1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements straight-line strength reduction (SLSR). Unlike loop
10 // strength reduction, this algorithm is designed to reduce arithmetic
11 // redundancy in straight-line code instead of loops. It has proven to be
12 // effective in simplifying arithmetic statements derived from an unrolled loop.
13 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 // There are many optimizations we can perform in the domain of SLSR. This file
16 // for now contains only an initial step. Specifically, we look for strength
17 // reduction candidates in the following forms:
20 // Form 2: (B + i) * S
23 // where S is an integer variable, and i is a constant integer. If we found two
24 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25 // in a simpler way with respect to S1. For example,
28 // S2: Y = B + i' * S => X + (i' - i) * S
30 // S1: X = (B + i) * S
31 // S2: Y = (B + i') * S => X + (i' - i) * S
34 // S2: Y = &B[i' * S] => &X[(i' - i) * S]
36 // Note: (i' - i) * S is folded to the extent possible.
38 // This rewriting is in general a good idea. The code patterns we focus on
39 // usually come from loop unrolling, so (i' - i) * S is likely the same
40 // across iterations and can be reused. When that happens, the optimized form
41 // takes only one add starting from the second iteration.
43 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
45 // basis, the basis that is the closest ancestor in the dominator tree.
49 // - Floating point arithmetics when fast math is enabled.
51 // - SLSR may decrease ILP at the architecture level. Targets that are very
52 // sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53 // left as future work.
55 // - When (i' - i) is constant but i and i' are not, we could still perform
58 #include "llvm/Transforms/Scalar/StraightLineStrengthReduce.h"
59 #include "llvm/ADT/APInt.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/Analysis/ValueTracking.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/GetElementPtrTypeIterator.h"
70 #include "llvm/IR/IRBuilder.h"
71 #include "llvm/IR/InstrTypes.h"
72 #include "llvm/IR/Instruction.h"
73 #include "llvm/IR/Instructions.h"
74 #include "llvm/IR/Module.h"
75 #include "llvm/IR/Operator.h"
76 #include "llvm/IR/PatternMatch.h"
77 #include "llvm/IR/Type.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/Local.h"
92 using namespace PatternMatch
;
94 static const unsigned UnknownAddressSpace
=
95 std::numeric_limits
<unsigned>::max();
99 class StraightLineStrengthReduceLegacyPass
: public FunctionPass
{
100 const DataLayout
*DL
= nullptr;
105 StraightLineStrengthReduceLegacyPass() : FunctionPass(ID
) {
106 initializeStraightLineStrengthReduceLegacyPassPass(
107 *PassRegistry::getPassRegistry());
110 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
111 AU
.addRequired
<DominatorTreeWrapperPass
>();
112 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
113 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
114 // We do not modify the shape of the CFG.
115 AU
.setPreservesCFG();
118 bool doInitialization(Module
&M
) override
{
119 DL
= &M
.getDataLayout();
123 bool runOnFunction(Function
&F
) override
;
126 class StraightLineStrengthReduce
{
128 StraightLineStrengthReduce(const DataLayout
*DL
, DominatorTree
*DT
,
129 ScalarEvolution
*SE
, TargetTransformInfo
*TTI
)
130 : DL(DL
), DT(DT
), SE(SE
), TTI(TTI
) {}
132 // SLSR candidate. Such a candidate must be in one of the forms described in
133 // the header comments.
136 Invalid
, // reserved for the default constructor
139 GEP
, // &B[..][i * S][..]
142 Candidate() = default;
143 Candidate(Kind CT
, const SCEV
*B
, ConstantInt
*Idx
, Value
*S
,
145 : CandidateKind(CT
), Base(B
), Index(Idx
), Stride(S
), Ins(I
) {}
147 Kind CandidateKind
= Invalid
;
149 const SCEV
*Base
= nullptr;
151 // Note that Index and Stride of a GEP candidate do not necessarily have the
152 // same integer type. In that case, during rewriting, Stride will be
153 // sign-extended or truncated to Index's type.
154 ConstantInt
*Index
= nullptr;
156 Value
*Stride
= nullptr;
158 // The instruction this candidate corresponds to. It helps us to rewrite a
159 // candidate with respect to its immediate basis. Note that one instruction
160 // can correspond to multiple candidates depending on how you associate the
161 // expression. For instance,
167 // <Base: a, Index: 1, Stride: b + 2>
171 // <Base: b, Index: 2, Stride: a + 1>
172 Instruction
*Ins
= nullptr;
174 // Points to the immediate basis of this candidate, or nullptr if we cannot
175 // find any basis for this candidate.
176 Candidate
*Basis
= nullptr;
179 bool runOnFunction(Function
&F
);
182 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
183 // share the same base and stride.
184 bool isBasisFor(const Candidate
&Basis
, const Candidate
&C
);
186 // Returns whether the candidate can be folded into an addressing mode.
187 bool isFoldable(const Candidate
&C
, TargetTransformInfo
*TTI
,
188 const DataLayout
*DL
);
190 // Returns true if C is already in a simplest form and not worth being
192 bool isSimplestForm(const Candidate
&C
);
194 // Checks whether I is in a candidate form. If so, adds all the matching forms
195 // to Candidates, and tries to find the immediate basis for each of them.
196 void allocateCandidatesAndFindBasis(Instruction
*I
);
198 // Allocate candidates and find bases for Add instructions.
199 void allocateCandidatesAndFindBasisForAdd(Instruction
*I
);
201 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
203 void allocateCandidatesAndFindBasisForAdd(Value
*LHS
, Value
*RHS
,
205 // Allocate candidates and find bases for Mul instructions.
206 void allocateCandidatesAndFindBasisForMul(Instruction
*I
);
208 // Splits LHS into Base + Index and, if succeeds, calls
209 // allocateCandidatesAndFindBasis.
210 void allocateCandidatesAndFindBasisForMul(Value
*LHS
, Value
*RHS
,
213 // Allocate candidates and find bases for GetElementPtr instructions.
214 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst
*GEP
);
216 // A helper function that scales Idx with ElementSize before invoking
217 // allocateCandidatesAndFindBasis.
218 void allocateCandidatesAndFindBasisForGEP(const SCEV
*B
, ConstantInt
*Idx
,
219 Value
*S
, uint64_t ElementSize
,
222 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
224 void allocateCandidatesAndFindBasis(Candidate::Kind CT
, const SCEV
*B
,
225 ConstantInt
*Idx
, Value
*S
,
228 // Rewrites candidate C with respect to Basis.
229 void rewriteCandidateWithBasis(const Candidate
&C
, const Candidate
&Basis
);
231 // A helper function that factors ArrayIdx to a product of a stride and a
232 // constant index, and invokes allocateCandidatesAndFindBasis with the
234 void factorArrayIndex(Value
*ArrayIdx
, const SCEV
*Base
, uint64_t ElementSize
,
235 GetElementPtrInst
*GEP
);
237 // Emit code that computes the "bump" from Basis to C. If the candidate is a
238 // GEP and the bump is not divisible by the element size of the GEP, this
239 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
240 // basis using an ugly GEP.
241 static Value
*emitBump(const Candidate
&Basis
, const Candidate
&C
,
242 IRBuilder
<> &Builder
, const DataLayout
*DL
,
243 bool &BumpWithUglyGEP
);
245 const DataLayout
*DL
= nullptr;
246 DominatorTree
*DT
= nullptr;
248 TargetTransformInfo
*TTI
= nullptr;
249 std::list
<Candidate
> Candidates
;
251 // Temporarily holds all instructions that are unlinked (but not deleted) by
252 // rewriteCandidateWithBasis. These instructions will be actually removed
253 // after all rewriting finishes.
254 std::vector
<Instruction
*> UnlinkedInstructions
;
257 } // end anonymous namespace
259 char StraightLineStrengthReduceLegacyPass::ID
= 0;
261 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass
, "slsr",
262 "Straight line strength reduction", false, false)
263 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
264 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
265 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
266 INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass
, "slsr",
267 "Straight line strength reduction", false, false)
269 FunctionPass
*llvm::createStraightLineStrengthReducePass() {
270 return new StraightLineStrengthReduceLegacyPass();
273 bool StraightLineStrengthReduce::isBasisFor(const Candidate
&Basis
,
274 const Candidate
&C
) {
275 return (Basis
.Ins
!= C
.Ins
&& // skip the same instruction
276 // They must have the same type too. Basis.Base == C.Base doesn't
277 // guarantee their types are the same (PR23975).
278 Basis
.Ins
->getType() == C
.Ins
->getType() &&
279 // Basis must dominate C in order to rewrite C with respect to Basis.
280 DT
->dominates(Basis
.Ins
->getParent(), C
.Ins
->getParent()) &&
281 // They share the same base, stride, and candidate kind.
282 Basis
.Base
== C
.Base
&& Basis
.Stride
== C
.Stride
&&
283 Basis
.CandidateKind
== C
.CandidateKind
);
286 static bool isGEPFoldable(GetElementPtrInst
*GEP
,
287 const TargetTransformInfo
*TTI
) {
288 SmallVector
<const Value
*, 4> Indices(GEP
->indices());
289 return TTI
->getGEPCost(GEP
->getSourceElementType(), GEP
->getPointerOperand(),
290 Indices
) == TargetTransformInfo::TCC_Free
;
293 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
294 static bool isAddFoldable(const SCEV
*Base
, ConstantInt
*Index
, Value
*Stride
,
295 TargetTransformInfo
*TTI
) {
296 // Index->getSExtValue() may crash if Index is wider than 64-bit.
297 return Index
->getBitWidth() <= 64 &&
298 TTI
->isLegalAddressingMode(Base
->getType(), nullptr, 0, true,
299 Index
->getSExtValue(), UnknownAddressSpace
);
302 bool StraightLineStrengthReduce::isFoldable(const Candidate
&C
,
303 TargetTransformInfo
*TTI
,
304 const DataLayout
*DL
) {
305 if (C
.CandidateKind
== Candidate::Add
)
306 return isAddFoldable(C
.Base
, C
.Index
, C
.Stride
, TTI
);
307 if (C
.CandidateKind
== Candidate::GEP
)
308 return isGEPFoldable(cast
<GetElementPtrInst
>(C
.Ins
), TTI
);
312 // Returns true if GEP has zero or one non-zero index.
313 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst
*GEP
) {
314 unsigned NumNonZeroIndices
= 0;
315 for (Use
&Idx
: GEP
->indices()) {
316 ConstantInt
*ConstIdx
= dyn_cast
<ConstantInt
>(Idx
);
317 if (ConstIdx
== nullptr || !ConstIdx
->isZero())
320 return NumNonZeroIndices
<= 1;
323 bool StraightLineStrengthReduce::isSimplestForm(const Candidate
&C
) {
324 if (C
.CandidateKind
== Candidate::Add
) {
325 // B + 1 * S or B + (-1) * S
326 return C
.Index
->isOne() || C
.Index
->isMinusOne();
328 if (C
.CandidateKind
== Candidate::Mul
) {
330 return C
.Index
->isZero();
332 if (C
.CandidateKind
== Candidate::GEP
) {
333 // (char*)B + S or (char*)B - S
334 return ((C
.Index
->isOne() || C
.Index
->isMinusOne()) &&
335 hasOnlyOneNonZeroIndex(cast
<GetElementPtrInst
>(C
.Ins
)));
340 // TODO: We currently implement an algorithm whose time complexity is linear in
341 // the number of existing candidates. However, we could do better by using
342 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
343 // maintain all the candidates that dominate the basic block being traversed in
344 // a ScopedHashTable. This hash table is indexed by the base and the stride of
345 // a candidate. Therefore, finding the immediate basis of a candidate boils down
346 // to one hash-table look up.
347 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
348 Candidate::Kind CT
, const SCEV
*B
, ConstantInt
*Idx
, Value
*S
,
350 Candidate
C(CT
, B
, Idx
, S
, I
);
351 // SLSR can complicate an instruction in two cases:
353 // 1. If we can fold I into an addressing mode, computing I is likely free or
354 // takes only one instruction.
356 // 2. I is already in a simplest form. For example, when
359 // rewriting Y to X - 7 * S is probably a bad idea.
361 // In the above cases, we still add I to the candidate list so that I can be
362 // the basis of other candidates, but we leave I's basis blank so that I
363 // won't be rewritten.
364 if (!isFoldable(C
, TTI
, DL
) && !isSimplestForm(C
)) {
365 // Try to compute the immediate basis of C.
366 unsigned NumIterations
= 0;
367 // Limit the scan radius to avoid running in quadratice time.
368 static const unsigned MaxNumIterations
= 50;
369 for (auto Basis
= Candidates
.rbegin();
370 Basis
!= Candidates
.rend() && NumIterations
< MaxNumIterations
;
371 ++Basis
, ++NumIterations
) {
372 if (isBasisFor(*Basis
, C
)) {
378 // Regardless of whether we find a basis for C, we need to push C to the
379 // candidate list so that it can be the basis of other candidates.
380 Candidates
.push_back(C
);
383 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
385 switch (I
->getOpcode()) {
386 case Instruction::Add
:
387 allocateCandidatesAndFindBasisForAdd(I
);
389 case Instruction::Mul
:
390 allocateCandidatesAndFindBasisForMul(I
);
392 case Instruction::GetElementPtr
:
393 allocateCandidatesAndFindBasisForGEP(cast
<GetElementPtrInst
>(I
));
398 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
400 // Try matching B + i * S.
401 if (!isa
<IntegerType
>(I
->getType()))
404 assert(I
->getNumOperands() == 2 && "isn't I an add?");
405 Value
*LHS
= I
->getOperand(0), *RHS
= I
->getOperand(1);
406 allocateCandidatesAndFindBasisForAdd(LHS
, RHS
, I
);
408 allocateCandidatesAndFindBasisForAdd(RHS
, LHS
, I
);
411 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
412 Value
*LHS
, Value
*RHS
, Instruction
*I
) {
414 ConstantInt
*Idx
= nullptr;
415 if (match(RHS
, m_Mul(m_Value(S
), m_ConstantInt(Idx
)))) {
416 // I = LHS + RHS = LHS + Idx * S
417 allocateCandidatesAndFindBasis(Candidate::Add
, SE
->getSCEV(LHS
), Idx
, S
, I
);
418 } else if (match(RHS
, m_Shl(m_Value(S
), m_ConstantInt(Idx
)))) {
419 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
420 APInt
One(Idx
->getBitWidth(), 1);
421 Idx
= ConstantInt::get(Idx
->getContext(), One
<< Idx
->getValue());
422 allocateCandidatesAndFindBasis(Candidate::Add
, SE
->getSCEV(LHS
), Idx
, S
, I
);
424 // At least, I = LHS + 1 * RHS
425 ConstantInt
*One
= ConstantInt::get(cast
<IntegerType
>(I
->getType()), 1);
426 allocateCandidatesAndFindBasis(Candidate::Add
, SE
->getSCEV(LHS
), One
, RHS
,
431 // Returns true if A matches B + C where C is constant.
432 static bool matchesAdd(Value
*A
, Value
*&B
, ConstantInt
*&C
) {
433 return (match(A
, m_Add(m_Value(B
), m_ConstantInt(C
))) ||
434 match(A
, m_Add(m_ConstantInt(C
), m_Value(B
))));
437 // Returns true if A matches B | C where C is constant.
438 static bool matchesOr(Value
*A
, Value
*&B
, ConstantInt
*&C
) {
439 return (match(A
, m_Or(m_Value(B
), m_ConstantInt(C
))) ||
440 match(A
, m_Or(m_ConstantInt(C
), m_Value(B
))));
443 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
444 Value
*LHS
, Value
*RHS
, Instruction
*I
) {
446 ConstantInt
*Idx
= nullptr;
447 if (matchesAdd(LHS
, B
, Idx
)) {
448 // If LHS is in the form of "Base + Index", then I is in the form of
449 // "(Base + Index) * RHS".
450 allocateCandidatesAndFindBasis(Candidate::Mul
, SE
->getSCEV(B
), Idx
, RHS
, I
);
451 } else if (matchesOr(LHS
, B
, Idx
) && haveNoCommonBitsSet(B
, Idx
, *DL
)) {
452 // If LHS is in the form of "Base | Index" and Base and Index have no common
454 // Base | Index = Base + Index
455 // and I is thus in the form of "(Base + Index) * RHS".
456 allocateCandidatesAndFindBasis(Candidate::Mul
, SE
->getSCEV(B
), Idx
, RHS
, I
);
458 // Otherwise, at least try the form (LHS + 0) * RHS.
459 ConstantInt
*Zero
= ConstantInt::get(cast
<IntegerType
>(I
->getType()), 0);
460 allocateCandidatesAndFindBasis(Candidate::Mul
, SE
->getSCEV(LHS
), Zero
, RHS
,
465 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
467 // Try matching (B + i) * S.
468 // TODO: we could extend SLSR to float and vector types.
469 if (!isa
<IntegerType
>(I
->getType()))
472 assert(I
->getNumOperands() == 2 && "isn't I a mul?");
473 Value
*LHS
= I
->getOperand(0), *RHS
= I
->getOperand(1);
474 allocateCandidatesAndFindBasisForMul(LHS
, RHS
, I
);
476 // Symmetrically, try to split RHS to Base + Index.
477 allocateCandidatesAndFindBasisForMul(RHS
, LHS
, I
);
481 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
482 const SCEV
*B
, ConstantInt
*Idx
, Value
*S
, uint64_t ElementSize
,
484 // I = B + sext(Idx *nsw S) * ElementSize
485 // = B + (sext(Idx) * sext(S)) * ElementSize
486 // = B + (sext(Idx) * ElementSize) * sext(S)
487 // Casting to IntegerType is safe because we skipped vector GEPs.
488 IntegerType
*IntPtrTy
= cast
<IntegerType
>(DL
->getIntPtrType(I
->getType()));
489 ConstantInt
*ScaledIdx
= ConstantInt::get(
490 IntPtrTy
, Idx
->getSExtValue() * (int64_t)ElementSize
, true);
491 allocateCandidatesAndFindBasis(Candidate::GEP
, B
, ScaledIdx
, S
, I
);
494 void StraightLineStrengthReduce::factorArrayIndex(Value
*ArrayIdx
,
496 uint64_t ElementSize
,
497 GetElementPtrInst
*GEP
) {
498 // At least, ArrayIdx = ArrayIdx *nsw 1.
499 allocateCandidatesAndFindBasisForGEP(
500 Base
, ConstantInt::get(cast
<IntegerType
>(ArrayIdx
->getType()), 1),
501 ArrayIdx
, ElementSize
, GEP
);
502 Value
*LHS
= nullptr;
503 ConstantInt
*RHS
= nullptr;
504 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
505 // itself. This would allow us to handle the shl case for free. However,
506 // matching SCEVs has two issues:
508 // 1. this would complicate rewriting because the rewriting procedure
509 // would have to translate SCEVs back to IR instructions. This translation
510 // is difficult when LHS is further evaluated to a composite SCEV.
512 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
513 // to strip nsw/nuw flags which are critical for SLSR to trace into
514 // sext'ed multiplication.
515 if (match(ArrayIdx
, m_NSWMul(m_Value(LHS
), m_ConstantInt(RHS
)))) {
516 // SLSR is currently unsafe if i * S may overflow.
517 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
518 allocateCandidatesAndFindBasisForGEP(Base
, RHS
, LHS
, ElementSize
, GEP
);
519 } else if (match(ArrayIdx
, m_NSWShl(m_Value(LHS
), m_ConstantInt(RHS
)))) {
520 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
521 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
522 APInt
One(RHS
->getBitWidth(), 1);
523 ConstantInt
*PowerOf2
=
524 ConstantInt::get(RHS
->getContext(), One
<< RHS
->getValue());
525 allocateCandidatesAndFindBasisForGEP(Base
, PowerOf2
, LHS
, ElementSize
, GEP
);
529 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
530 GetElementPtrInst
*GEP
) {
531 // TODO: handle vector GEPs
532 if (GEP
->getType()->isVectorTy())
535 SmallVector
<const SCEV
*, 4> IndexExprs
;
536 for (Use
&Idx
: GEP
->indices())
537 IndexExprs
.push_back(SE
->getSCEV(Idx
));
539 gep_type_iterator GTI
= gep_type_begin(GEP
);
540 for (unsigned I
= 1, E
= GEP
->getNumOperands(); I
!= E
; ++I
, ++GTI
) {
544 const SCEV
*OrigIndexExpr
= IndexExprs
[I
- 1];
545 IndexExprs
[I
- 1] = SE
->getZero(OrigIndexExpr
->getType());
547 // The base of this candidate is GEP's base plus the offsets of all
548 // indices except this current one.
549 const SCEV
*BaseExpr
= SE
->getGEPExpr(cast
<GEPOperator
>(GEP
), IndexExprs
);
550 Value
*ArrayIdx
= GEP
->getOperand(I
);
551 uint64_t ElementSize
= DL
->getTypeAllocSize(GTI
.getIndexedType());
552 if (ArrayIdx
->getType()->getIntegerBitWidth() <=
553 DL
->getPointerSizeInBits(GEP
->getAddressSpace())) {
554 // Skip factoring if ArrayIdx is wider than the pointer size, because
555 // ArrayIdx is implicitly truncated to the pointer size.
556 factorArrayIndex(ArrayIdx
, BaseExpr
, ElementSize
, GEP
);
558 // When ArrayIdx is the sext of a value, we try to factor that value as
559 // well. Handling this case is important because array indices are
560 // typically sign-extended to the pointer size.
561 Value
*TruncatedArrayIdx
= nullptr;
562 if (match(ArrayIdx
, m_SExt(m_Value(TruncatedArrayIdx
))) &&
563 TruncatedArrayIdx
->getType()->getIntegerBitWidth() <=
564 DL
->getPointerSizeInBits(GEP
->getAddressSpace())) {
565 // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
566 // because TruncatedArrayIdx is implicitly truncated to the pointer size.
567 factorArrayIndex(TruncatedArrayIdx
, BaseExpr
, ElementSize
, GEP
);
570 IndexExprs
[I
- 1] = OrigIndexExpr
;
574 // A helper function that unifies the bitwidth of A and B.
575 static void unifyBitWidth(APInt
&A
, APInt
&B
) {
576 if (A
.getBitWidth() < B
.getBitWidth())
577 A
= A
.sext(B
.getBitWidth());
578 else if (A
.getBitWidth() > B
.getBitWidth())
579 B
= B
.sext(A
.getBitWidth());
582 Value
*StraightLineStrengthReduce::emitBump(const Candidate
&Basis
,
584 IRBuilder
<> &Builder
,
585 const DataLayout
*DL
,
586 bool &BumpWithUglyGEP
) {
587 APInt Idx
= C
.Index
->getValue(), BasisIdx
= Basis
.Index
->getValue();
588 unifyBitWidth(Idx
, BasisIdx
);
589 APInt IndexOffset
= Idx
- BasisIdx
;
591 BumpWithUglyGEP
= false;
592 if (Basis
.CandidateKind
== Candidate::GEP
) {
594 IndexOffset
.getBitWidth(),
595 DL
->getTypeAllocSize(
596 cast
<GetElementPtrInst
>(Basis
.Ins
)->getResultElementType()));
598 APInt::sdivrem(IndexOffset
, ElementSize
, Q
, R
);
602 BumpWithUglyGEP
= true;
605 // Compute Bump = C - Basis = (i' - i) * S.
606 // Common case 1: if (i' - i) is 1, Bump = S.
607 if (IndexOffset
== 1)
609 // Common case 2: if (i' - i) is -1, Bump = -S.
610 if (IndexOffset
.isAllOnesValue())
611 return Builder
.CreateNeg(C
.Stride
);
613 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
614 // have different bit widths.
615 IntegerType
*DeltaType
=
616 IntegerType::get(Basis
.Ins
->getContext(), IndexOffset
.getBitWidth());
617 Value
*ExtendedStride
= Builder
.CreateSExtOrTrunc(C
.Stride
, DeltaType
);
618 if (IndexOffset
.isPowerOf2()) {
619 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
620 ConstantInt
*Exponent
= ConstantInt::get(DeltaType
, IndexOffset
.logBase2());
621 return Builder
.CreateShl(ExtendedStride
, Exponent
);
623 if ((-IndexOffset
).isPowerOf2()) {
624 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
625 ConstantInt
*Exponent
=
626 ConstantInt::get(DeltaType
, (-IndexOffset
).logBase2());
627 return Builder
.CreateNeg(Builder
.CreateShl(ExtendedStride
, Exponent
));
629 Constant
*Delta
= ConstantInt::get(DeltaType
, IndexOffset
);
630 return Builder
.CreateMul(ExtendedStride
, Delta
);
633 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
634 const Candidate
&C
, const Candidate
&Basis
) {
635 assert(C
.CandidateKind
== Basis
.CandidateKind
&& C
.Base
== Basis
.Base
&&
636 C
.Stride
== Basis
.Stride
);
637 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
638 // basis of a candidate cannot be unlinked before the candidate.
639 assert(Basis
.Ins
->getParent() != nullptr && "the basis is unlinked");
641 // An instruction can correspond to multiple candidates. Therefore, instead of
642 // simply deleting an instruction when we rewrite it, we mark its parent as
643 // nullptr (i.e. unlink it) so that we can skip the candidates whose
644 // instruction is already rewritten.
645 if (!C
.Ins
->getParent())
648 IRBuilder
<> Builder(C
.Ins
);
649 bool BumpWithUglyGEP
;
650 Value
*Bump
= emitBump(Basis
, C
, Builder
, DL
, BumpWithUglyGEP
);
651 Value
*Reduced
= nullptr; // equivalent to but weaker than C.Ins
652 switch (C
.CandidateKind
) {
654 case Candidate::Mul
: {
657 if (match(Bump
, m_Neg(m_Value(NegBump
)))) {
658 // If Bump is a neg instruction, emit C = Basis - (-Bump).
659 Reduced
= Builder
.CreateSub(Basis
.Ins
, NegBump
);
660 // We only use the negative argument of Bump, and Bump itself may be
662 RecursivelyDeleteTriviallyDeadInstructions(Bump
);
664 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
665 // usually unsound, e.g.,
667 // X = (-2 +nsw 1) *nsw INT_MAX
668 // Y = (-2 +nsw 3) *nsw INT_MAX
670 // Y = X + 2 * INT_MAX
672 // Neither + and * in the resultant expression are nsw.
673 Reduced
= Builder
.CreateAdd(Basis
.Ins
, Bump
);
679 Type
*IntPtrTy
= DL
->getIntPtrType(C
.Ins
->getType());
680 bool InBounds
= cast
<GetElementPtrInst
>(C
.Ins
)->isInBounds();
681 if (BumpWithUglyGEP
) {
682 // C = (char *)Basis + Bump
683 unsigned AS
= Basis
.Ins
->getType()->getPointerAddressSpace();
684 Type
*CharTy
= Type::getInt8PtrTy(Basis
.Ins
->getContext(), AS
);
685 Reduced
= Builder
.CreateBitCast(Basis
.Ins
, CharTy
);
688 Builder
.CreateInBoundsGEP(Builder
.getInt8Ty(), Reduced
, Bump
);
690 Reduced
= Builder
.CreateGEP(Builder
.getInt8Ty(), Reduced
, Bump
);
691 Reduced
= Builder
.CreateBitCast(Reduced
, C
.Ins
->getType());
693 // C = gep Basis, Bump
694 // Canonicalize bump to pointer size.
695 Bump
= Builder
.CreateSExtOrTrunc(Bump
, IntPtrTy
);
697 Reduced
= Builder
.CreateInBoundsGEP(
698 cast
<GetElementPtrInst
>(Basis
.Ins
)->getResultElementType(),
701 Reduced
= Builder
.CreateGEP(
702 cast
<GetElementPtrInst
>(Basis
.Ins
)->getResultElementType(),
708 llvm_unreachable("C.CandidateKind is invalid");
710 Reduced
->takeName(C
.Ins
);
711 C
.Ins
->replaceAllUsesWith(Reduced
);
712 // Unlink C.Ins so that we can skip other candidates also corresponding to
713 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
714 C
.Ins
->removeFromParent();
715 UnlinkedInstructions
.push_back(C
.Ins
);
718 bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function
&F
) {
722 auto *TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
723 auto *DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
724 auto *SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
725 return StraightLineStrengthReduce(DL
, DT
, SE
, TTI
).runOnFunction(F
);
728 bool StraightLineStrengthReduce::runOnFunction(Function
&F
) {
729 // Traverse the dominator tree in the depth-first order. This order makes sure
730 // all bases of a candidate are in Candidates when we process it.
731 for (const auto Node
: depth_first(DT
))
732 for (auto &I
: *(Node
->getBlock()))
733 allocateCandidatesAndFindBasis(&I
);
735 // Rewrite candidates in the reverse depth-first order. This order makes sure
736 // a candidate being rewritten is not a basis for any other candidate.
737 while (!Candidates
.empty()) {
738 const Candidate
&C
= Candidates
.back();
739 if (C
.Basis
!= nullptr) {
740 rewriteCandidateWithBasis(C
, *C
.Basis
);
742 Candidates
.pop_back();
745 // Delete all unlink instructions.
746 for (auto *UnlinkedInst
: UnlinkedInstructions
) {
747 for (unsigned I
= 0, E
= UnlinkedInst
->getNumOperands(); I
!= E
; ++I
) {
748 Value
*Op
= UnlinkedInst
->getOperand(I
);
749 UnlinkedInst
->setOperand(I
, nullptr);
750 RecursivelyDeleteTriviallyDeadInstructions(Op
);
752 UnlinkedInst
->deleteValue();
754 bool Ret
= !UnlinkedInstructions
.empty();
755 UnlinkedInstructions
.clear();
762 StraightLineStrengthReducePass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
763 const DataLayout
*DL
= &F
.getParent()->getDataLayout();
764 auto *DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
765 auto *SE
= &AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
766 auto *TTI
= &AM
.getResult
<TargetIRAnalysis
>(F
);
768 if (!StraightLineStrengthReduce(DL
, DT
, SE
, TTI
).runOnFunction(F
))
769 return PreservedAnalyses::all();
771 PreservedAnalyses PA
;
772 PA
.preserveSet
<CFGAnalyses
>();
773 PA
.preserve
<DominatorTreeAnalysis
>();
774 PA
.preserve
<ScalarEvolutionAnalysis
>();
775 PA
.preserve
<TargetIRAnalysis
>();