1 //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks
10 // with control-flow edges incident from outside the SCC. This pass converts a
11 // irreducible SCC into a natural loop by applying the following transformation:
13 // 1. Collect the set of headers H of the SCC.
14 // 2. Collect the set of predecessors P of these headers. These may be inside as
15 // well as outside the SCC.
16 // 3. Create block N and redirect every edge from set P to set H through N.
18 // This converts the SCC into a natural loop with N as the header: N is the only
19 // block with edges incident from outside the SCC, and all backedges in the SCC
20 // are incident on N, i.e., for every backedge, the head now dominates the tail.
22 // INPUT CFG: The blocks A and B form an irreducible loop with two headers.
33 // OUTPUT CFG: Edges incident on A and B are now redirected through a
34 // new block N, forming a natural loop consisting of N, A and B.
48 // The transformation is applied to every maximal SCC that is not already
49 // recognized as a loop. The pass operates on all maximal SCCs found in the
50 // function body outside of any loop, as well as those found inside each loop,
51 // including inside any newly created loops. This ensures that any SCC hidden
52 // inside a maximal SCC is also transformed.
54 // The actual transformation is handled by function CreateControlFlowHub, which
55 // takes a set of incoming blocks (the predecessors) and outgoing blocks (the
56 // headers). The function also moves every PHINode in an outgoing block to the
57 // hub. Since the hub dominates all the outgoing blocks, each such PHINode
58 // continues to dominate its uses. Since every header in an SCC has at least two
59 // predecessors, every value used in the header (or later) but defined in a
60 // predecessor (or earlier) is represented by a PHINode in a header. Hence the
61 // above handling of PHINodes is sufficient and no further processing is
62 // required to restore SSA.
64 // Limitation: The pass cannot handle switch statements and indirect
65 // branches. Both must be lowered to plain branches first.
67 //===----------------------------------------------------------------------===//
69 #include "llvm/Transforms/Utils/FixIrreducible.h"
70 #include "llvm/ADT/SCCIterator.h"
71 #include "llvm/Analysis/LoopIterator.h"
72 #include "llvm/InitializePasses.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Transforms/Utils.h"
75 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #define DEBUG_TYPE "fix-irreducible"
82 struct FixIrreducible
: public FunctionPass
{
84 FixIrreducible() : FunctionPass(ID
) {
85 initializeFixIrreduciblePass(*PassRegistry::getPassRegistry());
88 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
89 AU
.addRequiredID(LowerSwitchID
);
90 AU
.addRequired
<DominatorTreeWrapperPass
>();
91 AU
.addRequired
<LoopInfoWrapperPass
>();
92 AU
.addPreservedID(LowerSwitchID
);
93 AU
.addPreserved
<DominatorTreeWrapperPass
>();
94 AU
.addPreserved
<LoopInfoWrapperPass
>();
97 bool runOnFunction(Function
&F
) override
;
101 char FixIrreducible::ID
= 0;
103 FunctionPass
*llvm::createFixIrreduciblePass() { return new FixIrreducible(); }
105 INITIALIZE_PASS_BEGIN(FixIrreducible
, "fix-irreducible",
106 "Convert irreducible control-flow into natural loops",
107 false /* Only looks at CFG */, false /* Analysis Pass */)
108 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass
)
109 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
110 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
111 INITIALIZE_PASS_END(FixIrreducible
, "fix-irreducible",
112 "Convert irreducible control-flow into natural loops",
113 false /* Only looks at CFG */, false /* Analysis Pass */)
115 // When a new loop is created, existing children of the parent loop may now be
116 // fully inside the new loop. Reconnect these as children of the new loop.
117 static void reconnectChildLoops(LoopInfo
&LI
, Loop
*ParentLoop
, Loop
*NewLoop
,
118 SetVector
<BasicBlock
*> &Blocks
,
119 SetVector
<BasicBlock
*> &Headers
) {
120 auto &CandidateLoops
= ParentLoop
? ParentLoop
->getSubLoopsVector()
121 : LI
.getTopLevelLoopsVector();
122 // The new loop cannot be its own child, and any candidate is a
123 // child iff its header is owned by the new loop. Move all the
124 // children to a new vector.
125 auto FirstChild
= std::partition(
126 CandidateLoops
.begin(), CandidateLoops
.end(), [&](Loop
*L
) {
127 return L
== NewLoop
|| Blocks
.count(L
->getHeader()) == 0;
129 SmallVector
<Loop
*, 8> ChildLoops(FirstChild
, CandidateLoops
.end());
130 CandidateLoops
.erase(FirstChild
, CandidateLoops
.end());
132 for (Loop
*Child
: ChildLoops
) {
133 LLVM_DEBUG(dbgs() << "child loop: " << Child
->getHeader()->getName()
135 // TODO: A child loop whose header is also a header in the current
136 // SCC gets destroyed since its backedges are removed. That may
137 // not be necessary if we can retain such backedges.
138 if (Headers
.count(Child
->getHeader())) {
139 for (auto BB
: Child
->blocks()) {
140 LI
.changeLoopFor(BB
, NewLoop
);
141 LLVM_DEBUG(dbgs() << "moved block from child: " << BB
->getName()
145 LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n");
149 Child
->setParentLoop(nullptr);
150 NewLoop
->addChildLoop(Child
);
151 LLVM_DEBUG(dbgs() << "added child loop to new loop\n");
155 // Given a set of blocks and headers in an irreducible SCC, convert it into a
156 // natural loop. Also insert this new loop at its appropriate place in the
157 // hierarchy of loops.
158 static void createNaturalLoopInternal(LoopInfo
&LI
, DominatorTree
&DT
,
160 SetVector
<BasicBlock
*> &Blocks
,
161 SetVector
<BasicBlock
*> &Headers
) {
163 // All headers are part of the SCC
164 for (auto H
: Headers
) {
165 assert(Blocks
.count(H
));
169 SetVector
<BasicBlock
*> Predecessors
;
170 for (auto H
: Headers
) {
171 for (auto P
: predecessors(H
)) {
172 Predecessors
.insert(P
);
177 dbgs() << "Found predecessors:";
178 for (auto P
: Predecessors
) {
179 dbgs() << " " << P
->getName();
183 // Redirect all the backedges through a "hub" consisting of a series
184 // of guard blocks that manage the flow of control from the
185 // predecessors to the headers.
186 SmallVector
<BasicBlock
*, 8> GuardBlocks
;
187 DomTreeUpdater
DTU(DT
, DomTreeUpdater::UpdateStrategy::Eager
);
188 CreateControlFlowHub(&DTU
, GuardBlocks
, Predecessors
, Headers
, "irr");
189 #if defined(EXPENSIVE_CHECKS)
190 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
192 assert(DT
.verify(DominatorTree::VerificationLevel::Fast
));
195 // Create a new loop from the now-transformed cycle
196 auto NewLoop
= LI
.AllocateLoop();
198 ParentLoop
->addChildLoop(NewLoop
);
200 LI
.addTopLevelLoop(NewLoop
);
203 // Add the guard blocks to the new loop. The first guard block is
204 // the head of all the backedges, and it is the first to be inserted
205 // in the loop. This ensures that it is recognized as the
206 // header. Since the new loop is already in LoopInfo, the new blocks
207 // are also propagated up the chain of parent loops.
208 for (auto G
: GuardBlocks
) {
209 LLVM_DEBUG(dbgs() << "added guard block: " << G
->getName() << "\n");
210 NewLoop
->addBasicBlockToLoop(G
, LI
);
213 // Add the SCC blocks to the new loop.
214 for (auto BB
: Blocks
) {
215 NewLoop
->addBlockEntry(BB
);
216 if (LI
.getLoopFor(BB
) == ParentLoop
) {
217 LLVM_DEBUG(dbgs() << "moved block from parent: " << BB
->getName()
219 LI
.changeLoopFor(BB
, NewLoop
);
221 LLVM_DEBUG(dbgs() << "added block from child: " << BB
->getName() << "\n");
224 LLVM_DEBUG(dbgs() << "header for new loop: "
225 << NewLoop
->getHeader()->getName() << "\n");
227 reconnectChildLoops(LI
, ParentLoop
, NewLoop
, Blocks
, Headers
);
229 NewLoop
->verifyLoop();
231 ParentLoop
->verifyLoop();
233 #if defined(EXPENSIVE_CHECKS)
235 #endif // EXPENSIVE_CHECKS
239 // Enable the graph traits required for traversing a Loop body.
240 template <> struct GraphTraits
<Loop
> : LoopBodyTraits
{};
243 // Overloaded wrappers to go with the function template below.
244 static BasicBlock
*unwrapBlock(BasicBlock
*B
) { return B
; }
245 static BasicBlock
*unwrapBlock(LoopBodyTraits::NodeRef
&N
) { return N
.second
; }
247 static void createNaturalLoop(LoopInfo
&LI
, DominatorTree
&DT
, Function
*F
,
248 SetVector
<BasicBlock
*> &Blocks
,
249 SetVector
<BasicBlock
*> &Headers
) {
250 createNaturalLoopInternal(LI
, DT
, nullptr, Blocks
, Headers
);
253 static void createNaturalLoop(LoopInfo
&LI
, DominatorTree
&DT
, Loop
&L
,
254 SetVector
<BasicBlock
*> &Blocks
,
255 SetVector
<BasicBlock
*> &Headers
) {
256 createNaturalLoopInternal(LI
, DT
, &L
, Blocks
, Headers
);
259 // Convert irreducible SCCs; Graph G may be a Function* or a Loop&.
260 template <class Graph
>
261 static bool makeReducible(LoopInfo
&LI
, DominatorTree
&DT
, Graph
&&G
) {
262 bool Changed
= false;
263 for (auto Scc
= scc_begin(G
); !Scc
.isAtEnd(); ++Scc
) {
266 SetVector
<BasicBlock
*> Blocks
;
267 LLVM_DEBUG(dbgs() << "Found SCC:");
268 for (auto N
: *Scc
) {
269 auto BB
= unwrapBlock(N
);
270 LLVM_DEBUG(dbgs() << " " << BB
->getName());
273 LLVM_DEBUG(dbgs() << "\n");
275 // Minor optimization: The SCC blocks are usually discovered in an order
276 // that is the opposite of the order in which these blocks appear as branch
277 // targets. This results in a lot of condition inversions in the control
278 // flow out of the new ControlFlowHub, which can be mitigated if the orders
279 // match. So we discover the headers using the reverse of the block order.
280 SetVector
<BasicBlock
*> Headers
;
281 LLVM_DEBUG(dbgs() << "Found headers:");
282 for (auto BB
: reverse(Blocks
)) {
283 for (const auto P
: predecessors(BB
)) {
284 // Skip unreachable predecessors.
285 if (!DT
.isReachableFromEntry(P
))
287 if (!Blocks
.count(P
)) {
288 LLVM_DEBUG(dbgs() << " " << BB
->getName());
294 LLVM_DEBUG(dbgs() << "\n");
296 if (Headers
.size() == 1) {
297 assert(LI
.isLoopHeader(Headers
.front()));
298 LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n");
301 createNaturalLoop(LI
, DT
, G
, Blocks
, Headers
);
307 static bool FixIrreducibleImpl(Function
&F
, LoopInfo
&LI
, DominatorTree
&DT
) {
308 LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: "
309 << F
.getName() << "\n");
311 bool Changed
= false;
312 SmallVector
<Loop
*, 8> WorkList
;
314 LLVM_DEBUG(dbgs() << "visiting top-level\n");
315 Changed
|= makeReducible(LI
, DT
, &F
);
317 // Any SCCs reduced are now already in the list of top-level loops, so simply
318 // add them all to the worklist.
319 append_range(WorkList
, LI
);
321 while (!WorkList
.empty()) {
322 auto L
= WorkList
.pop_back_val();
323 LLVM_DEBUG(dbgs() << "visiting loop with header "
324 << L
->getHeader()->getName() << "\n");
325 Changed
|= makeReducible(LI
, DT
, *L
);
326 // Any SCCs reduced are now already in the list of child loops, so simply
327 // add them all to the worklist.
328 WorkList
.append(L
->begin(), L
->end());
334 bool FixIrreducible::runOnFunction(Function
&F
) {
335 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
336 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
337 return FixIrreducibleImpl(F
, LI
, DT
);
340 PreservedAnalyses
FixIrreduciblePass::run(Function
&F
,
341 FunctionAnalysisManager
&AM
) {
342 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
343 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
344 if (!FixIrreducibleImpl(F
, LI
, DT
))
345 return PreservedAnalyses::all();
346 PreservedAnalyses PA
;
347 PA
.preserve
<LoopAnalysis
>();
348 PA
.preserve
<DominatorTreeAnalysis
>();