1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/PredIteratorCache.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Transforms/Utils.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
56 #define DEBUG_TYPE "lcssa"
58 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA
= true;
63 static bool VerifyLoopLCSSA
= false;
65 static cl::opt
<bool, true>
66 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA
),
68 cl::desc("Verify loop lcssa form (time consuming)"));
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock
*BB
,
72 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
73 return is_contained(ExitBlocks
, BB
);
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl
<Instruction
*> &Worklist
,
80 const DominatorTree
&DT
, const LoopInfo
&LI
,
81 ScalarEvolution
*SE
, IRBuilderBase
&Builder
,
82 SmallVectorImpl
<PHINode
*> *PHIsToRemove
) {
83 SmallVector
<Use
*, 16> UsesToRewrite
;
84 SmallSetVector
<PHINode
*, 16> LocalPHIsToRemove
;
85 PredIteratorCache PredCache
;
88 IRBuilderBase::InsertPointGuard
InsertPtGuard(Builder
);
90 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
91 // instructions within the same loops, computing the exit blocks is
92 // expensive, and we're not mutating the loop structure.
93 SmallDenseMap
<Loop
*, SmallVector
<BasicBlock
*,1>> LoopExitBlocks
;
95 while (!Worklist
.empty()) {
96 UsesToRewrite
.clear();
98 Instruction
*I
= Worklist
.pop_back_val();
99 assert(!I
->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100 BasicBlock
*InstBB
= I
->getParent();
101 Loop
*L
= LI
.getLoopFor(InstBB
);
102 assert(L
&& "Instruction belongs to a BB that's not part of a loop");
103 if (!LoopExitBlocks
.count(L
))
104 L
->getExitBlocks(LoopExitBlocks
[L
]);
105 assert(LoopExitBlocks
.count(L
));
106 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
= LoopExitBlocks
[L
];
108 if (ExitBlocks
.empty())
111 for (Use
&U
: I
->uses()) {
112 Instruction
*User
= cast
<Instruction
>(U
.getUser());
113 BasicBlock
*UserBB
= User
->getParent();
115 // For practical purposes, we consider that the use in a PHI
116 // occurs in the respective predecessor block. For more info,
117 // see the `phi` doc in LangRef and the LCSSA doc.
118 if (auto *PN
= dyn_cast
<PHINode
>(User
))
119 UserBB
= PN
->getIncomingBlock(U
);
121 if (InstBB
!= UserBB
&& !L
->contains(UserBB
))
122 UsesToRewrite
.push_back(&U
);
125 // If there are no uses outside the loop, exit with no change.
126 if (UsesToRewrite
.empty())
129 ++NumLCSSA
; // We are applying the transformation
131 // Invoke instructions are special in that their result value is not
132 // available along their unwind edge. The code below tests to see whether
133 // DomBB dominates the value, so adjust DomBB to the normal destination
134 // block, which is effectively where the value is first usable.
135 BasicBlock
*DomBB
= InstBB
;
136 if (auto *Inv
= dyn_cast
<InvokeInst
>(I
))
137 DomBB
= Inv
->getNormalDest();
139 const DomTreeNode
*DomNode
= DT
.getNode(DomBB
);
141 SmallVector
<PHINode
*, 16> AddedPHIs
;
142 SmallVector
<PHINode
*, 8> PostProcessPHIs
;
144 SmallVector
<PHINode
*, 4> InsertedPHIs
;
145 SSAUpdater
SSAUpdate(&InsertedPHIs
);
146 SSAUpdate
.Initialize(I
->getType(), I
->getName());
148 // Force re-computation of I, as some users now need to use the new PHI
153 // Insert the LCSSA phi's into all of the exit blocks dominated by the
154 // value, and add them to the Phi's map.
155 for (BasicBlock
*ExitBB
: ExitBlocks
) {
156 if (!DT
.dominates(DomNode
, DT
.getNode(ExitBB
)))
159 // If we already inserted something for this BB, don't reprocess it.
160 if (SSAUpdate
.HasValueForBlock(ExitBB
))
162 Builder
.SetInsertPoint(&ExitBB
->front());
163 PHINode
*PN
= Builder
.CreatePHI(I
->getType(), PredCache
.size(ExitBB
),
164 I
->getName() + ".lcssa");
165 // Get the debug location from the original instruction.
166 PN
->setDebugLoc(I
->getDebugLoc());
168 // Add inputs from inside the loop for this PHI. This is valid
169 // because `I` dominates `ExitBB` (checked above). This implies
170 // that every incoming block/edge is dominated by `I` as well,
171 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
172 // blocks without violating the SSA dominance property.
173 for (BasicBlock
*Pred
: PredCache
.get(ExitBB
)) {
174 PN
->addIncoming(I
, Pred
);
176 // If the exit block has a predecessor not within the loop, arrange for
177 // the incoming value use corresponding to that predecessor to be
178 // rewritten in terms of a different LCSSA PHI.
179 if (!L
->contains(Pred
))
180 UsesToRewrite
.push_back(
181 &PN
->getOperandUse(PN
->getOperandNumForIncomingValue(
182 PN
->getNumIncomingValues() - 1)));
185 AddedPHIs
.push_back(PN
);
187 // Remember that this phi makes the value alive in this block.
188 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
190 // LoopSimplify might fail to simplify some loops (e.g. when indirect
191 // branches are involved). In such situations, it might happen that an
192 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
193 // create PHIs in such an exit block, we are also inserting PHIs into L2's
194 // header. This could break LCSSA form for L2 because these inserted PHIs
195 // can also have uses outside of L2. Remember all PHIs in such situation
196 // as to revisit than later on. FIXME: Remove this if indirectbr support
197 // into LoopSimplify gets improved.
198 if (auto *OtherLoop
= LI
.getLoopFor(ExitBB
))
199 if (!L
->contains(OtherLoop
))
200 PostProcessPHIs
.push_back(PN
);
203 // Rewrite all uses outside the loop in terms of the new PHIs we just
205 for (Use
*UseToRewrite
: UsesToRewrite
) {
206 Instruction
*User
= cast
<Instruction
>(UseToRewrite
->getUser());
207 BasicBlock
*UserBB
= User
->getParent();
209 // For practical purposes, we consider that the use in a PHI
210 // occurs in the respective predecessor block. For more info,
211 // see the `phi` doc in LangRef and the LCSSA doc.
212 if (auto *PN
= dyn_cast
<PHINode
>(User
))
213 UserBB
= PN
->getIncomingBlock(*UseToRewrite
);
215 // If this use is in an exit block, rewrite to use the newly inserted PHI.
216 // This is required for correctness because SSAUpdate doesn't handle uses
217 // in the same block. It assumes the PHI we inserted is at the end of the
219 if (isa
<PHINode
>(UserBB
->begin()) && isExitBlock(UserBB
, ExitBlocks
)) {
220 UseToRewrite
->set(&UserBB
->front());
224 // If we added a single PHI, it must dominate all uses and we can directly
226 if (AddedPHIs
.size() == 1) {
227 UseToRewrite
->set(AddedPHIs
[0]);
231 // Otherwise, do full PHI insertion.
232 SSAUpdate
.RewriteUse(*UseToRewrite
);
235 SmallVector
<DbgValueInst
*, 4> DbgValues
;
236 llvm::findDbgValues(DbgValues
, I
);
238 // Update pre-existing debug value uses that reside outside the loop.
239 for (auto DVI
: DbgValues
) {
240 BasicBlock
*UserBB
= DVI
->getParent();
241 if (InstBB
== UserBB
|| L
->contains(UserBB
))
243 // We currently only handle debug values residing in blocks that were
244 // traversed while rewriting the uses. If we inserted just a single PHI,
245 // we will handle all relevant debug values.
246 Value
*V
= AddedPHIs
.size() == 1 ? AddedPHIs
[0]
247 : SSAUpdate
.FindValueForBlock(UserBB
);
249 DVI
->replaceVariableLocationOp(I
, V
);
252 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
253 // to post-process them to keep LCSSA form.
254 for (PHINode
*InsertedPN
: InsertedPHIs
) {
255 if (auto *OtherLoop
= LI
.getLoopFor(InsertedPN
->getParent()))
256 if (!L
->contains(OtherLoop
))
257 PostProcessPHIs
.push_back(InsertedPN
);
260 // Post process PHI instructions that were inserted into another disjoint
261 // loop and update their exits properly.
262 for (auto *PostProcessPN
: PostProcessPHIs
)
263 if (!PostProcessPN
->use_empty())
264 Worklist
.push_back(PostProcessPN
);
266 // Keep track of PHI nodes that we want to remove because they did not have
267 // any uses rewritten.
268 for (PHINode
*PN
: AddedPHIs
)
270 LocalPHIsToRemove
.insert(PN
);
275 // Remove PHI nodes that did not have any uses rewritten or add them to
276 // PHIsToRemove, so the caller can remove them after some additional cleanup.
277 // We need to redo the use_empty() check here, because even if the PHI node
278 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
279 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
280 // nodes that only are used by each other. Such situations has only been
281 // noticed when the input IR contains unreachable code, and leaving some extra
282 // redundant PHI nodes in such situations is considered a minor problem.
284 PHIsToRemove
->append(LocalPHIsToRemove
.begin(), LocalPHIsToRemove
.end());
286 for (PHINode
*PN
: LocalPHIsToRemove
)
288 PN
->eraseFromParent();
293 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
294 static void computeBlocksDominatingExits(
295 Loop
&L
, const DominatorTree
&DT
, SmallVector
<BasicBlock
*, 8> &ExitBlocks
,
296 SmallSetVector
<BasicBlock
*, 8> &BlocksDominatingExits
) {
297 // We start from the exit blocks, as every block trivially dominates itself
299 SmallVector
<BasicBlock
*, 8> BBWorklist(ExitBlocks
);
301 while (!BBWorklist
.empty()) {
302 BasicBlock
*BB
= BBWorklist
.pop_back_val();
304 // Check if this is a loop header. If this is the case, we're done.
305 if (L
.getHeader() == BB
)
308 // Otherwise, add its immediate predecessor in the dominator tree to the
309 // worklist, unless we visited it already.
310 BasicBlock
*IDomBB
= DT
.getNode(BB
)->getIDom()->getBlock();
312 // Exit blocks can have an immediate dominator not beloinging to the
313 // loop. For an exit block to be immediately dominated by another block
314 // outside the loop, it implies not all paths from that dominator, to the
315 // exit block, go through the loop.
326 // C is the exit block of the loop and it's immediately dominated by A,
327 // which doesn't belong to the loop.
328 if (!L
.contains(IDomBB
))
331 if (BlocksDominatingExits
.insert(IDomBB
))
332 BBWorklist
.push_back(IDomBB
);
336 bool llvm::formLCSSA(Loop
&L
, const DominatorTree
&DT
, const LoopInfo
*LI
,
337 ScalarEvolution
*SE
) {
338 bool Changed
= false;
340 #ifdef EXPENSIVE_CHECKS
341 // Verify all sub-loops are in LCSSA form already.
342 for (Loop
*SubLoop
: L
)
343 assert(SubLoop
->isRecursivelyLCSSAForm(DT
, *LI
) && "Subloop not in LCSSA!");
346 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
347 L
.getExitBlocks(ExitBlocks
);
348 if (ExitBlocks
.empty())
351 SmallSetVector
<BasicBlock
*, 8> BlocksDominatingExits
;
353 // We want to avoid use-scanning leveraging dominance informations.
354 // If a block doesn't dominate any of the loop exits, the none of the values
355 // defined in the loop can be used outside.
356 // We compute the set of blocks fullfilling the conditions in advance
357 // walking the dominator tree upwards until we hit a loop header.
358 computeBlocksDominatingExits(L
, DT
, ExitBlocks
, BlocksDominatingExits
);
360 SmallVector
<Instruction
*, 8> Worklist
;
362 // Look at all the instructions in the loop, checking to see if they have uses
363 // outside the loop. If so, put them into the worklist to rewrite those uses.
364 for (BasicBlock
*BB
: BlocksDominatingExits
) {
365 // Skip blocks that are part of any sub-loops, they must be in LCSSA
367 if (LI
->getLoopFor(BB
) != &L
)
369 for (Instruction
&I
: *BB
) {
370 // Reject two common cases fast: instructions with no uses (like stores)
371 // and instructions with one use that is in the same block as this.
373 (I
.hasOneUse() && I
.user_back()->getParent() == BB
&&
374 !isa
<PHINode
>(I
.user_back())))
377 // Tokens cannot be used in PHI nodes, so we skip over them.
378 // We can run into tokens which are live out of a loop with catchswitch
379 // instructions in Windows EH if the catchswitch has one catchpad which
380 // is inside the loop and another which is not.
381 if (I
.getType()->isTokenTy())
384 Worklist
.push_back(&I
);
388 IRBuilder
<> Builder(L
.getHeader()->getContext());
389 Changed
= formLCSSAForInstructions(Worklist
, DT
, *LI
, SE
, Builder
);
391 // If we modified the code, remove any caches about the loop from SCEV to
392 // avoid dangling entries.
393 // FIXME: This is a big hammer, can we clear the cache more selectively?
397 assert(L
.isLCSSAForm(DT
));
402 /// Process a loop nest depth first.
403 bool llvm::formLCSSARecursively(Loop
&L
, const DominatorTree
&DT
,
404 const LoopInfo
*LI
, ScalarEvolution
*SE
) {
405 bool Changed
= false;
407 // Recurse depth-first through inner loops.
408 for (Loop
*SubLoop
: L
.getSubLoops())
409 Changed
|= formLCSSARecursively(*SubLoop
, DT
, LI
, SE
);
411 Changed
|= formLCSSA(L
, DT
, LI
, SE
);
415 /// Process all loops in the function, inner-most out.
416 static bool formLCSSAOnAllLoops(const LoopInfo
*LI
, const DominatorTree
&DT
,
417 ScalarEvolution
*SE
) {
418 bool Changed
= false;
420 Changed
|= formLCSSARecursively(*L
, DT
, LI
, SE
);
425 struct LCSSAWrapperPass
: public FunctionPass
{
426 static char ID
; // Pass identification, replacement for typeid
427 LCSSAWrapperPass() : FunctionPass(ID
) {
428 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
431 // Cached analysis information for the current function.
436 bool runOnFunction(Function
&F
) override
;
437 void verifyAnalysis() const override
{
438 // This check is very expensive. On the loop intensive compiles it may cause
439 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
440 // always does limited form of the LCSSA verification. Similar reasoning
441 // was used for the LoopInfo verifier.
442 if (VerifyLoopLCSSA
) {
445 return L
->isRecursivelyLCSSAForm(*DT
, *LI
);
447 "LCSSA form is broken!");
451 /// This transformation requires natural loop information & requires that
452 /// loop preheaders be inserted into the CFG. It maintains both of these,
453 /// as well as the CFG. It also requires dominator information.
454 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
455 AU
.setPreservesCFG();
457 AU
.addRequired
<DominatorTreeWrapperPass
>();
458 AU
.addRequired
<LoopInfoWrapperPass
>();
459 AU
.addPreservedID(LoopSimplifyID
);
460 AU
.addPreserved
<AAResultsWrapperPass
>();
461 AU
.addPreserved
<BasicAAWrapperPass
>();
462 AU
.addPreserved
<GlobalsAAWrapperPass
>();
463 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
464 AU
.addPreserved
<SCEVAAWrapperPass
>();
465 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
466 AU
.addPreserved
<MemorySSAWrapperPass
>();
468 // This is needed to perform LCSSA verification inside LPPassManager
469 AU
.addRequired
<LCSSAVerificationPass
>();
470 AU
.addPreserved
<LCSSAVerificationPass
>();
475 char LCSSAWrapperPass::ID
= 0;
476 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
478 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
479 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
480 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass
)
481 INITIALIZE_PASS_END(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
484 Pass
*llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
485 char &llvm::LCSSAID
= LCSSAWrapperPass::ID
;
487 /// Transform \p F into loop-closed SSA form.
488 bool LCSSAWrapperPass::runOnFunction(Function
&F
) {
489 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
490 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
491 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
492 SE
= SEWP
? &SEWP
->getSE() : nullptr;
494 return formLCSSAOnAllLoops(LI
, *DT
, SE
);
497 PreservedAnalyses
LCSSAPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
498 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
499 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
500 auto *SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
501 if (!formLCSSAOnAllLoops(&LI
, DT
, SE
))
502 return PreservedAnalyses::all();
504 PreservedAnalyses PA
;
505 PA
.preserveSet
<CFGAnalyses
>();
506 PA
.preserve
<ScalarEvolutionAnalysis
>();
507 // BPI maps terminators to probabilities, since we don't modify the CFG, no
508 // updates are needed to preserve it.
509 PA
.preserve
<BranchProbabilityAnalysis
>();
510 PA
.preserve
<MemorySSAAnalysis
>();