1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass moves instructions into successor blocks, when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/Sink.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Scalar.h"
30 #define DEBUG_TYPE "sink"
32 STATISTIC(NumSunk
, "Number of instructions sunk");
33 STATISTIC(NumSinkIter
, "Number of sinking iterations");
35 static bool isSafeToMove(Instruction
*Inst
, AliasAnalysis
&AA
,
36 SmallPtrSetImpl
<Instruction
*> &Stores
) {
38 if (Inst
->mayWriteToMemory()) {
43 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Inst
)) {
44 MemoryLocation Loc
= MemoryLocation::get(L
);
45 for (Instruction
*S
: Stores
)
46 if (isModSet(AA
.getModRefInfo(S
, Loc
)))
50 if (Inst
->isTerminator() || isa
<PHINode
>(Inst
) || Inst
->isEHPad() ||
54 if (auto *Call
= dyn_cast
<CallBase
>(Inst
)) {
55 // Convergent operations cannot be made control-dependent on additional
57 if (Call
->isConvergent())
60 for (Instruction
*S
: Stores
)
61 if (isModSet(AA
.getModRefInfo(S
, Call
)))
68 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
69 /// in the specified basic block.
70 static bool IsAcceptableTarget(Instruction
*Inst
, BasicBlock
*SuccToSinkTo
,
71 DominatorTree
&DT
, LoopInfo
&LI
) {
72 assert(Inst
&& "Instruction to be sunk is null");
73 assert(SuccToSinkTo
&& "Candidate sink target is null");
75 // It's never legal to sink an instruction into a block which terminates in an
77 if (SuccToSinkTo
->getTerminator()->isExceptionalTerminator())
80 // If the block has multiple predecessors, this would introduce computation
81 // on different code paths. We could split the critical edge, but for now we
83 // FIXME: Split critical edges if not backedges.
84 if (SuccToSinkTo
->getUniquePredecessor() != Inst
->getParent()) {
85 // We cannot sink a load across a critical edge - there may be stores in
87 if (Inst
->mayReadFromMemory())
90 // We don't want to sink across a critical edge if we don't dominate the
91 // successor. We could be introducing calculations to new code paths.
92 if (!DT
.dominates(Inst
->getParent(), SuccToSinkTo
))
95 // Don't sink instructions into a loop.
96 Loop
*succ
= LI
.getLoopFor(SuccToSinkTo
);
97 Loop
*cur
= LI
.getLoopFor(Inst
->getParent());
98 if (succ
!= nullptr && succ
!= cur
)
105 /// SinkInstruction - Determine whether it is safe to sink the specified machine
106 /// instruction out of its current block into a successor.
107 static bool SinkInstruction(Instruction
*Inst
,
108 SmallPtrSetImpl
<Instruction
*> &Stores
,
109 DominatorTree
&DT
, LoopInfo
&LI
, AAResults
&AA
) {
111 // Don't sink static alloca instructions. CodeGen assumes allocas outside the
112 // entry block are dynamically sized stack objects.
113 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Inst
))
114 if (AI
->isStaticAlloca())
117 // Check if it's safe to move the instruction.
118 if (!isSafeToMove(Inst
, AA
, Stores
))
121 // FIXME: This should include support for sinking instructions within the
122 // block they are currently in to shorten the live ranges. We often get
123 // instructions sunk into the top of a large block, but it would be better to
124 // also sink them down before their first use in the block. This xform has to
125 // be careful not to *increase* register pressure though, e.g. sinking
126 // "x = y + z" down if it kills y and z would increase the live ranges of y
127 // and z and only shrink the live range of x.
129 // SuccToSinkTo - This is the successor to sink this instruction to, once we
131 BasicBlock
*SuccToSinkTo
= nullptr;
133 // Find the nearest common dominator of all users as the candidate.
134 BasicBlock
*BB
= Inst
->getParent();
135 for (Use
&U
: Inst
->uses()) {
136 Instruction
*UseInst
= cast
<Instruction
>(U
.getUser());
137 BasicBlock
*UseBlock
= UseInst
->getParent();
138 // Don't worry about dead users.
139 if (!DT
.isReachableFromEntry(UseBlock
))
141 if (PHINode
*PN
= dyn_cast
<PHINode
>(UseInst
)) {
142 // PHI nodes use the operand in the predecessor block, not the block with
144 unsigned Num
= PHINode::getIncomingValueNumForOperand(U
.getOperandNo());
145 UseBlock
= PN
->getIncomingBlock(Num
);
148 SuccToSinkTo
= DT
.findNearestCommonDominator(SuccToSinkTo
, UseBlock
);
150 SuccToSinkTo
= UseBlock
;
151 // The current basic block needs to dominate the candidate.
152 if (!DT
.dominates(BB
, SuccToSinkTo
))
157 // The nearest common dominator may be in a parent loop of BB, which may not
158 // be beneficial. Find an ancestor.
159 while (SuccToSinkTo
!= BB
&&
160 !IsAcceptableTarget(Inst
, SuccToSinkTo
, DT
, LI
))
161 SuccToSinkTo
= DT
.getNode(SuccToSinkTo
)->getIDom()->getBlock();
162 if (SuccToSinkTo
== BB
)
163 SuccToSinkTo
= nullptr;
166 // If we couldn't find a block to sink to, ignore this instruction.
170 LLVM_DEBUG(dbgs() << "Sink" << *Inst
<< " (";
171 Inst
->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> ";
172 SuccToSinkTo
->printAsOperand(dbgs(), false); dbgs() << ")\n");
174 // Move the instruction.
175 Inst
->moveBefore(&*SuccToSinkTo
->getFirstInsertionPt());
179 static bool ProcessBlock(BasicBlock
&BB
, DominatorTree
&DT
, LoopInfo
&LI
,
181 // Can't sink anything out of a block that has less than two successors.
182 if (BB
.getTerminator()->getNumSuccessors() <= 1) return false;
184 // Don't bother sinking code out of unreachable blocks. In addition to being
185 // unprofitable, it can also lead to infinite looping, because in an
186 // unreachable loop there may be nowhere to stop.
187 if (!DT
.isReachableFromEntry(&BB
)) return false;
189 bool MadeChange
= false;
191 // Walk the basic block bottom-up. Remember if we saw a store.
192 BasicBlock::iterator I
= BB
.end();
194 bool ProcessedBegin
= false;
195 SmallPtrSet
<Instruction
*, 8> Stores
;
197 Instruction
*Inst
= &*I
; // The instruction to sink.
199 // Predecrement I (if it's not begin) so that it isn't invalidated by
201 ProcessedBegin
= I
== BB
.begin();
205 if (Inst
->isDebugOrPseudoInst())
208 if (SinkInstruction(Inst
, Stores
, DT
, LI
, AA
)) {
213 // If we just processed the first instruction in the block, we're done.
214 } while (!ProcessedBegin
);
219 static bool iterativelySinkInstructions(Function
&F
, DominatorTree
&DT
,
220 LoopInfo
&LI
, AAResults
&AA
) {
221 bool MadeChange
, EverMadeChange
= false;
225 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter
<< "\n");
226 // Process all basic blocks.
227 for (BasicBlock
&I
: F
)
228 MadeChange
|= ProcessBlock(I
, DT
, LI
, AA
);
229 EverMadeChange
|= MadeChange
;
231 } while (MadeChange
);
233 return EverMadeChange
;
236 PreservedAnalyses
SinkingPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
237 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
238 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
239 auto &AA
= AM
.getResult
<AAManager
>(F
);
241 if (!iterativelySinkInstructions(F
, DT
, LI
, AA
))
242 return PreservedAnalyses::all();
244 PreservedAnalyses PA
;
245 PA
.preserveSet
<CFGAnalyses
>();
250 class SinkingLegacyPass
: public FunctionPass
{
252 static char ID
; // Pass identification
253 SinkingLegacyPass() : FunctionPass(ID
) {
254 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
257 bool runOnFunction(Function
&F
) override
{
258 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
259 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
260 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
262 return iterativelySinkInstructions(F
, DT
, LI
, AA
);
265 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
266 AU
.setPreservesCFG();
267 FunctionPass::getAnalysisUsage(AU
);
268 AU
.addRequired
<AAResultsWrapperPass
>();
269 AU
.addRequired
<DominatorTreeWrapperPass
>();
270 AU
.addRequired
<LoopInfoWrapperPass
>();
271 AU
.addPreserved
<DominatorTreeWrapperPass
>();
272 AU
.addPreserved
<LoopInfoWrapperPass
>();
275 } // end anonymous namespace
277 char SinkingLegacyPass::ID
= 0;
278 INITIALIZE_PASS_BEGIN(SinkingLegacyPass
, "sink", "Code sinking", false, false)
279 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
280 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
282 INITIALIZE_PASS_END(SinkingLegacyPass
, "sink", "Code sinking", false, false)
284 FunctionPass
*llvm::createSinkingPass() { return new SinkingLegacyPass(); }