[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / StraightLineStrengthReduce.cpp
blob20b8b982e14b85225a32fee74edad72cefb9c8b3
1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements straight-line strength reduction (SLSR). Unlike loop
10 // strength reduction, this algorithm is designed to reduce arithmetic
11 // redundancy in straight-line code instead of loops. It has proven to be
12 // effective in simplifying arithmetic statements derived from an unrolled loop.
13 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 // There are many optimizations we can perform in the domain of SLSR. This file
16 // for now contains only an initial step. Specifically, we look for strength
17 // reduction candidates in the following forms:
19 // Form 1: B + i * S
20 // Form 2: (B + i) * S
21 // Form 3: &B[i * S]
23 // where S is an integer variable, and i is a constant integer. If we found two
24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25 // in a simpler way with respect to S1. For example,
27 // S1: X = B + i * S
28 // S2: Y = B + i' * S => X + (i' - i) * S
30 // S1: X = (B + i) * S
31 // S2: Y = (B + i') * S => X + (i' - i) * S
33 // S1: X = &B[i * S]
34 // S2: Y = &B[i' * S] => &X[(i' - i) * S]
36 // Note: (i' - i) * S is folded to the extent possible.
38 // This rewriting is in general a good idea. The code patterns we focus on
39 // usually come from loop unrolling, so (i' - i) * S is likely the same
40 // across iterations and can be reused. When that happens, the optimized form
41 // takes only one add starting from the second iteration.
43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
45 // basis, the basis that is the closest ancestor in the dominator tree.
47 // TODO:
49 // - Floating point arithmetics when fast math is enabled.
51 // - SLSR may decrease ILP at the architecture level. Targets that are very
52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53 // left as future work.
55 // - When (i' - i) is constant but i and i' are not, we could still perform
56 // SLSR.
58 #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h"
59 #include "llvm/ADT/APInt.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/Analysis/ValueTracking.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/Operator.h"
76 #include "llvm/IR/PatternMatch.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include <cassert>
86 #include <cstdint>
87 #include <limits>
88 #include <list>
89 #include <vector>
91 using namespace llvm;
92 using namespace PatternMatch;
94 static const unsigned UnknownAddressSpace =
95 std::numeric_limits<unsigned>::max();
97 namespace {
99 class StraightLineStrengthReduceLegacyPass : public FunctionPass {
100 const DataLayout *DL = nullptr;
102 public:
103 static char ID;
105 StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) {
106 initializeStraightLineStrengthReduceLegacyPassPass(
107 *PassRegistry::getPassRegistry());
110 void getAnalysisUsage(AnalysisUsage &AU) const override {
111 AU.addRequired<DominatorTreeWrapperPass>();
112 AU.addRequired<ScalarEvolutionWrapperPass>();
113 AU.addRequired<TargetTransformInfoWrapperPass>();
114 // We do not modify the shape of the CFG.
115 AU.setPreservesCFG();
118 bool doInitialization(Module &M) override {
119 DL = &M.getDataLayout();
120 return false;
123 bool runOnFunction(Function &F) override;
126 class StraightLineStrengthReduce {
127 public:
128 StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT,
129 ScalarEvolution *SE, TargetTransformInfo *TTI)
130 : DL(DL), DT(DT), SE(SE), TTI(TTI) {}
132 // SLSR candidate. Such a candidate must be in one of the forms described in
133 // the header comments.
134 struct Candidate {
135 enum Kind {
136 Invalid, // reserved for the default constructor
137 Add, // B + i * S
138 Mul, // (B + i) * S
139 GEP, // &B[..][i * S][..]
142 Candidate() = default;
143 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
144 Instruction *I)
145 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
147 Kind CandidateKind = Invalid;
149 const SCEV *Base = nullptr;
151 // Note that Index and Stride of a GEP candidate do not necessarily have the
152 // same integer type. In that case, during rewriting, Stride will be
153 // sign-extended or truncated to Index's type.
154 ConstantInt *Index = nullptr;
156 Value *Stride = nullptr;
158 // The instruction this candidate corresponds to. It helps us to rewrite a
159 // candidate with respect to its immediate basis. Note that one instruction
160 // can correspond to multiple candidates depending on how you associate the
161 // expression. For instance,
163 // (a + 1) * (b + 2)
165 // can be treated as
167 // <Base: a, Index: 1, Stride: b + 2>
169 // or
171 // <Base: b, Index: 2, Stride: a + 1>
172 Instruction *Ins = nullptr;
174 // Points to the immediate basis of this candidate, or nullptr if we cannot
175 // find any basis for this candidate.
176 Candidate *Basis = nullptr;
179 bool runOnFunction(Function &F);
181 private:
182 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
183 // share the same base and stride.
184 bool isBasisFor(const Candidate &Basis, const Candidate &C);
186 // Returns whether the candidate can be folded into an addressing mode.
187 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
188 const DataLayout *DL);
190 // Returns true if C is already in a simplest form and not worth being
191 // rewritten.
192 bool isSimplestForm(const Candidate &C);
194 // Checks whether I is in a candidate form. If so, adds all the matching forms
195 // to Candidates, and tries to find the immediate basis for each of them.
196 void allocateCandidatesAndFindBasis(Instruction *I);
198 // Allocate candidates and find bases for Add instructions.
199 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
201 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
202 // candidate.
203 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
204 Instruction *I);
205 // Allocate candidates and find bases for Mul instructions.
206 void allocateCandidatesAndFindBasisForMul(Instruction *I);
208 // Splits LHS into Base + Index and, if succeeds, calls
209 // allocateCandidatesAndFindBasis.
210 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
211 Instruction *I);
213 // Allocate candidates and find bases for GetElementPtr instructions.
214 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
216 // A helper function that scales Idx with ElementSize before invoking
217 // allocateCandidatesAndFindBasis.
218 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
219 Value *S, uint64_t ElementSize,
220 Instruction *I);
222 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
223 // basis.
224 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
225 ConstantInt *Idx, Value *S,
226 Instruction *I);
228 // Rewrites candidate C with respect to Basis.
229 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
231 // A helper function that factors ArrayIdx to a product of a stride and a
232 // constant index, and invokes allocateCandidatesAndFindBasis with the
233 // factorings.
234 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
235 GetElementPtrInst *GEP);
237 // Emit code that computes the "bump" from Basis to C. If the candidate is a
238 // GEP and the bump is not divisible by the element size of the GEP, this
239 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
240 // basis using an ugly GEP.
241 static Value *emitBump(const Candidate &Basis, const Candidate &C,
242 IRBuilder<> &Builder, const DataLayout *DL,
243 bool &BumpWithUglyGEP);
245 const DataLayout *DL = nullptr;
246 DominatorTree *DT = nullptr;
247 ScalarEvolution *SE;
248 TargetTransformInfo *TTI = nullptr;
249 std::list<Candidate> Candidates;
251 // Temporarily holds all instructions that are unlinked (but not deleted) by
252 // rewriteCandidateWithBasis. These instructions will be actually removed
253 // after all rewriting finishes.
254 std::vector<Instruction *> UnlinkedInstructions;
257 } // end anonymous namespace
259 char StraightLineStrengthReduceLegacyPass::ID = 0;
261 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr",
262 "Straight line strength reduction", false, false)
263 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
264 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
265 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
266 INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr",
267 "Straight line strength reduction", false, false)
269 FunctionPass *llvm::createStraightLineStrengthReducePass() {
270 return new StraightLineStrengthReduceLegacyPass();
273 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
274 const Candidate &C) {
275 return (Basis.Ins != C.Ins && // skip the same instruction
276 // They must have the same type too. Basis.Base == C.Base doesn't
277 // guarantee their types are the same (PR23975).
278 Basis.Ins->getType() == C.Ins->getType() &&
279 // Basis must dominate C in order to rewrite C with respect to Basis.
280 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
281 // They share the same base, stride, and candidate kind.
282 Basis.Base == C.Base && Basis.Stride == C.Stride &&
283 Basis.CandidateKind == C.CandidateKind);
286 static bool isGEPFoldable(GetElementPtrInst *GEP,
287 const TargetTransformInfo *TTI) {
288 SmallVector<const Value *, 4> Indices(GEP->indices());
289 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
290 Indices) == TargetTransformInfo::TCC_Free;
293 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
294 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
295 TargetTransformInfo *TTI) {
296 // Index->getSExtValue() may crash if Index is wider than 64-bit.
297 return Index->getBitWidth() <= 64 &&
298 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
299 Index->getSExtValue(), UnknownAddressSpace);
302 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
303 TargetTransformInfo *TTI,
304 const DataLayout *DL) {
305 if (C.CandidateKind == Candidate::Add)
306 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
307 if (C.CandidateKind == Candidate::GEP)
308 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
309 return false;
312 // Returns true if GEP has zero or one non-zero index.
313 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
314 unsigned NumNonZeroIndices = 0;
315 for (Use &Idx : GEP->indices()) {
316 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx);
317 if (ConstIdx == nullptr || !ConstIdx->isZero())
318 ++NumNonZeroIndices;
320 return NumNonZeroIndices <= 1;
323 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
324 if (C.CandidateKind == Candidate::Add) {
325 // B + 1 * S or B + (-1) * S
326 return C.Index->isOne() || C.Index->isMinusOne();
328 if (C.CandidateKind == Candidate::Mul) {
329 // (B + 0) * S
330 return C.Index->isZero();
332 if (C.CandidateKind == Candidate::GEP) {
333 // (char*)B + S or (char*)B - S
334 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
335 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
337 return false;
340 // TODO: We currently implement an algorithm whose time complexity is linear in
341 // the number of existing candidates. However, we could do better by using
342 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
343 // maintain all the candidates that dominate the basic block being traversed in
344 // a ScopedHashTable. This hash table is indexed by the base and the stride of
345 // a candidate. Therefore, finding the immediate basis of a candidate boils down
346 // to one hash-table look up.
347 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
348 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
349 Instruction *I) {
350 Candidate C(CT, B, Idx, S, I);
351 // SLSR can complicate an instruction in two cases:
353 // 1. If we can fold I into an addressing mode, computing I is likely free or
354 // takes only one instruction.
356 // 2. I is already in a simplest form. For example, when
357 // X = B + 8 * S
358 // Y = B + S,
359 // rewriting Y to X - 7 * S is probably a bad idea.
361 // In the above cases, we still add I to the candidate list so that I can be
362 // the basis of other candidates, but we leave I's basis blank so that I
363 // won't be rewritten.
364 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
365 // Try to compute the immediate basis of C.
366 unsigned NumIterations = 0;
367 // Limit the scan radius to avoid running in quadratice time.
368 static const unsigned MaxNumIterations = 50;
369 for (auto Basis = Candidates.rbegin();
370 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
371 ++Basis, ++NumIterations) {
372 if (isBasisFor(*Basis, C)) {
373 C.Basis = &(*Basis);
374 break;
378 // Regardless of whether we find a basis for C, we need to push C to the
379 // candidate list so that it can be the basis of other candidates.
380 Candidates.push_back(C);
383 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
384 Instruction *I) {
385 switch (I->getOpcode()) {
386 case Instruction::Add:
387 allocateCandidatesAndFindBasisForAdd(I);
388 break;
389 case Instruction::Mul:
390 allocateCandidatesAndFindBasisForMul(I);
391 break;
392 case Instruction::GetElementPtr:
393 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
394 break;
398 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
399 Instruction *I) {
400 // Try matching B + i * S.
401 if (!isa<IntegerType>(I->getType()))
402 return;
404 assert(I->getNumOperands() == 2 && "isn't I an add?");
405 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
406 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
407 if (LHS != RHS)
408 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
411 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
412 Value *LHS, Value *RHS, Instruction *I) {
413 Value *S = nullptr;
414 ConstantInt *Idx = nullptr;
415 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
416 // I = LHS + RHS = LHS + Idx * S
417 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
418 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
419 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
420 APInt One(Idx->getBitWidth(), 1);
421 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
422 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
423 } else {
424 // At least, I = LHS + 1 * RHS
425 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
426 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
431 // Returns true if A matches B + C where C is constant.
432 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
433 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
434 match(A, m_Add(m_ConstantInt(C), m_Value(B))));
437 // Returns true if A matches B | C where C is constant.
438 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
439 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
440 match(A, m_Or(m_ConstantInt(C), m_Value(B))));
443 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
444 Value *LHS, Value *RHS, Instruction *I) {
445 Value *B = nullptr;
446 ConstantInt *Idx = nullptr;
447 if (matchesAdd(LHS, B, Idx)) {
448 // If LHS is in the form of "Base + Index", then I is in the form of
449 // "(Base + Index) * RHS".
450 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
451 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
452 // If LHS is in the form of "Base | Index" and Base and Index have no common
453 // bits set, then
454 // Base | Index = Base + Index
455 // and I is thus in the form of "(Base + Index) * RHS".
456 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
457 } else {
458 // Otherwise, at least try the form (LHS + 0) * RHS.
459 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
460 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
465 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
466 Instruction *I) {
467 // Try matching (B + i) * S.
468 // TODO: we could extend SLSR to float and vector types.
469 if (!isa<IntegerType>(I->getType()))
470 return;
472 assert(I->getNumOperands() == 2 && "isn't I a mul?");
473 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
474 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
475 if (LHS != RHS) {
476 // Symmetrically, try to split RHS to Base + Index.
477 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
481 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
482 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
483 Instruction *I) {
484 // I = B + sext(Idx *nsw S) * ElementSize
485 // = B + (sext(Idx) * sext(S)) * ElementSize
486 // = B + (sext(Idx) * ElementSize) * sext(S)
487 // Casting to IntegerType is safe because we skipped vector GEPs.
488 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
489 ConstantInt *ScaledIdx = ConstantInt::get(
490 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
491 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
494 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
495 const SCEV *Base,
496 uint64_t ElementSize,
497 GetElementPtrInst *GEP) {
498 // At least, ArrayIdx = ArrayIdx *nsw 1.
499 allocateCandidatesAndFindBasisForGEP(
500 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
501 ArrayIdx, ElementSize, GEP);
502 Value *LHS = nullptr;
503 ConstantInt *RHS = nullptr;
504 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
505 // itself. This would allow us to handle the shl case for free. However,
506 // matching SCEVs has two issues:
508 // 1. this would complicate rewriting because the rewriting procedure
509 // would have to translate SCEVs back to IR instructions. This translation
510 // is difficult when LHS is further evaluated to a composite SCEV.
512 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
513 // to strip nsw/nuw flags which are critical for SLSR to trace into
514 // sext'ed multiplication.
515 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
516 // SLSR is currently unsafe if i * S may overflow.
517 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
518 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
519 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
520 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
521 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
522 APInt One(RHS->getBitWidth(), 1);
523 ConstantInt *PowerOf2 =
524 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
525 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
529 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
530 GetElementPtrInst *GEP) {
531 // TODO: handle vector GEPs
532 if (GEP->getType()->isVectorTy())
533 return;
535 SmallVector<const SCEV *, 4> IndexExprs;
536 for (Use &Idx : GEP->indices())
537 IndexExprs.push_back(SE->getSCEV(Idx));
539 gep_type_iterator GTI = gep_type_begin(GEP);
540 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
541 if (GTI.isStruct())
542 continue;
544 const SCEV *OrigIndexExpr = IndexExprs[I - 1];
545 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
547 // The base of this candidate is GEP's base plus the offsets of all
548 // indices except this current one.
549 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
550 Value *ArrayIdx = GEP->getOperand(I);
551 uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
552 if (ArrayIdx->getType()->getIntegerBitWidth() <=
553 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
554 // Skip factoring if ArrayIdx is wider than the pointer size, because
555 // ArrayIdx is implicitly truncated to the pointer size.
556 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
558 // When ArrayIdx is the sext of a value, we try to factor that value as
559 // well. Handling this case is important because array indices are
560 // typically sign-extended to the pointer size.
561 Value *TruncatedArrayIdx = nullptr;
562 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
563 TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
564 DL->getPointerSizeInBits(GEP->getAddressSpace())) {
565 // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
566 // because TruncatedArrayIdx is implicitly truncated to the pointer size.
567 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
570 IndexExprs[I - 1] = OrigIndexExpr;
574 // A helper function that unifies the bitwidth of A and B.
575 static void unifyBitWidth(APInt &A, APInt &B) {
576 if (A.getBitWidth() < B.getBitWidth())
577 A = A.sext(B.getBitWidth());
578 else if (A.getBitWidth() > B.getBitWidth())
579 B = B.sext(A.getBitWidth());
582 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
583 const Candidate &C,
584 IRBuilder<> &Builder,
585 const DataLayout *DL,
586 bool &BumpWithUglyGEP) {
587 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
588 unifyBitWidth(Idx, BasisIdx);
589 APInt IndexOffset = Idx - BasisIdx;
591 BumpWithUglyGEP = false;
592 if (Basis.CandidateKind == Candidate::GEP) {
593 APInt ElementSize(
594 IndexOffset.getBitWidth(),
595 DL->getTypeAllocSize(
596 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
597 APInt Q, R;
598 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
599 if (R == 0)
600 IndexOffset = Q;
601 else
602 BumpWithUglyGEP = true;
605 // Compute Bump = C - Basis = (i' - i) * S.
606 // Common case 1: if (i' - i) is 1, Bump = S.
607 if (IndexOffset == 1)
608 return C.Stride;
609 // Common case 2: if (i' - i) is -1, Bump = -S.
610 if (IndexOffset.isAllOnesValue())
611 return Builder.CreateNeg(C.Stride);
613 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
614 // have different bit widths.
615 IntegerType *DeltaType =
616 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
617 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
618 if (IndexOffset.isPowerOf2()) {
619 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
620 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
621 return Builder.CreateShl(ExtendedStride, Exponent);
623 if ((-IndexOffset).isPowerOf2()) {
624 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
625 ConstantInt *Exponent =
626 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
627 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
629 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
630 return Builder.CreateMul(ExtendedStride, Delta);
633 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
634 const Candidate &C, const Candidate &Basis) {
635 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
636 C.Stride == Basis.Stride);
637 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
638 // basis of a candidate cannot be unlinked before the candidate.
639 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
641 // An instruction can correspond to multiple candidates. Therefore, instead of
642 // simply deleting an instruction when we rewrite it, we mark its parent as
643 // nullptr (i.e. unlink it) so that we can skip the candidates whose
644 // instruction is already rewritten.
645 if (!C.Ins->getParent())
646 return;
648 IRBuilder<> Builder(C.Ins);
649 bool BumpWithUglyGEP;
650 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
651 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
652 switch (C.CandidateKind) {
653 case Candidate::Add:
654 case Candidate::Mul: {
655 // C = Basis + Bump
656 Value *NegBump;
657 if (match(Bump, m_Neg(m_Value(NegBump)))) {
658 // If Bump is a neg instruction, emit C = Basis - (-Bump).
659 Reduced = Builder.CreateSub(Basis.Ins, NegBump);
660 // We only use the negative argument of Bump, and Bump itself may be
661 // trivially dead.
662 RecursivelyDeleteTriviallyDeadInstructions(Bump);
663 } else {
664 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
665 // usually unsound, e.g.,
667 // X = (-2 +nsw 1) *nsw INT_MAX
668 // Y = (-2 +nsw 3) *nsw INT_MAX
669 // =>
670 // Y = X + 2 * INT_MAX
672 // Neither + and * in the resultant expression are nsw.
673 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
675 break;
677 case Candidate::GEP:
679 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
680 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
681 if (BumpWithUglyGEP) {
682 // C = (char *)Basis + Bump
683 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
684 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
685 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
686 if (InBounds)
687 Reduced =
688 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
689 else
690 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
691 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
692 } else {
693 // C = gep Basis, Bump
694 // Canonicalize bump to pointer size.
695 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
696 if (InBounds)
697 Reduced = Builder.CreateInBoundsGEP(
698 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
699 Basis.Ins, Bump);
700 else
701 Reduced = Builder.CreateGEP(
702 cast<GetElementPtrInst>(Basis.Ins)->getResultElementType(),
703 Basis.Ins, Bump);
705 break;
707 default:
708 llvm_unreachable("C.CandidateKind is invalid");
710 Reduced->takeName(C.Ins);
711 C.Ins->replaceAllUsesWith(Reduced);
712 // Unlink C.Ins so that we can skip other candidates also corresponding to
713 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
714 C.Ins->removeFromParent();
715 UnlinkedInstructions.push_back(C.Ins);
718 bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) {
719 if (skipFunction(F))
720 return false;
722 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
723 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
724 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
725 return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F);
728 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
729 // Traverse the dominator tree in the depth-first order. This order makes sure
730 // all bases of a candidate are in Candidates when we process it.
731 for (const auto Node : depth_first(DT))
732 for (auto &I : *(Node->getBlock()))
733 allocateCandidatesAndFindBasis(&I);
735 // Rewrite candidates in the reverse depth-first order. This order makes sure
736 // a candidate being rewritten is not a basis for any other candidate.
737 while (!Candidates.empty()) {
738 const Candidate &C = Candidates.back();
739 if (C.Basis != nullptr) {
740 rewriteCandidateWithBasis(C, *C.Basis);
742 Candidates.pop_back();
745 // Delete all unlink instructions.
746 for (auto *UnlinkedInst : UnlinkedInstructions) {
747 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
748 Value *Op = UnlinkedInst->getOperand(I);
749 UnlinkedInst->setOperand(I, nullptr);
750 RecursivelyDeleteTriviallyDeadInstructions(Op);
752 UnlinkedInst->deleteValue();
754 bool Ret = !UnlinkedInstructions.empty();
755 UnlinkedInstructions.clear();
756 return Ret;
759 namespace llvm {
761 PreservedAnalyses
762 StraightLineStrengthReducePass::run(Function &F, FunctionAnalysisManager &AM) {
763 const DataLayout *DL = &F.getParent()->getDataLayout();
764 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
765 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
766 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
768 if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F))
769 return PreservedAnalyses::all();
771 PreservedAnalyses PA;
772 PA.preserveSet<CFGAnalyses>();
773 PA.preserve<DominatorTreeAnalysis>();
774 PA.preserve<ScalarEvolutionAnalysis>();
775 PA.preserve<TargetIRAnalysis>();
776 return PA;
779 } // namespace llvm