[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / LCSSA.cpp
blob277fd903e9aa8c2514d824878cf1ec60e28bbe3b
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
14 // if (c) if (c)
15 // X1 = ... X1 = ...
16 // else else
17 // X2 = ... X2 = ...
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
20 // ... = X4 + 4
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/PredIteratorCache.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Transforms/Utils.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 using namespace llvm;
56 #define DEBUG_TYPE "lcssa"
58 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA = true;
62 #else
63 static bool VerifyLoopLCSSA = false;
64 #endif
65 static cl::opt<bool, true>
66 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
67 cl::Hidden,
68 cl::desc("Verify loop lcssa form (time consuming)"));
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock *BB,
72 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
73 return is_contained(ExitBlocks, BB);
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
78 /// rewrite the uses.
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
80 const DominatorTree &DT, const LoopInfo &LI,
81 ScalarEvolution *SE, IRBuilderBase &Builder,
82 SmallVectorImpl<PHINode *> *PHIsToRemove) {
83 SmallVector<Use *, 16> UsesToRewrite;
84 SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
85 PredIteratorCache PredCache;
86 bool Changed = false;
88 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
90 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
91 // instructions within the same loops, computing the exit blocks is
92 // expensive, and we're not mutating the loop structure.
93 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
95 while (!Worklist.empty()) {
96 UsesToRewrite.clear();
98 Instruction *I = Worklist.pop_back_val();
99 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100 BasicBlock *InstBB = I->getParent();
101 Loop *L = LI.getLoopFor(InstBB);
102 assert(L && "Instruction belongs to a BB that's not part of a loop");
103 if (!LoopExitBlocks.count(L))
104 L->getExitBlocks(LoopExitBlocks[L]);
105 assert(LoopExitBlocks.count(L));
106 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
108 if (ExitBlocks.empty())
109 continue;
111 for (Use &U : I->uses()) {
112 Instruction *User = cast<Instruction>(U.getUser());
113 BasicBlock *UserBB = User->getParent();
115 // For practical purposes, we consider that the use in a PHI
116 // occurs in the respective predecessor block. For more info,
117 // see the `phi` doc in LangRef and the LCSSA doc.
118 if (auto *PN = dyn_cast<PHINode>(User))
119 UserBB = PN->getIncomingBlock(U);
121 if (InstBB != UserBB && !L->contains(UserBB))
122 UsesToRewrite.push_back(&U);
125 // If there are no uses outside the loop, exit with no change.
126 if (UsesToRewrite.empty())
127 continue;
129 ++NumLCSSA; // We are applying the transformation
131 // Invoke instructions are special in that their result value is not
132 // available along their unwind edge. The code below tests to see whether
133 // DomBB dominates the value, so adjust DomBB to the normal destination
134 // block, which is effectively where the value is first usable.
135 BasicBlock *DomBB = InstBB;
136 if (auto *Inv = dyn_cast<InvokeInst>(I))
137 DomBB = Inv->getNormalDest();
139 const DomTreeNode *DomNode = DT.getNode(DomBB);
141 SmallVector<PHINode *, 16> AddedPHIs;
142 SmallVector<PHINode *, 8> PostProcessPHIs;
144 SmallVector<PHINode *, 4> InsertedPHIs;
145 SSAUpdater SSAUpdate(&InsertedPHIs);
146 SSAUpdate.Initialize(I->getType(), I->getName());
148 // Force re-computation of I, as some users now need to use the new PHI
149 // node.
150 if (SE)
151 SE->forgetValue(I);
153 // Insert the LCSSA phi's into all of the exit blocks dominated by the
154 // value, and add them to the Phi's map.
155 for (BasicBlock *ExitBB : ExitBlocks) {
156 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
157 continue;
159 // If we already inserted something for this BB, don't reprocess it.
160 if (SSAUpdate.HasValueForBlock(ExitBB))
161 continue;
162 Builder.SetInsertPoint(&ExitBB->front());
163 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
164 I->getName() + ".lcssa");
165 // Get the debug location from the original instruction.
166 PN->setDebugLoc(I->getDebugLoc());
168 // Add inputs from inside the loop for this PHI. This is valid
169 // because `I` dominates `ExitBB` (checked above). This implies
170 // that every incoming block/edge is dominated by `I` as well,
171 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
172 // blocks without violating the SSA dominance property.
173 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
174 PN->addIncoming(I, Pred);
176 // If the exit block has a predecessor not within the loop, arrange for
177 // the incoming value use corresponding to that predecessor to be
178 // rewritten in terms of a different LCSSA PHI.
179 if (!L->contains(Pred))
180 UsesToRewrite.push_back(
181 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
182 PN->getNumIncomingValues() - 1)));
185 AddedPHIs.push_back(PN);
187 // Remember that this phi makes the value alive in this block.
188 SSAUpdate.AddAvailableValue(ExitBB, PN);
190 // LoopSimplify might fail to simplify some loops (e.g. when indirect
191 // branches are involved). In such situations, it might happen that an
192 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
193 // create PHIs in such an exit block, we are also inserting PHIs into L2's
194 // header. This could break LCSSA form for L2 because these inserted PHIs
195 // can also have uses outside of L2. Remember all PHIs in such situation
196 // as to revisit than later on. FIXME: Remove this if indirectbr support
197 // into LoopSimplify gets improved.
198 if (auto *OtherLoop = LI.getLoopFor(ExitBB))
199 if (!L->contains(OtherLoop))
200 PostProcessPHIs.push_back(PN);
203 // Rewrite all uses outside the loop in terms of the new PHIs we just
204 // inserted.
205 for (Use *UseToRewrite : UsesToRewrite) {
206 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
207 BasicBlock *UserBB = User->getParent();
209 // For practical purposes, we consider that the use in a PHI
210 // occurs in the respective predecessor block. For more info,
211 // see the `phi` doc in LangRef and the LCSSA doc.
212 if (auto *PN = dyn_cast<PHINode>(User))
213 UserBB = PN->getIncomingBlock(*UseToRewrite);
215 // If this use is in an exit block, rewrite to use the newly inserted PHI.
216 // This is required for correctness because SSAUpdate doesn't handle uses
217 // in the same block. It assumes the PHI we inserted is at the end of the
218 // block.
219 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
220 UseToRewrite->set(&UserBB->front());
221 continue;
224 // If we added a single PHI, it must dominate all uses and we can directly
225 // rename it.
226 if (AddedPHIs.size() == 1) {
227 UseToRewrite->set(AddedPHIs[0]);
228 continue;
231 // Otherwise, do full PHI insertion.
232 SSAUpdate.RewriteUse(*UseToRewrite);
235 SmallVector<DbgValueInst *, 4> DbgValues;
236 llvm::findDbgValues(DbgValues, I);
238 // Update pre-existing debug value uses that reside outside the loop.
239 for (auto DVI : DbgValues) {
240 BasicBlock *UserBB = DVI->getParent();
241 if (InstBB == UserBB || L->contains(UserBB))
242 continue;
243 // We currently only handle debug values residing in blocks that were
244 // traversed while rewriting the uses. If we inserted just a single PHI,
245 // we will handle all relevant debug values.
246 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
247 : SSAUpdate.FindValueForBlock(UserBB);
248 if (V)
249 DVI->replaceVariableLocationOp(I, V);
252 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
253 // to post-process them to keep LCSSA form.
254 for (PHINode *InsertedPN : InsertedPHIs) {
255 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
256 if (!L->contains(OtherLoop))
257 PostProcessPHIs.push_back(InsertedPN);
260 // Post process PHI instructions that were inserted into another disjoint
261 // loop and update their exits properly.
262 for (auto *PostProcessPN : PostProcessPHIs)
263 if (!PostProcessPN->use_empty())
264 Worklist.push_back(PostProcessPN);
266 // Keep track of PHI nodes that we want to remove because they did not have
267 // any uses rewritten.
268 for (PHINode *PN : AddedPHIs)
269 if (PN->use_empty())
270 LocalPHIsToRemove.insert(PN);
272 Changed = true;
275 // Remove PHI nodes that did not have any uses rewritten or add them to
276 // PHIsToRemove, so the caller can remove them after some additional cleanup.
277 // We need to redo the use_empty() check here, because even if the PHI node
278 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
279 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
280 // nodes that only are used by each other. Such situations has only been
281 // noticed when the input IR contains unreachable code, and leaving some extra
282 // redundant PHI nodes in such situations is considered a minor problem.
283 if (PHIsToRemove) {
284 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
285 } else {
286 for (PHINode *PN : LocalPHIsToRemove)
287 if (PN->use_empty())
288 PN->eraseFromParent();
290 return Changed;
293 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
294 static void computeBlocksDominatingExits(
295 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
296 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
297 // We start from the exit blocks, as every block trivially dominates itself
298 // (not strictly).
299 SmallVector<BasicBlock *, 8> BBWorklist(ExitBlocks);
301 while (!BBWorklist.empty()) {
302 BasicBlock *BB = BBWorklist.pop_back_val();
304 // Check if this is a loop header. If this is the case, we're done.
305 if (L.getHeader() == BB)
306 continue;
308 // Otherwise, add its immediate predecessor in the dominator tree to the
309 // worklist, unless we visited it already.
310 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
312 // Exit blocks can have an immediate dominator not beloinging to the
313 // loop. For an exit block to be immediately dominated by another block
314 // outside the loop, it implies not all paths from that dominator, to the
315 // exit block, go through the loop.
316 // Example:
318 // |---- A
319 // | |
320 // | B<--
321 // | | |
322 // |---> C --
323 // |
324 // D
326 // C is the exit block of the loop and it's immediately dominated by A,
327 // which doesn't belong to the loop.
328 if (!L.contains(IDomBB))
329 continue;
331 if (BlocksDominatingExits.insert(IDomBB))
332 BBWorklist.push_back(IDomBB);
336 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
337 ScalarEvolution *SE) {
338 bool Changed = false;
340 #ifdef EXPENSIVE_CHECKS
341 // Verify all sub-loops are in LCSSA form already.
342 for (Loop *SubLoop: L)
343 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
344 #endif
346 SmallVector<BasicBlock *, 8> ExitBlocks;
347 L.getExitBlocks(ExitBlocks);
348 if (ExitBlocks.empty())
349 return false;
351 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
353 // We want to avoid use-scanning leveraging dominance informations.
354 // If a block doesn't dominate any of the loop exits, the none of the values
355 // defined in the loop can be used outside.
356 // We compute the set of blocks fullfilling the conditions in advance
357 // walking the dominator tree upwards until we hit a loop header.
358 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
360 SmallVector<Instruction *, 8> Worklist;
362 // Look at all the instructions in the loop, checking to see if they have uses
363 // outside the loop. If so, put them into the worklist to rewrite those uses.
364 for (BasicBlock *BB : BlocksDominatingExits) {
365 // Skip blocks that are part of any sub-loops, they must be in LCSSA
366 // already.
367 if (LI->getLoopFor(BB) != &L)
368 continue;
369 for (Instruction &I : *BB) {
370 // Reject two common cases fast: instructions with no uses (like stores)
371 // and instructions with one use that is in the same block as this.
372 if (I.use_empty() ||
373 (I.hasOneUse() && I.user_back()->getParent() == BB &&
374 !isa<PHINode>(I.user_back())))
375 continue;
377 // Tokens cannot be used in PHI nodes, so we skip over them.
378 // We can run into tokens which are live out of a loop with catchswitch
379 // instructions in Windows EH if the catchswitch has one catchpad which
380 // is inside the loop and another which is not.
381 if (I.getType()->isTokenTy())
382 continue;
384 Worklist.push_back(&I);
388 IRBuilder<> Builder(L.getHeader()->getContext());
389 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
391 // If we modified the code, remove any caches about the loop from SCEV to
392 // avoid dangling entries.
393 // FIXME: This is a big hammer, can we clear the cache more selectively?
394 if (SE && Changed)
395 SE->forgetLoop(&L);
397 assert(L.isLCSSAForm(DT));
399 return Changed;
402 /// Process a loop nest depth first.
403 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
404 const LoopInfo *LI, ScalarEvolution *SE) {
405 bool Changed = false;
407 // Recurse depth-first through inner loops.
408 for (Loop *SubLoop : L.getSubLoops())
409 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
411 Changed |= formLCSSA(L, DT, LI, SE);
412 return Changed;
415 /// Process all loops in the function, inner-most out.
416 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
417 ScalarEvolution *SE) {
418 bool Changed = false;
419 for (auto &L : *LI)
420 Changed |= formLCSSARecursively(*L, DT, LI, SE);
421 return Changed;
424 namespace {
425 struct LCSSAWrapperPass : public FunctionPass {
426 static char ID; // Pass identification, replacement for typeid
427 LCSSAWrapperPass() : FunctionPass(ID) {
428 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
431 // Cached analysis information for the current function.
432 DominatorTree *DT;
433 LoopInfo *LI;
434 ScalarEvolution *SE;
436 bool runOnFunction(Function &F) override;
437 void verifyAnalysis() const override {
438 // This check is very expensive. On the loop intensive compiles it may cause
439 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
440 // always does limited form of the LCSSA verification. Similar reasoning
441 // was used for the LoopInfo verifier.
442 if (VerifyLoopLCSSA) {
443 assert(all_of(*LI,
444 [&](Loop *L) {
445 return L->isRecursivelyLCSSAForm(*DT, *LI);
446 }) &&
447 "LCSSA form is broken!");
451 /// This transformation requires natural loop information & requires that
452 /// loop preheaders be inserted into the CFG. It maintains both of these,
453 /// as well as the CFG. It also requires dominator information.
454 void getAnalysisUsage(AnalysisUsage &AU) const override {
455 AU.setPreservesCFG();
457 AU.addRequired<DominatorTreeWrapperPass>();
458 AU.addRequired<LoopInfoWrapperPass>();
459 AU.addPreservedID(LoopSimplifyID);
460 AU.addPreserved<AAResultsWrapperPass>();
461 AU.addPreserved<BasicAAWrapperPass>();
462 AU.addPreserved<GlobalsAAWrapperPass>();
463 AU.addPreserved<ScalarEvolutionWrapperPass>();
464 AU.addPreserved<SCEVAAWrapperPass>();
465 AU.addPreserved<BranchProbabilityInfoWrapperPass>();
466 AU.addPreserved<MemorySSAWrapperPass>();
468 // This is needed to perform LCSSA verification inside LPPassManager
469 AU.addRequired<LCSSAVerificationPass>();
470 AU.addPreserved<LCSSAVerificationPass>();
475 char LCSSAWrapperPass::ID = 0;
476 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
477 false, false)
478 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
479 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
480 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
481 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
482 false, false)
484 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
485 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
487 /// Transform \p F into loop-closed SSA form.
488 bool LCSSAWrapperPass::runOnFunction(Function &F) {
489 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
490 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
491 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
492 SE = SEWP ? &SEWP->getSE() : nullptr;
494 return formLCSSAOnAllLoops(LI, *DT, SE);
497 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
498 auto &LI = AM.getResult<LoopAnalysis>(F);
499 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
500 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
501 if (!formLCSSAOnAllLoops(&LI, DT, SE))
502 return PreservedAnalyses::all();
504 PreservedAnalyses PA;
505 PA.preserveSet<CFGAnalyses>();
506 PA.preserve<ScalarEvolutionAnalysis>();
507 // BPI maps terminators to probabilities, since we don't modify the CFG, no
508 // updates are needed to preserve it.
509 PA.preserve<BranchProbabilityAnalysis>();
510 PA.preserve<MemorySSAAnalysis>();
511 return PA;