
.erase(PredBB
)) {
1502 (BlocksInClonedLoop
.count(PredBB
) || ExitLoopMap
.count(PredBB
)) &&
1503 "Predecessor not mapped to a loop!");
1507 // We just insert into the loop set here. We'll add these blocks to the
1508 // exit loop after we build up the set in an order that doesn't rely on
1509 // predecessor order (which in turn relies on use list order).
1510 bool Inserted
= ExitLoopMap
.insert({PredBB
, ExitL
}).second
;
1512 assert(Inserted
&& "Should only visit an unlooped block once!");
1514 // And recurse through to its predecessors.
1515 Worklist
.push_back(PredBB
);
1517 } while (!Worklist
.empty());
1520 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1521 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1522 // in their original order adding them to the correct loop.
1524 // We need a stable insertion order. We use the order of the original loop
1525 // order and map into the correct parent loop.
1526 for (auto *BB
: llvm::concat
<BasicBlock
*const>(
1527 makeArrayRef(ClonedPH
), ClonedLoopBlocks
, ClonedExitsInLoops
))
1528 if (Loop
*OuterL
= ExitLoopMap
.lookup(BB
))
1529 OuterL
->addBasicBlockToLoop(BB
, LI
);
1532 for (auto &BBAndL
: ExitLoopMap
) {
1533 auto *BB
= BBAndL
.first
;
1534 auto *OuterL
= BBAndL
.second
;
1535 assert(LI
.getLoopFor(BB
) == OuterL
&&
1536 "Failed to put all blocks into outer loops!");
1540 // Now that all the blocks are placed into the correct containing loop in the
1541 // absence of child loops, find all the potentially cloned child loops and
1542 // clone them into whatever outer loop we placed their header into.
1543 for (Loop
*ChildL
: OrigL
) {
1544 auto *ClonedChildHeader
=
1545 cast_or_null
<BasicBlock
>(VMap
.lookup(ChildL
->getHeader()));
1546 if (!ClonedChildHeader
|| BlocksInClonedLoop
.count(ClonedChildHeader
))
1550 for (auto *ChildLoopBB
: ChildL
->blocks())
1551 assert(VMap
.count(ChildLoopBB
) &&
1552 "Cloned a child loop header but not all of that loops blocks!");
1555 NonChildClonedLoops
.push_back(cloneLoopNest(
1556 *ChildL
, ExitLoopMap
.lookup(ClonedChildHeader
), VMap
, LI
));
1561 deleteDeadClonedBlocks(Loop
&L
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1562 ArrayRef
<std::unique_ptr
<ValueToValueMapTy
>> VMaps
,
1563 DominatorTree
&DT
, MemorySSAUpdater
*MSSAU
) {
1564 // Find all the dead clones, and remove them from their successors.
1565 SmallVector
<BasicBlock
*, 16> DeadBlocks
;
1566 for (BasicBlock
*BB
: llvm::concat
<BasicBlock
*const>(L
.blocks(), ExitBlocks
))
1567 for (auto &VMap
: VMaps
)
1568 if (BasicBlock
*ClonedBB
= cast_or_null
<BasicBlock
>(VMap
->lookup(BB
)))
1569 if (!DT
.isReachableFromEntry(ClonedBB
)) {
1570 for (BasicBlock
*SuccBB
: successors(ClonedBB
))
1571 SuccBB
->removePredecessor(ClonedBB
);
1572 DeadBlocks
.push_back(ClonedBB
);
1575 // Remove all MemorySSA in the dead blocks
1577 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet(DeadBlocks
.begin(),
1579 MSSAU
->removeBlocks(DeadBlockSet
);
1582 // Drop any remaining references to break cycles.
1583 for (BasicBlock
*BB
: DeadBlocks
)
1584 BB
->dropAllReferences();
1585 // Erase them from the IR.
1586 for (BasicBlock
*BB
: DeadBlocks
)
1587 BB
->eraseFromParent();
1590 static void deleteDeadBlocksFromLoop(Loop
&L
,
1591 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
1592 DominatorTree
&DT
, LoopInfo
&LI
,
1593 MemorySSAUpdater
*MSSAU
) {
1594 // Find all the dead blocks tied to this loop, and remove them from their
1596 SmallSetVector
<BasicBlock
*, 8> DeadBlockSet
;
1598 // Start with loop/exit blocks and get a transitive closure of reachable dead
1600 SmallVector
<BasicBlock
*, 16> DeathCandidates(ExitBlocks
.begin(),
1602 DeathCandidates
.append(L
.blocks().begin(), L
.blocks().end());
1603 while (!DeathCandidates
.empty()) {
1604 auto *BB
= DeathCandidates
.pop_back_val();
1605 if (!DeadBlockSet
.count(BB
) && !DT
.isReachableFromEntry(BB
)) {
1606 for (BasicBlock
*SuccBB
: successors(BB
)) {
1607 SuccBB
->removePredecessor(BB
);
1608 DeathCandidates
.push_back(SuccBB
);
1610 DeadBlockSet
.insert(BB
);
1614 // Remove all MemorySSA in the dead blocks
1616 MSSAU
->removeBlocks(DeadBlockSet
);
1618 // Filter out the dead blocks from the exit blocks list so that it can be
1619 // used in the caller.
1620 llvm::erase_if(ExitBlocks
,
1621 [&](BasicBlock
*BB
) { return DeadBlockSet
.count(BB
); });
1623 // Walk from this loop up through its parents removing all of the dead blocks.
1624 for (Loop
*ParentL
= &L
; ParentL
; ParentL
= ParentL
->getParentLoop()) {
1625 for (auto *BB
: DeadBlockSet
)
1626 ParentL
->getBlocksSet().erase(BB
);
1627 llvm::erase_if(ParentL
->getBlocksVector(),
1628 [&](BasicBlock
*BB
) { return DeadBlockSet
.count(BB
); });
1631 // Now delete the dead child loops. This raw delete will clear them
1633 llvm::erase_if(L
.getSubLoopsVector(), [&](Loop
*ChildL
) {
1634 if (!DeadBlockSet
.count(ChildL
->getHeader()))
1637 assert(llvm::all_of(ChildL
->blocks(),
1638 [&](BasicBlock
*ChildBB
) {
1639 return DeadBlockSet
.count(ChildBB
);
1641 "If the child loop header is dead all blocks in the child loop must "
1642 "be dead as well!");
1647 // Remove the loop mappings for the dead blocks and drop all the references
1648 // from these blocks to others to handle cyclic references as we start
1649 // deleting the blocks themselves.
1650 for (auto *BB
: DeadBlockSet
) {
1651 // Check that the dominator tree has already been updated.
1652 assert(!DT
.getNode(BB
) && "Should already have cleared domtree!");
1653 LI
.changeLoopFor(BB
, nullptr);
1654 // Drop all uses of the instructions to make sure we won't have dangling
1655 // uses in other blocks.
1658 I
.replaceAllUsesWith(UndefValue::get(I
.getType()));
1659 BB
->dropAllReferences();
1662 // Actually delete the blocks now that they've been fully unhooked from the
1664 for (auto *BB
: DeadBlockSet
)
1665 BB
->eraseFromParent();
1668 /// Recompute the set of blocks in a loop after unswitching.
1670 /// This walks from the original headers predecessors to rebuild the loop. We
1671 /// take advantage of the fact that new blocks can't have been added, and so we
1672 /// filter by the original loop's blocks. This also handles potentially
1673 /// unreachable code that we don't want to explore but might be found examining
1674 /// the predecessors of the header.
1676 /// If the original loop is no longer a loop, this will return an empty set. If
1677 /// it remains a loop, all the blocks within it will be added to the set
1678 /// (including those blocks in inner loops).
1679 static SmallPtrSet
<const BasicBlock
*, 16> recomputeLoopBlockSet(Loop
&L
,
1681 SmallPtrSet
<const BasicBlock
*, 16> LoopBlockSet
;
1683 auto *PH
= L
.getLoopPreheader();
1684 auto *Header
= L
.getHeader();
1686 // A worklist to use while walking backwards from the header.
1687 SmallVector
<BasicBlock
*, 16> Worklist
;
1689 // First walk the predecessors of the header to find the backedges. This will
1690 // form the basis of our walk.
1691 for (auto *Pred
: predecessors(Header
)) {
1692 // Skip the preheader.
1696 // Because the loop was in simplified form, the only non-loop predecessor
1697 // is the preheader.
1698 assert(L
.contains(Pred
) && "Found a predecessor of the loop header other "
1699 "than the preheader that is not part of the "
1702 // Insert this block into the loop set and on the first visit and, if it
1703 // isn't the header we're currently walking, put it into the worklist to
1705 if (LoopBlockSet
.insert(Pred
).second
&& Pred
!= Header
)
1706 Worklist
.push_back(Pred
);
1709 // If no backedges were found, we're done.
1710 if (LoopBlockSet
.empty())
1711 return LoopBlockSet
;
1713 // We found backedges, recurse through them to identify the loop blocks.
1714 while (!Worklist
.empty()) {
1715 BasicBlock
*BB
= Worklist
.pop_back_val();
1716 assert(LoopBlockSet
.count(BB
) && "Didn't put block into the loop set!");
1718 // No need to walk past the header.
1722 // Because we know the inner loop structure remains valid we can use the
1723 // loop structure to jump immediately across the entire nested loop.
1724 // Further, because it is in loop simplified form, we can directly jump
1725 // to its preheader afterward.
1726 if (Loop
*InnerL
= LI
.getLoopFor(BB
))
1728 assert(L
.contains(InnerL
) &&
1729 "Should not reach a loop *outside* this loop!");
1730 // The preheader is the only possible predecessor of the loop so
1731 // insert it into the set and check whether it was already handled.
1732 auto *InnerPH
= InnerL
->getLoopPreheader();
1733 assert(L
.contains(InnerPH
) && "Cannot contain an inner loop block "
1734 "but not contain the inner loop "
1736 if (!LoopBlockSet
.insert(InnerPH
).second
)
1737 // The only way to reach the preheader is through the loop body
1738 // itself so if it has been visited the loop is already handled.
1741 // Insert all of the blocks (other than those already present) into
1742 // the loop set. We expect at least the block that led us to find the
1743 // inner loop to be in the block set, but we may also have other loop
1744 // blocks if they were already enqueued as predecessors of some other
1745 // outer loop block.
1746 for (auto *InnerBB
: InnerL
->blocks()) {
1747 if (InnerBB
== BB
) {
1748 assert(LoopBlockSet
.count(InnerBB
) &&
1749 "Block should already be in the set!");
1753 LoopBlockSet
.insert(InnerBB
);
1756 // Add the preheader to the worklist so we will continue past the
1758 Worklist
.push_back(InnerPH
);
1762 // Insert any predecessors that were in the original loop into the new
1763 // set, and if the insert is successful, add them to the worklist.
1764 for (auto *Pred
: predecessors(BB
))
1765 if (L
.contains(Pred
) && LoopBlockSet
.insert(Pred
).second
)
1766 Worklist
.push_back(Pred
);
1769 assert(LoopBlockSet
.count(Header
) && "Cannot fail to add the header!");
1771 // We've found all the blocks participating in the loop, return our completed
1773 return LoopBlockSet
;
1776 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1778 /// The removal may have removed some child loops entirely but cannot have
1779 /// disturbed any remaining child loops. However, they may need to be hoisted
1780 /// to the parent loop (or to be top-level loops). The original loop may be
1781 /// completely removed.
1783 /// The sibling loops resulting from this update are returned. If the original
1784 /// loop remains a valid loop, it will be the first entry in this list with all
1785 /// of the newly sibling loops following it.
1787 /// Returns true if the loop remains a loop after unswitching, and false if it
1788 /// is no longer a loop after unswitching (and should not continue to be
1790 static bool rebuildLoopAfterUnswitch(Loop
&L
, ArrayRef
<BasicBlock
*> ExitBlocks
,
1792 SmallVectorImpl
<Loop
*> &HoistedLoops
) {
1793 auto *PH
= L
.getLoopPreheader();
1795 // Compute the actual parent loop from the exit blocks. Because we may have
1796 // pruned some exits the loop may be different from the original parent.
1797 Loop
*ParentL
= nullptr;
1798 SmallVector
<Loop
*, 4> ExitLoops
;
1799 SmallVector
<BasicBlock
*, 4> ExitsInLoops
;
1800 ExitsInLoops
.reserve(ExitBlocks
.size());
1801 for (auto *ExitBB
: ExitBlocks
)
1802 if (Loop
*ExitL
= LI
.getLoopFor(ExitBB
)) {
1803 ExitLoops
.push_back(ExitL
);
1804 ExitsInLoops
.push_back(ExitBB
);
1805 if (!ParentL
|| (ParentL
!= ExitL
&& ParentL
->contains(ExitL
)))
1809 // Recompute the blocks participating in this loop. This may be empty if it
1810 // is no longer a loop.
1811 auto LoopBlockSet
= recomputeLoopBlockSet(L
, LI
);
1813 // If we still have a loop, we need to re-set the loop's parent as the exit
1814 // block set changing may have moved it within the loop nest. Note that this
1815 // can only happen when this loop has a parent as it can only hoist the loop
1817 if (!LoopBlockSet
.empty() && L
.getParentLoop() != ParentL
) {
1818 // Remove this loop's (original) blocks from all of the intervening loops.
1819 for (Loop
*IL
= L
.getParentLoop(); IL
!= ParentL
;
1820 IL
= IL
->getParentLoop()) {
1821 IL
->getBlocksSet().erase(PH
);
1822 for (auto *BB
: L
.blocks())
1823 IL
->getBlocksSet().erase(BB
);
1824 llvm::erase_if(IL
->getBlocksVector(), [&](BasicBlock
*BB
) {
1825 return BB
== PH
|| L
.contains(BB
);
1829 LI
.changeLoopFor(PH
, ParentL
);
1830 L
.getParentLoop()->removeChildLoop(&L
);
1832 ParentL
->addChildLoop(&L
);
1834 LI
.addTopLevelLoop(&L
);
1837 // Now we update all the blocks which are no longer within the loop.
1838 auto &Blocks
= L
.getBlocksVector();
1840 LoopBlockSet
.empty()
1842 : std::stable_partition(
1843 Blocks
.begin(), Blocks
.end(),
1844 [&](BasicBlock
*BB
) { return LoopBlockSet
.count(BB
); });
1846 // Before we erase the list of unlooped blocks, build a set of them.
1847 SmallPtrSet
<BasicBlock
*, 16> UnloopedBlocks(BlocksSplitI
, Blocks
.end());
1848 if (LoopBlockSet
.empty())
1849 UnloopedBlocks
.insert(PH
);
1851 // Now erase these blocks from the loop.
1852 for (auto *BB
: make_range(BlocksSplitI
, Blocks
.end()))
1853 L
.getBlocksSet().erase(BB
);
1854 Blocks
.erase(BlocksSplitI
, Blocks
.end());
1856 // Sort the exits in ascending loop depth, we'll work backwards across these
1857 // to process them inside out.
1858 llvm::stable_sort(ExitsInLoops
, [&](BasicBlock
*LHS
, BasicBlock
*RHS
) {
1859 return LI
.getLoopDepth(LHS
) < LI
.getLoopDepth(RHS
);
1862 // We'll build up a set for each exit loop.
1863 SmallPtrSet
<BasicBlock
*, 16> NewExitLoopBlocks
;
1864 Loop
*PrevExitL
= L
.getParentLoop(); // The deepest possible exit loop.
1866 auto RemoveUnloopedBlocksFromLoop
=
1867 [](Loop
&L
, SmallPtrSetImpl
<BasicBlock
*> &UnloopedBlocks
) {
1868 for (auto *BB
: UnloopedBlocks
)
1869 L
.getBlocksSet().erase(BB
);
1870 llvm::erase_if(L
.getBlocksVector(), [&](BasicBlock
*BB
) {
1871 return UnloopedBlocks
.count(BB
);
1875 SmallVector
<BasicBlock
*, 16> Worklist
;
1876 while (!UnloopedBlocks
.empty() && !ExitsInLoops
.empty()) {
1877 assert(Worklist
.empty() && "Didn't clear worklist!");
1878 assert(NewExitLoopBlocks
.empty() && "Didn't clear loop set!");
1880 // Grab the next exit block, in decreasing loop depth order.
1881 BasicBlock
*ExitBB
= ExitsInLoops
.pop_back_val();
1882 Loop
&ExitL
= *LI
.getLoopFor(ExitBB
);
1883 assert(ExitL
.contains(&L
) && "Exit loop must contain the inner loop!");
1885 // Erase all of the unlooped blocks from the loops between the previous
1886 // exit loop and this exit loop. This works because the ExitInLoops list is
1887 // sorted in increasing order of loop depth and thus we visit loops in
1888 // decreasing order of loop depth.
1889 for (; PrevExitL
!= &ExitL
; PrevExitL
= PrevExitL
->getParentLoop())
1890 RemoveUnloopedBlocksFromLoop(*PrevExitL
, UnloopedBlocks
);
1892 // Walk the CFG back until we hit the cloned PH adding everything reachable
1893 // and in the unlooped set to this exit block's loop.
1894 Worklist
.push_back(ExitBB
);
1896 BasicBlock
*BB
= Worklist
.pop_back_val();
1897 // We can stop recursing at the cloned preheader (if we get there).
1901 for (BasicBlock
*PredBB
: predecessors(BB
)) {
1902 // If this pred has already been moved to our set or is part of some
1903 // (inner) loop, no update needed.
1904 if (!UnloopedBlocks
.erase(PredBB
)) {
1905 assert((NewExitLoopBlocks
.count(PredBB
) ||
1906 ExitL
.contains(LI
.getLoopFor(PredBB
))) &&
1907 "Predecessor not in a nested loop (or already visited)!");
1911 // We just insert into the loop set here. We'll add these blocks to the
1912 // exit loop after we build up the set in a deterministic order rather
1913 // than the predecessor-influenced visit order.
1914 bool Inserted
= NewExitLoopBlocks
.insert(PredBB
).second
;
1916 assert(Inserted
&& "Should only visit an unlooped block once!");
1918 // And recurse through to its predecessors.
1919 Worklist
.push_back(PredBB
);
1921 } while (!Worklist
.empty());
1923 // If blocks in this exit loop were directly part of the original loop (as
1924 // opposed to a child loop) update the map to point to this exit loop. This
1925 // just updates a map and so the fact that the order is unstable is fine.
1926 for (auto *BB
: NewExitLoopBlocks
)
1927 if (Loop
*BBL
= LI
.getLoopFor(BB
))
1928 if (BBL
== &L
|| !L
.contains(BBL
))
1929 LI
.changeLoopFor(BB
, &ExitL
);
1931 // We will remove the remaining unlooped blocks from this loop in the next
1932 // iteration or below.
1933 NewExitLoopBlocks
.clear();
1936 // Any remaining unlooped blocks are no longer part of any loop unless they
1937 // are part of some child loop.
1938 for (; PrevExitL
; PrevExitL
= PrevExitL
->getParentLoop())
1939 RemoveUnloopedBlocksFromLoop(*PrevExitL
, UnloopedBlocks
);
1940 for (auto *BB
: UnloopedBlocks
)
1941 if (Loop
*BBL
= LI
.getLoopFor(BB
))
1942 if (BBL
== &L
|| !L
.contains(BBL
))
1943 LI
.changeLoopFor(BB
, nullptr);
1945 // Sink all the child loops whose headers are no longer in the loop set to
1946 // the parent (or to be top level loops). We reach into the loop and directly
1947 // update its subloop vector to make this batch update efficient.
1948 auto &SubLoops
= L
.getSubLoopsVector();
1949 auto SubLoopsSplitI
=
1950 LoopBlockSet
.empty()
1952 : std::stable_partition(
1953 SubLoops
.begin(), SubLoops
.end(), [&](Loop
*SubL
) {
1954 return LoopBlockSet
.count(SubL
->getHeader());
1956 for (auto *HoistedL
: make_range(SubLoopsSplitI
, SubLoops
.end())) {
1957 HoistedLoops
.push_back(HoistedL
);
1958 HoistedL
->setParentLoop(nullptr);
1960 // To compute the new parent of this hoisted loop we look at where we
1961 // placed the preheader above. We can't lookup the header itself because we
1962 // retained the mapping from the header to the hoisted loop. But the
1963 // preheader and header should have the exact same new parent computed
1964 // based on the set of exit blocks from the original loop as the preheader
1965 // is a predecessor of the header and so reached in the reverse walk. And
1966 // because the loops were all in simplified form the preheader of the
1967 // hoisted loop can't be part of some *other* loop.
1968 if (auto *NewParentL
= LI
.getLoopFor(HoistedL
->getLoopPreheader()))
1969 NewParentL
->addChildLoop(HoistedL
);
1971 LI
.addTopLevelLoop(HoistedL
);
1973 SubLoops
.erase(SubLoopsSplitI
, SubLoops
.end());
1975 // Actually delete the loop if nothing remained within it.
1976 if (Blocks
.empty()) {
1977 assert(SubLoops
.empty() &&
1978 "Failed to remove all subloops from the original loop!");
1979 if (Loop
*ParentL
= L
.getParentLoop())
1980 ParentL
->removeChildLoop(llvm::find(*ParentL
, &L
));
1982 LI
.removeLoop(llvm::find(LI
, &L
));
1990 /// Helper to visit a dominator subtree, invoking a callable on each node.
1992 /// Returning false at any point will stop walking past that node of the tree.
1993 template <typename CallableT
>
1994 void visitDomSubTree(DominatorTree
&DT
, BasicBlock
*BB
, CallableT Callable
) {
1995 SmallVector
<DomTreeNode
*, 4> DomWorklist
;
1996 DomWorklist
.push_back(DT
[BB
]);
1998 SmallPtrSet
<DomTreeNode
*, 4> Visited
;
1999 Visited
.insert(DT
[BB
]);
2002 DomTreeNode
*N
= DomWorklist
.pop_back_val();
2005 if (!Callable(N
->getBlock()))
2008 // Accumulate the child nodes.
2009 for (DomTreeNode
*ChildN
: *N
) {
2010 assert(Visited
.insert(ChildN
).second
&&
2011 "Cannot visit a node twice when walking a tree!");
2012 DomWorklist
.push_back(ChildN
);
2014 } while (!DomWorklist
.empty());
2017 static void unswitchNontrivialInvariants(
2018 Loop
&L
, Instruction
&TI
, ArrayRef
<Value
*> Invariants
,
2019 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
, IVConditionInfo
&PartialIVInfo
,
2020 DominatorTree
&DT
, LoopInfo
&LI
, AssumptionCache
&AC
,
2021 function_ref
<void(bool, bool, ArrayRef
<Loop
*>)> UnswitchCB
,
2022 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
) {
2023 auto *ParentBB
= TI
.getParent();
2024 BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
);
2025 SwitchInst
*SI
= BI
? nullptr : cast
<SwitchInst
>(&TI
);
2027 // We can only unswitch switches, conditional branches with an invariant
2028 // condition, or combining invariant conditions with an instruction or
2029 // partially invariant instructions.
2030 assert((SI
|| (BI
&& BI
->isConditional())) &&
2031 "Can only unswitch switches and conditional branch!");
2032 bool PartiallyInvariant
= !PartialIVInfo
.InstToDuplicate
.empty();
2034 SI
|| (BI
->getCondition() == Invariants
[0] && !PartiallyInvariant
);
2036 assert(Invariants
.size() == 1 &&
2037 "Cannot have other invariants with full unswitching!");
2039 assert(isa
<Instruction
>(BI
->getCondition()) &&
2040 "Partial unswitching requires an instruction as the condition!");
2042 if (MSSAU
&& VerifyMemorySSA
)
2043 MSSAU
->getMemorySSA()->verifyMemorySSA();
2045 // Constant and BBs tracking the cloned and continuing successor. When we are
2046 // unswitching the entire condition, this can just be trivially chosen to
2047 // unswitch towards `true`. However, when we are unswitching a set of
2048 // invariants combined with `and` or `or` or partially invariant instructions,
2049 // the combining operation determines the best direction to unswitch: we want
2050 // to unswitch the direction that will collapse the branch.
2051 bool Direction
= true;
2053 if (!FullUnswitch
) {
2054 Value
*Cond
= BI
->getCondition();
2056 assert(((match(Cond
, m_LogicalAnd()) ^ match(Cond
, m_LogicalOr())) ||
2057 PartiallyInvariant
) &&
2058 "Only `or`, `and`, an `select`, partially invariant instructions "
2059 "can combine invariants being unswitched.");
2060 if (!match(BI
->getCondition(), m_LogicalOr())) {
2061 if (match(BI
->getCondition(), m_LogicalAnd()) ||
2062 (PartiallyInvariant
&& !PartialIVInfo
.KnownValue
->isOneValue())) {
2069 BasicBlock
*RetainedSuccBB
=
2070 BI
? BI
->getSuccessor(1 - ClonedSucc
) : SI
->getDefaultDest();
2071 SmallSetVector
<BasicBlock
*, 4> UnswitchedSuccBBs
;
2073 UnswitchedSuccBBs
.insert(BI
->getSuccessor(ClonedSucc
));
2075 for (auto Case
: SI
->cases())
2076 if (Case
.getCaseSuccessor() != RetainedSuccBB
)
2077 UnswitchedSuccBBs
.insert(Case
.getCaseSuccessor());
2079 assert(!UnswitchedSuccBBs
.count(RetainedSuccBB
) &&
2080 "Should not unswitch the same successor we are retaining!");
2082 // The branch should be in this exact loop. Any inner loop's invariant branch
2083 // should be handled by unswitching that inner loop. The caller of this
2084 // routine should filter out any candidates that remain (but were skipped for
2085 // whatever reason).
2086 assert(LI
.getLoopFor(ParentBB
) == &L
&& "Branch in an inner loop!");
2088 // Compute the parent loop now before we start hacking on things.
2089 Loop
*ParentL
= L
.getParentLoop();
2090 // Get blocks in RPO order for MSSA update, before changing the CFG.
2091 LoopBlocksRPO
LBRPO(&L
);
2095 // Compute the outer-most loop containing one of our exit blocks. This is the
2096 // furthest up our loopnest which can be mutated, which we will use below to
2098 Loop
*OuterExitL
= &L
;
2099 for (auto *ExitBB
: ExitBlocks
) {
2100 Loop
*NewOuterExitL
= LI
.getLoopFor(ExitBB
);
2101 if (!NewOuterExitL
) {
2102 // We exited the entire nest with this block, so we're done.
2103 OuterExitL
= nullptr;
2106 if (NewOuterExitL
!= OuterExitL
&& NewOuterExitL
->contains(OuterExitL
))
2107 OuterExitL
= NewOuterExitL
;
2110 // At this point, we're definitely going to unswitch something so invalidate
2111 // any cached information in ScalarEvolution for the outer most loop
2112 // containing an exit block and all nested loops.
2115 SE
->forgetLoop(OuterExitL
);
2117 SE
->forgetTopmostLoop(&L
);
2120 // If the edge from this terminator to a successor dominates that successor,
2121 // store a map from each block in its dominator subtree to it. This lets us
2122 // tell when cloning for a particular successor if a block is dominated by
2123 // some *other* successor with a single data structure. We use this to
2124 // significantly reduce cloning.
2125 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 16> DominatingSucc
;
2126 for (auto *SuccBB
: llvm::concat
<BasicBlock
*const>(
2127 makeArrayRef(RetainedSuccBB
), UnswitchedSuccBBs
))
2128 if (SuccBB
->getUniquePredecessor() ||
2129 llvm::all_of(predecessors(SuccBB
), [&](BasicBlock
*PredBB
) {
2130 return PredBB
== ParentBB
|| DT
.dominates(SuccBB
, PredBB
);
2132 visitDomSubTree(DT
, SuccBB
, [&](BasicBlock
*BB
) {
2133 DominatingSucc
[BB
] = SuccBB
;
2137 // Split the preheader, so that we know that there is a safe place to insert
2138 // the conditional branch. We will change the preheader to have a conditional
2139 // branch on LoopCond. The original preheader will become the split point
2140 // between the unswitched versions, and we will have a new preheader for the
2142 BasicBlock
*SplitBB
= L
.getLoopPreheader();
2143 BasicBlock
*LoopPH
= SplitEdge(SplitBB
, L
.getHeader(), &DT
, &LI
, MSSAU
);
2145 // Keep track of the dominator tree updates needed.
2146 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
2148 // Clone the loop for each unswitched successor.
2149 SmallVector
<std::unique_ptr
<ValueToValueMapTy
>, 4> VMaps
;
2150 VMaps
.reserve(UnswitchedSuccBBs
.size());
2151 SmallDenseMap
<BasicBlock
*, BasicBlock
*, 4> ClonedPHs
;
2152 for (auto *SuccBB
: UnswitchedSuccBBs
) {
2153 VMaps
.emplace_back(new ValueToValueMapTy());
2154 ClonedPHs
[SuccBB
] = buildClonedLoopBlocks(
2155 L
, LoopPH
, SplitBB
, ExitBlocks
, ParentBB
, SuccBB
, RetainedSuccBB
,
2156 DominatingSucc
, *VMaps
.back(), DTUpdates
, AC
, DT
, LI
, MSSAU
);
2159 // Drop metadata if we may break its semantics by moving this instr into the
2161 if (TI
.getMetadata(LLVMContext::MD_make_implicit
)) {
2162 if (DropNonTrivialImplicitNullChecks
)
2163 // Do not spend time trying to understand if we can keep it, just drop it
2164 // to save compile time.
2165 TI
.setMetadata(LLVMContext::MD_make_implicit
, nullptr);
2167 // It is only legal to preserve make.implicit metadata if we are
2168 // guaranteed no reach implicit null check after following this branch.
2169 ICFLoopSafetyInfo SafetyInfo
;
2170 SafetyInfo
.computeLoopSafetyInfo(&L
);
2171 if (!SafetyInfo
.isGuaranteedToExecute(TI
, &DT
, &L
))
2172 TI
.setMetadata(LLVMContext::MD_make_implicit
, nullptr);
2176 // The stitching of the branched code back together depends on whether we're
2177 // doing full unswitching or not with the exception that we always want to
2178 // nuke the initial terminator placed in the split block.
2179 SplitBB
->getTerminator()->eraseFromParent();
2181 // Splice the terminator from the original loop and rewrite its
2183 SplitBB
->getInstList().splice(SplitBB
->end(), ParentBB
->getInstList(), TI
);
2185 // Keep a clone of the terminator for MSSA updates.
2186 Instruction
*NewTI
= TI
.clone();
2187 ParentBB
->getInstList().push_back(NewTI
);
2189 // First wire up the moved terminator to the preheaders.
2191 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2192 BI
->setSuccessor(ClonedSucc
, ClonedPH
);
2193 BI
->setSuccessor(1 - ClonedSucc
, LoopPH
);
2194 DTUpdates
.push_back({DominatorTree::Insert
, SplitBB
, ClonedPH
});
2196 assert(SI
&& "Must either be a branch or switch!");
2198 // Walk the cases and directly update their successors.
2199 assert(SI
->getDefaultDest() == RetainedSuccBB
&&
2200 "Not retaining default successor!");
2201 SI
->setDefaultDest(LoopPH
);
2202 for (auto &Case
: SI
->cases())
2203 if (Case
.getCaseSuccessor() == RetainedSuccBB
)
2204 Case
.setSuccessor(LoopPH
);
2206 Case
.setSuccessor(ClonedPHs
.find(Case
.getCaseSuccessor())->second
);
2208 // We need to use the set to populate domtree updates as even when there
2209 // are multiple cases pointing at the same successor we only want to
2210 // remove and insert one edge in the domtree.
2211 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2212 DTUpdates
.push_back(
2213 {DominatorTree::Insert
, SplitBB
, ClonedPHs
.find(SuccBB
)->second
});
2217 DT
.applyUpdates(DTUpdates
);
2220 // Remove all but one edge to the retained block and all unswitched
2221 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2222 // when we know we only keep a single edge for each case.
2223 MSSAU
->removeDuplicatePhiEdgesBetween(ParentBB
, RetainedSuccBB
);
2224 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2225 MSSAU
->removeDuplicatePhiEdgesBetween(ParentBB
, SuccBB
);
2227 for (auto &VMap
: VMaps
)
2228 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, *VMap
,
2229 /*IgnoreIncomingWithNoClones=*/true);
2230 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMaps
, DT
);
2232 // Remove all edges to unswitched blocks.
2233 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2234 MSSAU
->removeEdge(ParentBB
, SuccBB
);
2237 // Now unhook the successor relationship as we'll be replacing
2238 // the terminator with a direct branch. This is much simpler for branches
2239 // than switches so we handle those first.
2241 // Remove the parent as a predecessor of the unswitched successor.
2242 assert(UnswitchedSuccBBs
.size() == 1 &&
2243 "Only one possible unswitched block for a branch!");
2244 BasicBlock
*UnswitchedSuccBB
= *UnswitchedSuccBBs
.begin();
2245 UnswitchedSuccBB
->removePredecessor(ParentBB
,
2246 /*KeepOneInputPHIs*/ true);
2247 DTUpdates
.push_back({DominatorTree::Delete
, ParentBB
, UnswitchedSuccBB
});
2249 // Note that we actually want to remove the parent block as a predecessor
2250 // of *every* case successor. The case successor is either unswitched,
2251 // completely eliminating an edge from the parent to that successor, or it
2252 // is a duplicate edge to the retained successor as the retained successor
2253 // is always the default successor and as we'll replace this with a direct
2254 // branch we no longer need the duplicate entries in the PHI nodes.
2255 SwitchInst
*NewSI
= cast
<SwitchInst
>(NewTI
);
2256 assert(NewSI
->getDefaultDest() == RetainedSuccBB
&&
2257 "Not retaining default successor!");
2258 for (auto &Case
: NewSI
->cases())
2259 Case
.getCaseSuccessor()->removePredecessor(
2261 /*KeepOneInputPHIs*/ true);
2263 // We need to use the set to populate domtree updates as even when there
2264 // are multiple cases pointing at the same successor we only want to
2265 // remove and insert one edge in the domtree.
2266 for (BasicBlock
*SuccBB
: UnswitchedSuccBBs
)
2267 DTUpdates
.push_back({DominatorTree::Delete
, ParentBB
, SuccBB
});
2270 // After MSSAU update, remove the cloned terminator instruction NewTI.
2271 ParentBB
->getTerminator()->eraseFromParent();
2273 // Create a new unconditional branch to the continuing block (as opposed to
2275 BranchInst::Create(RetainedSuccBB
, ParentBB
);
2277 assert(BI
&& "Only branches have partial unswitching.");
2278 assert(UnswitchedSuccBBs
.size() == 1 &&
2279 "Only one possible unswitched block for a branch!");
2280 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2281 // When doing a partial unswitch, we have to do a bit more work to build up
2282 // the branch in the split block.
2283 if (PartiallyInvariant
)
2284 buildPartialInvariantUnswitchConditionalBranch(
2285 *SplitBB
, Invariants
, Direction
, *ClonedPH
, *LoopPH
, L
, MSSAU
);
2287 buildPartialUnswitchConditionalBranch(*SplitBB
, Invariants
, Direction
,
2288 *ClonedPH
, *LoopPH
);
2289 DTUpdates
.push_back({DominatorTree::Insert
, SplitBB
, ClonedPH
});
2292 DT
.applyUpdates(DTUpdates
);
2295 // Perform MSSA cloning updates.
2296 for (auto &VMap
: VMaps
)
2297 MSSAU
->updateForClonedLoop(LBRPO
, ExitBlocks
, *VMap
,
2298 /*IgnoreIncomingWithNoClones=*/true);
2299 MSSAU
->updateExitBlocksForClonedLoop(ExitBlocks
, VMaps
, DT
);
2303 // Apply the updates accumulated above to get an up-to-date dominator tree.
2304 DT
.applyUpdates(DTUpdates
);
2306 // Now that we have an accurate dominator tree, first delete the dead cloned
2307 // blocks so that we can accurately build any cloned loops. It is important to
2308 // not delete the blocks from the original loop yet because we still want to
2309 // reference the original loop to understand the cloned loop's structure.
2310 deleteDeadClonedBlocks(L
, ExitBlocks
, VMaps
, DT
, MSSAU
);
2312 // Build the cloned loop structure itself. This may be substantially
2313 // different from the original structure due to the simplified CFG. This also
2314 // handles inserting all the cloned blocks into the correct loops.
2315 SmallVector
<Loop
*, 4> NonChildClonedLoops
;
2316 for (std::unique_ptr
<ValueToValueMapTy
> &VMap
: VMaps
)
2317 buildClonedLoops(L
, ExitBlocks
, *VMap
, LI
, NonChildClonedLoops
);
2319 // Now that our cloned loops have been built, we can update the original loop.
2320 // First we delete the dead blocks from it and then we rebuild the loop
2321 // structure taking these deletions into account.
2322 deleteDeadBlocksFromLoop(L
, ExitBlocks
, DT
, LI
, MSSAU
);
2324 if (MSSAU
&& VerifyMemorySSA
)
2325 MSSAU
->getMemorySSA()->verifyMemorySSA();
2327 SmallVector
<Loop
*, 4> HoistedLoops
;
2328 bool IsStillLoop
= rebuildLoopAfterUnswitch(L
, ExitBlocks
, LI
, HoistedLoops
);
2330 if (MSSAU
&& VerifyMemorySSA
)
2331 MSSAU
->getMemorySSA()->verifyMemorySSA();
2333 // This transformation has a high risk of corrupting the dominator tree, and
2334 // the below steps to rebuild loop structures will result in hard to debug
2335 // errors in that case so verify that the dominator tree is sane first.
2336 // FIXME: Remove this when the bugs stop showing up and rely on existing
2337 // verification steps.
2338 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
2340 if (BI
&& !PartiallyInvariant
) {
2341 // If we unswitched a branch which collapses the condition to a known
2342 // constant we want to replace all the uses of the invariants within both
2343 // the original and cloned blocks. We do this here so that we can use the
2344 // now updated dominator tree to identify which side the users are on.
2345 assert(UnswitchedSuccBBs
.size() == 1 &&
2346 "Only one possible unswitched block for a branch!");
2347 BasicBlock
*ClonedPH
= ClonedPHs
.begin()->second
;
2349 // When considering multiple partially-unswitched invariants
2350 // we cant just go replace them with constants in both branches.
2352 // For 'AND' we infer that true branch ("continue") means true
2353 // for each invariant operand.
2354 // For 'OR' we can infer that false branch ("continue") means false
2355 // for each invariant operand.
2356 // So it happens that for multiple-partial case we dont replace
2357 // in the unswitched branch.
2358 bool ReplaceUnswitched
=
2359 FullUnswitch
|| (Invariants
.size() == 1) || PartiallyInvariant
;
2361 ConstantInt
*UnswitchedReplacement
=
2362 Direction
? ConstantInt::getTrue(BI
->getContext())
2363 : ConstantInt::getFalse(BI
->getContext());
2364 ConstantInt
*ContinueReplacement
=
2365 Direction
? ConstantInt::getFalse(BI
->getContext())
2366 : ConstantInt::getTrue(BI
->getContext());
2367 for (Value
*Invariant
: Invariants
)
2368 // Use make_early_inc_range here as set invalidates the iterator.
2369 for (Use
&U
: llvm::make_early_inc_range(Invariant
->uses())) {
2370 Instruction
*UserI
= dyn_cast
<Instruction
>(U
.getUser());
2374 // Replace it with the 'continue' side if in the main loop body, and the
2375 // unswitched if in the cloned blocks.
2376 if (DT
.dominates(LoopPH
, UserI
->getParent()))
2377 U
.set(ContinueReplacement
);
2378 else if (ReplaceUnswitched
&&
2379 DT
.dominates(ClonedPH
, UserI
->getParent()))
2380 U
.set(UnswitchedReplacement
);
2384 // We can change which blocks are exit blocks of all the cloned sibling
2385 // loops, the current loop, and any parent loops which shared exit blocks
2386 // with the current loop. As a consequence, we need to re-form LCSSA for
2387 // them. But we shouldn't need to re-form LCSSA for any child loops.
2388 // FIXME: This could be made more efficient by tracking which exit blocks are
2389 // new, and focusing on them, but that isn't likely to be necessary.
2391 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2392 // loop nest and update every loop that could have had its exits changed. We
2393 // also need to cover any intervening loops. We add all of these loops to
2394 // a list and sort them by loop depth to achieve this without updating
2395 // unnecessary loops.
2396 auto UpdateLoop
= [&](Loop
&UpdateL
) {
2398 UpdateL
.verifyLoop();
2399 for (Loop
*ChildL
: UpdateL
) {
2400 ChildL
->verifyLoop();
2401 assert(ChildL
->isRecursivelyLCSSAForm(DT
, LI
) &&
2402 "Perturbed a child loop's LCSSA form!");
2405 // First build LCSSA for this loop so that we can preserve it when
2406 // forming dedicated exits. We don't want to perturb some other loop's
2407 // LCSSA while doing that CFG edit.
2408 formLCSSA(UpdateL
, DT
, &LI
, SE
);
2410 // For loops reached by this loop's original exit blocks we may
2411 // introduced new, non-dedicated exits. At least try to re-form dedicated
2412 // exits for these loops. This may fail if they couldn't have dedicated
2413 // exits to start with.
2414 formDedicatedExitBlocks(&UpdateL
, &DT
, &LI
, MSSAU
, /*PreserveLCSSA*/ true);
2417 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2418 // and we can do it in any order as they don't nest relative to each other.
2420 // Also check if any of the loops we have updated have become top-level loops
2421 // as that will necessitate widening the outer loop scope.
2422 for (Loop
*UpdatedL
:
2423 llvm::concat
<Loop
*>(NonChildClonedLoops
, HoistedLoops
)) {
2424 UpdateLoop(*UpdatedL
);
2425 if (UpdatedL
->isOutermost())
2426 OuterExitL
= nullptr;
2430 if (L
.isOutermost())
2431 OuterExitL
= nullptr;
2434 // If the original loop had exit blocks, walk up through the outer most loop
2435 // of those exit blocks to update LCSSA and form updated dedicated exits.
2436 if (OuterExitL
!= &L
)
2437 for (Loop
*OuterL
= ParentL
; OuterL
!= OuterExitL
;
2438 OuterL
= OuterL
->getParentLoop())
2439 UpdateLoop(*OuterL
);
2442 // Verify the entire loop structure to catch any incorrect updates before we
2443 // progress in the pass pipeline.
2447 // Now that we've unswitched something, make callbacks to report the changes.
2448 // For that we need to merge together the updated loops and the cloned loops
2449 // and check whether the original loop survived.
2450 SmallVector
<Loop
*, 4> SibLoops
;
2451 for (Loop
*UpdatedL
: llvm::concat
<Loop
*>(NonChildClonedLoops
, HoistedLoops
))
2452 if (UpdatedL
->getParentLoop() == ParentL
)
2453 SibLoops
.push_back(UpdatedL
);
2454 UnswitchCB(IsStillLoop
, PartiallyInvariant
, SibLoops
);
2456 if (MSSAU
&& VerifyMemorySSA
)
2457 MSSAU
->getMemorySSA()->verifyMemorySSA();
2465 /// Recursively compute the cost of a dominator subtree based on the per-block
2466 /// cost map provided.
2468 /// The recursive computation is memozied into the provided DT-indexed cost map
2469 /// to allow querying it for most nodes in the domtree without it becoming
2471 static InstructionCost
computeDomSubtreeCost(
2473 const SmallDenseMap
<BasicBlock
*, InstructionCost
, 4> &BBCostMap
,
2474 SmallDenseMap
<DomTreeNode
*, InstructionCost
, 4> &DTCostMap
) {
2475 // Don't accumulate cost (or recurse through) blocks not in our block cost
2476 // map and thus not part of the duplication cost being considered.
2477 auto BBCostIt
= BBCostMap
.find(N
.getBlock());
2478 if (BBCostIt
== BBCostMap
.end())
2481 // Lookup this node to see if we already computed its cost.
2482 auto DTCostIt
= DTCostMap
.find(&N
);
2483 if (DTCostIt
!= DTCostMap
.end())
2484 return DTCostIt
->second
;
2486 // If not, we have to compute it. We can't use insert above and update
2487 // because computing the cost may insert more things into the map.
2488 InstructionCost Cost
= std::accumulate(
2489 N
.begin(), N
.end(), BBCostIt
->second
,
2490 [&](InstructionCost Sum
, DomTreeNode
*ChildN
) -> InstructionCost
{
2491 return Sum
+ computeDomSubtreeCost(*ChildN
, BBCostMap
, DTCostMap
);
2493 bool Inserted
= DTCostMap
.insert({&N
, Cost
}).second
;
2495 assert(Inserted
&& "Should not insert a node while visiting children!");
2499 /// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2500 /// making the following replacement:
2502 /// --code before guard--
2503 /// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2504 /// --code after guard--
2508 /// --code before guard--
2509 /// br i1 %cond, label %guarded, label %deopt
2512 /// --code after guard--
2515 /// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2518 /// It also makes all relevant DT and LI updates, so that all structures are in
2519 /// valid state after this transform.
2521 turnGuardIntoBranch(IntrinsicInst
*GI
, Loop
&L
,
2522 SmallVectorImpl
<BasicBlock
*> &ExitBlocks
,
2523 DominatorTree
&DT
, LoopInfo
&LI
, MemorySSAUpdater
*MSSAU
) {
2524 SmallVector
<DominatorTree::UpdateType
, 4> DTUpdates
;
2525 LLVM_DEBUG(dbgs() << "Turning " << *GI
<< " into a branch.\n");
2526 BasicBlock
*CheckBB
= GI
->getParent();
2528 if (MSSAU
&& VerifyMemorySSA
)
2529 MSSAU
->getMemorySSA()->verifyMemorySSA();
2531 // Remove all CheckBB's successors from DomTree. A block can be seen among
2532 // successors more than once, but for DomTree it should be added only once.
2533 SmallPtrSet
<BasicBlock
*, 4> Successors
;
2534 for (auto *Succ
: successors(CheckBB
))
2535 if (Successors
.insert(Succ
).second
)
2536 DTUpdates
.push_back({DominatorTree::Delete
, CheckBB
, Succ
});
2538 Instruction
*DeoptBlockTerm
=
2539 SplitBlockAndInsertIfThen(GI
->getArgOperand(0), GI
, true);
2540 BranchInst
*CheckBI
= cast
<BranchInst
>(CheckBB
->getTerminator());
2541 // SplitBlockAndInsertIfThen inserts control flow that branches to
2542 // DeoptBlockTerm if the condition is true. We want the opposite.
2543 CheckBI
->swapSuccessors();
2545 BasicBlock
*GuardedBlock
= CheckBI
->getSuccessor(0);
2546 GuardedBlock
->setName("guarded");
2547 CheckBI
->getSuccessor(1)->setName("deopt");
2548 BasicBlock
*DeoptBlock
= CheckBI
->getSuccessor(1);
2550 // We now have a new exit block.
2551 ExitBlocks
.push_back(CheckBI
->getSuccessor(1));
2554 MSSAU
->moveAllAfterSpliceBlocks(CheckBB
, GuardedBlock
, GI
);
2556 GI
->moveBefore(DeoptBlockTerm
);
2557 GI
->setArgOperand(0, ConstantInt::getFalse(GI
->getContext()));
2559 // Add new successors of CheckBB into DomTree.
2560 for (auto *Succ
: successors(CheckBB
))
2561 DTUpdates
.push_back({DominatorTree::Insert
, CheckBB
, Succ
});
2563 // Now the blocks that used to be CheckBB's successors are GuardedBlock's
2565 for (auto *Succ
: Successors
)
2566 DTUpdates
.push_back({DominatorTree::Insert
, GuardedBlock
, Succ
});
2568 // Make proper changes to DT.
2569 DT
.applyUpdates(DTUpdates
);
2570 // Inform LI of a new loop block.
2571 L
.addBasicBlockToLoop(GuardedBlock
, LI
);
2574 MemoryDef
*MD
= cast
<MemoryDef
>(MSSAU
->getMemorySSA()->getMemoryAccess(GI
));
2575 MSSAU
->moveToPlace(MD
, DeoptBlock
, MemorySSA::BeforeTerminator
);
2576 if (VerifyMemorySSA
)
2577 MSSAU
->getMemorySSA()->verifyMemorySSA();
2584 /// Cost multiplier is a way to limit potentially exponential behavior
2585 /// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2586 /// candidates available. Also accounting for the number of "sibling" loops with
2587 /// the idea to account for previous unswitches that already happened on this
2588 /// cluster of loops. There was an attempt to keep this formula simple,
2589 /// just enough to limit the worst case behavior. Even if it is not that simple
2590 /// now it is still not an attempt to provide a detailed heuristic size
2593 /// TODO: Make a proper accounting of "explosion" effect for all kinds of
2594 /// unswitch candidates, making adequate predictions instead of wild guesses.
2595 /// That requires knowing not just the number of "remaining" candidates but
2596 /// also costs of unswitching for each of these candidates.
2597 static int CalculateUnswitchCostMultiplier(
2598 Instruction
&TI
, Loop
&L
, LoopInfo
&LI
, DominatorTree
&DT
,
2599 ArrayRef
<std::pair
<Instruction
*, TinyPtrVector
<Value
*>>>
2600 UnswitchCandidates
) {
2602 // Guards and other exiting conditions do not contribute to exponential
2603 // explosion as soon as they dominate the latch (otherwise there might be
2604 // another path to the latch remaining that does not allow to eliminate the
2605 // loop copy on unswitch).
2606 BasicBlock
*Latch
= L
.getLoopLatch();
2607 BasicBlock
*CondBlock
= TI
.getParent();
2608 if (DT
.dominates(CondBlock
, Latch
) &&
2610 llvm::count_if(successors(&TI
), [&L
](BasicBlock
*SuccBB
) {
2611 return L
.contains(SuccBB
);
2613 NumCostMultiplierSkipped
++;
2617 auto *ParentL
= L
.getParentLoop();
2618 int SiblingsCount
= (ParentL
? ParentL
->getSubLoopsVector().size()
2619 : std::distance(LI
.begin(), LI
.end()));
2620 // Count amount of clones that all the candidates might cause during
2621 // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
2622 int UnswitchedClones
= 0;
2623 for (auto Candidate
: UnswitchCandidates
) {
2624 Instruction
*CI
= Candidate
.first
;
2625 BasicBlock
*CondBlock
= CI
->getParent();
2626 bool SkipExitingSuccessors
= DT
.dominates(CondBlock
, Latch
);
2628 if (!SkipExitingSuccessors
)
2632 int NonExitingSuccessors
= llvm::count_if(
2633 successors(CondBlock
), [SkipExitingSuccessors
, &L
](BasicBlock
*SuccBB
) {
2634 return !SkipExitingSuccessors
|| L
.contains(SuccBB
);
2636 UnswitchedClones
+= Log2_32(NonExitingSuccessors
);
2639 // Ignore up to the "unscaled candidates" number of unswitch candidates
2640 // when calculating the power-of-two scaling of the cost. The main idea
2641 // with this control is to allow a small number of unswitches to happen
2642 // and rely more on siblings multiplier (see below) when the number
2643 // of candidates is small.
2644 unsigned ClonesPower
=
2645 std::max(UnswitchedClones
- (int)UnswitchNumInitialUnscaledCandidates
, 0);
2647 // Allowing top-level loops to spread a bit more than nested ones.
2648 int SiblingsMultiplier
=
2649 std::max((ParentL
? SiblingsCount
2650 : SiblingsCount
/ (int)UnswitchSiblingsToplevelDiv
),
2652 // Compute the cost multiplier in a way that won't overflow by saturating
2653 // at an upper bound.
2655 if (ClonesPower
> Log2_32(UnswitchThreshold
) ||
2656 SiblingsMultiplier
> UnswitchThreshold
)
2657 CostMultiplier
= UnswitchThreshold
;
2659 CostMultiplier
= std::min(SiblingsMultiplier
* (1 << ClonesPower
),
2660 (int)UnswitchThreshold
);
2662 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2663 << " (siblings " << SiblingsMultiplier
<< " * clones "
2664 << (1 << ClonesPower
) << ")"
2665 << " for unswitch candidate: " << TI
<< "\n");
2666 return CostMultiplier
;
2669 static bool unswitchBestCondition(
2670 Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
, AssumptionCache
&AC
,
2671 AAResults
&AA
, TargetTransformInfo
&TTI
,
2672 function_ref
<void(bool, bool, ArrayRef
<Loop
*>)> UnswitchCB
,
2673 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
) {
2674 // Collect all invariant conditions within this loop (as opposed to an inner
2675 // loop which would be handled when visiting that inner loop).
2676 SmallVector
<std::pair
<Instruction
*, TinyPtrVector
<Value
*>>, 4>
2679 // Whether or not we should also collect guards in the loop.
2680 bool CollectGuards
= false;
2681 if (UnswitchGuards
) {
2682 auto *GuardDecl
= L
.getHeader()->getParent()->getParent()->getFunction(
2683 Intrinsic::getName(Intrinsic::experimental_guard
));
2684 if (GuardDecl
&& !GuardDecl
->use_empty())
2685 CollectGuards
= true;
2688 IVConditionInfo PartialIVInfo
;
2689 for (auto *BB
: L
.blocks()) {
2690 if (LI
.getLoopFor(BB
) != &L
)
2696 auto *Cond
= cast
<IntrinsicInst
>(&I
)->getArgOperand(0);
2697 // TODO: Support AND, OR conditions and partial unswitching.
2698 if (!isa
<Constant
>(Cond
) && L
.isLoopInvariant(Cond
))
2699 UnswitchCandidates
.push_back({&I
, {Cond
}});
2702 if (auto *SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
2703 // We can only consider fully loop-invariant switch conditions as we need
2704 // to completely eliminate the switch after unswitching.
2705 if (!isa
<Constant
>(SI
->getCondition()) &&
2706 L
.isLoopInvariant(SI
->getCondition()) && !BB
->getUniqueSuccessor())
2707 UnswitchCandidates
.push_back({SI
, {SI
->getCondition()}});
2711 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2712 if (!BI
|| !BI
->isConditional() || isa
<Constant
>(BI
->getCondition()) ||
2713 BI
->getSuccessor(0) == BI
->getSuccessor(1))
2716 // If BI's condition is 'select _, true, false', simplify it to confuse
2718 Value
*Cond
= BI
->getCondition(), *CondNext
;
2719 while (match(Cond
, m_Select(m_Value(CondNext
), m_One(), m_Zero())))
2721 BI
->setCondition(Cond
);
2723 if (L
.isLoopInvariant(BI
->getCondition())) {
2724 UnswitchCandidates
.push_back({BI
, {BI
->getCondition()}});
2728 Instruction
&CondI
= *cast
<Instruction
>(BI
->getCondition());
2729 if (match(&CondI
, m_CombineOr(m_LogicalAnd(), m_LogicalOr()))) {
2730 TinyPtrVector
<Value
*> Invariants
=
2731 collectHomogenousInstGraphLoopInvariants(L
, CondI
, LI
);
2732 if (Invariants
.empty())
2735 UnswitchCandidates
.push_back({BI
, std::move(Invariants
)});
2740 Instruction
*PartialIVCondBranch
= nullptr;
2741 if (MSSAU
&& !findOptionMDForLoop(&L
, "llvm.loop.unswitch.partial.disable") &&
2742 !any_of(UnswitchCandidates
, [&L
](auto &TerminatorAndInvariants
) {
2743 return TerminatorAndInvariants
.first
== L
.getHeader()->getTerminator();
2745 MemorySSA
*MSSA
= MSSAU
->getMemorySSA();
2746 if (auto Info
= hasPartialIVCondition(L
, MSSAThreshold
, *MSSA
, AA
)) {
2748 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2749 << *Info
->InstToDuplicate
[0] << "\n");
2750 PartialIVInfo
= *Info
;
2751 PartialIVCondBranch
= L
.getHeader()->getTerminator();
2752 TinyPtrVector
<Value
*> ValsToDuplicate
;
2753 for (auto *Inst
: Info
->InstToDuplicate
)
2754 ValsToDuplicate
.push_back(Inst
);
2755 UnswitchCandidates
.push_back(
2756 {L
.getHeader()->getTerminator(), std::move(ValsToDuplicate
)});
2760 // If we didn't find any candidates, we're done.
2761 if (UnswitchCandidates
.empty())
2764 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2765 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2766 // irreducible control flow into reducible control flow and introduce new
2767 // loops "out of thin air". If we ever discover important use cases for doing
2768 // this, we can add support to loop unswitch, but it is a lot of complexity
2769 // for what seems little or no real world benefit.
2770 LoopBlocksRPO
RPOT(&L
);
2772 if (containsIrreducibleCFG
<const BasicBlock
*>(RPOT
, LI
))
2775 SmallVector
<BasicBlock
*, 4> ExitBlocks
;
2776 L
.getUniqueExitBlocks(ExitBlocks
);
2778 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
2779 // instruction as we don't know how to split those exit blocks.
2780 // FIXME: We should teach SplitBlock to handle this and remove this
2782 for (auto *ExitBB
: ExitBlocks
) {
2783 auto *I
= ExitBB
->getFirstNonPHI();
2784 if (isa
<CleanupPadInst
>(I
) || isa
<CatchSwitchInst
>(I
)) {
2785 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
2792 dbgs() << "Considering " << UnswitchCandidates
.size()
2793 << " non-trivial loop invariant conditions for unswitching.\n");
2795 // Given that unswitching these terminators will require duplicating parts of
2796 // the loop, so we need to be able to model that cost. Compute the ephemeral
2797 // values and set up a data structure to hold per-BB costs. We cache each
2798 // block's cost so that we don't recompute this when considering different
2799 // subsets of the loop for duplication during unswitching.
2800 SmallPtrSet
<const Value
*, 4> EphValues
;
2801 CodeMetrics::collectEphemeralValues(&L
, &AC
, EphValues
);
2802 SmallDenseMap
<BasicBlock
*, InstructionCost
, 4> BBCostMap
;
2804 // Compute the cost of each block, as well as the total loop cost. Also, bail
2805 // out if we see instructions which are incompatible with loop unswitching
2806 // (convergent, noduplicate, or cross-basic-block tokens).
2807 // FIXME: We might be able to safely handle some of these in non-duplicated
2809 TargetTransformInfo::TargetCostKind CostKind
=
2810 L
.getHeader()->getParent()->hasMinSize()
2811 ? TargetTransformInfo::TCK_CodeSize
2812 : TargetTransformInfo::TCK_SizeAndLatency
;
2813 InstructionCost LoopCost
= 0;
2814 for (auto *BB
: L
.blocks()) {
2815 InstructionCost Cost
= 0;
2816 for (auto &I
: *BB
) {
2817 if (EphValues
.count(&I
))
2820 if (I
.getType()->isTokenTy() && I
.isUsedOutsideOfBlock(BB
))
2822 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
2823 if (CB
->isConvergent() || CB
->cannotDuplicate())
2826 Cost
+= TTI
.getUserCost(&I
, CostKind
);
2828 assert(Cost
>= 0 && "Must not have negative costs!");
2830 assert(LoopCost
>= 0 && "Must not have negative loop costs!");
2831 BBCostMap
[BB
] = Cost
;
2833 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost
<< "\n");
2835 // Now we find the best candidate by searching for the one with the following
2836 // properties in order:
2838 // 1) An unswitching cost below the threshold
2839 // 2) The smallest number of duplicated unswitch candidates (to avoid
2840 // creating redundant subsequent unswitching)
2841 // 3) The smallest cost after unswitching.
2843 // We prioritize reducing fanout of unswitch candidates provided the cost
2844 // remains below the threshold because this has a multiplicative effect.
2846 // This requires memoizing each dominator subtree to avoid redundant work.
2848 // FIXME: Need to actually do the number of candidates part above.
2849 SmallDenseMap
<DomTreeNode
*, InstructionCost
, 4> DTCostMap
;
2850 // Given a terminator which might be unswitched, computes the non-duplicated
2851 // cost for that terminator.
2852 auto ComputeUnswitchedCost
= [&](Instruction
&TI
,
2853 bool FullUnswitch
) -> InstructionCost
{
2854 BasicBlock
&BB
= *TI
.getParent();
2855 SmallPtrSet
<BasicBlock
*, 4> Visited
;
2857 InstructionCost Cost
= 0;
2858 for (BasicBlock
*SuccBB
: successors(&BB
)) {
2859 // Don't count successors more than once.
2860 if (!Visited
.insert(SuccBB
).second
)
2863 // If this is a partial unswitch candidate, then it must be a conditional
2864 // branch with a condition of either `or`, `and`, their corresponding
2865 // select forms or partially invariant instructions. In that case, one of
2866 // the successors is necessarily duplicated, so don't even try to remove
2868 if (!FullUnswitch
) {
2869 auto &BI
= cast
<BranchInst
>(TI
);
2870 if (match(BI
.getCondition(), m_LogicalAnd())) {
2871 if (SuccBB
== BI
.getSuccessor(1))
2873 } else if (match(BI
.getCondition(), m_LogicalOr())) {
2874 if (SuccBB
== BI
.getSuccessor(0))
2876 } else if ((PartialIVInfo
.KnownValue
->isOneValue() &&
2877 SuccBB
== BI
.getSuccessor(0)) ||
2878 (!PartialIVInfo
.KnownValue
->isOneValue() &&
2879 SuccBB
== BI
.getSuccessor(1)))
2883 // This successor's domtree will not need to be duplicated after
2884 // unswitching if the edge to the successor dominates it (and thus the
2885 // entire tree). This essentially means there is no other path into this
2886 // subtree and so it will end up live in only one clone of the loop.
2887 if (SuccBB
->getUniquePredecessor() ||
2888 llvm::all_of(predecessors(SuccBB
), [&](BasicBlock
*PredBB
) {
2889 return PredBB
== &BB
|| DT
.dominates(SuccBB
, PredBB
);
2891 Cost
+= computeDomSubtreeCost(*DT
[SuccBB
], BBCostMap
, DTCostMap
);
2892 assert(Cost
<= LoopCost
&&
2893 "Non-duplicated cost should never exceed total loop cost!");
2897 // Now scale the cost by the number of unique successors minus one. We
2898 // subtract one because there is already at least one copy of the entire
2899 // loop. This is computing the new cost of unswitching a condition.
2900 // Note that guards always have 2 unique successors that are implicit and
2901 // will be materialized if we decide to unswitch it.
2902 int SuccessorsCount
= isGuard(&TI
) ? 2 : Visited
.size();
2903 assert(SuccessorsCount
> 1 &&
2904 "Cannot unswitch a condition without multiple distinct successors!");
2905 return (LoopCost
- Cost
) * (SuccessorsCount
- 1);
2907 Instruction
*BestUnswitchTI
= nullptr;
2908 InstructionCost BestUnswitchCost
= 0;
2909 ArrayRef
<Value
*> BestUnswitchInvariants
;
2910 for (auto &TerminatorAndInvariants
: UnswitchCandidates
) {
2911 Instruction
&TI
= *TerminatorAndInvariants
.first
;
2912 ArrayRef
<Value
*> Invariants
= TerminatorAndInvariants
.second
;
2913 BranchInst
*BI
= dyn_cast
<BranchInst
>(&TI
);
2914 InstructionCost CandidateCost
= ComputeUnswitchedCost(
2915 TI
, /*FullUnswitch*/ !BI
|| (Invariants
.size() == 1 &&
2916 Invariants
[0] == BI
->getCondition()));
2917 // Calculate cost multiplier which is a tool to limit potentially
2918 // exponential behavior of loop-unswitch.
2919 if (EnableUnswitchCostMultiplier
) {
2920 int CostMultiplier
=
2921 CalculateUnswitchCostMultiplier(TI
, L
, LI
, DT
, UnswitchCandidates
);
2923 (CostMultiplier
> 0 && CostMultiplier
<= UnswitchThreshold
) &&
2924 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
2925 CandidateCost
*= CostMultiplier
;
2926 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2927 << " (multiplier: " << CostMultiplier
<< ")"
2928 << " for unswitch candidate: " << TI
<< "\n");
2930 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
2931 << " for unswitch candidate: " << TI
<< "\n");
2934 if (!BestUnswitchTI
|| CandidateCost
< BestUnswitchCost
) {
2935 BestUnswitchTI
= &TI
;
2936 BestUnswitchCost
= CandidateCost
;
2937 BestUnswitchInvariants
= Invariants
;
2940 assert(BestUnswitchTI
&& "Failed to find loop unswitch candidate");
2942 if (BestUnswitchCost
>= UnswitchThreshold
) {
2943 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2944 << BestUnswitchCost
<< "\n");
2948 if (BestUnswitchTI
!= PartialIVCondBranch
)
2949 PartialIVInfo
.InstToDuplicate
.clear();
2951 // If the best candidate is a guard, turn it into a branch.
2952 if (isGuard(BestUnswitchTI
))
2953 BestUnswitchTI
= turnGuardIntoBranch(cast
<IntrinsicInst
>(BestUnswitchTI
), L
,
2954 ExitBlocks
, DT
, LI
, MSSAU
);
2956 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
2957 << BestUnswitchCost
<< ") terminator: " << *BestUnswitchTI
2959 unswitchNontrivialInvariants(L
, *BestUnswitchTI
, BestUnswitchInvariants
,
2960 ExitBlocks
, PartialIVInfo
, DT
, LI
, AC
,
2961 UnswitchCB
, SE
, MSSAU
);
2965 /// Unswitch control flow predicated on loop invariant conditions.
2967 /// This first hoists all branches or switches which are trivial (IE, do not
2968 /// require duplicating any part of the loop) out of the loop body. It then
2969 /// looks at other loop invariant control flows and tries to unswitch those as
2970 /// well by cloning the loop if the result is small enough.
2972 /// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
2973 /// also updated based on the unswitch. The `MSSA` analysis is also updated if
2974 /// valid (i.e. its use is enabled).
2976 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2977 /// true, we will attempt to do non-trivial unswitching as well as trivial
2980 /// The `UnswitchCB` callback provided will be run after unswitching is
2981 /// complete, with the first parameter set to `true` if the provided loop
2982 /// remains a loop, and a list of new sibling loops created.
2984 /// If `SE` is non-null, we will update that analysis based on the unswitching
2987 unswitchLoop(Loop
&L
, DominatorTree
&DT
, LoopInfo
&LI
, AssumptionCache
&AC
,
2988 AAResults
&AA
, TargetTransformInfo
&TTI
, bool Trivial
,
2990 function_ref
<void(bool, bool, ArrayRef
<Loop
*>)> UnswitchCB
,
2991 ScalarEvolution
*SE
, MemorySSAUpdater
*MSSAU
) {
2992 assert(L
.isRecursivelyLCSSAForm(DT
, LI
) &&
2993 "Loops must be in LCSSA form before unswitching.");
2995 // Must be in loop simplified form: we need a preheader and dedicated exits.
2996 if (!L
.isLoopSimplifyForm())
2999 // Try trivial unswitch first before loop over other basic blocks in the loop.
3000 if (Trivial
&& unswitchAllTrivialConditions(L
, DT
, LI
, SE
, MSSAU
)) {
3001 // If we unswitched successfully we will want to clean up the loop before
3002 // processing it further so just mark it as unswitched and return.
3003 UnswitchCB(/*CurrentLoopValid*/ true, false, {});
3007 // Check whether we should continue with non-trivial conditions.
3008 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3009 // unswitching for testing and debugging.
3010 // NonTrivial: Parameter that enables non-trivial unswitching for this
3011 // invocation of the transform. But this should be allowed only
3012 // for targets without branch divergence.
3014 // FIXME: If divergence analysis becomes available to a loop
3015 // transform, we should allow unswitching for non-trivial uniform
3016 // branches even on targets that have divergence.
3017 // https://bugs.llvm.org/show_bug.cgi?id=48819
3018 bool ContinueWithNonTrivial
=
3019 EnableNonTrivialUnswitch
|| (NonTrivial
&& !TTI
.hasBranchDivergence());
3020 if (!ContinueWithNonTrivial
)
3023 // Skip non-trivial unswitching for optsize functions.
3024 if (L
.getHeader()->getParent()->hasOptSize())
3027 // Skip non-trivial unswitching for loops that cannot be cloned.
3028 if (!L
.isSafeToClone())
3031 // For non-trivial unswitching, because it often creates new loops, we rely on
3032 // the pass manager to iterate on the loops rather than trying to immediately
3033 // reach a fixed point. There is no substantial advantage to iterating
3034 // internally, and if any of the new loops are simplified enough to contain
3035 // trivial unswitching we want to prefer those.
3037 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3038 // a partial unswitch when possible below the threshold.
3039 if (unswitchBestCondition(L
, DT
, LI
, AC
, AA
, TTI
, UnswitchCB
, SE
, MSSAU
))
3042 // No other opportunities to unswitch.
3046 PreservedAnalyses
SimpleLoopUnswitchPass::run(Loop
&L
, LoopAnalysisManager
&AM
,
3047 LoopStandardAnalysisResults
&AR
,
3049 Function
&F
= *L
.getHeader()->getParent();
3052 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F
.getName() << ": " << L
3055 // Save the current loop name in a variable so that we can report it even
3056 // after it has been deleted.
3057 std::string LoopName
= std::string(L
.getName());
3059 auto UnswitchCB
= [&L
, &U
, &LoopName
](bool CurrentLoopValid
,
3060 bool PartiallyInvariant
,
3061 ArrayRef
<Loop
*> NewLoops
) {
3062 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3063 if (!NewLoops
.empty())
3064 U
.addSiblingLoops(NewLoops
);
3066 // If the current loop remains valid, we should revisit it to catch any
3067 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
3068 if (CurrentLoopValid
) {
3069 if (PartiallyInvariant
) {
3070 // Mark the new loop as partially unswitched, to avoid unswitching on
3071 // the same condition again.
3072 auto &Context
= L
.getHeader()->getContext();
3073 MDNode
*DisableUnswitchMD
= MDNode::get(
3075 MDString::get(Context
, "llvm.loop.unswitch.partial.disable"));
3076 MDNode
*NewLoopID
= makePostTransformationMetadata(
3077 Context
, L
.getLoopID(), {"llvm.loop.unswitch.partial"},
3078 {DisableUnswitchMD
});
3079 L
.setLoopID(NewLoopID
);
3081 U
.revisitCurrentLoop();
3083 U
.markLoopAsDeleted(L
, LoopName
);
3086 Optional
<MemorySSAUpdater
> MSSAU
;
3088 MSSAU
= MemorySSAUpdater(AR
.MSSA
);
3089 if (VerifyMemorySSA
)
3090 AR
.MSSA
->verifyMemorySSA();
3092 if (!unswitchLoop(L
, AR
.DT
, AR
.LI
, AR
.AC
, AR
.AA
, AR
.TTI
, Trivial
, NonTrivial
,
3094 MSSAU
.hasValue() ? MSSAU
.getPointer() : nullptr))
3095 return PreservedAnalyses::all();
3097 if (AR
.MSSA
&& VerifyMemorySSA
)
3098 AR
.MSSA
->verifyMemorySSA();
3100 // Historically this pass has had issues with the dominator tree so verify it
3101 // in asserts builds.
3102 assert(AR
.DT
.verify(DominatorTree::VerificationLevel::Fast
));
3104 auto PA
= getLoopPassPreservedAnalyses();
3106 PA
.preserve
<MemorySSAAnalysis
>();
3112 class SimpleLoopUnswitchLegacyPass
: public LoopPass
{
3116 static char ID
; // Pass ID, replacement for typeid
3118 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial
= false)
3119 : LoopPass(ID
), NonTrivial(NonTrivial
) {
3120 initializeSimpleLoopUnswitchLegacyPassPass(
3121 *PassRegistry::getPassRegistry());
3124 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
;
3126 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3127 AU
.addRequired
<AssumptionCacheTracker
>();
3128 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
3129 AU
.addRequired
<MemorySSAWrapperPass
>();
3130 AU
.addPreserved
<MemorySSAWrapperPass
>();
3131 getLoopAnalysisUsage(AU
);
3135 } // end anonymous namespace
3137 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
3141 Function
&F
= *L
->getHeader()->getParent();
3143 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F
.getName() << ": " << *L
3146 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
3147 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
3148 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
3149 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3150 auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
3151 MemorySSA
*MSSA
= &getAnalysis
<MemorySSAWrapperPass
>().getMSSA();
3152 MemorySSAUpdater
MSSAU(MSSA
);
3154 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
3155 auto *SE
= SEWP
? &SEWP
->getSE() : nullptr;
3157 auto UnswitchCB
= [&L
, &LPM
](bool CurrentLoopValid
, bool PartiallyInvariant
,
3158 ArrayRef
<Loop
*> NewLoops
) {
3159 // If we did a non-trivial unswitch, we have added new (cloned) loops.
3160 for (auto *NewL
: NewLoops
)
3163 // If the current loop remains valid, re-add it to the queue. This is
3164 // a little wasteful as we'll finish processing the current loop as well,
3165 // but it is the best we can do in the old PM.
3166 if (CurrentLoopValid
) {
3167 // If the current loop has been unswitched using a partially invariant
3168 // condition, we should not re-add the current loop to avoid unswitching
3169 // on the same condition again.
3170 if (!PartiallyInvariant
)
3173 LPM
.markLoopAsDeleted(*L
);
3176 if (VerifyMemorySSA
)
3177 MSSA
->verifyMemorySSA();
3179 bool Changed
= unswitchLoop(*L
, DT
, LI
, AC
, AA
, TTI
, true, NonTrivial
,
3180 UnswitchCB
, SE
, &MSSAU
);
3182 if (VerifyMemorySSA
)
3183 MSSA
->verifyMemorySSA();
3185 // Historically this pass has had issues with the dominator tree so verify it
3186 // in asserts builds.
3187 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
3192 char SimpleLoopUnswitchLegacyPass::ID
= 0;
3193 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass
, "simple-loop-unswitch",
3194 "Simple unswitch loops", false, false)
3195 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
3196 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
3197 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
3198 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
3199 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass
)
3200 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
3201 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass
, "simple-loop-unswitch",
3202 "Simple unswitch loops", false, false)
3204 Pass
*llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial
) {
3205 return new SimpleLoopUnswitchLegacyPass(NonTrivial
);