[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / LoopUnrollRuntime.cpp
blob84feb4410c66cf59ebe279fe39db121cf6f62ab3
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements some loop unrolling utilities for loops with run-time
10 // trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
11 // trip counts.
13 // The functions in this file are used to generate extra code when the
14 // run-time trip count modulo the unroll factor is not 0. When this is the
15 // case, we need to generate code to execute these 'left over' iterations.
17 // The current strategy generates an if-then-else sequence prior to the
18 // unrolled loop to execute the 'left over' iterations before or after the
19 // unrolled loop.
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/ScalarEvolution.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Cloning.h"
38 #include "llvm/Transforms/Utils/LoopUtils.h"
39 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
40 #include "llvm/Transforms/Utils/UnrollLoop.h"
41 #include <algorithm>
43 using namespace llvm;
45 #define DEBUG_TYPE "loop-unroll"
47 STATISTIC(NumRuntimeUnrolled,
48 "Number of loops unrolled with run-time trip counts");
49 static cl::opt<bool> UnrollRuntimeMultiExit(
50 "unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
51 cl::desc("Allow runtime unrolling for loops with multiple exits, when "
52 "epilog is generated"));
53 static cl::opt<bool> UnrollRuntimeOtherExitPredictable(
54 "unroll-runtime-other-exit-predictable", cl::init(false), cl::Hidden,
55 cl::desc("Assume the non latch exit block to be predictable"));
57 /// Connect the unrolling prolog code to the original loop.
58 /// The unrolling prolog code contains code to execute the
59 /// 'extra' iterations if the run-time trip count modulo the
60 /// unroll count is non-zero.
61 ///
62 /// This function performs the following:
63 /// - Create PHI nodes at prolog end block to combine values
64 /// that exit the prolog code and jump around the prolog.
65 /// - Add a PHI operand to a PHI node at the loop exit block
66 /// for values that exit the prolog and go around the loop.
67 /// - Branch around the original loop if the trip count is less
68 /// than the unroll factor.
69 ///
70 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
71 BasicBlock *PrologExit,
72 BasicBlock *OriginalLoopLatchExit,
73 BasicBlock *PreHeader, BasicBlock *NewPreHeader,
74 ValueToValueMapTy &VMap, DominatorTree *DT,
75 LoopInfo *LI, bool PreserveLCSSA) {
76 // Loop structure should be the following:
77 // Preheader
78 // PrologHeader
79 // ...
80 // PrologLatch
81 // PrologExit
82 // NewPreheader
83 // Header
84 // ...
85 // Latch
86 // LatchExit
87 BasicBlock *Latch = L->getLoopLatch();
88 assert(Latch && "Loop must have a latch");
89 BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
91 // Create a PHI node for each outgoing value from the original loop
92 // (which means it is an outgoing value from the prolog code too).
93 // The new PHI node is inserted in the prolog end basic block.
94 // The new PHI node value is added as an operand of a PHI node in either
95 // the loop header or the loop exit block.
96 for (BasicBlock *Succ : successors(Latch)) {
97 for (PHINode &PN : Succ->phis()) {
98 // Add a new PHI node to the prolog end block and add the
99 // appropriate incoming values.
100 // TODO: This code assumes that the PrologExit (or the LatchExit block for
101 // prolog loop) contains only one predecessor from the loop, i.e. the
102 // PrologLatch. When supporting multiple-exiting block loops, we can have
103 // two or more blocks that have the LatchExit as the target in the
104 // original loop.
105 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
106 PrologExit->getFirstNonPHI());
107 // Adding a value to the new PHI node from the original loop preheader.
108 // This is the value that skips all the prolog code.
109 if (L->contains(&PN)) {
110 // Succ is loop header.
111 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
112 PreHeader);
113 } else {
114 // Succ is LatchExit.
115 NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
118 Value *V = PN.getIncomingValueForBlock(Latch);
119 if (Instruction *I = dyn_cast<Instruction>(V)) {
120 if (L->contains(I)) {
121 V = VMap.lookup(I);
124 // Adding a value to the new PHI node from the last prolog block
125 // that was created.
126 NewPN->addIncoming(V, PrologLatch);
128 // Update the existing PHI node operand with the value from the
129 // new PHI node. How this is done depends on if the existing
130 // PHI node is in the original loop block, or the exit block.
131 if (L->contains(&PN))
132 PN.setIncomingValueForBlock(NewPreHeader, NewPN);
133 else
134 PN.addIncoming(NewPN, PrologExit);
138 // Make sure that created prolog loop is in simplified form
139 SmallVector<BasicBlock *, 4> PrologExitPreds;
140 Loop *PrologLoop = LI->getLoopFor(PrologLatch);
141 if (PrologLoop) {
142 for (BasicBlock *PredBB : predecessors(PrologExit))
143 if (PrologLoop->contains(PredBB))
144 PrologExitPreds.push_back(PredBB);
146 SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
147 nullptr, PreserveLCSSA);
150 // Create a branch around the original loop, which is taken if there are no
151 // iterations remaining to be executed after running the prologue.
152 Instruction *InsertPt = PrologExit->getTerminator();
153 IRBuilder<> B(InsertPt);
155 assert(Count != 0 && "nonsensical Count!");
157 // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
158 // This means %xtraiter is (BECount + 1) and all of the iterations of this
159 // loop were executed by the prologue. Note that if BECount <u (Count - 1)
160 // then (BECount + 1) cannot unsigned-overflow.
161 Value *BrLoopExit =
162 B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
163 // Split the exit to maintain loop canonicalization guarantees
164 SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
165 SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
166 nullptr, PreserveLCSSA);
167 // Add the branch to the exit block (around the unrolled loop)
168 B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
169 InsertPt->eraseFromParent();
170 if (DT) {
171 auto *NewDom = DT->findNearestCommonDominator(OriginalLoopLatchExit,
172 PrologExit);
173 DT->changeImmediateDominator(OriginalLoopLatchExit, NewDom);
177 /// Connect the unrolling epilog code to the original loop.
178 /// The unrolling epilog code contains code to execute the
179 /// 'extra' iterations if the run-time trip count modulo the
180 /// unroll count is non-zero.
182 /// This function performs the following:
183 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
184 /// - Create PHI nodes at the unrolling loop exit to combine
185 /// values that exit the unrolling loop code and jump around it.
186 /// - Update PHI operands in the epilog loop by the new PHI nodes
187 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
189 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
190 BasicBlock *Exit, BasicBlock *PreHeader,
191 BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
192 ValueToValueMapTy &VMap, DominatorTree *DT,
193 LoopInfo *LI, bool PreserveLCSSA) {
194 BasicBlock *Latch = L->getLoopLatch();
195 assert(Latch && "Loop must have a latch");
196 BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
198 // Loop structure should be the following:
200 // PreHeader
201 // NewPreHeader
202 // Header
203 // ...
204 // Latch
205 // NewExit (PN)
206 // EpilogPreHeader
207 // EpilogHeader
208 // ...
209 // EpilogLatch
210 // Exit (EpilogPN)
212 // Update PHI nodes at NewExit and Exit.
213 for (PHINode &PN : NewExit->phis()) {
214 // PN should be used in another PHI located in Exit block as
215 // Exit was split by SplitBlockPredecessors into Exit and NewExit
216 // Basicaly it should look like:
217 // NewExit:
218 // PN = PHI [I, Latch]
219 // ...
220 // Exit:
221 // EpilogPN = PHI [PN, EpilogPreHeader], [X, Exit2], [Y, Exit2.epil]
223 // Exits from non-latch blocks point to the original exit block and the
224 // epilogue edges have already been added.
226 // There is EpilogPreHeader incoming block instead of NewExit as
227 // NewExit was spilt 1 more time to get EpilogPreHeader.
228 assert(PN.hasOneUse() && "The phi should have 1 use");
229 PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
230 assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
232 // Add incoming PreHeader from branch around the Loop
233 PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
235 Value *V = PN.getIncomingValueForBlock(Latch);
236 Instruction *I = dyn_cast<Instruction>(V);
237 if (I && L->contains(I))
238 // If value comes from an instruction in the loop add VMap value.
239 V = VMap.lookup(I);
240 // For the instruction out of the loop, constant or undefined value
241 // insert value itself.
242 EpilogPN->addIncoming(V, EpilogLatch);
244 assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
245 "EpilogPN should have EpilogPreHeader incoming block");
246 // Change EpilogPreHeader incoming block to NewExit.
247 EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
248 NewExit);
249 // Now PHIs should look like:
250 // NewExit:
251 // PN = PHI [I, Latch], [undef, PreHeader]
252 // ...
253 // Exit:
254 // EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
257 // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
258 // Update corresponding PHI nodes in epilog loop.
259 for (BasicBlock *Succ : successors(Latch)) {
260 // Skip this as we already updated phis in exit blocks.
261 if (!L->contains(Succ))
262 continue;
263 for (PHINode &PN : Succ->phis()) {
264 // Add new PHI nodes to the loop exit block and update epilog
265 // PHIs with the new PHI values.
266 PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
267 NewExit->getFirstNonPHI());
268 // Adding a value to the new PHI node from the unrolling loop preheader.
269 NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
270 // Adding a value to the new PHI node from the unrolling loop latch.
271 NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
273 // Update the existing PHI node operand with the value from the new PHI
274 // node. Corresponding instruction in epilog loop should be PHI.
275 PHINode *VPN = cast<PHINode>(VMap[&PN]);
276 VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
280 Instruction *InsertPt = NewExit->getTerminator();
281 IRBuilder<> B(InsertPt);
282 Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
283 assert(Exit && "Loop must have a single exit block only");
284 // Split the epilogue exit to maintain loop canonicalization guarantees
285 SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
286 SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
287 PreserveLCSSA);
288 // Add the branch to the exit block (around the unrolling loop)
289 B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
290 InsertPt->eraseFromParent();
291 if (DT) {
292 auto *NewDom = DT->findNearestCommonDominator(Exit, NewExit);
293 DT->changeImmediateDominator(Exit, NewDom);
296 // Split the main loop exit to maintain canonicalization guarantees.
297 SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
298 SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
299 PreserveLCSSA);
302 /// Create a clone of the blocks in a loop and connect them together.
303 /// If CreateRemainderLoop is false, loop structure will not be cloned,
304 /// otherwise a new loop will be created including all cloned blocks, and the
305 /// iterator of it switches to count NewIter down to 0.
306 /// The cloned blocks should be inserted between InsertTop and InsertBot.
307 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
308 /// new loop exit.
309 /// Return the new cloned loop that is created when CreateRemainderLoop is true.
310 static Loop *
311 CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
312 const bool UseEpilogRemainder, const bool UnrollRemainder,
313 BasicBlock *InsertTop,
314 BasicBlock *InsertBot, BasicBlock *Preheader,
315 std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
316 ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
317 StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
318 BasicBlock *Header = L->getHeader();
319 BasicBlock *Latch = L->getLoopLatch();
320 Function *F = Header->getParent();
321 LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
322 LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
323 Loop *ParentLoop = L->getParentLoop();
324 NewLoopsMap NewLoops;
325 NewLoops[ParentLoop] = ParentLoop;
326 if (!CreateRemainderLoop)
327 NewLoops[L] = ParentLoop;
329 // For each block in the original loop, create a new copy,
330 // and update the value map with the newly created values.
331 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
332 BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
333 NewBlocks.push_back(NewBB);
335 // If we're unrolling the outermost loop, there's no remainder loop,
336 // and this block isn't in a nested loop, then the new block is not
337 // in any loop. Otherwise, add it to loopinfo.
338 if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
339 addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
341 VMap[*BB] = NewBB;
342 if (Header == *BB) {
343 // For the first block, add a CFG connection to this newly
344 // created block.
345 InsertTop->getTerminator()->setSuccessor(0, NewBB);
348 if (DT) {
349 if (Header == *BB) {
350 // The header is dominated by the preheader.
351 DT->addNewBlock(NewBB, InsertTop);
352 } else {
353 // Copy information from original loop to unrolled loop.
354 BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
355 DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
359 if (Latch == *BB) {
360 // For the last block, if CreateRemainderLoop is false, create a direct
361 // jump to InsertBot. If not, create a loop back to cloned head.
362 VMap.erase((*BB)->getTerminator());
363 BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
364 BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
365 IRBuilder<> Builder(LatchBR);
366 if (!CreateRemainderLoop) {
367 Builder.CreateBr(InsertBot);
368 } else {
369 PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
370 suffix + ".iter",
371 FirstLoopBB->getFirstNonPHI());
372 Value *IdxSub =
373 Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
374 NewIdx->getName() + ".sub");
375 Value *IdxCmp =
376 Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
377 Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
378 NewIdx->addIncoming(NewIter, InsertTop);
379 NewIdx->addIncoming(IdxSub, NewBB);
381 LatchBR->eraseFromParent();
385 // Change the incoming values to the ones defined in the preheader or
386 // cloned loop.
387 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
388 PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
389 if (!CreateRemainderLoop) {
390 if (UseEpilogRemainder) {
391 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
392 NewPHI->setIncomingBlock(idx, InsertTop);
393 NewPHI->removeIncomingValue(Latch, false);
394 } else {
395 VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
396 cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
398 } else {
399 unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
400 NewPHI->setIncomingBlock(idx, InsertTop);
401 BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
402 idx = NewPHI->getBasicBlockIndex(Latch);
403 Value *InVal = NewPHI->getIncomingValue(idx);
404 NewPHI->setIncomingBlock(idx, NewLatch);
405 if (Value *V = VMap.lookup(InVal))
406 NewPHI->setIncomingValue(idx, V);
409 if (CreateRemainderLoop) {
410 Loop *NewLoop = NewLoops[L];
411 assert(NewLoop && "L should have been cloned");
412 MDNode *LoopID = NewLoop->getLoopID();
414 // Only add loop metadata if the loop is not going to be completely
415 // unrolled.
416 if (UnrollRemainder)
417 return NewLoop;
419 Optional<MDNode *> NewLoopID = makeFollowupLoopID(
420 LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
421 if (NewLoopID.hasValue()) {
422 NewLoop->setLoopID(NewLoopID.getValue());
424 // Do not setLoopAlreadyUnrolled if loop attributes have been defined
425 // explicitly.
426 return NewLoop;
429 // Add unroll disable metadata to disable future unrolling for this loop.
430 NewLoop->setLoopAlreadyUnrolled();
431 return NewLoop;
433 else
434 return nullptr;
437 /// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
438 /// is populated with all the loop exit blocks other than the LatchExit block.
439 static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
440 bool PreserveLCSSA,
441 bool UseEpilogRemainder) {
443 // We currently have some correctness constrains in unrolling a multi-exit
444 // loop. Check for these below.
446 // We rely on LCSSA form being preserved when the exit blocks are transformed.
447 // (Note that only an off-by-default mode of the old PM disables PreserveLCCA.)
448 if (!PreserveLCSSA)
449 return false;
451 // FIXME: We bail out of multi-exit unrolling when epilog loop is generated
452 // and L is an inner loop. This is because in presence of multiple exits, the
453 // outer loop is incorrect: we do not add the EpilogPreheader and exit to the
454 // outer loop. This is automatically handled in the prolog case, so we do not
455 // have that bug in prolog generation.
456 if (UseEpilogRemainder && L->getParentLoop())
457 return false;
459 // All constraints have been satisfied.
460 return true;
463 /// Returns true if we can profitably unroll the multi-exit loop L. Currently,
464 /// we return true only if UnrollRuntimeMultiExit is set to true.
465 static bool canProfitablyUnrollMultiExitLoop(
466 Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
467 bool PreserveLCSSA, bool UseEpilogRemainder) {
469 #if !defined(NDEBUG)
470 assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
471 UseEpilogRemainder) &&
472 "Should be safe to unroll before checking profitability!");
473 #endif
475 // Priority goes to UnrollRuntimeMultiExit if it's supplied.
476 if (UnrollRuntimeMultiExit.getNumOccurrences())
477 return UnrollRuntimeMultiExit;
479 // TODO: We used to bail out for correctness (now fixed). Under what
480 // circumstances is this case profitable to allow?
481 if (!LatchExit->getSinglePredecessor())
482 return false;
484 // The main pain point with multi-exit loop unrolling is that once unrolled,
485 // we will not be able to merge all blocks into a straight line code.
486 // There are branches within the unrolled loop that go to the OtherExits.
487 // The second point is the increase in code size, but this is true
488 // irrespective of multiple exits.
490 // Note: Both the heuristics below are coarse grained. We are essentially
491 // enabling unrolling of loops that have a single side exit other than the
492 // normal LatchExit (i.e. exiting into a deoptimize block).
493 // The heuristics considered are:
494 // 1. low number of branches in the unrolled version.
495 // 2. high predictability of these extra branches.
496 // We avoid unrolling loops that have more than two exiting blocks. This
497 // limits the total number of branches in the unrolled loop to be atmost
498 // the unroll factor (since one of the exiting blocks is the latch block).
499 SmallVector<BasicBlock*, 4> ExitingBlocks;
500 L->getExitingBlocks(ExitingBlocks);
501 if (ExitingBlocks.size() > 2)
502 return false;
504 // Allow unrolling of loops with no non latch exit blocks.
505 if (OtherExits.size() == 0)
506 return true;
508 // The second heuristic is that L has one exit other than the latchexit and
509 // that exit is a deoptimize block. We know that deoptimize blocks are rarely
510 // taken, which also implies the branch leading to the deoptimize block is
511 // highly predictable. When UnrollRuntimeOtherExitPredictable is specified, we
512 // assume the other exit branch is predictable even if it has no deoptimize
513 // call.
514 return (OtherExits.size() == 1 &&
515 (UnrollRuntimeOtherExitPredictable ||
516 OtherExits[0]->getTerminatingDeoptimizeCall()));
517 // TODO: These can be fine-tuned further to consider code size or deopt states
518 // that are captured by the deoptimize exit block.
519 // Also, we can extend this to support more cases, if we actually
520 // know of kinds of multiexit loops that would benefit from unrolling.
523 // Assign the maximum possible trip count as the back edge weight for the
524 // remainder loop if the original loop comes with a branch weight.
525 static void updateLatchBranchWeightsForRemainderLoop(Loop *OrigLoop,
526 Loop *RemainderLoop,
527 uint64_t UnrollFactor) {
528 uint64_t TrueWeight, FalseWeight;
529 BranchInst *LatchBR =
530 cast<BranchInst>(OrigLoop->getLoopLatch()->getTerminator());
531 if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
532 uint64_t ExitWeight = LatchBR->getSuccessor(0) == OrigLoop->getHeader()
533 ? FalseWeight
534 : TrueWeight;
535 assert(UnrollFactor > 1);
536 uint64_t BackEdgeWeight = (UnrollFactor - 1) * ExitWeight;
537 BasicBlock *Header = RemainderLoop->getHeader();
538 BasicBlock *Latch = RemainderLoop->getLoopLatch();
539 auto *RemainderLatchBR = cast<BranchInst>(Latch->getTerminator());
540 unsigned HeaderIdx = (RemainderLatchBR->getSuccessor(0) == Header ? 0 : 1);
541 MDBuilder MDB(RemainderLatchBR->getContext());
542 MDNode *WeightNode =
543 HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
544 : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
545 RemainderLatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
549 /// Calculate ModVal = (BECount + 1) % Count on the abstract integer domain
550 /// accounting for the possibility of unsigned overflow in the 2s complement
551 /// domain. Preconditions:
552 /// 1) TripCount = BECount + 1 (allowing overflow)
553 /// 2) Log2(Count) <= BitWidth(BECount)
554 static Value *CreateTripRemainder(IRBuilder<> &B, Value *BECount,
555 Value *TripCount, unsigned Count) {
556 // Note that TripCount is BECount + 1.
557 if (isPowerOf2_32(Count))
558 // If the expression is zero, then either:
559 // 1. There are no iterations to be run in the prolog/epilog loop.
560 // OR
561 // 2. The addition computing TripCount overflowed.
563 // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
564 // the number of iterations that remain to be run in the original loop is a
565 // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (a
566 // precondition of this method).
567 return B.CreateAnd(TripCount, Count - 1, "xtraiter");
569 // As (BECount + 1) can potentially unsigned overflow we count
570 // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
571 Constant *CountC = ConstantInt::get(BECount->getType(), Count);
572 Value *ModValTmp = B.CreateURem(BECount, CountC);
573 Value *ModValAdd = B.CreateAdd(ModValTmp,
574 ConstantInt::get(ModValTmp->getType(), 1));
575 // At that point (BECount % Count) + 1 could be equal to Count.
576 // To handle this case we need to take mod by Count one more time.
577 return B.CreateURem(ModValAdd, CountC, "xtraiter");
581 /// Insert code in the prolog/epilog code when unrolling a loop with a
582 /// run-time trip-count.
584 /// This method assumes that the loop unroll factor is total number
585 /// of loop bodies in the loop after unrolling. (Some folks refer
586 /// to the unroll factor as the number of *extra* copies added).
587 /// We assume also that the loop unroll factor is a power-of-two. So, after
588 /// unrolling the loop, the number of loop bodies executed is 2,
589 /// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
590 /// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
591 /// the switch instruction is generated.
593 /// ***Prolog case***
594 /// extraiters = tripcount % loopfactor
595 /// if (extraiters == 0) jump Loop:
596 /// else jump Prol:
597 /// Prol: LoopBody;
598 /// extraiters -= 1 // Omitted if unroll factor is 2.
599 /// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
600 /// if (tripcount < loopfactor) jump End:
601 /// Loop:
602 /// ...
603 /// End:
605 /// ***Epilog case***
606 /// extraiters = tripcount % loopfactor
607 /// if (tripcount < loopfactor) jump LoopExit:
608 /// unroll_iters = tripcount - extraiters
609 /// Loop: LoopBody; (executes unroll_iter times);
610 /// unroll_iter -= 1
611 /// if (unroll_iter != 0) jump Loop:
612 /// LoopExit:
613 /// if (extraiters == 0) jump EpilExit:
614 /// Epil: LoopBody; (executes extraiters times)
615 /// extraiters -= 1 // Omitted if unroll factor is 2.
616 /// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
617 /// EpilExit:
619 bool llvm::UnrollRuntimeLoopRemainder(
620 Loop *L, unsigned Count, bool AllowExpensiveTripCount,
621 bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
622 LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
623 const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
624 LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
625 LLVM_DEBUG(L->dump());
626 LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
627 : dbgs() << "Using prolog remainder.\n");
629 // Make sure the loop is in canonical form.
630 if (!L->isLoopSimplifyForm()) {
631 LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
632 return false;
635 // Guaranteed by LoopSimplifyForm.
636 BasicBlock *Latch = L->getLoopLatch();
637 BasicBlock *Header = L->getHeader();
639 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
641 if (!LatchBR || LatchBR->isUnconditional()) {
642 // The loop-rotate pass can be helpful to avoid this in many cases.
643 LLVM_DEBUG(
644 dbgs()
645 << "Loop latch not terminated by a conditional branch.\n");
646 return false;
649 unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
650 BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
652 if (L->contains(LatchExit)) {
653 // Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
654 // targets of the Latch be an exit block out of the loop.
655 LLVM_DEBUG(
656 dbgs()
657 << "One of the loop latch successors must be the exit block.\n");
658 return false;
661 // These are exit blocks other than the target of the latch exiting block.
662 SmallVector<BasicBlock *, 4> OtherExits;
663 L->getUniqueNonLatchExitBlocks(OtherExits);
664 bool isMultiExitUnrollingEnabled =
665 canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
666 UseEpilogRemainder) &&
667 canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
668 UseEpilogRemainder);
669 // Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
670 if (!isMultiExitUnrollingEnabled &&
671 (!L->getExitingBlock() || OtherExits.size())) {
672 LLVM_DEBUG(
673 dbgs()
674 << "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
675 "enabled!\n");
676 return false;
678 // Use Scalar Evolution to compute the trip count. This allows more loops to
679 // be unrolled than relying on induction var simplification.
680 if (!SE)
681 return false;
683 // Only unroll loops with a computable trip count, and the trip count needs
684 // to be an int value (allowing a pointer type is a TODO item).
685 // We calculate the backedge count by using getExitCount on the Latch block,
686 // which is proven to be the only exiting block in this loop. This is same as
687 // calculating getBackedgeTakenCount on the loop (which computes SCEV for all
688 // exiting blocks).
689 const SCEV *BECountSC = SE->getExitCount(L, Latch);
690 if (isa<SCEVCouldNotCompute>(BECountSC) ||
691 !BECountSC->getType()->isIntegerTy()) {
692 LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
693 return false;
696 unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
698 // Add 1 since the backedge count doesn't include the first loop iteration.
699 // (Note that overflow can occur, this is handled explicitly below)
700 const SCEV *TripCountSC =
701 SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
702 if (isa<SCEVCouldNotCompute>(TripCountSC)) {
703 LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
704 return false;
707 BasicBlock *PreHeader = L->getLoopPreheader();
708 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
709 const DataLayout &DL = Header->getModule()->getDataLayout();
710 SCEVExpander Expander(*SE, DL, "loop-unroll");
711 if (!AllowExpensiveTripCount &&
712 Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
713 TTI, PreHeaderBR)) {
714 LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
715 return false;
718 // This constraint lets us deal with an overflowing trip count easily; see the
719 // comment on ModVal below.
720 if (Log2_32(Count) > BEWidth) {
721 LLVM_DEBUG(
722 dbgs()
723 << "Count failed constraint on overflow trip count calculation.\n");
724 return false;
727 // Loop structure is the following:
729 // PreHeader
730 // Header
731 // ...
732 // Latch
733 // LatchExit
735 BasicBlock *NewPreHeader;
736 BasicBlock *NewExit = nullptr;
737 BasicBlock *PrologExit = nullptr;
738 BasicBlock *EpilogPreHeader = nullptr;
739 BasicBlock *PrologPreHeader = nullptr;
741 if (UseEpilogRemainder) {
742 // If epilog remainder
743 // Split PreHeader to insert a branch around loop for unrolling.
744 NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
745 NewPreHeader->setName(PreHeader->getName() + ".new");
746 // Split LatchExit to create phi nodes from branch above.
747 NewExit = SplitBlockPredecessors(LatchExit, {Latch}, ".unr-lcssa", DT, LI,
748 nullptr, PreserveLCSSA);
749 // NewExit gets its DebugLoc from LatchExit, which is not part of the
750 // original Loop.
751 // Fix this by setting Loop's DebugLoc to NewExit.
752 auto *NewExitTerminator = NewExit->getTerminator();
753 NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
754 // Split NewExit to insert epilog remainder loop.
755 EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
756 EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
757 } else {
758 // If prolog remainder
759 // Split the original preheader twice to insert prolog remainder loop
760 PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
761 PrologPreHeader->setName(Header->getName() + ".prol.preheader");
762 PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
763 DT, LI);
764 PrologExit->setName(Header->getName() + ".prol.loopexit");
765 // Split PrologExit to get NewPreHeader.
766 NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
767 NewPreHeader->setName(PreHeader->getName() + ".new");
769 // Loop structure should be the following:
770 // Epilog Prolog
772 // PreHeader PreHeader
773 // *NewPreHeader *PrologPreHeader
774 // Header *PrologExit
775 // ... *NewPreHeader
776 // Latch Header
777 // *NewExit ...
778 // *EpilogPreHeader Latch
779 // LatchExit LatchExit
781 // Calculate conditions for branch around loop for unrolling
782 // in epilog case and around prolog remainder loop in prolog case.
783 // Compute the number of extra iterations required, which is:
784 // extra iterations = run-time trip count % loop unroll factor
785 PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
786 Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
787 PreHeaderBR);
788 Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
789 PreHeaderBR);
790 IRBuilder<> B(PreHeaderBR);
791 Value * const ModVal = CreateTripRemainder(B, BECount, TripCount, Count);
793 Value *BranchVal =
794 UseEpilogRemainder ? B.CreateICmpULT(BECount,
795 ConstantInt::get(BECount->getType(),
796 Count - 1)) :
797 B.CreateIsNotNull(ModVal, "lcmp.mod");
798 BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
799 BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
800 // Branch to either remainder (extra iterations) loop or unrolling loop.
801 B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
802 PreHeaderBR->eraseFromParent();
803 if (DT) {
804 if (UseEpilogRemainder)
805 DT->changeImmediateDominator(NewExit, PreHeader);
806 else
807 DT->changeImmediateDominator(PrologExit, PreHeader);
809 Function *F = Header->getParent();
810 // Get an ordered list of blocks in the loop to help with the ordering of the
811 // cloned blocks in the prolog/epilog code
812 LoopBlocksDFS LoopBlocks(L);
813 LoopBlocks.perform(LI);
816 // For each extra loop iteration, create a copy of the loop's basic blocks
817 // and generate a condition that branches to the copy depending on the
818 // number of 'left over' iterations.
820 std::vector<BasicBlock *> NewBlocks;
821 ValueToValueMapTy VMap;
823 // For unroll factor 2 remainder loop will have 1 iterations.
824 // Do not create 1 iteration loop.
825 bool CreateRemainderLoop = (Count != 2);
827 // Clone all the basic blocks in the loop. If Count is 2, we don't clone
828 // the loop, otherwise we create a cloned loop to execute the extra
829 // iterations. This function adds the appropriate CFG connections.
830 BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
831 BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
832 Loop *remainderLoop = CloneLoopBlocks(
833 L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
834 InsertTop, InsertBot,
835 NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
837 // Assign the maximum possible trip count as the back edge weight for the
838 // remainder loop if the original loop comes with a branch weight.
839 if (remainderLoop && !UnrollRemainder)
840 updateLatchBranchWeightsForRemainderLoop(L, remainderLoop, Count);
842 // Insert the cloned blocks into the function.
843 F->getBasicBlockList().splice(InsertBot->getIterator(),
844 F->getBasicBlockList(),
845 NewBlocks[0]->getIterator(),
846 F->end());
848 // Now the loop blocks are cloned and the other exiting blocks from the
849 // remainder are connected to the original Loop's exit blocks. The remaining
850 // work is to update the phi nodes in the original loop, and take in the
851 // values from the cloned region.
852 for (auto *BB : OtherExits) {
853 // Given we preserve LCSSA form, we know that the values used outside the
854 // loop will be used through these phi nodes at the exit blocks that are
855 // transformed below.
856 for (PHINode &PN : BB->phis()) {
857 unsigned oldNumOperands = PN.getNumIncomingValues();
858 // Add the incoming values from the remainder code to the end of the phi
859 // node.
860 for (unsigned i = 0; i < oldNumOperands; i++){
861 auto *PredBB =PN.getIncomingBlock(i);
862 if (PredBB == Latch)
863 // The latch exit is handled seperately, see connectX
864 continue;
865 if (!L->contains(PredBB))
866 // Even if we had dedicated exits, the code above inserted an
867 // extra branch which can reach the latch exit.
868 continue;
870 auto *V = PN.getIncomingValue(i);
871 if (Instruction *I = dyn_cast<Instruction>(V))
872 if (L->contains(I))
873 V = VMap.lookup(I);
874 PN.addIncoming(V, cast<BasicBlock>(VMap[PredBB]));
877 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
878 for (BasicBlock *SuccBB : successors(BB)) {
879 assert(!(any_of(OtherExits,
880 [SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
881 SuccBB == LatchExit) &&
882 "Breaks the definition of dedicated exits!");
884 #endif
887 // Update the immediate dominator of the exit blocks and blocks that are
888 // reachable from the exit blocks. This is needed because we now have paths
889 // from both the original loop and the remainder code reaching the exit
890 // blocks. While the IDom of these exit blocks were from the original loop,
891 // now the IDom is the preheader (which decides whether the original loop or
892 // remainder code should run).
893 if (DT && !L->getExitingBlock()) {
894 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
895 // NB! We have to examine the dom children of all loop blocks, not just
896 // those which are the IDom of the exit blocks. This is because blocks
897 // reachable from the exit blocks can have their IDom as the nearest common
898 // dominator of the exit blocks.
899 for (auto *BB : L->blocks()) {
900 auto *DomNodeBB = DT->getNode(BB);
901 for (auto *DomChild : DomNodeBB->children()) {
902 auto *DomChildBB = DomChild->getBlock();
903 if (!L->contains(LI->getLoopFor(DomChildBB)))
904 ChildrenToUpdate.push_back(DomChildBB);
907 for (auto *BB : ChildrenToUpdate)
908 DT->changeImmediateDominator(BB, PreHeader);
911 // Loop structure should be the following:
912 // Epilog Prolog
914 // PreHeader PreHeader
915 // NewPreHeader PrologPreHeader
916 // Header PrologHeader
917 // ... ...
918 // Latch PrologLatch
919 // NewExit PrologExit
920 // EpilogPreHeader NewPreHeader
921 // EpilogHeader Header
922 // ... ...
923 // EpilogLatch Latch
924 // LatchExit LatchExit
926 // Rewrite the cloned instruction operands to use the values created when the
927 // clone is created.
928 for (BasicBlock *BB : NewBlocks) {
929 for (Instruction &I : *BB) {
930 RemapInstruction(&I, VMap,
931 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
935 if (UseEpilogRemainder) {
936 // Connect the epilog code to the original loop and update the
937 // PHI functions.
938 ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
939 EpilogPreHeader, NewPreHeader, VMap, DT, LI,
940 PreserveLCSSA);
942 // Update counter in loop for unrolling.
943 // I should be multiply of Count.
944 IRBuilder<> B2(NewPreHeader->getTerminator());
945 Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
946 BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
947 B2.SetInsertPoint(LatchBR);
948 PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
949 Header->getFirstNonPHI());
950 Value *IdxSub =
951 B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
952 NewIdx->getName() + ".nsub");
953 Value *IdxCmp;
954 if (LatchBR->getSuccessor(0) == Header)
955 IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
956 else
957 IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
958 NewIdx->addIncoming(TestVal, NewPreHeader);
959 NewIdx->addIncoming(IdxSub, Latch);
960 LatchBR->setCondition(IdxCmp);
961 } else {
962 // Connect the prolog code to the original loop and update the
963 // PHI functions.
964 ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
965 NewPreHeader, VMap, DT, LI, PreserveLCSSA);
968 // If this loop is nested, then the loop unroller changes the code in the any
969 // of its parent loops, so the Scalar Evolution pass needs to be run again.
970 SE->forgetTopmostLoop(L);
972 // Verify that the Dom Tree is correct.
973 #if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
974 if (DT)
975 assert(DT->verify(DominatorTree::VerificationLevel::Full));
976 #endif
978 // Canonicalize to LoopSimplifyForm both original and remainder loops. We
979 // cannot rely on the LoopUnrollPass to do this because it only does
980 // canonicalization for parent/subloops and not the sibling loops.
981 if (OtherExits.size() > 0) {
982 // Generate dedicated exit blocks for the original loop, to preserve
983 // LoopSimplifyForm.
984 formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
985 // Generate dedicated exit blocks for the remainder loop if one exists, to
986 // preserve LoopSimplifyForm.
987 if (remainderLoop)
988 formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
991 auto UnrollResult = LoopUnrollResult::Unmodified;
992 if (remainderLoop && UnrollRemainder) {
993 LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
994 UnrollResult =
995 UnrollLoop(remainderLoop,
996 {/*Count*/ Count - 1, /*Force*/ false, /*Runtime*/ false,
997 /*AllowExpensiveTripCount*/ false,
998 /*UnrollRemainder*/ false, ForgetAllSCEV},
999 LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
1002 if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
1003 *ResultLoop = remainderLoop;
1004 NumRuntimeUnrolled++;
1005 return true;