[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Scalar / StructurizeCFG.cpp
blobac580b4161f4ba410941f7704df291f641240164
1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/StructurizeCFG.h"
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/MapVector.h"
12 #include "llvm/ADT/SCCIterator.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueHandle.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Transforms/Scalar.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/Local.h"
49 #include "llvm/Transforms/Utils/SSAUpdater.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <utility>
54 using namespace llvm;
55 using namespace llvm::PatternMatch;
57 #define DEBUG_TYPE "structurizecfg"
59 // The name for newly created blocks.
60 const char FlowBlockName[] = "Flow";
62 namespace {
64 static cl::opt<bool> ForceSkipUniformRegions(
65 "structurizecfg-skip-uniform-regions",
66 cl::Hidden,
67 cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
68 cl::init(false));
70 static cl::opt<bool>
71 RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
72 cl::desc("Allow relaxed uniform region checks"),
73 cl::init(true));
75 // Definition of the complex types used in this pass.
77 using BBValuePair = std::pair<BasicBlock *, Value *>;
79 using RNVector = SmallVector<RegionNode *, 8>;
80 using BBVector = SmallVector<BasicBlock *, 8>;
81 using BranchVector = SmallVector<BranchInst *, 8>;
82 using BBValueVector = SmallVector<BBValuePair, 2>;
84 using BBSet = SmallPtrSet<BasicBlock *, 8>;
86 using PhiMap = MapVector<PHINode *, BBValueVector>;
87 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
89 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
90 using BBPredicates = DenseMap<BasicBlock *, Value *>;
91 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
92 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
94 // A traits type that is intended to be used in graph algorithms. The graph
95 // traits starts at an entry node, and traverses the RegionNodes that are in
96 // the Nodes set.
97 struct SubGraphTraits {
98 using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
99 using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
101 // This wraps a set of Nodes into the iterator, so we know which edges to
102 // filter out.
103 class WrappedSuccIterator
104 : public iterator_adaptor_base<
105 WrappedSuccIterator, BaseSuccIterator,
106 typename std::iterator_traits<BaseSuccIterator>::iterator_category,
107 NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
108 SmallDenseSet<RegionNode *> *Nodes;
110 public:
111 WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
112 : iterator_adaptor_base(It), Nodes(Nodes) {}
114 NodeRef operator*() const { return {*I, Nodes}; }
117 static bool filterAll(const NodeRef &N) { return true; }
118 static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
120 using ChildIteratorType =
121 filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
123 static NodeRef getEntryNode(Region *R) {
124 return {GraphTraits<Region *>::getEntryNode(R), nullptr};
127 static NodeRef getEntryNode(NodeRef N) { return N; }
129 static iterator_range<ChildIteratorType> children(const NodeRef &N) {
130 auto *filter = N.second ? &filterSet : &filterAll;
131 return make_filter_range(
132 make_range<WrappedSuccIterator>(
133 {GraphTraits<RegionNode *>::child_begin(N.first), N.second},
134 {GraphTraits<RegionNode *>::child_end(N.first), N.second}),
135 filter);
138 static ChildIteratorType child_begin(const NodeRef &N) {
139 return children(N).begin();
142 static ChildIteratorType child_end(const NodeRef &N) {
143 return children(N).end();
147 /// Finds the nearest common dominator of a set of BasicBlocks.
149 /// For every BB you add to the set, you can specify whether we "remember" the
150 /// block. When you get the common dominator, you can also ask whether it's one
151 /// of the blocks we remembered.
152 class NearestCommonDominator {
153 DominatorTree *DT;
154 BasicBlock *Result = nullptr;
155 bool ResultIsRemembered = false;
157 /// Add BB to the resulting dominator.
158 void addBlock(BasicBlock *BB, bool Remember) {
159 if (!Result) {
160 Result = BB;
161 ResultIsRemembered = Remember;
162 return;
165 BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
166 if (NewResult != Result)
167 ResultIsRemembered = false;
168 if (NewResult == BB)
169 ResultIsRemembered |= Remember;
170 Result = NewResult;
173 public:
174 explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
176 void addBlock(BasicBlock *BB) {
177 addBlock(BB, /* Remember = */ false);
180 void addAndRememberBlock(BasicBlock *BB) {
181 addBlock(BB, /* Remember = */ true);
184 /// Get the nearest common dominator of all the BBs added via addBlock() and
185 /// addAndRememberBlock().
186 BasicBlock *result() { return Result; }
188 /// Is the BB returned by getResult() one of the blocks we added to the set
189 /// with addAndRememberBlock()?
190 bool resultIsRememberedBlock() { return ResultIsRemembered; }
193 /// Transforms the control flow graph on one single entry/exit region
194 /// at a time.
196 /// After the transform all "If"/"Then"/"Else" style control flow looks like
197 /// this:
199 /// \verbatim
200 /// 1
201 /// ||
202 /// | |
203 /// 2 |
204 /// | /
205 /// |/
206 /// 3
207 /// || Where:
208 /// | | 1 = "If" block, calculates the condition
209 /// 4 | 2 = "Then" subregion, runs if the condition is true
210 /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
211 /// |/ 4 = "Else" optional subregion, runs if the condition is false
212 /// 5 5 = "End" block, also rejoins the control flow
213 /// \endverbatim
215 /// Control flow is expressed as a branch where the true exit goes into the
216 /// "Then"/"Else" region, while the false exit skips the region
217 /// The condition for the optional "Else" region is expressed as a PHI node.
218 /// The incoming values of the PHI node are true for the "If" edge and false
219 /// for the "Then" edge.
221 /// Additionally to that even complicated loops look like this:
223 /// \verbatim
224 /// 1
225 /// ||
226 /// | |
227 /// 2 ^ Where:
228 /// | / 1 = "Entry" block
229 /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block
230 /// 3 3 = "Flow" block, with back edge to entry block
231 /// |
232 /// \endverbatim
234 /// The back edge of the "Flow" block is always on the false side of the branch
235 /// while the true side continues the general flow. So the loop condition
236 /// consist of a network of PHI nodes where the true incoming values expresses
237 /// breaks and the false values expresses continue states.
239 class StructurizeCFG {
240 Type *Boolean;
241 ConstantInt *BoolTrue;
242 ConstantInt *BoolFalse;
243 UndefValue *BoolUndef;
245 Function *Func;
246 Region *ParentRegion;
248 LegacyDivergenceAnalysis *DA = nullptr;
249 DominatorTree *DT;
251 SmallVector<RegionNode *, 8> Order;
252 BBSet Visited;
254 SmallVector<WeakVH, 8> AffectedPhis;
255 BBPhiMap DeletedPhis;
256 BB2BBVecMap AddedPhis;
258 PredMap Predicates;
259 BranchVector Conditions;
261 BB2BBMap Loops;
262 PredMap LoopPreds;
263 BranchVector LoopConds;
265 RegionNode *PrevNode;
267 void orderNodes();
269 void analyzeLoops(RegionNode *N);
271 Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
273 void gatherPredicates(RegionNode *N);
275 void collectInfos();
277 void insertConditions(bool Loops);
279 void delPhiValues(BasicBlock *From, BasicBlock *To);
281 void addPhiValues(BasicBlock *From, BasicBlock *To);
283 void setPhiValues();
285 void simplifyAffectedPhis();
287 void killTerminator(BasicBlock *BB);
289 void changeExit(RegionNode *Node, BasicBlock *NewExit,
290 bool IncludeDominator);
292 BasicBlock *getNextFlow(BasicBlock *Dominator);
294 BasicBlock *needPrefix(bool NeedEmpty);
296 BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
298 void setPrevNode(BasicBlock *BB);
300 bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
302 bool isPredictableTrue(RegionNode *Node);
304 void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
306 void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
308 void createFlow();
310 void rebuildSSA();
312 public:
313 void init(Region *R);
314 bool run(Region *R, DominatorTree *DT);
315 bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA);
318 class StructurizeCFGLegacyPass : public RegionPass {
319 bool SkipUniformRegions;
321 public:
322 static char ID;
324 explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false)
325 : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) {
326 if (ForceSkipUniformRegions.getNumOccurrences())
327 SkipUniformRegions = ForceSkipUniformRegions.getValue();
328 initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry());
331 bool runOnRegion(Region *R, RGPassManager &RGM) override {
332 StructurizeCFG SCFG;
333 SCFG.init(R);
334 if (SkipUniformRegions) {
335 LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>();
336 if (SCFG.makeUniformRegion(R, DA))
337 return false;
339 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
340 return SCFG.run(R, DT);
343 StringRef getPassName() const override { return "Structurize control flow"; }
345 void getAnalysisUsage(AnalysisUsage &AU) const override {
346 if (SkipUniformRegions)
347 AU.addRequired<LegacyDivergenceAnalysis>();
348 AU.addRequiredID(LowerSwitchID);
349 AU.addRequired<DominatorTreeWrapperPass>();
351 AU.addPreserved<DominatorTreeWrapperPass>();
352 RegionPass::getAnalysisUsage(AU);
356 } // end anonymous namespace
358 char StructurizeCFGLegacyPass::ID = 0;
360 INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg",
361 "Structurize the CFG", false, false)
362 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
363 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
364 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
365 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
366 INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg",
367 "Structurize the CFG", false, false)
369 /// Build up the general order of nodes, by performing a topological sort of the
370 /// parent region's nodes, while ensuring that there is no outer cycle node
371 /// between any two inner cycle nodes.
372 void StructurizeCFG::orderNodes() {
373 Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
374 GraphTraits<Region *>::nodes_end(ParentRegion)));
375 if (Order.empty())
376 return;
378 SmallDenseSet<RegionNode *> Nodes;
379 auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
381 // A list of range indices of SCCs in Order, to be processed.
382 SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
383 unsigned I = 0, E = Order.size();
384 while (true) {
385 // Run through all the SCCs in the subgraph starting with Entry.
386 for (auto SCCI =
387 scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
388 EntryNode);
389 !SCCI.isAtEnd(); ++SCCI) {
390 auto &SCC = *SCCI;
392 // An SCC up to the size of 2, can be reduced to an entry (the last node),
393 // and a possible additional node. Therefore, it is already in order, and
394 // there is no need to add it to the work-list.
395 unsigned Size = SCC.size();
396 if (Size > 2)
397 WorkList.emplace_back(I, I + Size);
399 // Add the SCC nodes to the Order array.
400 for (auto &N : SCC) {
401 assert(I < E && "SCC size mismatch!");
402 Order[I++] = N.first;
405 assert(I == E && "SCC size mismatch!");
407 // If there are no more SCCs to order, then we are done.
408 if (WorkList.empty())
409 break;
411 std::tie(I, E) = WorkList.pop_back_val();
413 // Collect the set of nodes in the SCC's subgraph. These are only the
414 // possible child nodes; we do not add the entry (last node) otherwise we
415 // will have the same exact SCC all over again.
416 Nodes.clear();
417 Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
419 // Update the entry node.
420 EntryNode.first = Order[E - 1];
421 EntryNode.second = &Nodes;
425 /// Determine the end of the loops
426 void StructurizeCFG::analyzeLoops(RegionNode *N) {
427 if (N->isSubRegion()) {
428 // Test for exit as back edge
429 BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
430 if (Visited.count(Exit))
431 Loops[Exit] = N->getEntry();
433 } else {
434 // Test for successors as back edge
435 BasicBlock *BB = N->getNodeAs<BasicBlock>();
436 BranchInst *Term = cast<BranchInst>(BB->getTerminator());
438 for (BasicBlock *Succ : Term->successors())
439 if (Visited.count(Succ))
440 Loops[Succ] = BB;
444 /// Build the condition for one edge
445 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
446 bool Invert) {
447 Value *Cond = Invert ? BoolFalse : BoolTrue;
448 if (Term->isConditional()) {
449 Cond = Term->getCondition();
451 if (Idx != (unsigned)Invert)
452 Cond = invertCondition(Cond);
454 return Cond;
457 /// Analyze the predecessors of each block and build up predicates
458 void StructurizeCFG::gatherPredicates(RegionNode *N) {
459 RegionInfo *RI = ParentRegion->getRegionInfo();
460 BasicBlock *BB = N->getEntry();
461 BBPredicates &Pred = Predicates[BB];
462 BBPredicates &LPred = LoopPreds[BB];
464 for (BasicBlock *P : predecessors(BB)) {
465 // Ignore it if it's a branch from outside into our region entry
466 if (!ParentRegion->contains(P))
467 continue;
469 Region *R = RI->getRegionFor(P);
470 if (R == ParentRegion) {
471 // It's a top level block in our region
472 BranchInst *Term = cast<BranchInst>(P->getTerminator());
473 for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
474 BasicBlock *Succ = Term->getSuccessor(i);
475 if (Succ != BB)
476 continue;
478 if (Visited.count(P)) {
479 // Normal forward edge
480 if (Term->isConditional()) {
481 // Try to treat it like an ELSE block
482 BasicBlock *Other = Term->getSuccessor(!i);
483 if (Visited.count(Other) && !Loops.count(Other) &&
484 !Pred.count(Other) && !Pred.count(P)) {
486 Pred[Other] = BoolFalse;
487 Pred[P] = BoolTrue;
488 continue;
491 Pred[P] = buildCondition(Term, i, false);
492 } else {
493 // Back edge
494 LPred[P] = buildCondition(Term, i, true);
497 } else {
498 // It's an exit from a sub region
499 while (R->getParent() != ParentRegion)
500 R = R->getParent();
502 // Edge from inside a subregion to its entry, ignore it
503 if (*R == *N)
504 continue;
506 BasicBlock *Entry = R->getEntry();
507 if (Visited.count(Entry))
508 Pred[Entry] = BoolTrue;
509 else
510 LPred[Entry] = BoolFalse;
515 /// Collect various loop and predicate infos
516 void StructurizeCFG::collectInfos() {
517 // Reset predicate
518 Predicates.clear();
520 // and loop infos
521 Loops.clear();
522 LoopPreds.clear();
524 // Reset the visited nodes
525 Visited.clear();
527 for (RegionNode *RN : reverse(Order)) {
528 LLVM_DEBUG(dbgs() << "Visiting: "
529 << (RN->isSubRegion() ? "SubRegion with entry: " : "")
530 << RN->getEntry()->getName() << "\n");
532 // Analyze all the conditions leading to a node
533 gatherPredicates(RN);
535 // Remember that we've seen this node
536 Visited.insert(RN->getEntry());
538 // Find the last back edges
539 analyzeLoops(RN);
543 /// Insert the missing branch conditions
544 void StructurizeCFG::insertConditions(bool Loops) {
545 BranchVector &Conds = Loops ? LoopConds : Conditions;
546 Value *Default = Loops ? BoolTrue : BoolFalse;
547 SSAUpdater PhiInserter;
549 for (BranchInst *Term : Conds) {
550 assert(Term->isConditional());
552 BasicBlock *Parent = Term->getParent();
553 BasicBlock *SuccTrue = Term->getSuccessor(0);
554 BasicBlock *SuccFalse = Term->getSuccessor(1);
556 PhiInserter.Initialize(Boolean, "");
557 PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
558 PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
560 BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
562 NearestCommonDominator Dominator(DT);
563 Dominator.addBlock(Parent);
565 Value *ParentValue = nullptr;
566 for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
567 BasicBlock *BB = BBAndPred.first;
568 Value *Pred = BBAndPred.second;
570 if (BB == Parent) {
571 ParentValue = Pred;
572 break;
574 PhiInserter.AddAvailableValue(BB, Pred);
575 Dominator.addAndRememberBlock(BB);
578 if (ParentValue) {
579 Term->setCondition(ParentValue);
580 } else {
581 if (!Dominator.resultIsRememberedBlock())
582 PhiInserter.AddAvailableValue(Dominator.result(), Default);
584 Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
589 /// Remove all PHI values coming from "From" into "To" and remember
590 /// them in DeletedPhis
591 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
592 PhiMap &Map = DeletedPhis[To];
593 for (PHINode &Phi : To->phis()) {
594 bool Recorded = false;
595 while (Phi.getBasicBlockIndex(From) != -1) {
596 Value *Deleted = Phi.removeIncomingValue(From, false);
597 Map[&Phi].push_back(std::make_pair(From, Deleted));
598 if (!Recorded) {
599 AffectedPhis.push_back(&Phi);
600 Recorded = true;
606 /// Add a dummy PHI value as soon as we knew the new predecessor
607 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
608 for (PHINode &Phi : To->phis()) {
609 Value *Undef = UndefValue::get(Phi.getType());
610 Phi.addIncoming(Undef, From);
612 AddedPhis[To].push_back(From);
615 /// Add the real PHI value as soon as everything is set up
616 void StructurizeCFG::setPhiValues() {
617 SmallVector<PHINode *, 8> InsertedPhis;
618 SSAUpdater Updater(&InsertedPhis);
619 for (const auto &AddedPhi : AddedPhis) {
620 BasicBlock *To = AddedPhi.first;
621 const BBVector &From = AddedPhi.second;
623 if (!DeletedPhis.count(To))
624 continue;
626 PhiMap &Map = DeletedPhis[To];
627 for (const auto &PI : Map) {
628 PHINode *Phi = PI.first;
629 Value *Undef = UndefValue::get(Phi->getType());
630 Updater.Initialize(Phi->getType(), "");
631 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
632 Updater.AddAvailableValue(To, Undef);
634 NearestCommonDominator Dominator(DT);
635 Dominator.addBlock(To);
636 for (const auto &VI : PI.second) {
637 Updater.AddAvailableValue(VI.first, VI.second);
638 Dominator.addAndRememberBlock(VI.first);
641 if (!Dominator.resultIsRememberedBlock())
642 Updater.AddAvailableValue(Dominator.result(), Undef);
644 for (BasicBlock *FI : From)
645 Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
646 AffectedPhis.push_back(Phi);
649 DeletedPhis.erase(To);
651 assert(DeletedPhis.empty());
653 AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
656 void StructurizeCFG::simplifyAffectedPhis() {
657 bool Changed;
658 do {
659 Changed = false;
660 SimplifyQuery Q(Func->getParent()->getDataLayout());
661 Q.DT = DT;
662 for (WeakVH VH : AffectedPhis) {
663 if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
664 if (auto NewValue = SimplifyInstruction(Phi, Q)) {
665 Phi->replaceAllUsesWith(NewValue);
666 Phi->eraseFromParent();
667 Changed = true;
671 } while (Changed);
674 /// Remove phi values from all successors and then remove the terminator.
675 void StructurizeCFG::killTerminator(BasicBlock *BB) {
676 Instruction *Term = BB->getTerminator();
677 if (!Term)
678 return;
680 for (BasicBlock *Succ : successors(BB))
681 delPhiValues(BB, Succ);
683 if (DA)
684 DA->removeValue(Term);
685 Term->eraseFromParent();
688 /// Let node exit(s) point to NewExit
689 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
690 bool IncludeDominator) {
691 if (Node->isSubRegion()) {
692 Region *SubRegion = Node->getNodeAs<Region>();
693 BasicBlock *OldExit = SubRegion->getExit();
694 BasicBlock *Dominator = nullptr;
696 // Find all the edges from the sub region to the exit.
697 // We use make_early_inc_range here because we modify BB's terminator.
698 for (BasicBlock *BB : llvm::make_early_inc_range(predecessors(OldExit))) {
699 if (!SubRegion->contains(BB))
700 continue;
702 // Modify the edges to point to the new exit
703 delPhiValues(BB, OldExit);
704 BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
705 addPhiValues(BB, NewExit);
707 // Find the new dominator (if requested)
708 if (IncludeDominator) {
709 if (!Dominator)
710 Dominator = BB;
711 else
712 Dominator = DT->findNearestCommonDominator(Dominator, BB);
716 // Change the dominator (if requested)
717 if (Dominator)
718 DT->changeImmediateDominator(NewExit, Dominator);
720 // Update the region info
721 SubRegion->replaceExit(NewExit);
722 } else {
723 BasicBlock *BB = Node->getNodeAs<BasicBlock>();
724 killTerminator(BB);
725 BranchInst::Create(NewExit, BB);
726 addPhiValues(BB, NewExit);
727 if (IncludeDominator)
728 DT->changeImmediateDominator(NewExit, BB);
732 /// Create a new flow node and update dominator tree and region info
733 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
734 LLVMContext &Context = Func->getContext();
735 BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
736 Order.back()->getEntry();
737 BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
738 Func, Insert);
739 DT->addNewBlock(Flow, Dominator);
740 ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
741 return Flow;
744 /// Create a new or reuse the previous node as flow node
745 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
746 BasicBlock *Entry = PrevNode->getEntry();
748 if (!PrevNode->isSubRegion()) {
749 killTerminator(Entry);
750 if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
751 return Entry;
754 // create a new flow node
755 BasicBlock *Flow = getNextFlow(Entry);
757 // and wire it up
758 changeExit(PrevNode, Flow, true);
759 PrevNode = ParentRegion->getBBNode(Flow);
760 return Flow;
763 /// Returns the region exit if possible, otherwise just a new flow node
764 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
765 bool ExitUseAllowed) {
766 if (!Order.empty() || !ExitUseAllowed)
767 return getNextFlow(Flow);
769 BasicBlock *Exit = ParentRegion->getExit();
770 DT->changeImmediateDominator(Exit, Flow);
771 addPhiValues(Flow, Exit);
772 return Exit;
775 /// Set the previous node
776 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
777 PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
778 : nullptr;
781 /// Does BB dominate all the predicates of Node?
782 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
783 BBPredicates &Preds = Predicates[Node->getEntry()];
784 return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
785 return DT->dominates(BB, Pred.first);
789 /// Can we predict that this node will always be called?
790 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
791 BBPredicates &Preds = Predicates[Node->getEntry()];
792 bool Dominated = false;
794 // Regionentry is always true
795 if (!PrevNode)
796 return true;
798 for (std::pair<BasicBlock*, Value*> Pred : Preds) {
799 BasicBlock *BB = Pred.first;
800 Value *V = Pred.second;
802 if (V != BoolTrue)
803 return false;
805 if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
806 Dominated = true;
809 // TODO: The dominator check is too strict
810 return Dominated;
813 /// Take one node from the order vector and wire it up
814 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
815 BasicBlock *LoopEnd) {
816 RegionNode *Node = Order.pop_back_val();
817 Visited.insert(Node->getEntry());
819 if (isPredictableTrue(Node)) {
820 // Just a linear flow
821 if (PrevNode) {
822 changeExit(PrevNode, Node->getEntry(), true);
824 PrevNode = Node;
825 } else {
826 // Insert extra prefix node (or reuse last one)
827 BasicBlock *Flow = needPrefix(false);
829 // Insert extra postfix node (or use exit instead)
830 BasicBlock *Entry = Node->getEntry();
831 BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
833 // let it point to entry and next block
834 Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
835 addPhiValues(Flow, Entry);
836 DT->changeImmediateDominator(Entry, Flow);
838 PrevNode = Node;
839 while (!Order.empty() && !Visited.count(LoopEnd) &&
840 dominatesPredicates(Entry, Order.back())) {
841 handleLoops(false, LoopEnd);
844 changeExit(PrevNode, Next, false);
845 setPrevNode(Next);
849 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
850 BasicBlock *LoopEnd) {
851 RegionNode *Node = Order.back();
852 BasicBlock *LoopStart = Node->getEntry();
854 if (!Loops.count(LoopStart)) {
855 wireFlow(ExitUseAllowed, LoopEnd);
856 return;
859 if (!isPredictableTrue(Node))
860 LoopStart = needPrefix(true);
862 LoopEnd = Loops[Node->getEntry()];
863 wireFlow(false, LoopEnd);
864 while (!Visited.count(LoopEnd)) {
865 handleLoops(false, LoopEnd);
868 // If the start of the loop is the entry block, we can't branch to it so
869 // insert a new dummy entry block.
870 Function *LoopFunc = LoopStart->getParent();
871 if (LoopStart == &LoopFunc->getEntryBlock()) {
872 LoopStart->setName("entry.orig");
874 BasicBlock *NewEntry =
875 BasicBlock::Create(LoopStart->getContext(),
876 "entry",
877 LoopFunc,
878 LoopStart);
879 BranchInst::Create(LoopStart, NewEntry);
880 DT->setNewRoot(NewEntry);
883 // Create an extra loop end node
884 LoopEnd = needPrefix(false);
885 BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
886 LoopConds.push_back(BranchInst::Create(Next, LoopStart,
887 BoolUndef, LoopEnd));
888 addPhiValues(LoopEnd, LoopStart);
889 setPrevNode(Next);
892 /// After this function control flow looks like it should be, but
893 /// branches and PHI nodes only have undefined conditions.
894 void StructurizeCFG::createFlow() {
895 BasicBlock *Exit = ParentRegion->getExit();
896 bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
898 AffectedPhis.clear();
899 DeletedPhis.clear();
900 AddedPhis.clear();
901 Conditions.clear();
902 LoopConds.clear();
904 PrevNode = nullptr;
905 Visited.clear();
907 while (!Order.empty()) {
908 handleLoops(EntryDominatesExit, nullptr);
911 if (PrevNode)
912 changeExit(PrevNode, Exit, EntryDominatesExit);
913 else
914 assert(EntryDominatesExit);
917 /// Handle a rare case where the disintegrated nodes instructions
918 /// no longer dominate all their uses. Not sure if this is really necessary
919 void StructurizeCFG::rebuildSSA() {
920 SSAUpdater Updater;
921 for (BasicBlock *BB : ParentRegion->blocks())
922 for (Instruction &I : *BB) {
923 bool Initialized = false;
924 // We may modify the use list as we iterate over it, so we use
925 // make_early_inc_range.
926 for (Use &U : llvm::make_early_inc_range(I.uses())) {
927 Instruction *User = cast<Instruction>(U.getUser());
928 if (User->getParent() == BB) {
929 continue;
930 } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
931 if (UserPN->getIncomingBlock(U) == BB)
932 continue;
935 if (DT->dominates(&I, User))
936 continue;
938 if (!Initialized) {
939 Value *Undef = UndefValue::get(I.getType());
940 Updater.Initialize(I.getType(), "");
941 Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
942 Updater.AddAvailableValue(BB, &I);
943 Initialized = true;
945 Updater.RewriteUseAfterInsertions(U);
950 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
951 const LegacyDivergenceAnalysis &DA) {
952 // Bool for if all sub-regions are uniform.
953 bool SubRegionsAreUniform = true;
954 // Count of how many direct children are conditional.
955 unsigned ConditionalDirectChildren = 0;
957 for (auto E : R->elements()) {
958 if (!E->isSubRegion()) {
959 auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
960 if (!Br || !Br->isConditional())
961 continue;
963 if (!DA.isUniform(Br))
964 return false;
966 // One of our direct children is conditional.
967 ConditionalDirectChildren++;
969 LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
970 << " has uniform terminator\n");
971 } else {
972 // Explicitly refuse to treat regions as uniform if they have non-uniform
973 // subregions. We cannot rely on DivergenceAnalysis for branches in
974 // subregions because those branches may have been removed and re-created,
975 // so we look for our metadata instead.
977 // Warning: It would be nice to treat regions as uniform based only on
978 // their direct child basic blocks' terminators, regardless of whether
979 // subregions are uniform or not. However, this requires a very careful
980 // look at SIAnnotateControlFlow to make sure nothing breaks there.
981 for (auto BB : E->getNodeAs<Region>()->blocks()) {
982 auto Br = dyn_cast<BranchInst>(BB->getTerminator());
983 if (!Br || !Br->isConditional())
984 continue;
986 if (!Br->getMetadata(UniformMDKindID)) {
987 // Early exit if we cannot have relaxed uniform regions.
988 if (!RelaxedUniformRegions)
989 return false;
991 SubRegionsAreUniform = false;
992 break;
998 // Our region is uniform if:
999 // 1. All conditional branches that are direct children are uniform (checked
1000 // above).
1001 // 2. And either:
1002 // a. All sub-regions are uniform.
1003 // b. There is one or less conditional branches among the direct children.
1004 return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
1007 void StructurizeCFG::init(Region *R) {
1008 LLVMContext &Context = R->getEntry()->getContext();
1010 Boolean = Type::getInt1Ty(Context);
1011 BoolTrue = ConstantInt::getTrue(Context);
1012 BoolFalse = ConstantInt::getFalse(Context);
1013 BoolUndef = UndefValue::get(Boolean);
1015 this->DA = nullptr;
1018 bool StructurizeCFG::makeUniformRegion(Region *R,
1019 LegacyDivergenceAnalysis *DA) {
1020 if (R->isTopLevelRegion())
1021 return false;
1023 this->DA = DA;
1024 // TODO: We could probably be smarter here with how we handle sub-regions.
1025 // We currently rely on the fact that metadata is set by earlier invocations
1026 // of the pass on sub-regions, and that this metadata doesn't get lost --
1027 // but we shouldn't rely on metadata for correctness!
1028 unsigned UniformMDKindID =
1029 R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
1031 if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
1032 LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
1033 << '\n');
1035 // Mark all direct child block terminators as having been treated as
1036 // uniform. To account for a possible future in which non-uniform
1037 // sub-regions are treated more cleverly, indirect children are not
1038 // marked as uniform.
1039 MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
1040 for (RegionNode *E : R->elements()) {
1041 if (E->isSubRegion())
1042 continue;
1044 if (Instruction *Term = E->getEntry()->getTerminator())
1045 Term->setMetadata(UniformMDKindID, MD);
1048 return true;
1050 return false;
1053 /// Run the transformation for each region found
1054 bool StructurizeCFG::run(Region *R, DominatorTree *DT) {
1055 if (R->isTopLevelRegion())
1056 return false;
1058 this->DT = DT;
1060 Func = R->getEntry()->getParent();
1061 ParentRegion = R;
1063 orderNodes();
1064 collectInfos();
1065 createFlow();
1066 insertConditions(false);
1067 insertConditions(true);
1068 setPhiValues();
1069 simplifyAffectedPhis();
1070 rebuildSSA();
1072 // Cleanup
1073 Order.clear();
1074 Visited.clear();
1075 DeletedPhis.clear();
1076 AddedPhis.clear();
1077 Predicates.clear();
1078 Conditions.clear();
1079 Loops.clear();
1080 LoopPreds.clear();
1081 LoopConds.clear();
1083 return true;
1086 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1087 return new StructurizeCFGLegacyPass(SkipUniformRegions);
1090 static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) {
1091 Regions.push_back(&R);
1092 for (const auto &E : R)
1093 addRegionIntoQueue(*E, Regions);
1096 PreservedAnalyses StructurizeCFGPass::run(Function &F,
1097 FunctionAnalysisManager &AM) {
1099 bool Changed = false;
1100 DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1101 auto &RI = AM.getResult<RegionInfoAnalysis>(F);
1102 std::vector<Region *> Regions;
1103 addRegionIntoQueue(*RI.getTopLevelRegion(), Regions);
1104 while (!Regions.empty()) {
1105 Region *R = Regions.back();
1106 StructurizeCFG SCFG;
1107 SCFG.init(R);
1108 Changed |= SCFG.run(R, DT);
1109 Regions.pop_back();
1111 if (!Changed)
1112 return PreservedAnalyses::all();
1113 PreservedAnalyses PA;
1114 PA.preserve<DominatorTreeAnalysis>();
1115 return PA;