[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Transforms / Utils / LowerSwitch.cpp
blobec8d7a7074cdb1c4627376e5aa57f4243da48df7
1 //===- LowerSwitch.cpp - Eliminate Switch instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The LowerSwitch transformation rewrites switch instructions with a sequence
10 // of branches, which allows targets to get away with not implementing the
11 // switch instruction until it is convenient.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/LowerSwitch.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/LazyValueInfo.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Compiler.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <limits>
46 #include <vector>
48 using namespace llvm;
50 #define DEBUG_TYPE "lower-switch"
52 namespace {
54 struct IntRange {
55 int64_t Low, High;
58 } // end anonymous namespace
60 namespace {
61 // Return true iff R is covered by Ranges.
62 bool IsInRanges(const IntRange &R, const std::vector<IntRange> &Ranges) {
63 // Note: Ranges must be sorted, non-overlapping and non-adjacent.
65 // Find the first range whose High field is >= R.High,
66 // then check if the Low field is <= R.Low. If so, we
67 // have a Range that covers R.
68 auto I = llvm::lower_bound(
69 Ranges, R, [](IntRange A, IntRange B) { return A.High < B.High; });
70 return I != Ranges.end() && I->Low <= R.Low;
73 struct CaseRange {
74 ConstantInt *Low;
75 ConstantInt *High;
76 BasicBlock *BB;
78 CaseRange(ConstantInt *low, ConstantInt *high, BasicBlock *bb)
79 : Low(low), High(high), BB(bb) {}
82 using CaseVector = std::vector<CaseRange>;
83 using CaseItr = std::vector<CaseRange>::iterator;
85 /// The comparison function for sorting the switch case values in the vector.
86 /// WARNING: Case ranges should be disjoint!
87 struct CaseCmp {
88 bool operator()(const CaseRange &C1, const CaseRange &C2) {
89 const ConstantInt *CI1 = cast<const ConstantInt>(C1.Low);
90 const ConstantInt *CI2 = cast<const ConstantInt>(C2.High);
91 return CI1->getValue().slt(CI2->getValue());
95 /// Used for debugging purposes.
96 LLVM_ATTRIBUTE_USED
97 raw_ostream &operator<<(raw_ostream &O, const CaseVector &C) {
98 O << "[";
100 for (CaseVector::const_iterator B = C.begin(), E = C.end(); B != E;) {
101 O << "[" << B->Low->getValue() << ", " << B->High->getValue() << "]";
102 if (++B != E)
103 O << ", ";
106 return O << "]";
109 /// Update the first occurrence of the "switch statement" BB in the PHI
110 /// node with the "new" BB. The other occurrences will:
112 /// 1) Be updated by subsequent calls to this function. Switch statements may
113 /// have more than one outcoming edge into the same BB if they all have the same
114 /// value. When the switch statement is converted these incoming edges are now
115 /// coming from multiple BBs.
116 /// 2) Removed if subsequent incoming values now share the same case, i.e.,
117 /// multiple outcome edges are condensed into one. This is necessary to keep the
118 /// number of phi values equal to the number of branches to SuccBB.
119 void FixPhis(
120 BasicBlock *SuccBB, BasicBlock *OrigBB, BasicBlock *NewBB,
121 const unsigned NumMergedCases = std::numeric_limits<unsigned>::max()) {
122 for (BasicBlock::iterator I = SuccBB->begin(),
123 IE = SuccBB->getFirstNonPHI()->getIterator();
124 I != IE; ++I) {
125 PHINode *PN = cast<PHINode>(I);
127 // Only update the first occurrence.
128 unsigned Idx = 0, E = PN->getNumIncomingValues();
129 unsigned LocalNumMergedCases = NumMergedCases;
130 for (; Idx != E; ++Idx) {
131 if (PN->getIncomingBlock(Idx) == OrigBB) {
132 PN->setIncomingBlock(Idx, NewBB);
133 break;
137 // Remove additional occurrences coming from condensed cases and keep the
138 // number of incoming values equal to the number of branches to SuccBB.
139 SmallVector<unsigned, 8> Indices;
140 for (++Idx; LocalNumMergedCases > 0 && Idx < E; ++Idx)
141 if (PN->getIncomingBlock(Idx) == OrigBB) {
142 Indices.push_back(Idx);
143 LocalNumMergedCases--;
145 // Remove incoming values in the reverse order to prevent invalidating
146 // *successive* index.
147 for (unsigned III : llvm::reverse(Indices))
148 PN->removeIncomingValue(III);
152 /// Create a new leaf block for the binary lookup tree. It checks if the
153 /// switch's value == the case's value. If not, then it jumps to the default
154 /// branch. At this point in the tree, the value can't be another valid case
155 /// value, so the jump to the "default" branch is warranted.
156 BasicBlock *NewLeafBlock(CaseRange &Leaf, Value *Val, ConstantInt *LowerBound,
157 ConstantInt *UpperBound, BasicBlock *OrigBlock,
158 BasicBlock *Default) {
159 Function *F = OrigBlock->getParent();
160 BasicBlock *NewLeaf = BasicBlock::Create(Val->getContext(), "LeafBlock");
161 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewLeaf);
163 // Emit comparison
164 ICmpInst *Comp = nullptr;
165 if (Leaf.Low == Leaf.High) {
166 // Make the seteq instruction...
167 Comp =
168 new ICmpInst(*NewLeaf, ICmpInst::ICMP_EQ, Val, Leaf.Low, "SwitchLeaf");
169 } else {
170 // Make range comparison
171 if (Leaf.Low == LowerBound) {
172 // Val >= Min && Val <= Hi --> Val <= Hi
173 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SLE, Val, Leaf.High,
174 "SwitchLeaf");
175 } else if (Leaf.High == UpperBound) {
176 // Val <= Max && Val >= Lo --> Val >= Lo
177 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_SGE, Val, Leaf.Low,
178 "SwitchLeaf");
179 } else if (Leaf.Low->isZero()) {
180 // Val >= 0 && Val <= Hi --> Val <=u Hi
181 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Val, Leaf.High,
182 "SwitchLeaf");
183 } else {
184 // Emit V-Lo <=u Hi-Lo
185 Constant *NegLo = ConstantExpr::getNeg(Leaf.Low);
186 Instruction *Add = BinaryOperator::CreateAdd(
187 Val, NegLo, Val->getName() + ".off", NewLeaf);
188 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Leaf.High);
189 Comp = new ICmpInst(*NewLeaf, ICmpInst::ICMP_ULE, Add, UpperBound,
190 "SwitchLeaf");
194 // Make the conditional branch...
195 BasicBlock *Succ = Leaf.BB;
196 BranchInst::Create(Succ, Default, Comp, NewLeaf);
198 // If there were any PHI nodes in this successor, rewrite one entry
199 // from OrigBlock to come from NewLeaf.
200 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
201 PHINode *PN = cast<PHINode>(I);
202 // Remove all but one incoming entries from the cluster
203 uint64_t Range = Leaf.High->getSExtValue() - Leaf.Low->getSExtValue();
204 for (uint64_t j = 0; j < Range; ++j) {
205 PN->removeIncomingValue(OrigBlock);
208 int BlockIdx = PN->getBasicBlockIndex(OrigBlock);
209 assert(BlockIdx != -1 && "Switch didn't go to this successor??");
210 PN->setIncomingBlock((unsigned)BlockIdx, NewLeaf);
213 return NewLeaf;
216 /// Convert the switch statement into a binary lookup of the case values.
217 /// The function recursively builds this tree. LowerBound and UpperBound are
218 /// used to keep track of the bounds for Val that have already been checked by
219 /// a block emitted by one of the previous calls to switchConvert in the call
220 /// stack.
221 BasicBlock *SwitchConvert(CaseItr Begin, CaseItr End, ConstantInt *LowerBound,
222 ConstantInt *UpperBound, Value *Val,
223 BasicBlock *Predecessor, BasicBlock *OrigBlock,
224 BasicBlock *Default,
225 const std::vector<IntRange> &UnreachableRanges) {
226 assert(LowerBound && UpperBound && "Bounds must be initialized");
227 unsigned Size = End - Begin;
229 if (Size == 1) {
230 // Check if the Case Range is perfectly squeezed in between
231 // already checked Upper and Lower bounds. If it is then we can avoid
232 // emitting the code that checks if the value actually falls in the range
233 // because the bounds already tell us so.
234 if (Begin->Low == LowerBound && Begin->High == UpperBound) {
235 unsigned NumMergedCases = 0;
236 NumMergedCases = UpperBound->getSExtValue() - LowerBound->getSExtValue();
237 FixPhis(Begin->BB, OrigBlock, Predecessor, NumMergedCases);
238 return Begin->BB;
240 return NewLeafBlock(*Begin, Val, LowerBound, UpperBound, OrigBlock,
241 Default);
244 unsigned Mid = Size / 2;
245 std::vector<CaseRange> LHS(Begin, Begin + Mid);
246 LLVM_DEBUG(dbgs() << "LHS: " << LHS << "\n");
247 std::vector<CaseRange> RHS(Begin + Mid, End);
248 LLVM_DEBUG(dbgs() << "RHS: " << RHS << "\n");
250 CaseRange &Pivot = *(Begin + Mid);
251 LLVM_DEBUG(dbgs() << "Pivot ==> [" << Pivot.Low->getValue() << ", "
252 << Pivot.High->getValue() << "]\n");
254 // NewLowerBound here should never be the integer minimal value.
255 // This is because it is computed from a case range that is never
256 // the smallest, so there is always a case range that has at least
257 // a smaller value.
258 ConstantInt *NewLowerBound = Pivot.Low;
260 // Because NewLowerBound is never the smallest representable integer
261 // it is safe here to subtract one.
262 ConstantInt *NewUpperBound = ConstantInt::get(NewLowerBound->getContext(),
263 NewLowerBound->getValue() - 1);
265 if (!UnreachableRanges.empty()) {
266 // Check if the gap between LHS's highest and NewLowerBound is unreachable.
267 int64_t GapLow = LHS.back().High->getSExtValue() + 1;
268 int64_t GapHigh = NewLowerBound->getSExtValue() - 1;
269 IntRange Gap = { GapLow, GapHigh };
270 if (GapHigh >= GapLow && IsInRanges(Gap, UnreachableRanges))
271 NewUpperBound = LHS.back().High;
274 LLVM_DEBUG(dbgs() << "LHS Bounds ==> [" << LowerBound->getSExtValue() << ", "
275 << NewUpperBound->getSExtValue() << "]\n"
276 << "RHS Bounds ==> [" << NewLowerBound->getSExtValue()
277 << ", " << UpperBound->getSExtValue() << "]\n");
279 // Create a new node that checks if the value is < pivot. Go to the
280 // left branch if it is and right branch if not.
281 Function* F = OrigBlock->getParent();
282 BasicBlock* NewNode = BasicBlock::Create(Val->getContext(), "NodeBlock");
284 ICmpInst* Comp = new ICmpInst(ICmpInst::ICMP_SLT,
285 Val, Pivot.Low, "Pivot");
287 BasicBlock *LBranch =
288 SwitchConvert(LHS.begin(), LHS.end(), LowerBound, NewUpperBound, Val,
289 NewNode, OrigBlock, Default, UnreachableRanges);
290 BasicBlock *RBranch =
291 SwitchConvert(RHS.begin(), RHS.end(), NewLowerBound, UpperBound, Val,
292 NewNode, OrigBlock, Default, UnreachableRanges);
294 F->getBasicBlockList().insert(++OrigBlock->getIterator(), NewNode);
295 NewNode->getInstList().push_back(Comp);
297 BranchInst::Create(LBranch, RBranch, Comp, NewNode);
298 return NewNode;
301 /// Transform simple list of \p SI's cases into list of CaseRange's \p Cases.
302 /// \post \p Cases wouldn't contain references to \p SI's default BB.
303 /// \returns Number of \p SI's cases that do not reference \p SI's default BB.
304 unsigned Clusterify(CaseVector &Cases, SwitchInst *SI) {
305 unsigned NumSimpleCases = 0;
307 // Start with "simple" cases
308 for (auto Case : SI->cases()) {
309 if (Case.getCaseSuccessor() == SI->getDefaultDest())
310 continue;
311 Cases.push_back(CaseRange(Case.getCaseValue(), Case.getCaseValue(),
312 Case.getCaseSuccessor()));
313 ++NumSimpleCases;
316 llvm::sort(Cases, CaseCmp());
318 // Merge case into clusters
319 if (Cases.size() >= 2) {
320 CaseItr I = Cases.begin();
321 for (CaseItr J = std::next(I), E = Cases.end(); J != E; ++J) {
322 int64_t nextValue = J->Low->getSExtValue();
323 int64_t currentValue = I->High->getSExtValue();
324 BasicBlock* nextBB = J->BB;
325 BasicBlock* currentBB = I->BB;
327 // If the two neighboring cases go to the same destination, merge them
328 // into a single case.
329 assert(nextValue > currentValue && "Cases should be strictly ascending");
330 if ((nextValue == currentValue + 1) && (currentBB == nextBB)) {
331 I->High = J->High;
332 // FIXME: Combine branch weights.
333 } else if (++I != J) {
334 *I = *J;
337 Cases.erase(std::next(I), Cases.end());
340 return NumSimpleCases;
343 /// Replace the specified switch instruction with a sequence of chained if-then
344 /// insts in a balanced binary search.
345 void ProcessSwitchInst(SwitchInst *SI,
346 SmallPtrSetImpl<BasicBlock *> &DeleteList,
347 AssumptionCache *AC, LazyValueInfo *LVI) {
348 BasicBlock *OrigBlock = SI->getParent();
349 Function *F = OrigBlock->getParent();
350 Value *Val = SI->getCondition(); // The value we are switching on...
351 BasicBlock* Default = SI->getDefaultDest();
353 // Don't handle unreachable blocks. If there are successors with phis, this
354 // would leave them behind with missing predecessors.
355 if ((OrigBlock != &F->getEntryBlock() && pred_empty(OrigBlock)) ||
356 OrigBlock->getSinglePredecessor() == OrigBlock) {
357 DeleteList.insert(OrigBlock);
358 return;
361 // Prepare cases vector.
362 CaseVector Cases;
363 const unsigned NumSimpleCases = Clusterify(Cases, SI);
364 LLVM_DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
365 << ". Total non-default cases: " << NumSimpleCases
366 << "\nCase clusters: " << Cases << "\n");
368 // If there is only the default destination, just branch.
369 if (Cases.empty()) {
370 BranchInst::Create(Default, OrigBlock);
371 // Remove all the references from Default's PHIs to OrigBlock, but one.
372 FixPhis(Default, OrigBlock, OrigBlock);
373 SI->eraseFromParent();
374 return;
377 ConstantInt *LowerBound = nullptr;
378 ConstantInt *UpperBound = nullptr;
379 bool DefaultIsUnreachableFromSwitch = false;
381 if (isa<UnreachableInst>(Default->getFirstNonPHIOrDbg())) {
382 // Make the bounds tightly fitted around the case value range, because we
383 // know that the value passed to the switch must be exactly one of the case
384 // values.
385 LowerBound = Cases.front().Low;
386 UpperBound = Cases.back().High;
387 DefaultIsUnreachableFromSwitch = true;
388 } else {
389 // Constraining the range of the value being switched over helps eliminating
390 // unreachable BBs and minimizing the number of `add` instructions
391 // newLeafBlock ends up emitting. Running CorrelatedValuePropagation after
392 // LowerSwitch isn't as good, and also much more expensive in terms of
393 // compile time for the following reasons:
394 // 1. it processes many kinds of instructions, not just switches;
395 // 2. even if limited to icmp instructions only, it will have to process
396 // roughly C icmp's per switch, where C is the number of cases in the
397 // switch, while LowerSwitch only needs to call LVI once per switch.
398 const DataLayout &DL = F->getParent()->getDataLayout();
399 KnownBits Known = computeKnownBits(Val, DL, /*Depth=*/0, AC, SI);
400 // TODO Shouldn't this create a signed range?
401 ConstantRange KnownBitsRange =
402 ConstantRange::fromKnownBits(Known, /*IsSigned=*/false);
403 const ConstantRange LVIRange = LVI->getConstantRange(Val, SI);
404 ConstantRange ValRange = KnownBitsRange.intersectWith(LVIRange);
405 // We delegate removal of unreachable non-default cases to other passes. In
406 // the unlikely event that some of them survived, we just conservatively
407 // maintain the invariant that all the cases lie between the bounds. This
408 // may, however, still render the default case effectively unreachable.
409 APInt Low = Cases.front().Low->getValue();
410 APInt High = Cases.back().High->getValue();
411 APInt Min = APIntOps::smin(ValRange.getSignedMin(), Low);
412 APInt Max = APIntOps::smax(ValRange.getSignedMax(), High);
414 LowerBound = ConstantInt::get(SI->getContext(), Min);
415 UpperBound = ConstantInt::get(SI->getContext(), Max);
416 DefaultIsUnreachableFromSwitch = (Min + (NumSimpleCases - 1) == Max);
419 std::vector<IntRange> UnreachableRanges;
421 if (DefaultIsUnreachableFromSwitch) {
422 DenseMap<BasicBlock *, unsigned> Popularity;
423 unsigned MaxPop = 0;
424 BasicBlock *PopSucc = nullptr;
426 IntRange R = {std::numeric_limits<int64_t>::min(),
427 std::numeric_limits<int64_t>::max()};
428 UnreachableRanges.push_back(R);
429 for (const auto &I : Cases) {
430 int64_t Low = I.Low->getSExtValue();
431 int64_t High = I.High->getSExtValue();
433 IntRange &LastRange = UnreachableRanges.back();
434 if (LastRange.Low == Low) {
435 // There is nothing left of the previous range.
436 UnreachableRanges.pop_back();
437 } else {
438 // Terminate the previous range.
439 assert(Low > LastRange.Low);
440 LastRange.High = Low - 1;
442 if (High != std::numeric_limits<int64_t>::max()) {
443 IntRange R = { High + 1, std::numeric_limits<int64_t>::max() };
444 UnreachableRanges.push_back(R);
447 // Count popularity.
448 int64_t N = High - Low + 1;
449 unsigned &Pop = Popularity[I.BB];
450 if ((Pop += N) > MaxPop) {
451 MaxPop = Pop;
452 PopSucc = I.BB;
455 #ifndef NDEBUG
456 /* UnreachableRanges should be sorted and the ranges non-adjacent. */
457 for (auto I = UnreachableRanges.begin(), E = UnreachableRanges.end();
458 I != E; ++I) {
459 assert(I->Low <= I->High);
460 auto Next = I + 1;
461 if (Next != E) {
462 assert(Next->Low > I->High);
465 #endif
467 // As the default block in the switch is unreachable, update the PHI nodes
468 // (remove all of the references to the default block) to reflect this.
469 const unsigned NumDefaultEdges = SI->getNumCases() + 1 - NumSimpleCases;
470 for (unsigned I = 0; I < NumDefaultEdges; ++I)
471 Default->removePredecessor(OrigBlock);
473 // Use the most popular block as the new default, reducing the number of
474 // cases.
475 assert(MaxPop > 0 && PopSucc);
476 Default = PopSucc;
477 llvm::erase_if(Cases,
478 [PopSucc](const CaseRange &R) { return R.BB == PopSucc; });
480 // If there are no cases left, just branch.
481 if (Cases.empty()) {
482 BranchInst::Create(Default, OrigBlock);
483 SI->eraseFromParent();
484 // As all the cases have been replaced with a single branch, only keep
485 // one entry in the PHI nodes.
486 for (unsigned I = 0 ; I < (MaxPop - 1) ; ++I)
487 PopSucc->removePredecessor(OrigBlock);
488 return;
491 // If the condition was a PHI node with the switch block as a predecessor
492 // removing predecessors may have caused the condition to be erased.
493 // Getting the condition value again here protects against that.
494 Val = SI->getCondition();
497 // Create a new, empty default block so that the new hierarchy of
498 // if-then statements go to this and the PHI nodes are happy.
499 BasicBlock *NewDefault = BasicBlock::Create(SI->getContext(), "NewDefault");
500 F->getBasicBlockList().insert(Default->getIterator(), NewDefault);
501 BranchInst::Create(Default, NewDefault);
503 BasicBlock *SwitchBlock =
504 SwitchConvert(Cases.begin(), Cases.end(), LowerBound, UpperBound, Val,
505 OrigBlock, OrigBlock, NewDefault, UnreachableRanges);
507 // If there are entries in any PHI nodes for the default edge, make sure
508 // to update them as well.
509 FixPhis(Default, OrigBlock, NewDefault);
511 // Branch to our shiny new if-then stuff...
512 BranchInst::Create(SwitchBlock, OrigBlock);
514 // We are now done with the switch instruction, delete it.
515 BasicBlock *OldDefault = SI->getDefaultDest();
516 OrigBlock->getInstList().erase(SI);
518 // If the Default block has no more predecessors just add it to DeleteList.
519 if (pred_empty(OldDefault))
520 DeleteList.insert(OldDefault);
523 bool LowerSwitch(Function &F, LazyValueInfo *LVI, AssumptionCache *AC) {
524 bool Changed = false;
525 SmallPtrSet<BasicBlock *, 8> DeleteList;
527 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
528 BasicBlock *Cur =
529 &*I++; // Advance over block so we don't traverse new blocks
531 // If the block is a dead Default block that will be deleted later, don't
532 // waste time processing it.
533 if (DeleteList.count(Cur))
534 continue;
536 if (SwitchInst *SI = dyn_cast<SwitchInst>(Cur->getTerminator())) {
537 Changed = true;
538 ProcessSwitchInst(SI, DeleteList, AC, LVI);
542 for (BasicBlock *BB : DeleteList) {
543 LVI->eraseBlock(BB);
544 DeleteDeadBlock(BB);
547 return Changed;
550 /// Replace all SwitchInst instructions with chained branch instructions.
551 class LowerSwitchLegacyPass : public FunctionPass {
552 public:
553 // Pass identification, replacement for typeid
554 static char ID;
556 LowerSwitchLegacyPass() : FunctionPass(ID) {
557 initializeLowerSwitchLegacyPassPass(*PassRegistry::getPassRegistry());
560 bool runOnFunction(Function &F) override;
562 void getAnalysisUsage(AnalysisUsage &AU) const override {
563 AU.addRequired<LazyValueInfoWrapperPass>();
567 } // end anonymous namespace
569 char LowerSwitchLegacyPass::ID = 0;
571 // Publicly exposed interface to pass...
572 char &llvm::LowerSwitchID = LowerSwitchLegacyPass::ID;
574 INITIALIZE_PASS_BEGIN(LowerSwitchLegacyPass, "lowerswitch",
575 "Lower SwitchInst's to branches", false, false)
576 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
577 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
578 INITIALIZE_PASS_END(LowerSwitchLegacyPass, "lowerswitch",
579 "Lower SwitchInst's to branches", false, false)
581 // createLowerSwitchPass - Interface to this file...
582 FunctionPass *llvm::createLowerSwitchPass() {
583 return new LowerSwitchLegacyPass();
586 bool LowerSwitchLegacyPass::runOnFunction(Function &F) {
587 LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
588 auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>();
589 AssumptionCache *AC = ACT ? &ACT->getAssumptionCache(F) : nullptr;
590 return LowerSwitch(F, LVI, AC);
593 PreservedAnalyses LowerSwitchPass::run(Function &F,
594 FunctionAnalysisManager &AM) {
595 LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
596 AssumptionCache *AC = AM.getCachedResult<AssumptionAnalysis>(F);
597 return LowerSwitch(F, LVI, AC) ? PreservedAnalyses::none()
598 : PreservedAnalyses::all();