[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / Sink.cpp
blob8600aacdb05614b392cb1d52aa6652d43f11fa67
1 //===-- Sink.cpp - Code Sinking -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks, when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/Sink.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/IR/CFG.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Scalar.h"
28 using namespace llvm;
30 #define DEBUG_TYPE "sink"
32 STATISTIC(NumSunk, "Number of instructions sunk");
33 STATISTIC(NumSinkIter, "Number of sinking iterations");
35 static bool isSafeToMove(Instruction *Inst, AliasAnalysis &AA,
36 SmallPtrSetImpl<Instruction *> &Stores) {
38 if (Inst->mayWriteToMemory()) {
39 Stores.insert(Inst);
40 return false;
43 if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
44 MemoryLocation Loc = MemoryLocation::get(L);
45 for (Instruction *S : Stores)
46 if (isModSet(AA.getModRefInfo(S, Loc)))
47 return false;
50 if (Inst->isTerminator() || isa<PHINode>(Inst) || Inst->isEHPad() ||
51 Inst->mayThrow())
52 return false;
54 if (auto *Call = dyn_cast<CallBase>(Inst)) {
55 // Convergent operations cannot be made control-dependent on additional
56 // values.
57 if (Call->isConvergent())
58 return false;
60 for (Instruction *S : Stores)
61 if (isModSet(AA.getModRefInfo(S, Call)))
62 return false;
65 return true;
68 /// IsAcceptableTarget - Return true if it is possible to sink the instruction
69 /// in the specified basic block.
70 static bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo,
71 DominatorTree &DT, LoopInfo &LI) {
72 assert(Inst && "Instruction to be sunk is null");
73 assert(SuccToSinkTo && "Candidate sink target is null");
75 // It's never legal to sink an instruction into a block which terminates in an
76 // EH-pad.
77 if (SuccToSinkTo->getTerminator()->isExceptionalTerminator())
78 return false;
80 // If the block has multiple predecessors, this would introduce computation
81 // on different code paths. We could split the critical edge, but for now we
82 // just punt.
83 // FIXME: Split critical edges if not backedges.
84 if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
85 // We cannot sink a load across a critical edge - there may be stores in
86 // other code paths.
87 if (Inst->mayReadFromMemory())
88 return false;
90 // We don't want to sink across a critical edge if we don't dominate the
91 // successor. We could be introducing calculations to new code paths.
92 if (!DT.dominates(Inst->getParent(), SuccToSinkTo))
93 return false;
95 // Don't sink instructions into a loop.
96 Loop *succ = LI.getLoopFor(SuccToSinkTo);
97 Loop *cur = LI.getLoopFor(Inst->getParent());
98 if (succ != nullptr && succ != cur)
99 return false;
102 return true;
105 /// SinkInstruction - Determine whether it is safe to sink the specified machine
106 /// instruction out of its current block into a successor.
107 static bool SinkInstruction(Instruction *Inst,
108 SmallPtrSetImpl<Instruction *> &Stores,
109 DominatorTree &DT, LoopInfo &LI, AAResults &AA) {
111 // Don't sink static alloca instructions. CodeGen assumes allocas outside the
112 // entry block are dynamically sized stack objects.
113 if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
114 if (AI->isStaticAlloca())
115 return false;
117 // Check if it's safe to move the instruction.
118 if (!isSafeToMove(Inst, AA, Stores))
119 return false;
121 // FIXME: This should include support for sinking instructions within the
122 // block they are currently in to shorten the live ranges. We often get
123 // instructions sunk into the top of a large block, but it would be better to
124 // also sink them down before their first use in the block. This xform has to
125 // be careful not to *increase* register pressure though, e.g. sinking
126 // "x = y + z" down if it kills y and z would increase the live ranges of y
127 // and z and only shrink the live range of x.
129 // SuccToSinkTo - This is the successor to sink this instruction to, once we
130 // decide.
131 BasicBlock *SuccToSinkTo = nullptr;
133 // Find the nearest common dominator of all users as the candidate.
134 BasicBlock *BB = Inst->getParent();
135 for (Use &U : Inst->uses()) {
136 Instruction *UseInst = cast<Instruction>(U.getUser());
137 BasicBlock *UseBlock = UseInst->getParent();
138 // Don't worry about dead users.
139 if (!DT.isReachableFromEntry(UseBlock))
140 continue;
141 if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
142 // PHI nodes use the operand in the predecessor block, not the block with
143 // the PHI.
144 unsigned Num = PHINode::getIncomingValueNumForOperand(U.getOperandNo());
145 UseBlock = PN->getIncomingBlock(Num);
147 if (SuccToSinkTo)
148 SuccToSinkTo = DT.findNearestCommonDominator(SuccToSinkTo, UseBlock);
149 else
150 SuccToSinkTo = UseBlock;
151 // The current basic block needs to dominate the candidate.
152 if (!DT.dominates(BB, SuccToSinkTo))
153 return false;
156 if (SuccToSinkTo) {
157 // The nearest common dominator may be in a parent loop of BB, which may not
158 // be beneficial. Find an ancestor.
159 while (SuccToSinkTo != BB &&
160 !IsAcceptableTarget(Inst, SuccToSinkTo, DT, LI))
161 SuccToSinkTo = DT.getNode(SuccToSinkTo)->getIDom()->getBlock();
162 if (SuccToSinkTo == BB)
163 SuccToSinkTo = nullptr;
166 // If we couldn't find a block to sink to, ignore this instruction.
167 if (!SuccToSinkTo)
168 return false;
170 LLVM_DEBUG(dbgs() << "Sink" << *Inst << " (";
171 Inst->getParent()->printAsOperand(dbgs(), false); dbgs() << " -> ";
172 SuccToSinkTo->printAsOperand(dbgs(), false); dbgs() << ")\n");
174 // Move the instruction.
175 Inst->moveBefore(&*SuccToSinkTo->getFirstInsertionPt());
176 return true;
179 static bool ProcessBlock(BasicBlock &BB, DominatorTree &DT, LoopInfo &LI,
180 AAResults &AA) {
181 // Can't sink anything out of a block that has less than two successors.
182 if (BB.getTerminator()->getNumSuccessors() <= 1) return false;
184 // Don't bother sinking code out of unreachable blocks. In addition to being
185 // unprofitable, it can also lead to infinite looping, because in an
186 // unreachable loop there may be nowhere to stop.
187 if (!DT.isReachableFromEntry(&BB)) return false;
189 bool MadeChange = false;
191 // Walk the basic block bottom-up. Remember if we saw a store.
192 BasicBlock::iterator I = BB.end();
193 --I;
194 bool ProcessedBegin = false;
195 SmallPtrSet<Instruction *, 8> Stores;
196 do {
197 Instruction *Inst = &*I; // The instruction to sink.
199 // Predecrement I (if it's not begin) so that it isn't invalidated by
200 // sinking.
201 ProcessedBegin = I == BB.begin();
202 if (!ProcessedBegin)
203 --I;
205 if (Inst->isDebugOrPseudoInst())
206 continue;
208 if (SinkInstruction(Inst, Stores, DT, LI, AA)) {
209 ++NumSunk;
210 MadeChange = true;
213 // If we just processed the first instruction in the block, we're done.
214 } while (!ProcessedBegin);
216 return MadeChange;
219 static bool iterativelySinkInstructions(Function &F, DominatorTree &DT,
220 LoopInfo &LI, AAResults &AA) {
221 bool MadeChange, EverMadeChange = false;
223 do {
224 MadeChange = false;
225 LLVM_DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
226 // Process all basic blocks.
227 for (BasicBlock &I : F)
228 MadeChange |= ProcessBlock(I, DT, LI, AA);
229 EverMadeChange |= MadeChange;
230 NumSinkIter++;
231 } while (MadeChange);
233 return EverMadeChange;
236 PreservedAnalyses SinkingPass::run(Function &F, FunctionAnalysisManager &AM) {
237 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
238 auto &LI = AM.getResult<LoopAnalysis>(F);
239 auto &AA = AM.getResult<AAManager>(F);
241 if (!iterativelySinkInstructions(F, DT, LI, AA))
242 return PreservedAnalyses::all();
244 PreservedAnalyses PA;
245 PA.preserveSet<CFGAnalyses>();
246 return PA;
249 namespace {
250 class SinkingLegacyPass : public FunctionPass {
251 public:
252 static char ID; // Pass identification
253 SinkingLegacyPass() : FunctionPass(ID) {
254 initializeSinkingLegacyPassPass(*PassRegistry::getPassRegistry());
257 bool runOnFunction(Function &F) override {
258 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
259 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
260 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
262 return iterativelySinkInstructions(F, DT, LI, AA);
265 void getAnalysisUsage(AnalysisUsage &AU) const override {
266 AU.setPreservesCFG();
267 FunctionPass::getAnalysisUsage(AU);
268 AU.addRequired<AAResultsWrapperPass>();
269 AU.addRequired<DominatorTreeWrapperPass>();
270 AU.addRequired<LoopInfoWrapperPass>();
271 AU.addPreserved<DominatorTreeWrapperPass>();
272 AU.addPreserved<LoopInfoWrapperPass>();
275 } // end anonymous namespace
277 char SinkingLegacyPass::ID = 0;
278 INITIALIZE_PASS_BEGIN(SinkingLegacyPass, "sink", "Code sinking", false, false)
279 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
280 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282 INITIALIZE_PASS_END(SinkingLegacyPass, "sink", "Code sinking", false, false)
284 FunctionPass *llvm::createSinkingPass() { return new SinkingLegacyPass(); }